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Abstract

This paper deals with the problem of interpolating partial functions
over finite distributive lattices by lattice polynomial functions. More
precisely, this problem can be formulated as follows: Given a finite dis-
tributive lattice L and a partial function f from D ⊆ Ln to L, find
all the lattice polynomial functions that interpolate f on D. If the
set of lattice polynomials interpolating a function f is not empty, then
it has a unique upper bound and a unique lower bound. This paper
presents a new description of these bounds and proposes an algorithm
for computing them that runs in polynomial time, thus improving exist-
ing methods. Furthermore, we present an empirical study on randomly
generated datasets that illustrates our theoretical results.
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1 Introduction

Lattice polynomial functions (LPFs) constitute a noteworthy class of functions that
enable meaningful aggregation of qualitative data [17]. Informally, they are func-
tions on lattices that can be expressed by formulas involving only variables, con-
stants, and the lattice operators of supremum ∨ and infimum ∧. This paper focuses
on finite distributive lattices and considers the problem of interpolating partial func-
tions by LPFs. More precisely, we consider the following problem.
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Interpolation Problem. Let L be a finite distributive lattice, and n a positive
integer. Given an arbitrary set D ⊆ Ln and a partial function f : D → L, decide
whether f can be interpolated by an LPF p : Ln → L (that is, p(x) = f(x), for all
x ∈ D) and, if this is the case, then describe all such interpolating LPFs.

Throughout this paper, we denote the set of all LPFs that interpolate a function
f by IP(f). If IP(f) is nonempty, then we say that f is a partial LPF. It was
shown in [27] that IP(f) has a unique upper bound and a unique lower bound
when L is totally ordered. The authors also provided a method for constructing
these bounds. In fact [7], the set IP(f) has uniques upper and lower bounds even
in the case where L is a distributive lattice. However, to the best of our knowledge,
no polynomial time method existed for computing these bounds.

In this paper we present a polynomial time algorithm that computes the bounds
of IP(f) and checks whether they specify a nonempty set. As a by-product, we
provide a characterization of partial LFPs.

This paper is organized as follows. In Section 2 we recall the basic background
on distributive lattices and LPFs, and in Section 3 we explain how the interpolation
problem for LPFs is related to Multiple Criteria Decision Aid. More precisely, we
show that LPFs can help handling problems involving unknown values by enabling
the use of distributive lattices as intermediary scales. In Section 4 we extend pre-
vious results [11, 26, 27] by showing that the upper and lower bounds of IP(f)
can be described by a polynomial number of constraints. In Section 5 we make use
of the latter result to characterize the class of partial LPFs through the notion of
semi-congruence. In Section 6 we provide the algorithms for computing the set of
constraints describing IP(f) and for checking whether IP(f) is nonempty. We also
present the worst case complexity of these algorithms, which is attested empirically
in Section 7 through an application to randomly generated datasets of various di-
mensions. Some conclusions and directions for future research are then discussed
in the last section.

2 Preliminaries

In this section we recall basic concepts and preliminary results that will be needed
throughout the paper. For further background see, e.g., [12, 18].

2.1 Basic background on distributive lattices

For any positive integer n, let [n] = {1, . . . , n}. For any finite set X, we will
denote by 2X the set of all subsets of X. Note that 2X is ordered by inclusion and
constitutes a partially ordered set (or a poset for short).

A lattice is a poset (L,≤) in which any two elements a, b ∈ L have exactly
one least upper bound, called the supremum of a and b and denoted by a ∨ b,
and exactly one greatest lower bound, called the infimum of a and b and denoted
by a ∧ b. Hence, a lattice (L,≤) can also be regarded as the algebraic structure
(L,∨,∧). When there is no danger of ambiguity, we will denote a lattice simply
by its universe L. Also, if L is a finite lattice, then it is necessarily bounded, that
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is, it has a greatest element and a least element that are denoted by ⊤L and ⊥L,
respectively. For example, for any set X, the poset 2X is a lattice where ⊥L = ∅,
⊤L = X, and the operations ∨ and ∧ correspond respectively to the set union and
the set intersection.

A lattice (L1,∨1,∧1) is said to be a sublattice of (L2,∨2,∧2) if L1 ⊆ L2 and for
any a, b ∈ L1,

a ∨1 b = a ∨2 b and a ∧1 b = a ∧2 b.

In this paper, we will only consider finite distributive lattices. A lattice is said
to be distributive if the following condition holds: for every a, b, c ∈ L,

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) or, equivalently, a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

Equivalently, distributive lattices can be characterized as lattices that do not have
any of the two lattices shown in Figure 1 as a sublattice [1].

•

•

•• •

•

•

•
•

•

Figure 1: The two forbidden substructures in a distributive lattice.

Two partially ordered sets (X1,≤1) and (X2,≤2) are said to be isomorphic
if there is an order isomorphism between (X1,≤1) and (X2,≤2), i.e., if there is
a bijection h : X1 → X2 such that, for every a, b ∈ X1, a ≤1 b if and only if
h(a) ≤2 h(b). In the case of lattices, this relation becomes more stringent. Two
lattices (L1,∨1,∧1) and (L2,∨2,∧2) are said to be isomorphic (as lattices) if there
exists a bijection h : L1 → L2 such that, for all a, b ∈ L1,

h(a ∨1 b) = h(a) ∨2 h(b) and h(a ∧1 b) = h(a) ∧2 h(b).

An element x ∈ L is said to be join-irreducible if x ̸= ⊥L and if it is not the
supremum of two other elements of L. In a lattice, any element is equal to the
supremum of all join-irreducible elements lower than or equal to it. The set of
join-irreducible elements of L is denoted by J (L). Note that J (L) is a poset whose
order is inherited from L. Each distributive lattice is characterized by the poset
of its join-irreducible elements. Therefore, two distributive lattices L1 and L2 are
isomorphic if and only if the posets J (L1) and J (L2) are isomorphic [12].

Moreover, every finite poset X gives rise to a distributive lattice. Let (X,≤)
denote a finite poset and let x ∈ X. The downset of x in X is denoted by ↓ x and
defined by ↓ x = {y ∈ X | y ≤ x}. Consider the set

O(X) =
{ ∪

x∈A

↓ x
∣∣∣ A ⊆ X

}
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of unions of downsets of X. The set O(X) ordered by inclusion is a distributive
lattice whose poset of join-irreducible elements is

J (O(X)) =
{
↓ x

∣∣ x ∈ X
}
.

It is easy to see that J (O(X)) is (order-)isomorphic to X.
Similarly, any finite distributive lattice L is isomorphic to O(J (L)). This es-

tablishes a two way correspondence between distributive lattices and posets that
culminated in Birkhoff’s representation theorem for finite distributive lattices, from
which it follows that every finite distributive lattice L can be thought of as a sub-
lattice of 2J (L).

Thus, each element a of L can be seen as a subset of J (L), namely, as the
set of join-irreducible elements that are lower than or equal to a, or as a binary
tuple of size k, where k = |J (L)|. Let J (L) = {a1, . . . , ak}, and let h denote the
bijection from O(J (L)) to {0, 1}k that associates each element of O(J (L)) to a
binary representation. Formally, for each A ∈ O(J (L)), let

h(A) = (b1, . . . , bk), where bi =

{
1 if ai ∈ A,

0 otherwise.

We consider the component-wise order on {0, 1}k defined by

(b1, . . . , bk) ≤ (b′1, . . . , b
′
k) if ∀i ∈ [k], bi ≤ b′i,

for all (b1, . . . , bk), (b
′
1, . . . , b

′
k) ∈ {0, 1}k. It is then easy to verify that h is in fact

an isomorphism. Figure 2 illustrates the transformations from L to O(J (L)) and
from O(J (L)) to {0, 1}|J (L)|. The leftmost figure is the distributive lattice L, and
its join-irreducible elements are marked with blue squares. The figure in the middle
is the lattice O(J (L)), where the elements of L are represented as subsets of join-
irreducible elements of L. The rightmost figure is the image of O(J (L)) by h: a
sublattice of {0, 1}k, where elements of L are thought of as binary tuples. For each
A ∈ O(J (L)), the presence or absence of the join-irreducible elements 2, 3 and 5
of L are respectively indicated by the value of the 1st, 2nd, and 3rd component of
h(A).

1

2 3

4 5

6

A distributive lattice L.

∅

{2} {3}

{2, 3} {3, 5}

{2, 3, 5}

The lattice O(J (L)).
000

100 010

110 011

111

The
sublattice of {0, 1}|J (L)|

given by h.

Figure 2: Three isomorphic distributive lattices.
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1

2 3

4

5

6 7

8

A finite distributive
lattice L.

1

2 3

5

6 7

C1 C2

The poset J (L) ∪ {1} of
join-irreducibles
elements in L.

(1, 1)

(2, 1)

(5, 1)

(6, 1)

(1, 3)

(2, 3)

(5, 3)

(6, 3)

(1, 7)

(2, 7)

(5, 7)

(6, 7)

The lattice C1 × C2. The image
of L by the embedding is marked

out.

Figure 3: An example of a Dilworth’s embedding.

Alternatively, L can always be seen as a sublattice of a product of chains [22].
Let k be a positive integer and C1, . . . , Ck be totally ordered sets such that

C1 ∪ · · · ∪ Ck = J (L) ∪ {⊥L}

and such that
∀i, j ∈ [k] : i ̸= j =⇒ Ci ∩ Cj = {⊥L}.

For each x ∈ L and i ∈ [k], we define

cxi =
∨{

y ∈ Ci

∣∣ y ≤ x
}
.

The function γ : L →
∏k

i=1Ci defined by γ(x) = (cx1 , . . . , c
x
k) is called a Dilworth’s

embedding. It associates the greatest and least elements of L to the greatest and
least elements of

∏k
i=1 Ci, respectively. Note that, since any element of a distributive

lattice equals the supremum of the join-irreducible elements lower than or equal to
it, we have that

x =
∨{

y ∈ J (L)
∣∣ y ≤ x} =

∨
i∈[k]

∨{
y ∈ Ci

∣∣ y ≤ x
}
= cx1 ∨ · · · ∨ cxk.

Any distributive lattice has at least one Dilworth’s embedding. In this paper,
any distributive lattice L will be associated to its image by some Dilworth’s em-
bedding γ : L →

∏k
i=1 Ci. For any x ∈ L, we will denote by x|i the ith component

of γ(x). Note that, for any a, b ∈ L we have that

a ≤ b if and only if ∀i ∈ [k] : a|i ≤ b|i. (1)

and that

γ(a ∧ b) =
(
a|1 ∧ b|1, . . . , a|k ∧ b|k

)
, γ(a ∨ b) =

(
a|1 ∨ b|1, . . . , a|k ∨ b|k

)
. (2)
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Remark 1. Any finite chain is isomorphic to an interval of natural numbers. Thus,
the Dilworth’s embedding of L in

∏k
i=1Ci can be seen as a way to represent each

element of L by a k-tuple of integer values. Also note that in the case where
k = |J (L)|, each chain Ci (where i ∈ [k]) contains only two elements: one join-
irreducible element and ⊥L. In this case, we say that the Dilworth’s embedding of
L in

∏k
i=1Ci is trivial. This is essentially the Birkhoff’s representation of L as a

sublattice of 2J (L) or of {0, 1}|J (L)|.

2.2 Basic background on LPFs

Let L denote a distributive lattice and let n denote a positive integer. The class
of lattice polynomial functions (LPFs) from Ln to L will be denoted by Pn

L, and it
can be defined recursively by finitely many applications of the following rules:

1. For any k ∈ [n], the projection (x1, . . . , xn) 7→ xk is an LPF from Ln to L.

2. For any c ∈ L, the constant function (x1, . . . , xn) 7→ c is an LPF from Ln to
L.

3. If p, q ∈ Pn
L, then f : Ln → L such that f(x) = p(x) ∨ q(x) for all x ∈ Ln or

such that f(x) = p(x) ∧ q(x) for all x ∈ Ln is an LPF from Ln to L.

It is well-known that any LPF over a distributive lattice can be represented by
a disjunctive normal form (DNF) [15]:

p(x) =
∨
I⊆[n]

(
αp(I) ∧

∧
i∈I

xi

)
, (3)

where αp is a mapping from 2[n] to L. In fact, αp can be canonically defined by
αp(I) = p(eI), for every I ⊆ [n], where eI is the element of Ln whose ith component
is ⊤L if i ∈ I and ⊥L otherwise. Clearly, αp thus defined is order-preserving, i.e.,
αp(I) ≤ αp(J), whenever I ⊆ J .

Remark 2. Note that the canonical DNF representation of an LPF p, i.e., given in
terms of αp as defined above, may include redundant terms. To avoid redundancy,
we may consider instead the mapping α∗ : 2[n] → L defined by α∗(I) = αp(I) if
αp(I) >

∨
J⊊I αp(J), and ⊥L otherwise. The mapping α∗, introduced in [23, 25], is

sometimes called the ordinal Möbius transform of αp. It is not difficult to see that

p(x) =
∨
I⊆[n]

(
α∗(I) ∧

∧
i∈I

xi

)
.

In fact, any function in the interval [α∗, αp] gives rise to a DNF representation of p,
and any DNF representation

p(x) =
∨
I⊆[n]

(
α(I) ∧

∧
i∈I

xi

)
,

of p implies that α ∈ [α∗, αp]; see [9].
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Remark 3. The Sugeno integral can be thought as being a particular type of LPF,
namely, those defined with respect to a capacity (i.e., a set-function µ : 2[n] → L
that is order-preserving and that satisfies the boundary conditions µ(∅) = ⊥L and
µ([n]) = ⊤L). Even though it was originally introduced over the real unit interval
L = [0, 1] [28], the Sugeno integral was later extended to bounded distributive
lattices in [24], where the Sugeno integral Sµ w.r.t. a capacity µ is defined by:

Sµ(x) =
∨
I⊆[n]

(
µ(I) ∧

∧
i∈I

xi

)
.

It follows from this definition that Sugeno integrals coincide exactly with idempotent
LPFs, i.e., LPFs that preserve constant tuples.

We now recall the notion of partial LPF that will play a key role in what follows.

Definition 1. Let D ⊆ Ln. A function f : D → L is a partial LPF if there exists
p ∈ Pn

L such that p(x) = f(x) for all x ∈ D.

From a computational point of view, the space required to encode a mapping
α : 2[n] → L is exponential w.r.t. n. As hinted in Remark 2, it is sometimes possible
to avoid redundancies. A subset I ⊆ [n] is said to be a focal set of α if α(I) = α∗(I),
that is, if

α(I) >
∨
J⊊I

α(J).

Note that, since for any non-focal set I ⊆ [n] we have α(I) =
∨

J⊂I α(J), α is
entirely specified by its values on focal sets.

3 LPFs in Multiple Criteria Decision Aid

Multiple Criteria Decision Aid (MCDA) is a field of operations research concerned
with decision problems involving several criteria. Problem settings of that field
typically consider a set of alternatives that are evaluated according to each criterion.

The range of a criterion is the set of possible evaluations of an alternative with
respect to that criterion. Let X be a set of alternatives, n be the number of
considered criteria and X1, . . . , Xn the ranges of those criteria. Each alternative
x ∈ X can then be described by a tuple (x1, . . . , xn) ∈ X1 × · · · ×Xn. The values
x1, . . . , xn are called the local evaluations of x. One problem in MCDA is to find a
model that assigns, to each instance, an overall evaluation (that we call the utility
value of the instance) depending on its local evaluations. In the rest of this section,
we discuss an example where this model has to be chosen in a supervised setting.

We consider students that obtained grades in several courses. The possible
grades are: “very bad”, “bad”, “average”, “good”, “very good”. For a matter
of simplicity, they are denoted by 1, 2, 3, 4, and 5 respectively. Moreover let
T = {1, 2, 3, 4, 5} be a totally ordered set where 1 < 2 < 3 < 4 < 5. Each student
also gets an overall grade, which is decided by a committee according to his/her
grades in each course. The grades of the students are displayed in Table 1. A few
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physics literature economics algebra overall
student 1 5 5 ? 4 4
student 2 3 3 3 3 3
student 3 5 3 3 5 5
student 4 ? 1 2 4 3

Table 1: Toy example: grades attributed to several students.

grades were lost before the overall grade of each student was decided. These missing
values are indicated in the table by question marks.

We want to find a model that, for each student, aggregates the grades in each
course (i.e., the local evaluations) into an overall grade (i.e. the utility value),
according to the examples given in the table. Aggregation functions involving nu-
merical operations, such as a weighted sum or a Choquet integral [5, 16], cannot
aggregate non-numerical values. Moreover, our model has to handle the missing
values. We propose to use an LPF as a model. Note that, since some values are
missing, Table 1 cannot be regarded as a partial function from T 4 to T , and thus
the model cannot be inferred directly from the table by solving the interpolation
problem. Instead, we propose to proceed as follows.

We will make use of an intermediary scale T in which partial information about
grades is handled in a meaningful way. This scale T will be defined as a distribu-
tive lattice, and an LPF on T will then be used as a model for aggregating local
evaluations into a utility value. We now detail how T and the LPF are chosen.

We can see T as an interval [1, 5]. Let T be the lattice whose elements are all
sub-intervals of [1, 5], and where the supremum and infimum are defined by

[a, b] ∨ [c, d] = [a ∨ c, b ∨ d] and [a, b] ∧ [c, d] = [a ∧ c, b ∧ d],

for all [a, b], [c, d] ∈ T. The lattice T (depicted in Figure 4) is indeed distributive.
Moreover, for any x ∈ [a, b] and y ∈ [c, d], the intervals [a, b]∨ [c, d] and [a, b]∧ [c, d]
are in fact the intervals of possible values for x ∨ y and for x ∧ y, respectively. We
identify each grade a ∈ T to the interval [a, a] and each missing value to the interval
[1, 5]. We now want to chose an LPF on T that generalizes the examples given in
Table 1. To do so, we regard Table 1 as a partial function f from T4 to T, we
compute the set IP(f) (i.e., we solve the interpolation problem) and we pick an
LPF from this set if it is not empty.

One of the motivations for using LPFs it that they can be seen as rule-based
models. Indeed, any LPF can be translated into several single-threshold rules [13,
19]. More precisely, for any distributive lattice L, any LPF p : Ln → L and all
x ∈ Ln, p(x) is the smallest value allowed by all rules of the form

if ∀i ∈ A, xi ≥ δ then p(x) ≥ δ,

where A ⊆ [n] is a focal set of αp, and δ ≤ αp(A). One advantage of rule-based
models is to be easier to interpret by humans (each prediction of the model can
be justified by one or several simple rules). However, it is easy to see that some
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[1, 1]

[2, 2]

[3, 3]

[4, 4]

[5, 5]

[1, 5]

[1, 2]

[2, 3]

[3, 4]

[4, 5]

[1, 3]

[2, 4]

[3, 5]

[1, 4]

[2, 5]

Figure 4: The distributive lattice T of subintervals of [1, 5].

datasets cannot be modeled by an LPF, even if they can be modeled by a non-
decreasing function. One way to deal with some of those datasets can be to divide
them into subsets that can be interpolated by an LPF (see, e.g., [26]).

However, in many cases, the ranges of the criteria differ from the set of utility
values. To overcome these limitations, the authors of [8, 10] introduced generaliza-
tions of Sugeno integrals, such as Sugeno Utility Functionals (SUF) or maxima of
SUFs. These models allow to merge local evaluations when the ranges of criteria dif-
fer from each other. Moreover, a SUF or a maximum of SUFs f : X1×· · ·×Xn → L
can always be represented by multi-threshold rules, of the form

if ∀i ∈ A, xi ≥ δi then f(x) ≥ δ,

where A ⊆ [n], δ ∈ L, and each δi is a threshold belonging to the range of the ith

criterion. Note that certain sets of multi-threshold rules do not correspond to any
SUF (see [2] and [19]), but always correspond to at least one maximum of SUFs [3].
Moreover, it was shown [6] that maxima of SUFs can be used for extracting rules
from data. The rules thus obtained were shown to have a predictive accuracy that
is competitive with rules extracted via state of the art methods for rule extraction.

4 Constraint stacking

In this section we show that the upper and lower bounds of IP(f) can always be
characterized by a set of constraints, thus generalizing the result of [27] where L
is assumed to be totally ordered, and providing an alternative description to that
of [7]. More precisely, all LPFs p ∈ IP(f) are characterized by upper and lower
constraints, which are respectively of the form αp(I) ≤ y and αp(I) ≥ y, where
I ⊆ [n] and y ∈ L.

We first consider the particular case when the domain of f only has one element.

9



Lemma 1. Let x1, . . . , xn, y ∈ L, and let p be an LPF. We have p(x1, . . . , xn) = y
if and only if, for every t ∈ [k]

αp

(
Gx,y,t

)
≤ s+y,t and αp

(
G′

x,y,t

)
≥ s−y,t

where

s+y,t =
∨{

a ∈ L
∣∣ a|t ≤ y|t

}
, s−y,t =

∧{
a ∈ L

∣∣ a|t ≥ y|t
}
,

Gx,y,t =
{
i
∣∣ xi|t > y|t

}
G′

x,y,t =
{
i
∣∣ xi|t ≥ y|t

}
.

Proof. First observe that ∨
I⊆[n]

αp(I) ∧
∧
i∈I

xi = y

holds if and only if for all t ∈ [k] we have∨
I⊆[n]

αp(I)|t ∧
∧
i∈I

xi|t = y|t. (4)

Notice that the left-hand side of (4) is the DNF of an LPF from (Ct)
n to Ct (recall

that we consider a Dilworth embedding of L in C1 × · · · × Ck). Denote this LPF
by pt, where αpt : 2

[n] → Ct is defined by αpt(I) = αp(I)|t for all I ⊆ [n]. Since pt

is defined on the chain Ct and since (4) is equivalent to pt(x1|t, . . . , xn|t) = y|t, it
then follows from [27] (Theorem 1) that (4) is equivalent to

αp

(
Gx,y,t

)
|t ≤ y|t, (5)

αp

(
G′

x,y,t

)
|t ≥ y|t. (6)

Since s+y,t is the greatest element of L whose tth component is lower than or equal
to y|t, (5) is equivalent to αp(Gx,y,t) ≤ s+y,t. By duality, since s−y,t is the least

element of L whose tth component is greater than or equal to y|t, (6) is equivalent
to αp(G

′
x,y,t) ≥ s−y,t.

Using the notation of Lemma 1, we introduce the two following sets:

C+
x,y =

{(
Gx,y,t, s

+
y,t

) ∣∣∣ t ∈ [k]
}

and C−
x,y =

{(
G′

x,y,t, s
−
y,t

) ∣∣∣ t ∈ [k]
}
.

for any given x ∈ Ln and y ∈ L. From Lemma 1 it follows that for any LPF p we
have that p(x) = y if and only if

∀
(
Gx,y,t, s

+
y,t

)
∈ C+

x,y : αp

(
Gx,y,t

)
≤ s+y,t

and
∀
(
G′

x,y,t, s
−
y,t

)
∈ C−

x,y : αp

(
G′

x,y,t

)
≥ s−y,t.

Example 1. Recall Table 1 in Section 3, where we considered students and their
grades in several courses. Local evaluations and utility values are elements from the
lattice T. Thus, we are searching for an LPF p : T4 → T that predicts exactly the
utility value of each student. First, let us define a suitable Dilworth’s embedding

10



of T. Notice that the lattice T is isomorphic to the sublattice of T 2 whose universe
is the order simplex {(a, b) ∈ T 2 | a ≤ b}. Thus, let C1 = C2 = T , and consider the
Dilworth’s embedding of T in C1 × C2 defined by

[a, b]|1 = a and [a, b]|2 = b,

for all [a, b] ∈ T.
Recall that each grade a ∈ T is represented by the interval [a, a] and that a

missing grade is represented by the interval [1, 5]. We denote the tuple of local
evaluations of a student by xi where i is the number of its row in Table 1. Thus,
for the first student we must have

p(x1) = [4, 4] where x1 = ([5, 5], [5, 5], [1, 5], [4, 4]).

Applying Lemma 1, we get

s+[4,4],1 = [4, 5] s−[4,4],1 = [4, 4] Gx1,[4,4],1 = {1, 2} G′
x1,[4,4],1 = {1, 2, 4}

s+[4,4],2 = [4, 4] s−[4,4],2 = [1, 4] Gx1,[4,4],2 = {1, 2, 3} G′
x1,[4,4],2 = {1, 2, 3, 4}

and the corresponding constraints

αp({1, 2, 3}) ≤ [4, 4] and αp({1, 2, 4}) ≥ [4, 4].

For the second student we must have

p(x2) = [3, 3] where x2 = ([3, 3], [3, 3], [3, 3], [3, 3]).

We get

s+[3,3],1 = [3, 5] s−[3,3],1 = [3, 3] Gx2,[3,3],1 = ∅ G′
x2,[3,3],1 = {1, 2, 3, 4}

s+[3,3],2 = [3, 3] s−[3,3],2 = [1, 3] Gx2,[3,3],2 = ∅ G′
x2,[3,3],2 = {1, 2, 3, 4}

and the corresponding constraints:

αp(∅) ≤ [3, 3] and αp({1, 2, 3, 4}) ≥ [3, 3].

For the third student we must have

p(x3) = [5, 5] where x3 = ([5, 5], [3, 3], [3, 3], [5, 5]).

We get

s+[5,5],1 = [5, 5] s−[5,5],1 = [5, 5] Gx3,[5,5],1 = ∅ G′
x3,[5,5],1 = {1, 4}

s+[5,5],2 = [5, 5] s−[5,5],2 = [1, 5] Gx3,[5,5],2 = ∅ G′
x3,[5,5],2 = {1, 4}

and the corresponding constraints:

αp(∅) ≤ [5, 5] and αp({1, 4}) ≥ [5, 5].

11



For the fourth student we must have

p(x4) = [3, 3] where x4 = ([1, 5], [1, 1], [2, 2], [4, 4]).

We get

s+[3,3],1 = [3, 5] s−[3,3],1 = [3, 3] Gx4,[3,3],1 = {4} G′
x4,[3,3],1 = {4}

s+[3,3],2 = [3, 3] s−[3,3],2 = [1, 3] Gx4,[3,3],2 = {1, 4} G′
x4,[3,3],2 = {1, 4}

and the corresponding constraints:

αp({1, 4}) ≤ [3, 3] and αp({4}) ≥ [3, 3].

For a given f : D → L, the constraints that characterize the upper and lower
bounds of IP(f) are obtained by the union of the constraints given in Lemma 1
for each x ∈ D. This leads us to the following proposition.

Proposition 1. Let D ⊆ Ln, f : D → L, and p ∈ Pn
L. The following two conditions

are equivalent

1.a For all x = (x1, . . . , xn) ∈ D: p(x) = f(x).

1.b For all t ∈ [k] and all x ∈ D

αp

(
Gx,y,t

)
≤ s+y,t and αp

(
G′

x,y,t

)
≥ s−y,t,

where y = f(x) and

s+y,t =
∨{

a ∈ L
∣∣ a|t ≤ f(x)|t

}
, s−y,t =

∧{
a ∈ L

∣∣ a|t ≥ f(x)|t
}
,

Gx,y,t =
{
i
∣∣ xi|t > f(x)|t

}
, G′

x,y,t =
{
i
∣∣ xi|t ≥ f(x)|t

}
.

The constraints given in Proposition 1 completely describe the upper and lower
bounds of IP(f), whenever IP(f) is nonempty. Let C+

f and C−
f denote the sets

upper and lower constraints, respectively. That is,

C+
f =

{(
Gx,f(x),t, s

+
y,t

) ∣∣∣ t ∈ [k], x ∈ D
}
=

∪
x∈D

C+
x,f(x), (7)

C−
f =

{(
G′

x,f(x),t, s
−
y,t

) ∣∣∣ t ∈ [k], x ∈ D
}
=

∪
x∈D

C−
x,f(x). (8)

The natural question is then how to check whether there is an LPF satisfying
the conditions presented in Proposition 1, i.e., whether IP(f) is nonempty. The
following proposition provides necessary and sufficient conditions for IP(f) to be
nonempty.

Proposition 2. Let D ⊆ Ln and f : D → L. The three following assertions are
equivalent.

2.a. There exists p ∈ Pn
L such that p(x) = f(x) for all x ∈ D.

12



2.b. There exists an order-preserving α : 2[n] → L such that

∀(G, s+) ∈ C+
f , α(G) ≤ s+ and ∀(G′, s−) ∈ C−

f , α(G′) ≥ s−.

2.c. For every (G, s+) ∈ C+
f and (G′, s−) ∈ C−

f , if G
′ ⊆ G, then s− ≤ s+.

Proof. The fact that 2.b is equivalent to 2.a follows immediately from Proposition
1 and from the definitions of C+

f and C−
f .

To prove that 2.c and 2.b are also equivalent, we first show that if 2.c does not
hold, then neither does 2.b. Suppose that there is (G, s+) ∈ C+

f and (G′, s−) ∈ C−
f

such that G′ ⊆ G and s− ̸≤ s+. In this case, for any α : 2[n] → L verifying

α(G) ≤ s+ and α(G′) ≥ s−,

we have α(G′) ̸≤ α(G) and thus α is not order preserving.
We now show that 2.c implies 2.b. So suppose that 2.c holds. Take α : 2[n] → L

such that for all I ⊆ [n],

α(I) =
∨{

s−
∣∣ (G′, s−) ∈ C−

f , G′ ⊆ I
}
. (9)

It is not difficult to verify that α is order-preserving, and that for every (G′, s−) ∈
C−

f , we have that α(G′) ≥ s−. Let (G, s+) ∈ C+
f . From (9) it follows that

α(G) =
∨{

s−
∣∣ (G′, s−) ∈ C−

f , G
′ ⊆ G

}
,

and since for all (G′, s−) ∈ C−
f such that G′ ⊆ G we have s− ≤ s+, we have

α(G) ≤ s+. Therefore, 2.c implies 2.b.

While Proposition 1 defines the constraints that characterize all LPFs interpolat-
ing a given partial function, Proposition 2 provides a way of checking if there exists
an LPF satisfying these constraints. Even though equivalent to the description
provided in [7], this new description enables algorithms to solve the interpolation
problem in polynomial time, as we will see in Subsection 6.1.

Example 2. The four students described in Table 1 yield the following sets of
constraints.

C+
f = {({1, 2, 3}, [4, 4]), C−

f = {({1, 2, 4}, [4, 4]),
(∅, [3, 3]), ({1, 2, 3, 4}, [3, 3]),
(∅, [5, 5]), ({1, 4}, [5, 5]),
({1, 4}, [3, 3])} ({4}, [3, 3])}.

These two sets contain a few redundancies. For example, in C+
f , the couple ({1, 4}, [3, 3])

represents a stronger constraint than (∅, [3, 3]) and than (∅, [5, 5]). In C−
f , the cou-

ple ({1, 4}, [5, 5]) represents a stronger constraint than ({1, 2, 4}, [4, 4]) and than
({1, 2, 3, 4}, [3, 3]).

13



Moreover, notice that no LPF can satisfy both ({1, 4}, [3, 3]) in C+
f and ({1, 4}, [5, 5])

in C−
f , since {1, 4} ⊆ {1, 4} and [5, 5] > [3, 3]. This can also be seen from the fact

that no monotonic function α : 2[n] → L can verify

µ({1, 4}) ≤ [3, 3] and µ({1, 4}) ≥ [5, 5].

In other words, there exists no FLP that models exactly the data of Table 1, because
the third row is incompatible with the fourth row.

If we decide to remove the last row from the table, then we have that ({1, 4}, [3, 3]) ̸∈
C+

f and ({4}, [3, 3]) ̸∈ C−
f , and the set of interpolating LPFs becomes nonempty.

A straightforward model is then the smallest LPF p that satisfies the remain-
ing lower constraints, given by the couples ({1, 2, 4}, [4, 4]), ({1, 2, 3, 4}, [3, 3]), and
({1, 4}, [5, 5]) in C−

f . This LPF is defined by

αp(I) =

{
[5, 5] if I = {1, 4},∨

J⊂I α(J) otherwise.

5 Characterization of partial LPFs

Recall that a partial function f : D → L for D ⊆ Ln is said to be a partial LPF if
there exists an LPF p ∈ Pn

L that interpolates f . In this section we provide several
theoretical results that will culminate in a characterization of partial LPFs in terms
of so-called semi-congruences.

The first result essentially states that we can check whether IP(f) is nonempty
simply by looking at pairs (x, f(x)), (x’, f(x’)) for each x,x’ ∈ D.

Lemma 2. Let D ⊆ Ln and f : D → L. There exists p ∈ Pn
L such that p(x) = f(x)

for all x ∈ D, if and only if, for all x,x’ ∈ D, there exists p ∈ Pn
L such that

p(x) = f(x) and p(x’) = f(x’).

Proof. Clearly, the condition is necessary. To show that it is sufficient, suppose that,
for all x,x’ ∈ D, there exists p ∈ Pn

L such that p(x) = f(x) and p(x’) = f(x’).
From Proposition 2 it follows that for all x,x’ ∈ D, if (G, s+) ∈ C+

x,f(x) ∪ C+
x’,f(x’)

and (G′, s−) ∈ C−
x,f(x) ∪ C−

x’,f(x’), we have that G′ ⊆ G implies s− ≤ s+. From (7)

and (8) it follows that for all (G, s+) ∈ C+
f and all (G′, s−) ∈ C−

f , G
′ ⊆ G implies

s− ≤ s+, and by Proposition 2, we then conclude that there is p ∈ Pn
L such that

p(x) = f(x) for all x ∈ D.

Let Θ denote an equivalence relation on L. The relation Θ is said to be a
congruence [1] on L if it is compatible with the lattice operations ∨ and ∧, i.e., for
any (a, b), (c, d) ∈ Θ,

(a ∨ c, b ∨ d) ∈ Θ and (a ∧ c, b ∧ d) ∈ Θ.

A function f : D → L (where D ⊆ Ln) is said to be congruence-preserving
if for any congruence Θ on L and any (a1, . . . , an), (b1, . . . , bn) ∈ D such that
(a1, b1), . . . , (an, bn) ∈ Θ, we have that

(f(a1, . . . , an), f(b1, . . . , bn)) ∈ Θ.
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Figure 5: Lattice of Example 3.

It is well-known that the LPFs are congruence preserving functions (see for example
[21]). Moreover, it is shown in [20] that Sugeno integrals correspond exactly to
congruence-preserving aggregation functions. Since any partial LPF coincides with
at least one LPF on each point of its domain, it follows that any partial LPF is
congruence-preserving. However, there are partial congruence-preserving functions
that are not partial LPF, as illustrated in the following example.

Example 3. Let L denote the lattice depicted in Figure 5, and consider the partial
function f : {a, b} → L defined by f(a) = b and f(b) = a. It is easy to verify that
f is congruence-preserving, but that there is no LPF interpolating it.

In order to characterize partial LPFs, we introduce the following generalization
of the notion of congruence.

Definition 2. We say that a binary relation R ⊆ L2 is a semi-congruence if it is
reflexive and compatible with ∨ and ∧.

We say that a partial function f : D → L, D ⊆ Ln, is semi-congruence-
preserving if for any semi-congruence R on L and any

(a1, . . . , an), (b1, . . . , bn) ∈ D

such that (a1, b1), . . . , (an, bn) ∈ R we have that

(f(a1, . . . , an), f(b1, . . . , bn)) ∈ R.

For any x,x’ ∈ Ln, we define R(x,x’) as the intersection of all semi-congruences
R such that

∀i ∈ [n] : (xi, x
′
i) ∈ R. (10)

In other words, R(x,x’) is the smallest semi-congruence that satisfies (10).
Note that the elements of R(x,x’) can be obtained by finitely many applications

of the following rules:

1. (a, a) ∈ R(x,x’) for all a ∈ L, and (xi, x
′
i) ∈ R(x,x’) for all i ∈ [n],

2. if (a, b), (c, d) ∈ R(x,x’), then (a ∨ c, b ∨ d) ∈ R(x,x’),

3. if (a, b), (c, d) ∈ R(x,x’), then (a ∧ c, b ∧ d) ∈ R(x,x’).

From this observation we immediately have the following auxiliary lemma.

Lemma 3. Let x,x’ ∈ Ln and y, y′ ∈ L. The following assertions are equivalent.
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3.a. There is an LPF p : Ln → L such that p(x) = y and p(x’) = y′.

3.b. For every semi-congruence R :[
∀i ∈ [n] : (xi, x

′
i) ∈ R

]
⇒ (y, y′) ∈ R. (11)

3.c. (y, y′) ∈ R(x,x’).

Lemmas 2 and 3 together yield the characterization of partial LPFs as semi-
congruence preserving functions.

Theorem 4. Let f : D → L with D ⊆ Ln. The following assertions are equivalent.

4.a. The function f is a partial LPF.

4.b. For every x,x’ ∈ D and every semi-congruence R :[
∀i ∈ [n] : (xi, x

′
i) ∈ R

]
⇒ (f(x), f(x’)) ∈ R. (12)

4.c. For every x,x’ ∈ D, (f(x), f(x’)) ∈ R(x,x’).

6 Computing the set of solutions

In this section we propose a novel approach for solving the interpolation problem and
we make some theoretical observations concerning its computational complexity.

6.1 Algorithms

This subsection is devoted to the algorithms that solve the interpolation problem
for any given D ⊆ Ln and f : D → L. Algorithm 1 computes the sets of constraints
that define the upper and lower bounds of IP(f), whereas Algorithm 3 checks
whether the induced set is empty. The function f is specified by a set

D = {d1, . . . , dm} ⊆ Ln × L,

where each dj is of the form (xj, yj), for j ∈ {1, . . . ,m}, and specifies the value
f(xj) = yj of f .
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Algorithm 1 : Computation of constraints sets C− and C+

1: function compute constraints(D)
2: initalize C+ as an empty map
3: initalize C− as an empty map
4: for (x, y) ∈ D do
5: for t ∈ {1, . . . , k} do
6: G← {i | xi|t > y|t}
7: G′ ← {i | xi|t ≥ y|t}
8: s+ ←

∨
{a ∈ L | a|t ≤ y|t}

9: s− ←
∧
{a ∈ L | a|t ≥ y|t}

10: update+(C+, G, s+)
11: update−(C−, G′, s−)
12: end for
13: end for
14: return C−, C+

15: end function

The sets C+
f and C−

f introduced in Section 4, are thought of as maps C+ : 2[n] →
L and C− : 2[n] → L, and their respective values on a key I ⊆ [n] are denoted by
C+[I] and C−[I]. The role of the functions update+ and update− is to add new
constraints to C+ and to C−, respectively.

Algorithm 2 : Update of maps

1: function update+(C+, G, s+)
2: if G is a key in C+ then
3: C+[G]← C+[G] ∧ s+

4: else
5: C+[G]← s+

6: end if
7: end function

1: function update−(C−, G′, s−)
2: if G′ is a key in C− then
3: C−[G′]← C−[G′] ∨ s−

4: else
5: C−[G′]← s−

6: end if
7: end function

The function check consistency returns a Boolean value indicating whether
the set of solutions specified by C+ and C− is empty.

Algorithm 3 : Checking constraint consistency

1: function check consistency(C+,C−)
2: for (G, s+) ∈ C+ do
3: for (G′, s−) ∈ C− do
4: if G′ ⊆ G and s− ̸≤ s+ then
5: return false
6: end if
7: end for
8: end for
9: return true
10: end function

17



6.2 Computational complexity

In this section we regard L as a sublattice of a product of chains C1 × · · · × Ck.
Recall that k ≤ |J (L)|. Here the objective is to provide an upper bound on the
worst case complexity of Algorithms 1 and 3 w.r.t. the dimensions of the input,
i.e., the arity n of f , the size m of D, and the parameter k.

We start by looking at the worst case complexity of evaluating any of the fol-
lowing expressions: a ∨ b, a ∧ b, a ≤ b, and a < b (we regard a ≤ b and a < b as
predicates that can be either 0 or 1 depending on whether they are true or false).
By (1) and (2) in Section 2, any of these four expressions can be computed in O(k).
However, since these expressions are evaluated many times in our algorithms, it is
convenient to precompute their values for each couple (a, b) ∈ L× L. After index-
ing each element of L by an integer, the precomputed values can be stored in four
two-dimensional arrays of size |L|2. Since each of these arrays contains at most
|L|2 values, O(|L|2) values have to be computed. Hence, the overall worst time
complexity of these precomputations is O(|L|2k). Once the arrays are created and
filled, any value can be retrieved in O(1).

Observe that the values of the variables s+ and s− (which are set, respectively
to s+y,t and s−y,t during each loop) are determined by the value of y|t. Since y|t ∈
J (L) ∪ {⊥L}, both s+ and s− can take |J (L)| + 1 different values. Again, these
values can be precomputed and stored in arrays. For a given y|t ∈ J (L)∪{⊥L}, s+y,t
and s−y,t can be computed in O(|L|). Thus, computing all possible values of s+ or s−

can be done in O(|L||J (L)|). In what follows, it is assumed that the values s+y,t and
s−y,t are computed and stored for each y|t ∈ J (L) ∪ {⊥L}, and thus that the values
of s+ and s− can be be retrieved in O(1).To implement the maps C+ and C− we can
make use of tries (see, e.g., [4], Section 8.1). Through tries, finding and inserting
an item in C+ or C− can be performed with a complexity O(n). Consequently, the
functions UPDATE+ and UPDATE− run in O(n).

Now consider Algorithm 1. The code from lines 6 to 11 will not be executed
more than mk times. Moreover, G and G′ can be computed in O(n). Therefore,
Algorithm 1 runs in O(mkn).

The number of loops performed in Algorithm 3 depends on |C+| and |C−|. From
Algorithm 1, it can be seen that this number is at most mk. Thus, line 4 will be
executed at most m2k2 times. Since G′ ⊆ G can be checked in O(n), Algorithm 3
runs in O(m2k2n). This is, to the best of our knowledge, the only algorithm that
computes IP(f) in polynomial time, for any partial function from D ⊆ Ln to L.

Remark 4. Corollary 2 of [7] also allows to compute the greatest and the least
LPFs that interpolate a set of data instances. However, any naive implementation
of this theoretical result would lead to an algorithm running in Ω(2nmn). This
exponential complexity is due to the fact that the values of the capacities have to
be computed explicitly for each subset of [n].

7 Empirical study

In this section we perform an empirical study to see the behaviour of our algorithms
with respect to the dimensions of datasets and compare the results with the the-
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oretical complexity results obtained in the previous section. We will conduct our
study on randomly generated data as described below.

Note that our empirical study relies on an implementation of algorithms that
makes use of the trivial Dilworth’s embedding, i.e., Birkhoff’s representation where
the elements of the lattice are represented by binary tuples of size |J (L)|. Therefore,
in this section we assume that k = |J (L)|.

7.1 Random generation of instances

In order to get an idea of how the running time of our algorithm varies w.r.t.
different parameters, we randomly generated datasets of different sizes. The main
steps of the data generation can be summarized as follows:

1. Randomly generate a distributive lattice L,

2. Randomly generate an LPF p : Ln → L,

3. Randomly generate a set of input-output instances. Each input is a randomly
generated element x ∈ Ln, and the corresponding output is given by p(x).

When generating the data in this way, it is ensured that there will always be at
least one LPF that will coincide with all input-output instances. Each step depends
on several parameters and is detailed in what follows.

7.1.1 Random generation of distributive lattices

Each distributive lattice is characterized by the ordering of its join-irreducible ele-
ments (see [12]). Therefore, when the number of join-irreducible elements is given,
we can reformulate the problem of randomly generating a distributive lattice as the
one of randomly generating a partial order over a set. This is not a trivial problem,
and several solutions have been proposed in the literature, see, e.g., [14]. Each of
them induces a different probability distribution over the space of outcomes, i.e.,
orders.

The method that we consider in this paper can be decomposed into three main
steps

1. Randomly generating an acyclic relation over the set of joint-irreducible ele-
ments. For this we assign an arbitrary index i ∈ [k] to each join-irreducible
element of L, so that J (L) = {a1, . . . , ak}. Then for each i, j ∈ [k] such that
i < j, we set ai < aj with probability ρ.

2. Taking the transitive closure of the relation.

3. Building the lattice from the poset of join-irreducible elements.

Summing up, the generation of each lattice considers two parameters, namely,
the number k of join-irreducible elements, and the probability ρ.
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Figure 6: Sample of randomly generated distributive lattices (k = 5, p = 0.6).

7.1.2 Random generation of LPFs

Given a distributive lattice L, and a positive integer n, we randomly generate an
LPF p : Ln → L. We introduce a third parameter, which is the maximal number
g of focal sets (see Section 2). The generation process can then be decomposed as
follows.

1. Pick g different sets I1, . . . , Ig in 2[n], with uniform probability. Let F =
{I1, . . . , Ig}. The function αp will be defined is such a way that all its focal
sets are in F .

2. For i from 1 to g, randomly pick ai ∈ L such that∨
j<i, Ij⊂Ii

aj ≤ ai ≤
∧

j<i, Ii⊂Ij

aj

and set αp(Ii) = ai. Note that a1 is picked such that ⊥L ≤ a1 ≤ ⊤L. For
every J ∈ 2[n]\F , we set

αp(J) =
∨

Ii∈F, Ii⊆J

αp(I
i).

Thus J is not a focal set of αp. These choices guarantee that αp is order-
preserving. Note that, by making use of the ordinal Möbius transform of αp

(see Section 2), we can avoid to set explicitly the values of each J ∈ 2[n]\F .

We then return the LPF p defined by p =
∨

I∈F αp(I) ∧
∧

i∈I xi. The generation of
p thus depends on two parameters, namely the arity n of p and the number of focal
sets g.

7.1.3 Random generation of a dataset

In order to randomly generate a dataset ofm instances, m elements of Ln are chosen
randomly (with uniform probability). Let

D =
{
x1, . . . ,xm

}
⊆ Ln,

be the set of these randomly chosen elements. The dataset is then defined as

D =
{(

xi, p
(
xi
)) ∣∣ xi ∈ D

}
.
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Maximal number of focal sets (g)
10 50 100 200 500 1000

ρ

0.0 151.0 159.6 147.0 171.5 142.3 147.8
0.2 153.2 149.1 132.3 135.5 132.9 146.8
0.4 134.1 139.7 161.2 139.4 136.7 136.3
0.6 147.3 140.2 131.3 154.2 138.5 132.2
0.8 130.2 135.0 140.4 132.5 132.4 132.9
1.0 133.6 137.8 125.8 127.1 137.1 139.3

Table 2: Running time of Algorithms 1 and 3 (in milliseconds) depending on the
maximal number g of focal sets and probability ρ ( with n = 30, m = 10000, k = 10,
p = 0.6).

7.2 Test procedure

We aim at observing how the running time of our algorithms varies depending on
the five parameters used in the generation of a dataset, namely: the number k
of joint-irreducible elements of L, the probability ρ used in the generation of L,
the arity n of p, the maximal number g of focal sets in αp, and the number m of
instances in D.

To conduct this empirical study, we run several tests. Each test consists in the
random generation of D, followed by the execution of Algorithms 1 and 3 on D. A
test was run for different parameter values. The result of one test is the time of ex-
ecution of Algorithms 1 and 3. The algorithms were implemented in Java and their
implementation is available in https://github.com/QGBrabant/javaggregation.
The tests were run on an Intel Core i7-4600U CPU. Times displayed in Tables 2
and 3 are an average result of 10 tests.

Table 2 displays the times obtained, for varying values of ρ and g. We see that
these two parameters have a minor impact on the running time. Table 3 describes
the running times for fixed values of ρ and g, and varying arity, dataset size, and
lattice dimension. The running times presented in Table 3 seem to be in line with
the worst case complexity O(m2k2n) given in Subsection 6.2. It shows that the set
of interpolating LPFs can be found in reasonable time for data with substantial
dimensionality. Moreover, we see that the reported running times do not increase
as fast with the dimensions of the data as their worst case complexity would have
suggested. A rough approximation would be that the running time increases linearly
on k, and slightly more than linearly on m and n, while being almost constant on
ρ and g.

8 Future work

In this paper we provided theoretical results regarding the interpolation of functions
by an LPF. These results show that the interpolation problem is tractable even in
the case of distributive lattices, and we proposed an algorithm that solves it in
polynomial time. However, it is common that empirical data contain errors; these
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errors can prevent from finding any interpolating LPF. As future research, we aim
to adapt the current algorithms to make them robust and capable of dealing with
noise.

Furthermore we intend to extend our interpolation framework to SUFs (see
Section 3). In fact a solution to the interpolation problem generalized to a certain
class of restricted SUFs was already proposed in [10]. However it was shown that
the interpolation problem in that case is NP-complete. On the other hand, it is still
unknown whether the interpolation problem is tractable in the case of unrestricted
SUFs. Finally, the interpolation of a function by a minimal number of SUFs in
a max-SUF is a problem that remains open and constitutes a topic of ongoing
research.
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A Detailed running times

Dataset size
10 100 1000 10000 50000

A
ri
ty

1 0.2 0.1 0.3 1.9 10.8
2 0.0 0.0 0.3 2.5 15.1
3 0.0 0.0 0.3 3.1 17.6
4 0.0 0.1 0.3 3.4 21.8
5 0.0 0.1 0.4 4.1 25.0
6 0.0 0.1 0.4 5.4 25.7
10 0.0 0.1 0.7 6.7 31.8
15 0.0 0.1 0.7 8.2 44.3
20 0.0 0.2 1.1 9.5 50.5
30 0.0 0.2 1.3 13.4 66.3

k = 1

Dataset size
10 100 1000 10000 50000

A
ri
ty

1 0.1 0.2 0.5 3.4 15.7
2 0.0 0.1 0.5 4.3 23.6
3 0.0 0.1 0.5 5.1 29.0
4 0.0 0.1 0.6 6.5 32.9
5 0.0 0.1 0.7 6.9 36.7
6 0.0 0.1 0.8 8.4 38.6
10 0.0 0.2 1.2 11.7 60.8
15 0.0 0.2 1.4 16.2 91.2
20 0.0 0.2 1.8 19.3 96.6
30 0.1 0.3 2.6 24.3 134.4

k = 2

Dataset size
10 100 1000 10000 50000

A
ri
ty

1 0.1 0.3 1.0 7.7 34.7
2 0.0 0.1 1.2 9.8 45.1
3 0.0 0.1 1.1 11.0 55.8
4 0.0 0.2 1.4 12.9 64.4
5 0.0 0.2 1.7 16.6 76.9
6 0.1 0.2 1.7 17.3 87.3
10 0.1 0.3 3.2 25.9 133.0
15 0.1 0.3 3.6 39.6 215.1
20 0.1 0.5 3.9 46.1 250.8
30 0.1 0.7 5.6 60.5 334.1

k = 5

Dataset size
10 100 1000 10000 50000

A
ri
ty

1 0.1 0.4 1.5 13.8 62.2
2 0.0 0.2 2.0 19.3 82.2
3 0.0 0.2 2.2 19.9 98.6
4 0.1 0.3 2.6 23.3 121.0
5 0.1 0.4 3.3 29.5 143.8
6 0.1 0.4 3.6 32.5 159.0
10 0.1 0.7 5.5 50.6 249.7
15 0.1 0.7 6.9 73.4 396.7
20 0.1 0.9 9.3 93.4 510
30 0.2 1.3 13.0 131.3 696.3

k = 10

Dataset size
10 100 1000 10000 50000

A
ri
ty

1 0.1 0.4 2.5 22.6 113.9
2 0.1 0.4 3.3 29.7 148.9
3 0.1 0.4 3.6 37.4 188.6
4 0.1 0.5 5.0 44.9 228.7
5 0.1 0.7 6.4 54.8 271.9
6 0.1 0.7 6.5 59.2 306.6
10 0.2 1.1 10.8 96.0 485.6
15 0.2 1.4 13.5 145.1 769.2
20 0.2 1.8 16.3 180.6 995.5
30 0.3 2.4 24.2 249.9 1387.8

k = 20

Dataset size
10 100 1000 10000 50000

A
ri
ty

1 0.2 0.6 3.6 32.8 166.9
2 0.1 0.6 5.0 44.4 217.8
3 0.1 0.6 5.9 55.6 279.9
4 0.1 0.8 7.0 68.1 333.4
5 0.1 0.9 8.4 85.1 401.4
6 0.2 1.0 9.7 89.4 444.9
10 0.2 1.8 14.4 137.3 691.6
15 0.2 1.9 21.2 213.2 1099.7
20 0.4 2.6 26.5 266.4 1435.6
30 0.4 3.6 38.1 374.4 2323.8

k = 30

Table 3: Time required (in milliseconds), for varying n, k, andm (g = 200, p = 0.6).
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