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Abstract

Logistic regression is a common classification method in supervised learning. Sur-
prisingly, there are very few solutions for performing it and selecting variables in
the presence of missing values. We develop a complete approach, including the es-
timation of parameters and variance of estimators, derivation of confidence intervals
and a model selection procedure, for cases where the missing values can be anywhere
in covariates. By well organizing different patterns of missingness in each observa-
tion, we propose a stochastic approximation version of the EM algorithm based on
Metropolis-Hasting sampling, to perform statistical inference for logistic regression
with incomplete data. We also tackle the problem of prediction for a new individual
with missing values, which is never addressed. The methodology is computationally
efficient, and its good coverage and variable selection properties are demonstrated in a
simulation study where we contrast its performances to other methods. For instance,
the popular multiple imputation by chained equation can lead to biased estimates
while our method is unbiased. We then illustrate the method on a dataset of severely
traumatized patients from Paris hospitals to predict the occurrence of hemorrhagic
shock, a leading cause of early preventable death in severe trauma cases. The aim is
to consolidate the current red flag procedure, a binary alert identifying patients with
a high risk of severe hemorrhage. The methodology is implemented in the R package
misaem.

Keywords: incomplete data, observed likelihood, variable selection, major trauma, public
health
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1 Introduction

Missing data exist in almost all areas of empirical research. There are various reasons why

missing data may occur, including survey non-response, unavailability of measurements,

and lost data. One popular approach to handle missing values is modifying an estimation

process so that it can be applied to incomplete data. For example, one can use the EM

algorithm (Dempster et al., 1977) to obtain the maximum likelihood estimate (MLE) de-

spite missing values, and a supplemented EM algorithm (SEM) (Meng and Rubin, 1991) or

Louis’ formula (Louis, 1982) for the variance of the estimate. This strategy is valid under

missing at random (MAR) mechanisms (Little and Rubin, 2002; Seaman et al., 2013), in

which the missingness of data is independent of the missing values, given the observed data.

Even though this approach is perfectly suited to specific inference problems with missing

values, there are few solutions or implementations available, even for simple models such

as logistic regression, the focus of this paper.

One explanation is that it often happens that the expectation step of the EM algorithm

involves infeasible computations. One solution in the framework of generalized linear mod-

els, suggested in Ibrahim et al. (1999) and Ibrahim et al. (2005), is to use a Monte Carlo

EM (MCEM) algorithm (Wei and Tanner, 1990; McLachlan and Krishnan, 2008), replacing

the integral by its empirical sum using Monte Carlo sampling. Ibrahim et al. (1999) also

estimate the variance using a Monte Carlo version of Louis’ formula. For sampling, Ibrahim

et al. (1999) used Gibbs samplers with an adaptive rejection sampling scheme (Gilks and

Wild, 1992). However, their approach is computationally expensive and they considered

an implementation only for monotone patterns of missing values, or for missing values only

in two variables in a dataset.

In this paper, we develop a new statistical methodology for logistic regression with miss-

ing values where the missing data can be anywhere in the covariates. By well organizing

different patterns of missingness in each observation, we derive a stochastic approximation

version of the EM algorithm (SAEM) (Lavielle, 2014), based on Metropolis-Hasting sam-

pling, to perform statistical inference for logistic regression with incomplete data. SAEM

uses a stochastic approximation procedure to estimate the conditional expectation of the

complete-data likelihood, instead of generating a large number of Monte Carlo samples.
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SAEM has an undeniable computational advantage over MCEM: it takes 5 minutes to es-

timate parameters with MCEM in a dataset of size 200 × 5, compared to a few seconds

for SAEM as illustrated in our simulation. In addition, it allows for model selection using

criterion based on penalized observed likelihood. This latter characteristic is very useful in

practice as only few methods are available to select a model when there are missing values.

For example, Claeskens and Consentino (2008) and Consentino and Claeskens (2011) sug-

gested an approximation of AIC, while Jiang et al. (2015) defined generalized information

criteria and adaptive fence, and in the framework of imputation with Random Lasso, Liu

et al. (2016) proposed to combine penalized regression techniques with multiple imputation

and stability selection.

This paper proceeds as follows: In Section 2 we describe the motivation for our work,

the TraumaBase1 project, a French multicenter prospective Trauma Registry. Section 3

presents the assumptions and notations used throughout this paper. In Section 4, we

derive an algorithm SAEM to obtain the maximum likelihood estimate of parameters in

a logistic regression model for continuous data, under the MAR mechanism and a general

pattern of missing data. Following the estimation of parameters, we present how to estimate

the Fisher information matrix using a Monte Carlo version of Louis’ formula. Section 5

describes the model selection scheme based on a Bayesian information criterion (BIC)

with missing values. In addition, we propose an approach to perform prediction for a

new individual containing missing values in covariates. Section 6 presents a simulation

study where our approach is compared to alternative methods such as multiple imputation

(Rubin, 2009), which may suffer from biases and under-coverage. In Section 7, we apply our

approach to predict the occurrence of hemorrhagic shock in patients with blunt trauma to

the TraumaBase dataset, where it is crucial to efficiently manage missing data because the

percentage of missing data vary from 0 to 60% depending on the variables. Compared to

the predictions made by emergency doctors, the results are improved with SAEM. Finally,

Section 8 concludes our work and provides a discussion.

Our contribution is to provide a complete methodology with theoretical foundation

and computational efficiency, to perform logistic regression with missing values, available

1http://www.traumabase.eu/
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to users, which have never existed, as far as we know. The methodology presented in

this article is implemented as an R (R Core Team, 2017) package misaem, available in

CRAN: https://CRAN.R-project.org/package=misaem. The code to reproduce all the

experiment is also provided in GitHub: https://github.com/wjiang94/miSAEM_logReg.

2 Example

Our work is motivated by a collaboration with the TraumaBase group at APHP (Public

Assistance - Hospitals of Paris), which is dedicated to the management of severely trau-

matized patients. Major trauma is defined as any injury that endangers the life or the

functional integrity of a person. The global burden of disease working group of the WHO

has recently shown that major trauma in its various forms, including traffic accidents, in-

terpersonal violence, self-harm, and falls, remains a public health challenge and a major

source of mortality and handicap around the world (Hay et al., 2017). Effective and timely

management of trauma is critical to improving outcomes. Delay, or errors in treatment

have a direct impact on survival, especially for the two main causes of death in major

trauma: hemorrhage and traumatic brain injury.

Major trauma is comprised of several stages:

1. At the accident site where a patient is taken care of by paramedics and/ or doctors.

A first assessment is made, and immediate emergency management is provided.

2. The patient is transferred to the resuscitation room of a trauma center, for a profound

assessment and stabilization of vital functions as needed.

3. The patient is oriented to further care either to the operating theatre/ interventional

radiology, the Intensive Care Unit or ward, followed by comprehensive care at the

hospital.

Using a patient’s records in stage 1, we aim to establish models to predict the risk of

severe hemorrhage to prepare an appropriate response upon arrival at the trauma center;

e.g., massive transfusion protocol and/or immediate haemostatic procedures. Such models
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intend to give support to clinicians and professionals. Due to the highly stressful and multi-

player environments involved, evidence suggests that patient management – even in mature

trauma systems – often exceeds acceptable time frames (Hamada et al., 2014). In addition,

discrepancies may be observed between the diagnoses made by emergency doctors in the

ambulance, and those made when the patient arrives at the trauma center (Hamada et al.,

2015). These discrepancies can result in poor outcomes such as inadequate hemorrhage

control or delayed transfusion.

To improve decision-making and patient care, 15 French trauma centers have collabo-

rated to collect detailed high-quality clinical data from the accident scene, to the hospital.

The resulting database: TraumaBase, a multicenter prospective Trauma registry, now has

data from more than 7000 trauma cases, and is continually updated. The granularity of

collected data (with more than 250 variables) makes this dataset unique in Europe. How-

ever, the data is highly heterogeneous, as it comes from multiple sources, and furthermore,

is often missing, which makes modeling challenging.

In this paper, we focus on performing logistic regression with missing values to help

propose an innovative response to the public health challenge of major trauma.

3 Assumptions and notation

Let (y, x) be the observed data with y = (yi, 1 ≤ i ≤ n) an n-vector of binary responses

coded with {0, 1} and x = (xij, 1 ≤ i ≤ n, 1 ≤ j ≤ p) a n×p matrix of covariates, where xij

takes its values in R. The logistic regression model for binary classification can be written

as:

P (yi = 1|xi; β) =
exp(β0 +

∑p
j=1 βjxij)

1 + exp(β0 +
∑p

j=1 βjxij)
, i = 1, . . . , n, (1)

where xi1, . . . , xip are the covariates for individual i and β0, β1, . . . , βp unknown parame-

ters. We adopt a probabilistic framework by assuming that xi = (xi1, . . . , xip) is normally

distributed:

xi ∼
i.i.d.
Np(µ,Σ), i = 1, · · · , n.
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Let θ = (µ,Σ, β) be the set of parameters of the model. Then, the log-likelihood for the

complete data can be written as:

LL(θ;x, y) =
n∑
i=1

LL(θ;xi, yi)

=
n∑
i=1

(
log(p(yi|xi; β)) + log(p(xi;µ,Σ))

)
.

Our main goal is to estimate the vector of parameters β = (βj, 0 ≤ j ≤ p) when missing

values exist in the design matrix, i.e., in the matrix x. For each individual i, we note xi,obs

the elements of xi that are observed and xi,mis those that are missing. We also decompose

the matrix of covariates as x = (xobs, xmis), keeping in mind that the missing elements may

differ from one individual to another.

For each individual i, we define the missing data indicator vector ri = (rij, 1 ≤ j ≤ p),

with rij = 1 if xij is missing and rij = 0 otherwise. The matrix r = (ri, 1 ≤ i ≤ n) then

defines the missing data pattern. The missing data mechanism is characterized by the con-

ditional distribution of r given x and y, with parameter φ, i.e., p(ri|xi, yi, φ). Throughout

this paper, we assume the Missing at Random (MAR) mechanism which implies that the

missing values mechanism can therefore be ignored (Little and Rubin, 2002) and the max-

imum likelihood estimate of θ can be obtained by maximizing LL(θ; y, xobs). A reminder

of these concepts is given in the Appendix A.1.

4 Parameter estimation by SAEM

4.1 The EM and MCEM algorithms

We aim to estimate the parameter θ of the logistic regression model by maximizing the

observed log-likelihood LL(θ;xobs, y). Let us start with the classical EM formulation for

obtaining the maximum likelihood estimator from incomplete data. Given some initial

value θ0, iteration k updates θk−1 to θk with the following two steps:

• E-step: Evaluate the quantity

Qk(θ) = E[LL(θ;x, y)|xobs, y; θk−1]

=

∫
LL(θ;x, y)p(xmis|xobs, y; θk−1)dxmis.

(2)
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• M-step: Update the estimation of θ: θk = arg maxθQk(θ).

Since the expectation (2) in the E-step for the logistic regression model has no explicit

expression, MCEM (Wei and Tanner, 1990; Ibrahim et al., 1999) can be used. The E-

step of MCEM generates several samples of missing data from the target distribution

p(xmis|xobs, y; θk−1) and replaces the expectation of the complete log-likelihood by an em-

pirical mean. However, an accurate Monte Carlo approximation of the E-step may require

a significant computational effort, as illustrated in the Section 6.

4.2 The SAEM algorithm

To achieve improved computational efficiency, we suggest deriving a SAEM algorithm

(Lavielle, 2014) which replaces the E-step (2) by a stochastic approximation. Note that,

SAEM often deals with data (x, z), s.t., x is fully observed while z is an unknown variable.

Here we assume missing data everywhere, and as a result, each observation may have a

different pattern of missingness.

Starting from an initial guess θ0, the kth iteration consists of three steps:

• Simulation: For i = 1, 2, · · · , n, draw x
(k)
i,mis from

p(xi,mis|xi,obs, yi; θk−1). (3)

• Stochastic approximation: Update the function Q according to

Qk(θ) = Qk−1(θ) + γk

(
LL(θ;xobs, x

(k)
mis, y)−Qk−1(θ)

)
, (4)

where (γk) is a decreasing sequence of positive numbers.

• Maximization: Update the estimation of θ:

θk = arg max
θ

Qk(θ).

The choice of the sequence (γk) in (4) is important for ensuring the almost sure convergence

of SAEM to a maximum of the observed likelihood (Delyon et al., 1999). We will see in

Section 6 that, in our case, very good convergence is obtained using γk = 1 during the first

iterations, followed by a sequence that decreases as 1/k.
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4.3 Metropolis-Hastings sampling

In the logistic regression case, the unobserved data cannot be drawn exactly from its

conditional distribution (3), which has no explicit form. One solution is to use a Metropolis-

Hastings (MH) algorithm, which consists of constructing a Markov chain that has the target

distribution as its stationary distribution. The states of the chain after M iterations are

then used as a sample from the target distribution. To define a proposal distribution for

our MH algorithm, observe that the target distribution (3) can be factorized as follows:

p(xi,mis|xi,obs, yi; θ) ∝ p(yi|xi; β)p(xi,mis|xi,obs;µ,Σ).

We select the proposal distribution as the second term p(xi,mis|xi,obs, µ,Σ), which is normally

distributed:

xi,mis|xi,obs ∼ Np(µi,Σi), (5)

where

µi = µi,mis + Σi,mis,obsΣ
−1
i,obs,obs(xi,obs − µi,obs),

Σi = Σi,mis,mis − Σi,mis,obsΣ
−1
i,obs,obsΣi,obs,mis,

with µi,mis (resp. µi,obs) the missing (resp. observed) elements of µ for individual i. The

covariance matrix Σ is decomposed in the same way. The MH algorithm is described further

in Appendix A.2.

4.4 Observed Fisher information

After computing the MLE θ̂ML with SAEM, we estimate its variance. To do so, we can use

the observed Fisher information matrix (FIM): I(θ) = −∂2LL(θ;xobs,y)
∂θ∂θT

. According to Louis’

formula (Louis, 1982), we have:

I(θ) =− E

(
∂2LL(θ;x, y)

∂θ∂θT
∣∣xobs, y; θ

)
− E

(
∂LL(θ;x, y)

∂θ

∂LL(θ;x, y)T

∂θ

∣∣xobs, y; θ

)
+ E

(
∂LL(θ;x, y)

∂θ
|xobs, y; θ

)
E

(
∂LL(θ;x, y)

∂θ
|xobs, y; θ

)T
.

8



The observed FIM can therefore be expressed in terms of conditional expectations, which

can also be approximated using a Monte Carlo procedure. More precisely, given M samples

(x
(m)
i,mis, 1 ≤ i ≤ n, 1 ≤ m ≤M) of the missing data drawn from the conditional distribution

(3), the observed FIM can be estimated as ÎM(θ̂) =
∑n

i=1−(Di +Gi −∆i∆
T
i ), where

∆i =
1

M

M∑
m=1

∂LL(θ̂;x
(m)
i,mis, xi,obs, yi)

∂θ
,

Di =
1

M

M∑
m=1

∂2LL(θ̂;x
(m)
i,mis, xi,obs, yi)

∂θ∂θT
,

Gi =
1

M

M∑
m=1

(
∂LL(θ̂;x

(m)
i,mis, xi,obs, yi)

∂θ

)(
∂LL(θ̂;x

(m)
i,mis, xi,obs, yi)

∂θ

)T

.

Here, the gradient and the Hessian matrix can be computed in closed form. The procedure

for calculating the observed information matrix is described in Appendix A.3.

5 Model selection and prediction

5.1 Information criteria

In order to compare different possible covariate models, we can consider penalized likelihood

criteria such as the Akaike information criterion (AIC) and Bayesian information criterion

(BIC). For a given modelM and an estimated parameter θ̂M, these criteria are defined as:

AIC(M) = −2LL(θ̂M;xobs, y) + 2d(M),

BIC(M) = −2LL(θ̂M;xobs, y) + log(n)d(M),

where d(M) is the number of estimated parameters in a model M. The distribution

of the complete set of covariates (xij, 1 ≤ i ≤ n, 1 ≤ j ≤ p) does not depend on the

regression model used for modeling the binary outcomes (yi, 1 ≤ i ≤ n): we assume the

same normal distribution Np(µ,Σ) for all regression models. Thus, the difference between

models between the number d(M) of estimated parameters is equivalent to the difference

between the number of non-zero coefficients in βM. Note that, contrary to our approach,

the existing method Claeskens and Consentino (2008) and Consentino and Claeskens (2011)

use an approximation of AIC without estimating the observed likelihood.

9



5.2 Observed log-likelihood

For a given model and parameter θ, the observed log-likelihood is, by definition:

LL(θ;xobs, y) =
n∑
i=1

log (p(yi, xi,obs; θ)) .

For any i, the density p(yi, xi,obs; θ) cannot be computed in closed-form. We suggest to

approximate it using an importance sampling Monte Carlo approach. Let gi be the density

function of the normal distribution defined in (5). Then,

p(yi, xi,obs; θ) =

∫
p(yi, xi,obs|xi,mis; θ)p(xi,mis; θ)dxi,mis

=

∫
p(yi, xi,obs|xi,mis; θ)

p(xi,mis; θ)

gi(xi,mis)
gi(xi,mis)dxi,mis

= Egi

(
p(yi, xi,obs|xi,mis; θ)

p(xi,mis; θ)

gi(xi,mis)

)
.

Consequently, if we draw M samples from the proposal distribution (5):

x
(m)
i,mis ∼

i.i.d.
N (µi,Σi), m = 1, 2, · · · ,M,

we can estimate p(yi, xi,obs; θ) by:

p̂(yi, xi,obs; θ) =
1

M

M∑
m=1

p(yi, xi,obs|x(m)
i,mis; θ)

p(x
(m)
i,mis; θ)

gi(x
(m)
i,mis)

,

and derive an estimate of the observed log-likelihood LL(θ;xobs, y).

5.3 Prediction on test set with missing values

In supervised learning, after applying a model on the training set, a natural step is to evalu-

ate the prediction performance, which can be done with a test set. Assume x = (xobs, xmis)

an observation in the test set, we want to predict the binary response y. One important

point is that test set has the same distribution as the training set and consequently also

contains missing values. Therefore, we can’t directly apply the fitted model to predict y

for the observation x.

Our framework offers a natural way to tackle this issue by marginalizing over the dis-

tribution of missing data given the observed ones. More precisely, with M Monte Carlo

samples

(x
(m)
mis , 1 ≤ m ≤M) ∼ p(xmis|xobs),
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we estimate directly the response by maximum a posteriori

ŷ = arg max
y

p(y|xobs)

= arg max
y

∫
p(y|x)p(xmis|xobs)dxmis

= arg max
y

Epxmis|xobs
p(y|x)

= arg max
y

M∑
m=1

p
(
y|xobs, x(m)

mis

)
.

Note that in the literature there are not many solutions to deal with the missing values

in the test set. In the Subsection 7.2, we compare our approach to some methods used in

practice based on imputation of the test set.

6 Simulation study

6.1 Simulation settings

We first generated a design matrix x of size n = 1000 × p = 5 by drawing each observa-

tion from a multivariate normal distribution N (µ,Σ). Then, we generated the response

according to the logistic regression model (1). We considered as the true parameter values:

β = (−0.2, 0.5,−0.3, 1, 0,−0.6), µ = (1, 2, 3, 4, 5), Σ = diag(σ)Cdiag(σ), where the σ is the

vector of standard deviations σ = (1, 2, 3, 4, 5), and C the correlation matrix

C =



1 0.8 0 0 0

0.8 1 0 0 0

0 0 1 0.3 0.6

0 0 0.3 1 0.7

0 0 0.6 0.7 1


(6)

Then we randomly introduced 10% missing values in the covariates first with the completely

at random (MCAR) mechanism where each entry has the same probability to be observed.

The code to reproduce these experiments is available on GitHub, provided in supplementary

material.
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6.2 The behavior of SAEM

The algorithm was initialized with the parameters obtained after mean imputation, i.e.,

imputing missing entries of each variable with the mean of the variable over its observed

values. We chose γk = 1 during the first k1 iterations in order to converge quickly to a

neighborhood of the MLE, and from k1 iterations on, we set γk = (k − k1)−τ to assist the

almost sure convergence of SAEM. In order to study the effect of the sequence of stepsizes

(γk), we fixed the value of k1 = 50 and used τ = (0.6, 0.8, 1) during the next 450 iterations.

Representative plots of the convergence of SAEM for the coefficient β1, obtained from four

simulated data sets, are shown in Figure 1. For larger τ , SAEM converged faster, and with

less fluctuation. For a given simulation, the three sequences of estimates converged to the

same solution, but using τ = 1 yielded the fastest convergence, and showed less fluctuation.

The behavior of SAEM in estimating the other components of β was quite similar, as shown

in Appendix A.4. We therefore use τ = 1 in the following.

τ = 0.6 τ = 0.8 τ= 1.0

0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500

0.2

0.4

0.6

0.8

1.0

iteration

β 1

Figure 1: Convergence plots for β1 obtained with three different values of τ (0.6, 0.8, 1.0).

Each color represents one simulation. The true value of β1 = 0.5.
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6.3 Comparison with other methods

We ran 1000 simulations and compared SAEM to several other existing methods, initially

in terms of estimation errors of the parameters. We mainly focused on i) the complete case

(CC) method, i.e., all rows containing at least one unobserved data value were removed, ii)

multiple imputation by chained equations (mice) with Rubin’s combining rules (van Buuren

and Groothuis-Oudshoorn, 2011). More precisely, missing values are imputed successively

by drawing from conditional distribution. We use the default arguments of the function

implemented in R, i.e., regression models are used for quantitative variables; logistic regres-

sion models are used for categorical variables and uncertainty of the parameters is reflected

within the Bayesian framework. More details are in van Buuren and Groothuis-Oudshoorn

(2011). Finally, we used the dataset without missing values (no NA) as a reference, with

parameters estimated with the Newton-Raphson algorithm. We varied the number of ob-

servations n = 200, 1000 and 10 000, the missing value mechanism MCAR and MAR, the

percentage of missing values 10% and 30%, as well as the correlation structure either using

C given by (6) or an orthogonal design.

Figure 2 (top) displays the distribution of the estimates of β3, for n = 1000 and n =

10 000 under MCAR mechanism and the correlation between covariates is given by (6).

Results of simulation with n = 200 are presented in Figure 13 in Appendix A.5. This

plot is representative of the results obtained with the other components of β. As expected,

larger samples yielded smaller bias. Moreover, we observe that in both cases, the estimation

obtained by mice could be biased, whereas SAEM provided unbiased estimates with small

variances.

Figure 2 (bottom) represents the empirical distribution of the estimated standard error

of β̂3. For SAEM it was calculated using the observed Fisher information as described in

Section 4.4. With a larger n, not only the estimated standard errors, but also variance of

estimation, clearly decreased for all of the methods. In the case where n = 1000, SAEM and

mice slightly overestimated the standard error, while CC underestimated it, on average.

Globally, SAEM led to the best result, since compared with its competitor mice, it had a

similar estimation of the standard error on average, but with much less variance.

Table 1 shows the coverage of the confidence interval for all parameters and inside the
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Figure 2: Top: Empirical distribution of bias of β̂3. Bottom: Distribution of the estimated

standard errors of β̂3; for each method, the red point corresponds to the empirical standard

deviation of β̂3 calculated over the 1000 simulations. Results for 10% MCAR and correlation

C.
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Table 1: Coverage (%) for n = 10 000 , correlation C and 10% MCAR, calculated over 1000

simulations. Bold indicates under coverage. Inside the parentheses is the average length of

corresponding confidence interval over 1000 simulations (multiplied by 100).

parameter no NA CC mice SAEM

β0 95.2 (21.36) 94.4 (27.82) 95.2 (22.70) 94.9 (22.48)

β1 96.0 (18.92) 94.7 (24.65) 93.9 (21.77) 95.1 (21.51)

β2 95.5 (9.53) 94.6 (12.41) 94.0 (10.97) 94.3 (10.83)

β3 94.9 (8.17) 94.3 (10.66) 86.5 (9.03) 94.7 (9.03)

β4 94.6 (4.00) 94.2 (5.21) 96.2 (4.49) 95.4 (4.42)

β5 95.9 (5.52) 94.4 (7.19) 89.6 (6.20) 94.7 (6.17)

parentheses is the average length of corresponding confidence interval. We had expected

coverage at the nominal 95% level. SAEM reached around 95% coverage, while mice

struggled for certain parameters. Even though CC showed reasonable results in terms of

coverage, the width of its confidence interval was still too large. Simulation with smaller

sample size had the same results, for example, coverages for n = 200 are presented in Table

6 in Appendix A.5.

Table 2: Comparison of execution time between no NA, MCEM, mice, and SAEM with

n = 200, correlation C and 10% MCAR.

Execution time (seconds)

for one simulation no NA MCEM mice SAEM

n = 1000

min 2.87× 10−3 492 0.64 9.96

mean 4.65× 10−3 773 0.70 13.50

max 43.50× 10−3 1077 0.76 16.79

n = 200

min 1.26× 10−3 67.91 0.24 2.64

mean 2.32× 10−3 291.47 0.28 3.91

max 21.53× 10−3 1003 0.48 6.04
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Lastly, Table 2 highlights large differences between the methods in terms of execution

time. In fact we also implemented MCEM algorithm (Ibrahim et al., 1999), available in

GitHub provided in supplementary material, using adaptive rejection sampling. MCEM

was computationally intensive because in each iteration, it needed to generate a huge

quantity of samples, and thus not recommended in this situation. Even with a very small

sample size n = 200, MCEM took on average 5 minutes for one simulation; while multiple

imputation took less than 1 second per simulation, and SAEM less than 10 seconds, which

remains reasonable. However, the bias and standard error for the estimation of SAEM

and MCEM were quite similar, as presented in Figure 13 in the Appendix A.5. Due to

this computational difficulty, we didn’t perform MCEM to compare with others in the

experiments with larger sample sizes.

The results obtained, when the covariates were independent, are also presented. Figure

3 (right) shows the results of estimation in the case with orthogonal design. SAEM was a

little biased since it estimated non-zero terms for the covariance, but it stills outperformed

CC and mice.
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Figure 3: Empirical distribution of the estimates of β3 obtained under MCAR, with n =

10 000 and 10% of missing values; left: the covariates are correlated; right: no correlation

between the covariates.

Meanwhile, We considered MAR mechanism. We introduced 10% of missing values in

the covariates according to different MAR mechanisms: i) Missing values are introduced

in some covariates according to a logistic regression model on other covariates; ii) missing
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values are introduced in some covariates and missingness depends both on other covariates

and on the response variable. Details are given in the implementation in GitHub.
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Figure 4: Empirical distribution of the bias of β̂3 obtained under MAR mechanism, with

n = 1000 and 10% of missing values; left: missingness only depends on covariates x; right:

missingness depends both on covariates x and on response y.

Figure 4 (left) shows that the biases were very similar to the ones obtained under

a MCAR mechanism, expect for the CC method, which would be much more biased,

especially in the case where the missingness in x was related to the outcome y, as shown

in Figure 4 (right).

With 30% of missing values, the results (not shown here) were similar to the case with

10% missing data.

In summary, not only did these simulations allow us to verify that SAEM lead to

unbiased estimators, but also they ensured that we made correct inferences by taking into

account the additional variance due to missing data.

6.4 Model selection

To look at the capabilities of the method in terms of model selection, we considered the same

simulation scenarios as in Section 6.1, with some parameters set to zero. We now describe

the results for the case where all parameters in β are zero except β0 = −0.2, β1 = 0.5,

β3 = 1 and β5 = −0.6. We compared the AICobs and BICobs based on the observed log-
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likelihood, as described in Section 5, to those based on the complete cases (AICcc, BICcc)

and those obtained from the the original complete data (AICorig, BICorig).

Table 3: For data with or without correlations, the percentage of times that each criterion

selects the correct true model (C), overfits (O), and underfits (U).

Non-Correlated Correlated

Criterion C O U C O U

AICobs 60 40 0 65 32 3

AICorig 73 27 0 75 20 5

AICcc 67 32 1 77 16 7

BICobs 92 3 5 94 2 4

BICorig 96 2 2 93 0 7

BICcc 79 1 20 91 0 9

Table 3 shows, with or without correlation between covariates, the percentage of cases

where each criterion selects the true model (C), overfits (O) – i.e., selects more variables

than there were – or underfits (U) – i.e., selects less variables than there were. In the

case where the variables were correlated, the correlation matrix was the same as in Section

6.1. The results illustrate that with AIC, there was a large possibility of selecting an

overfitted model, while the BIC results were better. Therefore, in the following experiment

with the TraumaBase dataset, we chose BIC to perform model selection. These results are

representative of those obtained with other simulation schemes.

6.5 Prediction on a test set with missing values

To evaluate the prediction performance on a test set with missing values, we considered

the the same simulation scenarios for the training set as in Subsection 6.1 with sample size

1000× 5. We also generated a test set of size 100× 5.

We compared our approach described in Subsection 5.3, with imputation methods. More

precisely, we considered single imputation methods on the training set followed by classical

logistic regression and variable selection by BIC on the imputed dataset such as i) impu-

tation by the mean of column (impMean) ii) imputation by PCA (impPCA) (Josse and
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Husson, 2016) which is based on low-rank assumption of the data matrix to impute. For all

the imputation methods, we also imputed the test set independently and then applied the

model that had been selected on the training set. Note that this can be a limitation if there

is only one individual in the test set to predict whereas our method does not encounter

this issue.

In the framework of logistic regression, another method to perform imputation (impSAEM)

could be considered, where the missing values of the test set are imputed with the condi-

tional expectation of the missing entries given the observed values and the parameters esti-

mated on the training set by SAEM. Due to the normal assumption of the covariates, it boils

down to imputing the missing values with: x̂i,mis = µ̂i,mis + Σ̂i,mis,obsΣ̂
−1
i,obs,obs(xi,obs− µ̂i,obs),

then to predict the probabilities with: ̂p(yi = 1) =
exp[(xi,obs,x̂i,mis)

T β̂]

1+exp[(xi,obs,x̂i,mis)T β̂]
.

We compared all these approaches with classical measures to evaluate predicted probability

of logistic regression, such as AUC (area under the ROC curve), Brier score (Brier, 1950)

and Logarithmic score (Good, 1952). Figure 5 shows that on average, marginalizing over

Figure 5: Comparison of empirical distribution of AUC, Brier score and Logarithmic score

obtained on the test set, for our approach SAEM without imputation, impSAEM, impMean

and impPCA, over 100 simulations.

distribution of missing values has the best performances: it gave the largest AUC and

Logarithmic score, and the smallest Brier scores.
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7 Risk of severe hemorrhage for TraumaBase

The aim of our work is to accelerate and simplify the detection of patients presenting

in hemorrhagic shock due to blunt trauma to speed up the management of this most

preventable cause of death in major trauma. An optimized organization is essential to

control blood loss as quickly as possible and to reduce mortality.

7.1 Details on the dataset

There were 7495 individuals in the trauma data we investigated, collected from May 2011

to March 2016. The study group decided to focus on patients with blunt trauma to be

able to compare to the existing prediction rules. Patients with pre-hospital cardiac arrest

and missing pre-hospital data were excluded. After this selection, 6384 patients remained

in the data set. Based on clinical experience, 16 influential quantitative measurements

were included. Detailed descriptions of these measurements are shown in Appendix A.6.

These variables were chosen because they were all available to the pre-hospital team, and

therefore could be used in real situations.

Figure 6: The factor map of the variables from PCA.
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There was strong collinearity between variables, as can be seen in the variables PCA

factor map (obtained by running an EM-PCA algorithm (Josse and Husson, 2016) which

performs PCA with missing values) in Figure 6, in particular between the minimum sys-

tolic (PAS.min) and diastolic blood pressure (PAD.min). Based on expert advice, the

recoded variables, SD.min and SD.SMUR (SD.min = PAS.min − PAD.min; SD.SMUR =

PAS.SMUR− PAD.SMUR) were used since they have more clinical significance (Hamada

et al., 2018). Thus, we had 14 variables to predict hemorrhagic shock.

Figure 7: Percentage of missing values in each variable.

Figure 7 shows the percentage of missingness per variable, varying from 0 to 60%, which

demonstrates the importance of taking appropriate account of missing data. Even though,

there may be many reasons why missingness occurred, in the end, considering them all

to be MAR remains a plausible assumption. For instance, FC.SMUR (heart rate) and

SD.SMUR (the difference between blood pressure measured when the ambulance arrives at

the accident site) contain many missing values because doctors collected these data during

transportation. However, many other medical institutes and scientific publications used

measurement on arrival at the accident scene. Consequently, doctors decided to record

these measures as well but after the TraumaBase was set up.

We first applied SAEM for logistic regression with all 14 predictors and for the whole
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Figure 8: Observation’s factor map of PCA. The blue circle shows the outlier. Red points

are hemorrhagic shock patients, and black points are patients who did not have hemorrhagic

shock. Patient number 3302 (circled in blue) has wrong calculation of BMI.

dataset. The estimation obtained by SAEM was of the same order of magnitude as that

obtained by multiple imputation, as implemented in the mice package. Next, we used

the model selection procedure described in Section 5 based on the penalized observed log-

likelihood. There were two observations leading to a very small value of the log-likelihood.

Upon closer inspection, we found that for patient number 3302, the BMI was obtained using

an incorrect calculation, and for patient number 1144, the weight (200 kg) and height (100

cm) values were likely to be incorrect. Hence, the observed log-likelihood allowed us to

discover undetected outliers. On the observations’ map of PCA, as shown in Figure 8,

patient number 3302 (circled in blue) is one of such outliers.

7.2 Predictive performances

We divided the dataset into training and test sets. The training set contained a random

selection of 70% of observations, and the test set contained the remaining 20%. In the

training set, we selected a model with the suggested BIC with missing values, and used
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Variables Estimate (se)

(Intercept) -0.52 (0.59)

Age 0.011 (0.0033)

Glasgow.moteur -0.16 (0.036)

FC.max 0.026 (0.0025)

Hemocue.init -0.23 (0.031)

RT.cristalloides 0.00090 (0.00010)

RT.colloides 0.0019 (0.00021)

SD.min -0.025 (0.0050)

SD.SMUR -0.021 (0.0056)

Table 4: Estimation of β and its standard errors obtained by SAEM, using BIC

as the model selection criterion.

forward selection. Using the BIC, we selected a model with 8 variables. The estimates of

parameters and their standard errors are shown in Table 4.

The TraumaBase medical team indicated us that the signs of the coefficients were in

agreement with their a priori ideas: all the others things being equal a) Older people are

more likely to have a hemorrhagic shock; b) And a low Glasgow score implies little or no

motor response, which often is the case for hemorrhagic shock patients; c) One typical sign

of hemorrhagic shock is rapid heart rate; d) The more a patient bleeds, the lower their

Hemocue is, and the more blood must be transfused. Eventually, it is more likely they

will end up in hemorrhagic shock; e) Therapy involving two types of volume expander:

cristalloides and colloides, can be conducted to treat hemorrhagic shock. If extremely low

difference between blood pressure is observed, its cause may be low stroke volume, as is

usually the case in hemorrhagic shock.

Next, we assessed the prediction quality on the test set with usual metrics based on

the confusion matrix (false positive rate, false negative rate, etc.). We need to ensure that

the cost of a false negative is much more than that of a false positive, as non-recognition

of a potential hemorrhagic shock leads to a higher risk of patient mortality. We define the
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validation error on test set as:

l(ŷ, y) =
1

n

n∑
i=1

w01{yi=1,ŷi=0} + w11{yi=0,ŷi=1} (7)

where w0 and w1 are user defined weight for the cost of false negative and false positive

respectively, s.t.,w0 + w1 = 1. Therefore, we can choose a threshold for logistic regression

by given the value for w0 and w1. For instance, we chose w0

w1
= 5, i.e., the false negative

was 5 times costly than the false positive. The cost function was chosen in agreement with

the experts. Note that the test set was also incomplete, so we used the strategy described

in Subsection 5.3. The confusion matrix of the predictive performance on the test set is

shown in Table 5. The associated ROC curve is shown in Figure 9, and the AUC is 0.8865.
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Table 5: Confusion matrix for prediction

on test set.

Figure 9: ROC curve of the test set pre-

dictions.

7.3 Comparison with other approaches

Finally we compared our method to other approaches. Similar to the Subsection 7.2, we

considered single imputation methods followed by classical logistic regression and variable

selection on the imputed training dataset, such as single imputation by PCA (impPCA)

(Josse and Husson, 2016), imputation by Random Forest (missForest) (Stekhoven and

Buehlmann, 2012), as well as mean imputation (impMean). Meanwhile, we compared lo-

gistic regression model with other prediction models, such as Random Forest (predRF) and
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SVM (predSVM), both applied on the imputed dataset by Random Forest (Stekhoven and

Buehlmann, 2012). We also considered multiple imputation by chained equation (mice):

we applied logistic regression with a classical forward selection method, with BIC on each

imputed data set. However, note that there is no straightforward solution for combining

multiple imputation and variable selection; we followed the empirical approach suggested

in Wood et al. (2008), where they kept the variables selected in each imputed dataset to

define the final model.

We also considered three rules used by the doctors to predict the hemorrhagic shock i)

Doctors’ prediction (doctor): the decision was recorded in the TraumaBase. It determines

whether the doctor considered the patient to be at risk of hemorrhagic shock. ii) Assessment

of Blood Consumption score (ABC): it is an examination usually performed when the

patient arrives at the trauma center. As such, the score is not exactly prehospital but can

be computed very early once the patient is hospitalized. iii) Trauma Associated Severe

Hemorrhage score (TASH): this score was also designed for hemorrhage detection, but at

a later stage since it uses some values that are only available after laboratory tests or

radiography.

Figure 10: Empirical distribution of prediction errors of different methods over 15 replica-

tions for the TraumaBase data.

Figure 10 compares the methods in terms of their validation error (7). The splitting of

data (into training and test sets) was repeated 15 times and we fixed the threshold such
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that the cost of false negative is 5 times that of false positive, i.e, w0

w1
= 5. On average,

SAEM had good performance with small variability, while all the imputation methods

performed similarly even the naive mean imputation. In addition, other prediction methods

(Random Forest and SVM) did not result in a smaller error on the test sets than the

logistic regression models. Lastly the rules used by the doctors, even the ones using more

information than prehospital data, were not as competitive as SAEM. Table 7 in Appendix

A.7 gives the details with classical measures (AUC, sensitivity, specificity, accuracy and

precision) to compare the predictive performance of the methods. Our approach resulted

in good performance on average, and in particular, had an advantage in terms of the

sensitivity, i.e., it rarely misdiagnosed the hemorrhagic shock patients, which is relevant to

clinical needs of emergency doctors.

Figure 11: Average prediction errors of different methods, as function of the cost importance

{w0

w1
| w0

w1
> 1}, over 15 replications for the TraumaBase data.

More generally, without defining a specific threshold, we observed in Figure 11 the

average predictive loss over 15 replications as function of the cost importance {w0

w1
| w0

w1
> 1}

for all the methods. Obviously, we had the same performance evaluation as before, as SAEM

had smaller error on the test sets with the respect to the choice of w0

w1
, especially when we
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emphasized more on the cost of false negative. Note that the curves of doctors’ rules and

ABC increase as a function of the cost importance w0

w1
, which means that, the rules of

doctors are more conservative than SAEM, which can be problematic in this application.

In summary, the logistic regression methodology with missing values, from estimation

to selection, as well as prediction on a test sample with missing data, is theoretically

well founded. Based on the TraumaBase application and comparison with other methods,

we have demonstrated that our approach has the ability to outperform existing popular

methods dealing with missing data.

8 Discussion

In this paper, we have developed a comprehensive framework for logistic regression with

missing values. Our experiments indicate that our method is computationally efficient, and

can be easily implemented. In addition, compared with multiple imputation implemented

in the mice package – especially in the case with correlation between variables – estimation

using SAEM is unbiased and leads to accurate coverage of the confidence interval. Based on

our algorithm, model selection by BIC with missing data can be performed in a natural way.

In view of the excellent results on the TraumaBase, emergency doctors want to implement

our methodology in real time to make a prospective study with missing data.

The approach we suggest assumes that the covariates follow a normal distribution, and

the performance of the method could be improved by applying certain variable transforma-

tions. Paths for possible future research include further developing the method to handle

quantitative and categorical data. In addition, in the TraumaBase dataset, we can reason-

ably expect to have both MAR and missing not at random (MNAR) values. MNAR means

that missingness is related to the missing values themselves, therefore, the correct treat-

ment would require incorporating models for the missing data mechanisms. As a final note,

the proposed method may be quite useful in the causal inference framework, especially for

propensity score analysis, which estimates the effect of a treatment, policy, or other inter-

vention. Indeed, inverse probability weighting methods (IPW) are often performed with

logistic regression, and our method offers a potential solution for times where there are

missing values in the covariates. The method is implemented in the R package misaem.
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A Appendix

A.1 Missing mechanism

Missing completely at random (MCAR) means that there is no relationship between the

missingness of the data and any values, observed or missing. In other words, MCAR means:

p(ri|y, xi, φ) = p(ri|φ)

Missing at Random (MAR), means that the probability to have missing values may depend

on the observed data, but not on the missing data. We must carefully define what this

means in our case by decomposing the data xi into a subset x
(mis)
i of data that “can be

missing”, and a subset x
(obs)
i of data that “cannot be missing”, i.e. that are always observed.

Then, the observed data xi,obs necessarily includes the data that can be observed x
(obs)
i ,

while the data that can be missing x
(mis)
i includes the missing data xi,mis. Thus, MAR

assumption implies that, for all individual i,

p(ri|yi, xi;φ) = p(ri|yi, x(obs)i ;φ)

= p(ri|yi, xi,obs;φ)

MAR assumption implies that, the observed likelihood can be maximize and the distri-

bution of r can be ignored (Little and Rubin, 2002). Indeed,

L(θ, φ; y, xobs, r) = p(y, xobs, r; θ, φ)

=
n∏
i=1

p(yi, xi,obs, ri; θ, φ)

=
n∏
i=1

∫
p(yi, xi, ri; θ, φ)dxi,mis

=
n∏
i=1

∫
p(yi, xi; θ)p(ri|yi, xi;φ)dxi,mis

=
n∏
i=1

∫
p(yi, xi; θ)p(ri|yi, xi,obs;φ)dxi,mis

=
n∏
i=1

p(ri|yi, xi,obs;φ)×
n∏
i=1

∫
p(yi, xi; θ)dxi,mis

= p(r|y, xobs;φ)× p(y, xobs; θ)

= p(r|y, x(obs);φ)× p(y, xobs; θ)
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Therefore, to estimate θ, we aim at maximizing L(θ; y, xobs) = p(y, xobs; θ).

A.2 Metropolis-Hastings sampling

During the iterations of SAEM, the Metropolis-Hastings sampling is performed as Al-

gorithm 1, with the target distribution f(xi,mis) = p(xi,mis|xi,obs, yi; θ) and the proposal

distribution g(xi,mis) = p(xi,mis|xi,obs;µ,Σ).

Algorithm 1 Metropolis-Hastings sampling.

Input: An initial samples x
(0)
i,mis ∼ g(xi,mis);

for m = 1, 2, · · · ,M do

Generate x
(m)
i,mis ∼ g(xi,mis);

Generate u ∼ U [0, 1];

Calculate the ratio w =
f(x

(m)
i,mis)/g(x

(m)
i,mis)

f(x
(m−1)
i,mis )/g(x

(m−1)
i,mis )

;

if u < w then

Accept x
(m)
i,mis;

else

x
(m)
i,mis ← x

(m−1)
i,mis ;

end if

end for

Output: (x
(m)
i,mis, 1 ≤ i ≤ n, 1 ≤ m ≤M).

A.3 Calculation of observed information matrix

Procedure 2 shows how we calculate the observed information matrix.

A.4 Behavior of SAEM: convergence plots for all betas

Figure 12 shows the convergence plot for all the β in one simulation.
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Procedure 2 Calculation of observed information matrix.

Input: After drawing MH samples (x
(m)
i,mis, 1 ≤ i ≤ n, 1 ≤ m ≤ M) for unobserved data

(xi,mis, 1 ≤ i ≤ n), we have imputed observations, noted as (z
(m)
i , 1 ≤ i ≤ n, 1 ≤ m ≤M),

where z
(m)
ij =

xi,obs, if xij is observed;

x
(m)
i,mis, if xij is missing.

.

for n = 1, 2, · · · , n do

for m = 1, 2, · · · ,M do

Calculate the gradient:

∇fim =
∂LL(θ;xi,obs,x

(m)
i,mis,yi)

∂β
= z

(m)
i

(
yi −

exp(β̂0+
∑p

j=1 β̂jz
(m)
ij )

1+exp(β̂0+
∑p

j=1 β̂jz
(m)
ij )

)
;

Calculate the Hessian matrix:

Him =
∂2LL(θ;xi,obs,x

(m)
i,mis,yi)

∂β∂βT = −z(m)
i z

(m)
i

T exp(β̂0+
∑p

j=1 β̂jz
(m)
ij )(

1+exp(β̂0+
∑p

j=1 β̂jz
(m)
ij )

)2 ;

∆i ← 1
m

[(m− 1)∆i +∇fim];

Di ← 1
m

[(m− 1)Di +Him];

Gi ← 1
m

[(m− 1)Gi +∇fim∇fTim];

end for

ÎM(β̂)← ÎM(β̂)− (Di +Gi −∆i∆
T
i );

end for

Output: ÎM(β̂).
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Figure 12: Convergence plots for all β obtained with three different values of τ (0.6, 0.8,

1.0). Each color represents one parameter.
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A.5 Simulation results of comparison with MCEM

We generated a small sample with n = 200 in order to illustrate the performance of MCEM,

which is computationally intensive. The bias and standard error of estimates over 100

simulations are shown in Figure 13.

Figure 13: Empirical distribution of the bias and standard error of β̂3 obtained over 100

simulations, under MCAR, with n = 200 and 10% of missing values, with methods no NA,

CC, mice, SAEM and MCEM.

Table 6: Coverage (%) for n = 200 , correlation C and 10% MCAR, calculated over 100

simulations. Bold indicates under coverage. Inside the parentheses is the average length of

corresponding confidence interval over 100 simulations.

parameter no NA CC mice SAEM MCEM

β0 96 (1.61) 96 (2.20) 97 (1.50) 96 (1.73) 96 (1.71)

β1 98 (1.44) 95 (1.98) 97 (1.40) 97 (1.70) 99 (1.67)

β2 97 (0.72) 96 (0.98) 96 (0.69) 97 (0.84) 96 (0.82)

β3 92 (0.63) 90 (0.90) 46 (0.56) 89 (0.74) 89 (0.72)

β4 92 (0.30) 96 (0.41) 95 (0.30) 93 (0.34) 92 (0.34)

β5 94 (0.43) 94 (0.60) 54 (0.38) 92 (0.50) 92 (0.49)
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Table 6 presents the coverage if the confidence interval for all parameters over 100

simulations and inside the parentheses is the average length of corresponding confidence

interval over 100 simulations.

A.6 Definition of the variables of the TraumaBase data set

In this Subsection, we give the detailed explanations for the selected quantitative variables:

• Age: Age.

• Poids: Weight.

• Taille: Height.

• BMI: Body Mass index, BMI = Weight in kg
(Height in m)2

• Glasgow: Glasgow Coma Scale .

• Glasgow.moteur: Glasgow Coma Scale motor component.

• PAS.min: The minimum systolic blood pressure.

• PAD.min: The minimum diastolic blood pressure.

• FC.max: The maximum number of heart rate (or pulse) per unit time (usually a

minute).

• PAS.SMUR: Systolic blood pressure at arrival of ambulance.

• PAD.SMUR: Diastolic blood pressure at arrival of ambulance.

• FC.SMUR: Heart rate at arrival of ambulance.

• Hemocue.init: Capillary Hemoglobin concentration.

• SpO2.min: Oxygen saturation.

• Remplissage.total.colloides (or RT.colloides): Fluid expansion colloids.

• Remplissage.total.cristalloides (or RT.cristalloides): Fluid expansion cristalloids.
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• SD.min (= PAS.min−PAD.min): Pulse pressure for the minimum value of diastolic

and systolic blood pressure.

• SD.SMUR (= PAS.SMUR−PAD.SMUR): Pulse pressure at arrival of ambulance.

A.7 Details of predictive performance for TraumaBase data

Details of predictive performance for TraumaBase data are given by Table 7.

Table 7: Comparison of the mean of the predictive performances (values are multiplied

by 100) of different methods dealing with missing data. AUC is the area under ROC; the

accuracy is the number of true positive plus true negative divided by the total number

of observations; the sensitivity is defined as the true positive rate; specificity as the true

negative rate; the precision is the number of true positive over all positive predictions. The

best results are in bold.

Metrics SAEM missForest impMean impPCA mice predRF predSVM

AUC 88.5 88.8 88.9 89.0 87.7 88.0 80.4

Accuracy 86.9 87.0 87.3 86.7 85.3 87.2 88.3

Sensitivity 41.1 41.6 42.2 41.0 37.9 41.6 44.0

Specificity 74.6 74.3 73.2 75.0 75.2 71.5 66.0

Precision 88.2 88.4 88.8 87.9 86.4 88.9 90.6

SUPPLEMENTARY MATERIAL

R-package: R-package “misaem” containing the implementation of algorithm SAEM to

fit the logistic regression model with missing data, now available in CRAN:

https://CRAN.R-project.org/package=misaem

Codes: Code to reproduce the experiments are provided in:

https://github.com/wjiang94/miSAEM_logReg.
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35



Duranteau, J. (2018). Development and validation of a pre-hospital “red flag” alert for

activation of intra-hospital haemorrhage control response in blunt trauma. Critical Care,

22(1):113.

Hay, S. I. et al. (2017). Global, regional, and national disability-adjusted life-years (dalys)

for 333 diseases and injuries and healthy life expectancy (hale) for 195 countries and

territories, 1990–2016: a systematic analysis for the global burden of disease study 2016.

The Lancet, 390(10100):1260 – 1344.

Ibrahim, J. G., Chen, M.-H., and Lipsitz, S. R. (1999). Monte carlo em for missing covari-

ates in parametric regression models. BIOMETRICS, 55:591–596.

Ibrahim, J. G., Chen, M.-H., Lipsitz, S. R., and Herring, A. H. (2005). Missing-data

methods for generalized linear models: A comparative review. Journal of the American

Statistical Association, 100(469):332–346.

Jiang, J., Nguyen, T., and Rao, J. S. (2015). The e-ms algorithm: Model selection with

incomplete data. Journal of the American Statistical Association, 110(511):1136–1147.

Josse, J. and Husson, F. (2016). missMDA: A package for handling missing values in

multivariate data analysis. Journal of Statistical Software, 70(1):1–31.

Lavielle, M. (2014). Mixed Effects Models for the Population Approach: Models, Tasks,

Methods and Tools. Chapman and Hall/CRC.

Little, R. J. and Rubin, D. B. (2002). Statistical Analysis with Missing Data. John Wiley

& Sons, Inc.

Liu, Y., Wang, Y., Feng, Y., and Wall, M. M. (2016). Variable selection and prediction

with incomplete high-dimensional data. Ann. Appl. Stat., 10(1):418–450.

Louis, T. A. (1982). Finding the observed information matrix when using the em algorithm.

Journal of the Royal Statistical Society. Series B (Methodological), 44(2):226–233.

McLachlan, G. and Krishnan, T. (2008). The EM algorithm and extensions. Wiley series

in probability and statistics. Wiley, Hoboken, NJ, 2. ed edition.

36



Meng, X.-L. and Rubin, D. B. (1991). Using em to obtain asymptotic variance-

covariance matrices: The sem algorithm. Journal of the American Statistical Association,

86(416):899–909.

R Core Team (2017). R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing, Vienna, Austria.

Rubin, D. B. (2009). Multiple Imputation for Nonresponse in Surveys, volume 307. John

Wiley & Sons.

Seaman, S., Galati, J., Jackson, D., and Carlin, J. (2013). What is meant by “missing at

random”? Statist. Sci., 28(2):257–268.

Stekhoven, D. J. and Buehlmann, P. (2012). Missforest - non-parametric missing value

imputation for mixed-type data. Bioinformatics, 28(1):112–118.

van Buuren, S. and Groothuis-Oudshoorn, K. (2011). mice: Multivariate imputation by

chained equations in r. Journal of Statistical Software, 45(3):1–67.

Wei, G. C. G. and Tanner, M. A. (1990). A monte carlo implementation of the em algorithm

and the poor man’s data augmentation algorithms. Journal of the American Statistical

Association, 85(411):699–704.

Wood, A. M., White, I. R., and Royston, P. (2008). How should variable selection be

performed with multiply imputed data? Statistics in Medicine, 27(17):3227–3246.

37


