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Abstract

Logistic regression is a common classification method in supervised learning. Surprisingly,
there are very few solutions for performing logistic regression with missing values in the
covariates. A complete approach based on a stochastic approximation version of the EM
algorithm is proposed in order to perform statistical inference with missing values, including
the estimation of the parameters and their variance, derivation of confidence intervals, and
also a model selection procedure. The problem of prediction for new observations on a test
set with missing covariate data is also tackled. Supported by a simulation study in which
the method is compared to previous ones, it has proved to be computationally efficient, and
has good coverage and variable selection properties. The approach is then illustrated on a
dataset of severely traumatized patients from Paris hospitals by predicting the occurrence of
hemorrhagic shock, a leading cause of early preventable death in severe trauma cases. The
aim is to improve the current red flag procedure, a binary alert identifying patients with a
high risk of severe hemorrhage. The method is implemented in the R package misaem.
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1. Introduction

Missing data exist in almost all areas of empirical research. There are various reasons
why it may occur, including survey non-response, unavailability of measurements, and lost
data. One popular approach to handle missing values consists in modifying estimation
processes so that they can be applied to incomplete data. For example, one can use the
EM algorithm [1] to obtain the maximum likelihood estimate (MLE) despite missing values,
accompanied by a supplemented EM algorithm (SEM) [2] or Louis’ formula [3] for estimating
the variance. This strategy is valid under missing-at-random (MAR) mechanisms [4, 5] in
which data missingness is independent of the missing values, given the observed data. Even
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though this approach is perfectly suited to specific inference problems with missing values,
there are few solutions or implementations available, even for simple models such as logistic
regression, the focus of this paper.

One explanation is that the expectation step of the EM algorithm often involves unfea-
sible computations. In the framework of generalized linear models, Ibrahim et al. [6, 7] have
suggested using a Monte Carlo EM (MCEM) algorithm [8, 9], replacing the integral by its
empirical sum using Monte Carlo sampling. Ibrahim et al. [6] also estimated the variance
using a Monte Carlo version of Louis’ formula, involving Gibbs sampling with an adaptive
rejection sampling scheme [10]. However, their approach has a high computational cost and
was only implemented for monotone patterns of missing values and for missing values in
only two variables in a dataset.

In this paper, we develop a stochastic approximation version of the EM algorithm
(SAEM) [11], based on Metropolis-Hastings sampling, to perform statistical inference for
logistic regression with incomplete data, where the missing data is found anywhere in the
covariates. SAEM uses a stochastic approximation procedure to estimate the conditional
expectation of the complete-data likelihood, instead of generating a large number of Monte
Carlo samples, which lead to an undeniable computational advantage over MCEM, which we
illustrate in the simulations. In addition, SAEM allows for model selection using a criterion
based on a penalized version of the observed-data likelihood. This is very useful in prac-
tice, as few methods are available to select models when there are missing values. Of those
that do exist, Claeskens and Consentino [12], Consentino and Claeskens [13] suggested an
approximation of AIC, Jiang et al. [14] defined generalized information criteria, and—in the
imputation framework—Liu et al. [15] proposed combining penalized regression techniques
with multiple imputation and stability selection. As well as aiming to maximize the MLE
for observed data, Chow [16], Yuen Fung and A. Wrobel [17] also studied the linear discrim-
inant function for logistic regression, using pairs of observed values in different columns to
calculate the covariance matrix. Note that another solution is to use a Laplace approxima-
tion to compute integrals; this linearizes the likelihood function via differentiation, whereas
SAEM supports likelihood-based inference without the intermediate step.

This paper proceeds as follows: In Section 2 we describe the motivation for the work: the
TraumaBase1 project involving a French multicenter prospective trauma registry. Section 3
provided the assumptions and notation used throughout the paper. In Section 4, we derive
a SAEM algorithm to obtain the maximum likelihood estimate of parameters in a logistic
regression model for continuous covariate data, under the MAR mechanism of missing data.
Following parameter estimation, we show how to estimate the Fisher information matrix
using a Monte Carlo version of Louis’ formula. Section 5 describes the model selection
scheme, based on a Bayesian information criterion (BIC) with missing values. In addition,
we propose an approach to perform prediction for a new observation that includes missing
values. Section 6 presents a simulation study where the proposed approach is compared
to methods such as multiple imputation [18] with respect to bias, coverage, and execution
time. In Section 7, we apply the newly developed approach to predict the occurrence of

1http://www.traumabase.eu/
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hemorrhagic shock in patients with blunt trauma in the TraumaBase dataset, where it is
crucial to efficiently manage missing data because the percentage of it varies from 0 to 60%
depending on the variable. Predictions made using SAEM show an improvement over those
made by emergency doctors. Lastly, Section 8 discusses the results and provides conclusions.

Our contribution is to give users the ability to perform logistic regression with missing
values within a joint-modeling framework, one that combines computational efficiency and
a sound theoretical foundation. The methods presented in this article are implemented as
an R [19] package misaem [20], available on CRAN. The code to reproduce all simulations
can be found on GitHub [21].

2. Medical emergencies

Our work is motivated by a collaboration with the TraumaBase group at APHP (Public
Assistance - Hospitals of Paris), which is dedicated to the management of severely trauma-
tized patients.

Major trauma refers to injuries that cause prolonged disability or endanger a person’s life.
The World Health Organization has recently reported that major trauma, such as from road
accidents, interpersonal violence and falls, is a prominent source of mortality and morbidity
around the world [22]. In particular, major trauma is the leading cause of mortality and
second cause of disability in the 16–45 age group, while hemorrhagic shock and traumatic
brain injuries are the two leading causes of death.

The path of a traumatized patient involves several stages: the accident site, where care
is typically provided by ambulance, transfer to an intensive-care unit for immediate inter-
vention, followed by comprehensive care at the hospital. Using pre-hospital patient records,
we aim to develop models to predict the risk of severe hemorrhage, in order to prepare an
appropriate response upon arrival at a trauma center, e.g., a massive transfusion protocol
and/or immediate haemostatic procedures.

Due to the highly stressful and multi-player environments involved, evidence suggests
that patient management—even in mature trauma systems—often exceeds acceptable time
frames [23]. In addition, discrepancies may be observed between the diagnoses made by
emergency doctors in the ambulance and those made when the patient arrives at the trauma
center [24]. Such discrepancies can result in poor outcomes like inadequate hemorrhage
control and delayed transfusion.

To improve decision-making and patient care, 15 French trauma centers have collaborated
to collect detailed high-quality clinical data from the accident site right through to the
hospital. The resulting database, TraumaBase, is a multicenter prospective trauma registry
that is continually updated, and now has data from more than 7 000 trauma cases. The sheer
quantity of collected data (more than 250 variables) makes this dataset unique in Europe.
However, these data—coming from multiple sources—have high inter-center variability, not
to mention the fact that a lot of data are missing, both of which problems make modeling
challenging.

In this paper, we focus on performing logistic regression with missing values to help
propose an innovative response to the public health challenge of major trauma.
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3. Assumptions and notation

Let (y, x) be the observed data with y = (yi, 1 ≤ i ≤ n) an n-vector of binary responses
coded as {0, 1} and x = (xij, 1 ≤ i ≤ n, 1 ≤ j ≤ p) an n× p matrix of covariates, where xij
takes its values in R. The logistic regression model for binary classification can be written
as:

P (yi = 1|xi; β) =
exp(β0 +

∑p
j=1 βjxij)

1 + exp(β0 +
∑p

j=1 βjxij)
, i = 1, . . . , n, (1)

where xi1, . . . , xip are the covariates for individual i and β0, β1, . . . , βp unknown parame-
ters. We adopt a probabilistic framework by assuming that xi = (xi1, . . . , xip) is normally
distributed:

xi ∼
i.i.d.
Np(µ,Σ), i = 1, . . . , n.

Let θ = (µ,Σ, β) be the set of parameters of the model. Then, the log-likelihood for the
complete data can be written as:

LL(θ;x, y) =
n∑
i=1

LL(θ;xi, yi)

=
n∑
i=1

(
log(p(yi|xi; β)) + log(p(xi;µ,Σ))

)
.

Our main goal is to estimate the vector of parameters β = (βj, 0 ≤ j ≤ p) when missing
values exist in the design matrix, i.e., in the matrix x. For each individual i, we note xi,obs
the elements of xi that are observed and xi,mis those that are missing. We also decompose
the design matrix as x = (xobs, xmis), keeping in mind that the missing elements may differ
from one individual to another.

For each individual i, we define the missing data indicator vector Mi = (Mij, 1 ≤ j ≤ p),
with Mij = 1 if xij is missing and Mij = 0 otherwise. The matrix M = (Mi, 1 ≤ i ≤ n)
then defines the missing data pattern. The missing data mechanism is characterized by
the conditional distribution of M given x and y, with parameter φ, i.e., p(Mi|xi, yi, φ).
Throughout this paper, we assume a missing-at-random (MAR) mechanism, which implies
that the missing values mechanism can therefore be ignored [4] and the maximum likelihood
estimate of θ obtained by maximizing LL(θ; y, xobs). A reminder of these concepts is given
in Appendix A.1.

4. Parameter estimation by SAEM

4.1. The EM and MCEM algorithms

We aim to estimate the parameter θ of the logistic regression model by maximizing
the observed log-likelihood LL(θ;xobs, y). Let us start with the classical EM formulation
for obtaining the maximum likelihood estimator from incomplete data. Given some initial
value θ0, iteration k updates θk−1 to θk with the following two steps:
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• E-step: Evaluate the quantity

Qk(θ) = E[LL(θ;x, y)|xobs, y; θk−1]

=

∫
LL(θ;x, y)p(xmis|xobs, y; θk−1)dxmis.

(2)

• M-step: Update the estimation of θ: θk = arg maxθQk(θ).

Since the expectation (2) in the E-step for the logistic regression model has no explicit
expression, MCEM [8, 6] can be used. The E-step of MCEM generates several samples of
missing data from the target distribution p(xmis|xobs, y; θk−1) and replaces the expectation
of the complete log-likelihood by an empirical mean. However, an accurate Monte Carlo
approximation of the E-step may require a significant computational effort, as illustrated in
Section 6.

4.2. The SAEM algorithm

To achieve improved computational efficiency, we can derive a SAEM algorithm [11]
which replaces the E-step (2) by a stochastic approximation. Starting from an initial guess
θ0, the kth iteration consists of three steps:

• Simulation: For i = 1, 2, . . . , n, draw x
(k)
i,mis from

p(xi,mis|xi,obs, yi; θk−1). (3)

• Stochastic approximation: Update the function Q according to

Qk(θ) = Qk−1(θ) + γk

(
LL(θ;xobs, x

(k)
mis, y)−Qk−1(θ)

)
, (4)

where (γk) is a non-increasing sequence of positive numbers.

• Maximization: Update the estimation of θ:

θk = arg max
θ

Qk(θ).

The choice of the sequence (γk) in (4) is important for ensuring the almost sure convergence
of SAEM to a maximum of the observed likelihood [25]. We will see in Section 6 that, in
our case, very good convergence is obtained using γk = 1 during the first iterations, followed
by a sequence that decreases as 1/k.
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4.3. Metropolis-Hastings sampling

In the logistic regression case, the unobserved data cannot in general be drawn exactly
from the conditional distribution (3), which depends on an integral that is not calculable in
closed form. One solution is to use a Metropolis-Hastings (MH) algorithm, which consists
of constructing a Markov chain that has the target distribution as its stationary distribu-
tion. The states of the chain after S iterations are then used as a sample from the target
distribution. To define a proposal distribution for the MH algorithm, we observe that the
target distribution (3) can be factorized as follows:

p(xi,mis|xi,obs, yi; θ) ∝ p(yi|xi; β)p(xi,mis|xi,obs;µ,Σ).

We select the proposal distribution as the second term p(xi,mis|xi,obs, µ,Σ), which is normally
distributed:

xi,mis|xi,obs ∼ Np(µi,Σi), (5)

where

µi = µi,mis + Σi,mis,obsΣ
−1
i,obs,obs(xi,obs − µi,obs),

Σi = Σi,mis,mis − Σi,mis,obsΣ
−1
i,obs,obsΣi,obs,mis,

with µi,mis (resp. µi,obs) the missing (resp. observed) elements of µ for individual i. The
covariance matrix Σ is decomposed in the same way. The MH algorithm is described further
in Appendix A.2.

4.4. Observed Fisher information

After computing the MLE θ̂ML with SAEM, we estimate its variance. To do so, we

can use the observed Fisher information matrix (FIM): I(θ) = −∂2LL(θ;xobs,y)
∂θ∂θT

. According to
Louis’ formula [3], we have:

I(θ) =− E
(
∂2LL(θ;x, y)

∂θ∂θT
∣∣xobs, y; θ

)
− E

(
∂LL(θ;x, y)

∂θ

∂LL(θ;x, y)T

∂θ

∣∣xobs, y; θ

)
+ E

(
∂LL(θ;x, y)

∂θ
|xobs, y; θ

)
E
(
∂LL(θ;x, y)

∂θ
|xobs, y; θ

)T
.

The observed FIM can therefore be expressed in terms of conditional expectations, which
can also be approximated using a Monte Carlo procedure. More precisely, given S samples
(x

(s)
i,mis, 1 ≤ i ≤ n, 1 ≤ s ≤ S) of the missing data drawn from the conditional distribution
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(3), the observed FIM can be estimated as ÎS(θ̂) =
∑n

i=1−(Di +Gi −∆i∆
T
i ), where

∆i =
1

S

S∑
s=1

∂LL(θ̂;x
(s)
i,mis, xi,obs, yi)

∂θ
,

Di =
1

S

S∑
s=1

∂2LL(θ̂;x
(s)
i,mis, xi,obs, yi)

∂θ∂θT
,

Gi =
1

S

S∑
s=1

(
∂LL(θ̂;x

(s)
i,mis, xi,obs, yi)

∂θ

)(
∂LL(θ̂;x

(s)
i,mis, xi,obs, yi)

∂θ

)T

.

Here, the gradient and the Hessian matrix can be computed in closed form. The procedure
for calculating the observed information matrix is described in Appendix A.3.

5. Model selection and prediction

5.1. Information criteria

In order to compare different possible covariate models, we can consider penalized likeli-
hood criteria such as BIC. For a given model M and an estimated parameter θ̂M, the BIC
is defined as:

BIC(M) = −2LL(θ̂M;xobs, y) + log(n)d(M),

where d(M) is the number of estimated parameters in a model M. The distribution of the
complete set of covariates (xij, 1 ≤ i ≤ n, 1 ≤ j ≤ p) does not depend on the regression
model used for modeling the binary outcomes (yi, 1 ≤ i ≤ n); we assume the same normal
distribution Np(µ,Σ) for all regression models. Thus, the difference between the numbers
d(M) of estimated parameters in two models is equivalent to the difference between the
numbers of their non-zero coefficients in β. Note that, unlike the approach we suggest,
existing methods [12, 13] use an approximation of the Akaike information criterion (AIC)
without estimating the observed likelihood.

5.2. Observed log-likelihood

For a given model and parameter θ, the observed log-likelihood is, by definition:

LL(θ;xobs, y) =
n∑
i=1

log (p(yi, xi,obs; θ)) .

With missing data, the density p(yi, xi,obs; θ) cannot in general be computed in closed form.
We suggest approximating it using an importance sampling Monte Carlo approach. Let gi
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be the density function of the normal distribution defined in (5). Then,

p(yi, xi,obs; θ) =

∫
p(yi, xi,obs|xi,mis; θ)p(xi,mis; θ)dxi,mis

=

∫
p(yi, xi,obs|xi,mis; θ)

p(xi,mis; θ)

gi(xi,mis)
gi(xi,mis)dxi,mis

= Egi
(
p(yi, xi,obs|xi,mis; θ)

p(xi,mis; θ)

gi(xi,mis)

)
.

Consequently, if we draw M samples from the proposal distribution (5):

x
(s)
i,mis ∼

i.i.d.
N (µi,Σi), m = 1, 2, . . . , S,

we can estimate p(yi, xi,obs; θ) by:

p̂(yi, xi,obs; θ) =
1

S

S∑
m=1

p(yi, xi,obs|x(s)i,mis; θ)
p(x

(s)
i,mis; θ)

gi(x
(s)
i,mis)

,

and derive an estimate of the observed log-likelihood LL(θ;xobs, y).

5.3. Prediction on a test set with missing values

In supervised learning, after fitting a model using a training set, a natural step is to
evaluate the prediction performance, which can be done with a test set. Assuming x̃ =
(x̃obs, x̃mis) is an observation in the test set, we want to predict the binary response ỹ. One
important point is that test set also contains missing values, since the training set and the
test set have the same distribution (i.e., the distribution of covariates and the distribution of
missingness). Therefore, we cannot directly apply the fitted model (which uses p coefficients)
to predict ỹ from an incomplete observation of the test set x̃.

Our framework offers a natural way to tackle this issue by marginalizing out missing
covariates given the observed data. More precisely, with S Monte Carlo samples

(x̃
(s)
mis, 1 ≤ s ≤ S) ∼ p(x̃mis | x̃obs),

we estimate directly the response by maximizing its distribution marginalized over missing
data given the observed ones:

ŷ = arg max
ỹ

p(y | x̃obs) = arg max
ỹ

∫
p(y | x̃)p(x̃mis | x̃obs) dx̃mis

= arg max
ỹ

Epx̃mis|x̃obs
p(ỹ | x̃)

= arg max
ỹ

S∑
s=1

p
(
ỹ | x̃obs, x̃(s)mis

)
.

Note that in the literature there are very few solutions for dealing with missing values in
a test set. In Section 7.2, we compare the proposed approach with other methods used in
practice, which are based on imputation of the test set.
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6. Simulation study

6.1. Simulation settings

We first generated a design matrix x of size n = 1000× p = 5 by drawing each observation
from a multivariate normal distributionN (µ,Σ). Then, we generated the response according
to the logistic regression model (1). We considered as the true parameter values: β =
(−0.2, 0.5,−0.3, 1, 0,−0.6), µ = (1, 2, 3, 4, 5), and Σ = diag(σ)Cdiag(σ), where σ is the
vector of standard deviations σ = (1, 2, 3, 4, 5), and C the correlation matrix

C =


1 0.8 0 0 0

0.8 1 0 0 0
0 0 1 0.3 0.6
0 0 0.3 1 0.7
0 0 0.6 0.7 1

 . (6)

Before generating missing values, we performed classical logistic regression on the com-
plete dataset, the results (ROC curve) are provided in Appendix A.4. We then randomly in-
troduced 10% missing values in the covariates, initially with a missing-completely-at-random
(MCAR) mechanism, where each entry has the same probability of being observed.

6.2. The behavior of SAEM

The algorithm was initialized with the parameters obtained after mean imputation, i.e.,
where missing values of a given variable were replaced by the unconditional mean calculated

τ = 0.6 τ = 0.8 τ= 1.0

0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500

0.2

0.4

0.6

0.8

1.0

iteration

β 1

Figure 1: Convergence plots for β1 obtained with three different values of τ (0.6, 0.8, 1.0). Each color
represents one simulation. The true value of β1 is 0.5.
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on the available cases, and then logistic regression was applied to the completed data. For
the non-increasing sequence (γk) in the stochastic approximation step of SAEM, we chose
γk = 1 during the first k1 iterations in order to converge quickly to a neighborhood of the
MLE, and from k1 iterations on, we set γk = (k−k1)−τ to ensure the almost sure convergence
of SAEM. In order to study the effect of the sequence of stepsizes (γk), we fixed the value of
k1 = 50 and used τ = (0.6, 0.8, 1) during the next 450 iterations. Representative plots of
the convergence of SAEM for the coefficient β1, obtained from four simulated data sets, are
shown in Figure 1. For each given simulation, the three sequences of estimates converged to
the same solution, but for larger τ , SAEM converged faster and fluctuated less. We therefore
use τ = 1 in the following.

6.3. Comparison with other methods

We ran 1000 simulations and compared SAEM to several other existing methods, ini-
tially in terms of estimation errors for the parameters. We mainly focused on i) the com-
plete case (CC) method, i.e., all rows containing at least one unobserved data value were
removed, and ii) multiple imputation by chained equations (mice) with Rubin’s combining

●

●

●

●

●

●

●

n = 1000 n = 10000

no NA CC mice SAEM no NA CC mice SAEM

−0.2

0.0

0.2

0.4

B
ia

s 
of

 β̂
3

●

●

●●
●

●

●

●

●

●

n = 1000 n = 10000

no NA CC mice SAEM no NA CC mice SAEM

0.04

0.08

0.12

S
ta

nd
ar

d 
er

ro
r 

of
 β̂

3

Figure 2: Top: Empirical distribution of the bias of β̂3. Bottom: Distribution of the estimated standard
errors of β̂3. For each method, the red point corresponds to the empirical standard deviation of β̂3 calculated
over the 1000 simulations. Results shown are for 10% MCAR and correlation C.
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rules [26]. More precisely, missing values are imputed successively by a series of regres-
sion models, where each variable with missing data is modeled conditional upon the other
variables. For instance, linear regression is used to model continuous variables and binary
variables are modeled using logistic regression. More details can be found in van Buuren and
Groothuis-Oudshoorn [26]. Finally, we used the dataset without missing values (“no NA”)
as a reference, with parameters estimated using the Newton-Raphson algorithm. We varied
the number of observations: n = 200, 1000, 10 000, the missing value mechanism: MCAR or
MAR, the percentage of missing values: 10% or 30%, and the correlation structure, either
using C given by (6), or an orthogonal design.

Figure 2 (top) displays the distribution of the estimates of β3 for n = 1000 and n = 10 000
under MCAR, with the correlation between covariates given by (6). Simulation results for
n = 200 are presented in the supplementary materials [27]. This plot is representative of
the results obtained with the other components of β. As expected, larger samples yielded
less variability. Moreover, we observe that in both cases, the estimation obtained by mice
could be biased, whereas SAEM provided unbiased estimates with small variances. Fig-
ure 2 (bottom) shows the empirical distribution of the estimated standard error of β̂3. For
SAEM it was calculated using the observed Fisher information as described in Section 4.4.
With larger n, not only the estimated standard errors–but also variance in the estimation–
clearly decreased for all methods. In the case where n = 1000, SAEM and mice slightly
overestimated the standard error, while CC underestimated it, on average. Globally, SAEM
provided the best results; compared with mice, it gave a similar estimate of the standard
error, on average, but with much less variance.

Table 1 shows the coverage probability of the confidence interval for all parameters and
inside the parentheses is the average length of the corresponding confidence interval. We
would expect coverage of 95%, corresponding to the nominal 95% level. The simulation
margin of error for the coverage results is 1.35%. SAEM had between 94.3% and 95.4%
coverage, while mice struggled for certain parameters: the coverage rates for two estimates
were 89.6% and 86.5%, significantly below the nominal level. Even though CC showed
reasonable results in terms of coverage, the widths of its confidence intervals were still
too large. Simulations with smaller sample sizes gave similar results—see supplementary
materials [27] for n = 200.

Table 1: Coverage (%) for n = 10 000, correlation C and 10% MCAR, calculated over 1000 simulations.
Bold indicates under-coverage. Inside the parentheses is the average length of corresponding confidence
interval over 1000 simulations (multiplied by 100).

parameter no NA CC mice SAEM
β0 95.2 (21.36) 94.4 (27.82) 95.2 (22.70) 94.9 (22.48)
β1 96.0 (18.92) 94.7 (24.65) 93.9 (21.77) 95.1 (21.51)
β2 95.5 (9.53) 94.6 (12.41) 94.0 (10.97) 94.3 (10.83)
β3 94.9 (8.17) 94.3 (10.66) 86.5 (9.03) 94.7 (9.03)
β4 94.6 (4.00) 94.2 (5.21) 96.2 (4.49) 95.4 (4.42)
β5 95.9 (5.52) 94.4 (7.19) 89.6 (6.20) 94.7 (6.17)
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Lastly, Table 2 highlights large differences between the methods in terms of execution
time. As an aside, we also implemented the MCEM algorithm [6] using adaptive rejection
sampling; even with a very small sample size of n = 200, MCEM took 5 minutes per simu-
lation on average. In contrast, multiple imputation took less than 1 second per simulation,
and SAEM less than 10 seconds, which remains reasonable. However, the bias and standard
errors for the SAEM and MCEM estimates were quite similar—see supplementary materials
[27]. Due to the prohibitive execution time required, for larger sample sizes we did not
compare MCEM with the other methods.

Table 2: Comparison of execution times between no NA, MCEM, mice, and SAEM with correlation C and
10% MCAR, for n = 200 and n = 1000, calculated over 1000 simulations.

Execution time (seconds)
for one simulation no NA MCEM mice SAEM
n = 1000
min 2.87× 10−3 492 0.64 9.96
mean 4.65× 10−3 773 0.70 13.50
max 43.50× 10−3 1077 0.76 16.79
n = 200
min 1.26× 10−3 67.91 0.24 2.64
mean 2.32× 10−3 291.47 0.28 3.91
max 21.53× 10−3 1003 0.48 6.04

Results obtained for independent covariates are presented in Figure 3 (right), for esti-
mation in the orthogonal design case. SAEM was slightly biased since it estimated non-zero
terms for the covariance, but still outperformed CC and mice.
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Figure 3: Empirical distribution of the estimates of β3 obtained under MCAR, with n = 10 000 and 10%
missing values. Left: the covariates are correlated; right: no correlation between covariates.
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6.4. Extended simulations

Missing-at-random mechanisms. We first simulated the pattern of missingness as a binary
vector η = (η1, η2, . . . , ηp) from the Bernoulli distribution, where ηj = 0 indicates that the
corresponding variable xj can be missing while ηj = 1 indicates it is always observed. Then
the probability of having missing data in one variable is calculated by a logistic regression
model. For example in our case with the realizations of η = (1, 0, 1, 0, 0), the probability
that covariates (x2, x4, x5) are missing is calculated by a logistic regression model conditional
on x1 and x3. The weights in the linear combination of x1 and x3 have an effect on the
proportion of missingness. We introduced 10% missing values into the covariates using an
MAR mechanism. The results presented in Appendix A.5 are—as expected—similar to those
obtained under MCAR, and show that the parameters are estimated without bias.

Robustness to the normal assumption for covariates. First we generated a design matrix of
size n = 1000 × p = 5 by drawing each observation from a multivariate Student distribution
tv(µ,Σ) with v = 5 or v = 20 degrees of freedom, and (µ,Σ) the same as those in the
normal distribution in Section 6.1. Then, we considered the Gaussian mixture model case
by generating half of the samples from N (µ1,Σ) and the other half from N (µ2,Σ), where
µ1 = (1, 2, 3, 4, 5) and µ2 = (1, 1, 1, 1, 1), with the same Σ as previously. Then, we generated
the response according to the same logistic regression model as in Section 6.1, and considered
either MCAR or MAR mechanisms.

Figure 4 illustrates the estimation bias of the parameter β3, and Appendix A.6 shows the
coverage for all parameters, with the average length of the corresponding confidence interval
in parentheses. This experiment shows that the estimation bias for regression coefficients
with the proposed method—even based on normal assumptions—is robust to such model
misspecification. Indeed, the bias may increase when covariates do not exactly follow a
normal distribution, but the increase is negligible compared to the bias of imputation-based
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Figure 4: Empirical distribution of the bias of β̂3 obtained for misspecified models under MCAR, with
n = 1000. Left: Student’s distribution with v = 5 degrees of freedom; right: Gaussian mixture model.
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methods. We also observe only a small level of under-coverage as compared to mice, and a
more reasonable length of confidence interval as compared to CC.

Varying the percentage of missing values. When the percentage of missing values increases,
variability in the results increases, but the suggested method still provide satisfactory
results—see supplementary materials [27].

Varying the separability of the classes. When the classes are well-separated, SAEM can
exhibit bias and large variance, as illustrated in the supplementary materials [27]. However,
logistic regression without missing values also encounters difficulties.

In summary, not only did these simulations show that SAEM leads to estimators with
limited bias, but also that we obtained accurate inference by taking into account the addi-
tional variance due to missing data.

6.5. Model selection

To look at the performance of the method in terms of model selection, we considered
the same simulation scenarios as in Section 6.1, with some parameters set to zero. We now
describe the results for the case where all parameters in β are zero except β0 = −0.2, β1 =
0.5, β3 = 1, and β5 = −0.6. We compared the BICobs based on the observed log-likelihood,
as described in Section 5, to those based on the complete cases BICcc and obtained from
the the original complete data BICorig.

Table 3 shows, with or without correlation between covariates, the percentage of cases
where each criterion selects the true model (C), overfits (O)—i.e., selects more variables
than there were, or underfits (U)—i.e., selects less variables than there were. In the case
where the variables were correlated, the correlation matrix was the same as in Section 6.1.
These results are representative of those obtained in the other simulation settings.

Table 3: For data with or without correlations, the percentage of times that each criterion selects the
correct true model (C), overfits (O), or underfits (U).

Non-Correlated Correlated
Criterion C O U C O U
BICobs 92 3 5 94 2 4
BICorig 96 2 2 93 0 7
BICcc 79 1 20 91 0 9

6.6. Predictions for a test set with missing values

To evaluate the prediction performance on a test set with missing values, we considered
the same simulation scenarios for the training set as in Section 6.1 with sample size 1000×5.
We also generated a test set of size 100 × 5. We compared the approach described in Sec-
tion 5.3 with imputation methods. More precisely, we considered single imputation methods
on the training set, followed by classical logistic regression and variable selection by BIC on
the imputed dataset. The single imputation methods included i) imputation by the mean
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(impMean) ii) imputation by PCA (impPCA) [28], which is based on a low-rank assumption
of the data matrix to impute. In addition, we considered multiple imputation using mice.
Note that Hentges and Dunsmore [29] showed in a simulation study that imputation meth-
ods for MCAR data can perform well when the aim of logistic regression is prediction. For
all of the imputation methods, we also imputed the test set independently and then applied
the model that had been selected on the training set. Note that this would be a limitation
if there was only one individual in the test set, whereas our method does not encounter this
issue.

We compared all of these approaches in terms of classical criteria to evaluate the predicted
probabilities from the logistic regression. Criteria included AUC (area under the ROC
curve), the Brier score [30] and the logarithmic score [31]. Figure 5 shows that on average,
marginalizing over the distribution of missing values gave the best performance: the largest
AUCs and logarithmic scores, and the smallest Brier scores.
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Figure 5: Comparisons of the empirical distribution of the AUC, Brier score, and logarithmic score obtained
on the test set for the proposed SAEM without imputation method, impMean, impPCA, and mice, over 100
simulations.

7. Risk of severe hemorrhage in the TraumaBase context

The fundamental goal of our work is to accelerate and simplify the detection of patients
presenting with hemorrhagic shock due to blunt trauma in order to speed up management
of this, the most preventable cause of death in major trauma cases. Optimized organization
is essential to control blood loss as quickly as possible and reduce mortality.

7.1. Details on the dataset

This study has used data collected from the TraumaBaseR© trauma registry, which collates
data from six trauma centers in the Ile-de-France region (Paris area) in France. The centers
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progressively joined TraumaBase between January 2011 and June 2015. Since then, data
collection has been systematic at these centers. The database is structured in such a way
that the algorithm is implemented within it to provide consistency and coherence, with data
monitoring performed by a central administrator. Sociodemographic, clinical, biological and
therapeutic data (from the pre-hospital phase to discharge, if hospitalized) are systematically
recorded for all trauma patients, and all patients transported to the emergency rooms of
participating centers are included in the registry. As a result, there were 7495 individuals
logged in the trauma data that we investigated, included from January 2011 to March 2016,
with ages ranging from 12 to 96. The TraumaBase group decided to focus on patients with
blunt trauma so as to be able to compare results with existing prediction rules. Patients
with pre-hospital cardiac arrest, penetrating trauma, and missing pre-hospital data, were
excluded. This led to 5162 patients being retained in the data set. Based on clinical
experience, 16 influential quantitative measurements were included. Detailed descriptions
of these and their histograms are shown in Appendix A.7. These variables were chosen
because they were all available to the pre-hospital team, and therefore could be used in real
situations.

Figure 6: The factor map of the variables from PCA.

There was strong collinearity between variables, as can be seen in the variables’ PCA
factor map (obtained by running an EM-PCA algorithm [28] which performs PCA with
missing values) in Figure 6, in particular between the minimum systolic (PAS.min) and
diastolic blood pressure (PAD.min). Based on expert advice, the recoded variables, SD.min
and SD.SMUR (SD.min = PAS.min − PAD.min; SD.SMUR = PAS.SMUR − PAD.SMUR)
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were used since they have more clinical significance [32]. Thus, we had 14 variables to predict
hemorrhagic shock.

Figure 7: Percentage of missing values in each variable.

Figure 7 shows the percentage of missingness per variable, varying from 0 to 60%, which
demonstrates the importance of taking appropriate account of missing data. Even though
there may be many reasons why missingness occurred, overall considering them all to be
MAR remains a plausible assumption. For instance, FC.SMUR (heart rate) and SD.SMUR
(the pulse pressure measured when the ambulance arrives at the accident site) contain
many missing values because doctors collected these data during transportation. However,
many other medical institutes and scientific publications use measurements on arrival at
the accident scene. Consequently, doctors decided to record these as well, but this occurred
after TraumaBase was set up.

We first applied SAEM for logistic regression with all 14 predictors and for the whole
dataset. The estimation obtained by SAEM was broadly similar to that obtained by multiple
imputation. Next, we used the model selection procedure described in Section 5. There were
two observations that led to a very small value for the log-likelihood. Upon closer inspection,
we found that for patient number 3302, the BMI was obtained using an incorrect calculation,
and for patient number 1144, the weight (200 kg) and height (100 cm) values were likely
to be incorrect. Hence, the observed log-likelihood also helped us to identify undetected
outliers. In the observations’ PCA factor map shown in Figure 8, patient number 3302
(circled in blue) is one of the outliers.

7.2. Predictive performance

We divided the dataset into training and test sets. The training set contained a random
selection of 70% of the observations, and the test set contained the remaining 30%. In
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Figure 8: The observations’ PCA factor map. Red points are hemorrhagic shock patients, and black
points those who did not have hemorrhagic shock. Patient number 3302 (circled in blue) has an incorrectly-
calculated BMI.

the training set, we selected a model with the approach suggested in Section 5, and used
forward selection, resulting in a model with 8 variables. The estimates of parameters and
their standard errors are shown in Table 4.

Table 4: Estimation of β and its standard errors obtained by SAEM, using BIC for model selection.

Variables Estimate (standard errors)
(Intercept) -0.12 (0.64)
Age 0.017 (0.0037)
Glasgow.moteur -0.22 (0.040)
FC.max 0.024 (0.0028)
Hemocue.init -0.26 (0.033)
RT.cristalloides 0.00088 (0.00011)
RT.colloides 0.0018 (0.00023)
SD.min -0.027 (0.0055)
SD.SMUR -0.018 (0.0061)

The TraumaBase medical team indicated to us that the signs of the coefficients were in
agreement with their prior intuition: all things being equal, a) Older people are more likely
to have hemorrhagic shock; b) A low Glasgow score implies little or no motor response,
which often is the case for hemorrhagic shock patients; c) A typical sign of hemorrhagic
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shock is rapid heart rate; d) The more a patient bleeds, the lower their hemoglobin is and
more blood must be transfused. It is then more likely they will end up with hemorrhagic
shock; e) Therapy involving two types of volume expanders, cristalloides and colloides, can
be conducted to treat hemorrhagic shock; f) If an extremely low pulse pressure is observed,
the cause may be a low stroke volume, which is usually the case in hemorrhagic shock.

Next, we assessed the prediction quality on the test set with the usual metrics based on
the confusion matrix (false positive rate, false negative rate, etc.). We need to ensure that
the cost of a false negative is much more than that of a false positive, as non-recognition
of a potential hemorrhagic shock leads to a higher risk of patient mortality. With this in
mind, we define the validation error on the test set as:

l(ŷ, y) =
1

n

n∑
i=1

w01{yi=1,ŷi=0} + w11{yi=0,ŷi=1} (7)

where w0 and w1 are user defined weight for the cost of a false negative and false positive
respectively, with w0 + w1 = 1. In this way, we can choose a threshold for the logistic
regression by giving values for w0 and w1. For instance, we chose w0

w1
= 5, i.e., a false

negative is five times more costly than a false positive. This cost function was chosen after
discussions with experts. Note that the test set was also incomplete, so we used the strategy
described in Section 5.3 to perform prediction. The confusion matrix of the predictive
performance on the test set is shown in Table 5. The associated ROC curve is shown in
Figure 9, which has an AUC of 0.88.
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Figure 9: ROC curve of the test set predictions.
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7.3. Comparison with other approaches

Next, we compared the proposed method to other approaches. Similar to in Section 7.2,
we considered single imputation methods followed by classical logistic regression and variable
selection on the imputed training dataset, such as single imputation by PCA (impPCA) [28],
imputation by Random Forest (missForest) [33], and mean imputation (impMean). We also
compared the logistic regression model with other prediction models such as Random Forest
(predRF) and SVM (predSVM), both applied on the Random Forest-imputed [33] dataset.
We also considered mice: we applied logistic regression with a classical forward selection
method, with the BIC calculated on each imputed data set. However, note that there is
no straightforward solution for combining multiple imputation and variable selection; we
followed the empirical approach suggested in Wood et al. [34] where they select variables
that appear in at least half of the models selected in each imputed dataset.

We also considered three rules used by doctors to predict hemorrhagic shock: i) Doctors’
prediction (doctor): the prediction recorded in TraumaBase. This showed whether the
doctor considered the patient to be at risk of hemorrhagic shock; ii) The assessment of blood
consumption score (ABC): this is an examination usually performed when the patient arrives
at the trauma center. As such, the score is not exactly pre-hospital but can be computed
very early in a hospitalization; iii) the trauma associated severe hemorrhage score (TASH):
this score was also designed for hemorrhage detection, but at a later time-point since it uses
some values that are only available after laboratory tests and radiography.

Figure 10 compares the methods in terms of their validation error (7). The splitting of

Figure 10: Empirical distribution of the prediction errors of different methods over 15 random splits of the
TraumaBase data.
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data (into training and test sets) was repeated 15 times and we fixed the threshold such that
the cost of a false negative was five times that of a false positive, i.e., w0

w1
= 5. On average,

SAEM performed well and with low variability between trials, while all of the imputation
methods performed similarly to each other even naive mean imputation. In addition, other
prediction methods (Random Forest and SVM) did not give smaller errors on the test sets
than the logistic regression models. Lastly, the rules used by doctors, even those using more
information than pre-hospital data, did not perform as well as SAEM. Appendix A.8 gives
further details on classical criteria (AUC, sensitivity, specificity, accuracy and precision) to
compare the predictive performance of the methods. The SAEM approach performed well
on average, and particularly well for sensitivity, i.e., it rarely misdiagnosed hemorrhagic
shock patients, which gels well with the clinical needs of emergency doctors.

More generally, without defining a specific threshold, we show in Figure 11 the average
predictive loss over 15 replicates as a function of the cost ratio {w0

w1
| w0

w1
> 1} for all methods.

SAEM had a small error on the test sets given the value of w0

w1
, especially when we increased

the cost of false negatives. Note that the errors for the doctors’ rules and ABC increased as
a function of the cost importance w0

w1
, which means that these rules are more conservative

than SAEM is, which may be problematic in this setting. Also, missForest had excellent
predictive capabilities which is consistent with the results of Josse et al. [35]. However, it is
difficult to interpret the results from random forest in terms of selected variables, which is
often crucial for emergency doctors.

Figure 11: Average prediction errors of different methods as a function of the cost ratio {w0

w1
| w0

w1
> 1} taken

over 15 random splits of the TraumaBase data.
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Note that even if our proposed methodology is based on the assumption of normally
distributed covariates, its performance is better than the predictions made by widely-used
medical criterion in terms of prediction error. Further discussion on the normal assumption
is provided in Appendix A.7. In addition, it should be noted that the proposed methodology
can be extended to other assumptions about the joint distribution of covariates, such as a
mixture of distributions.

In summary, based on the TraumaBase application and comparisons with other methods,
we have demonstrated that this new approach has the ability to outperform existing popular
methods that deal with missing data.

8. Discussion

In this paper, we have developed a comprehensive joint-modeling framework for logistic
regression with missing values. The method is implemented in the R package misaem. The
experiments we have performed indicate that this method is computationally efficient and
easy to implement. In addition, compared with multiple imputation—especially in the case
of correlation between variables—estimation using SAEM is less biased than other methods
and generally leads to interval-estimate coverage that is close to the nominal level. Based
on our algorithm, model selection with BIC and missing data can be performed in a natural
way. In view of the results reported in this article, we have been invited by emergency-
room doctors in one of the TraumaBase centers to implement the missing-data methodology
outlined here in a prospective study to evaluate its performance in a real-time clinical setting.

Paths for possible future research include further developing the method to handle both
quantitative and categorical data. This paper focused on making inference with missing
values, but we have also suggested a method to predict from a test set with missing val-
ues. More work could be done in the direction of supervised learning with missing values,
especially when we want to better estimate the variance of predictions. Extensions of the
methods of Schafer and Schenker [36] could be considered. In addition, in the TraumaBase
dataset, it would be reasonable to expect to have both MAR and missing-not-at-random
(MNAR) values. MNAR means that missingness is related to the missing values themselves,
and therefore a more correct methodology would require incorporating models for missing
data mechanisms. As a final note, our proposed method may be quite useful in a causal
inference framework, especially for propensity score analysis, which estimates the effect of
a treatment, policy, or other intervention. Indeed, inverse probability weighting methods
(IPW) are often performed with logistic regression, and the proposed method offers a po-
tential solution for times where there are missing values in the covariates.
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Appendix A. Appendix

Appendix A.1. Missingness mechanisms

Missing-completely-at-random (MCAR) means that there is no relationship between the
missingness of the data and any values, observed or missing. In other words, MCAR means:

p(Mi|y, xi, φ) = p(Mi|φ).

Missing-at-random (MAR) means that the probability to have missing values may depend
on the observed data, but not on the missing data. We must carefully define what this means
in our case by decomposing the data xi into a subset x

(mis)
i of data that “can be missing”,

and a subset x
(obs)
i of data that “cannot be missing”, i.e,. that is always observed. Then,

the observed data xi,obs necessarily includes the data that can be observed x
(obs)
i , while the

data that can be missing x
(mis)
i includes the missing data xi,mis. Thus, the MAR assumption

implies that, for each individual i,

p(Mi|yi, xi;φ) = p(Mi|yi, x(obs)i ;φ)

= p(Mi|yi, xi,obs;φ).

The MAR assumption implies that the observed likelihood can be maximized and the dis-
tribution of M can be ignored [4]. Indeed,

L(θ, φ; y, xobs,M) = p(y, xobs,M ; θ, φ)

=
n∏
i=1

p(yi, xi,obs,Mi; θ, φ)

=
n∏
i=1

∫
p(yi, xi,Mi; θ, φ)dxi,mis

=
n∏
i=1

∫
p(yi, xi; θ)p(Mi|yi, xi;φ)dxi,mis

=
n∏
i=1

∫
p(yi, xi; θ)p(Mi|yi, xi,obs;φ)dxi,mis

=
n∏
i=1

p(Mi|yi, xi,obs;φ)×
n∏
i=1

∫
p(yi, xi; θ)dxi,mis

= p(M |y, xobs;φ)× p(y, xobs; θ)

= p(M |y, x(obs);φ)× p(y, xobs; θ).

Therefore, to estimate θ, we aim to maximize L(θ; y, xobs) = p(y, xobs; θ).

Appendix A.2. Metropolis-Hastings sampling

During SAEM iterations, Metropolis-Hastings sampling is performed as in Algorithm 1,
with target distribution f(xi,mis) = p(xi,mis|xi,obs, yi; θ) and proposal distribution g(xi,mis) =
p(xi,mis|xi,obs;µ,Σ).
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Algorithm 1 Metropolis-Hastings sampling.

Input: An initial sample x
(0)
i,mis ∼ g(xi,mis);

for s = 1, 2, . . . , S do
Generate x

(s)
i,mis ∼ g(xi,mis);

Generate u ∼ U [0, 1];

Calculate the ratio w =
f(x

(s)
i,mis)/g(x

(s)
i,mis)

f(x
(s−1)
i,mis )/g(x

(s−1)
i,mis )

;

if u < w then
Accept x

(s)
i,mis;

else
x
(s)
i,mis ← x

(s−1)
i,mis ;

end if
end for

Output: (x
(s)
i,mis, 1 ≤ i ≤ n, 1 ≤ s ≤ S).

Appendix A.3. Calculation of the observed information matrix

Procedure 2 shows how we calculate the observed information matrix.

Procedure 2 Calculation of the observed information matrix.

Input: After drawing MH samples (x
(s)
i,mis, 1 ≤ i ≤ n, 1 ≤ s ≤ S) for unobserved data

(xi,mis, 1 ≤ i ≤ n), we have imputed observations, noted as (z
(s)
i , 1 ≤ i ≤ n, 1 ≤ s ≤ S),

where z
(s)
ij = xi,obs, if xij is observed; else z

(s)
ij = x

(s)
i,mis.

for n = 1, 2, . . . , n do
for s = 1, 2, . . . , S do

Calculate the gradient:

∇fis =
∂LL(θ;xi,obs,x

(s)
i,mis,yi)

∂β
= z

(s)
i

(
yi −

exp(β̂0+
∑p

j=1 β̂jz
(s)
ij )

1+exp(β̂0+
∑p

j=1 β̂jz
(s)
ij )

)
;

Calculate the Hessian matrix:

His =
∂2LL(θ;xi,obs,x

(s)
i,mis,yi)

∂β∂βT = −z(s)i z
(s)
i

T exp(β̂0+
∑p

j=1 β̂jz
(s)
ij )(

1+exp(β̂0+
∑p

j=1 β̂jz
(s)
ij )
)2 ;

∆i ← 1
s
[(s− 1)∆i +∇fis];

Di ← 1
s
[(s− 1)Di +His];

Gi ← 1
s
[(s− 1)Gi +∇fis∇fTis ];

end for
ÎS(β̂)← ÎS(β̂)− (Di +Gi −∆i∆

T
i );

end for
Output: ÎS(β̂).

Appendix A.4. Logistic regression on a simulated complete dataset

Figure A.12 shows the ROC curve on a simulated complete dataset. The corresponding
AUC (for the training set) is 0.8976.
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Appendix A.5. Simulation results for missing-at-random data

We consider a missing-at-random mechanism to generate data. Figure A.13 shows that
the biases were very similar to those obtained under a MCAR mechanism, and parameters
were estimated without bias.
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Figure A.12: ROC curve on a simulated complete
dataset.

Figure A.13: Empirical distribution of the bias of β̂3
obtained under an MAR mechanism, with n = 1000
and 10% missing values.

Appendix A.6. Simulation results for model misspecification: coverage

Table A.6 shows the coverage for all parameters, and the average lengths of the corre-
sponding confidence intervals in parentheses.

Table A.6: Coverage (%) for n = 1000, MCAR, and misspecified models, calculated over 1000 simulations.
Bold indicates under-coverage. Inside the parentheses is the average length of the corresponding confidence
interval over 1000 simulations (multiplied by 100).

parameter no NA CC mice SAEM
Student distribution: (v = 5)
β0 94.7 (68.02) 94.3 (84.14) 94.6 (67.69) 93.8 (68.25)
β1 95.2 (54.78) 94.2 (72.15) 91.7 (61.96) 93.5 (63.05)
β2 94.9 (27.66) 94.6 (36.39) 91.4 (31.21) 93.7 (31.84)
β3 94.9 (26.76) 94.3 (35.24) 81.5 (30.46) 94.7 (29.98)
β4 95.2 (11.52) 95.4 (15.16) 95.8 (12.94) 95.5 (12.88)
β5 93.7 (17.63) 94.9 (23.22) 83.4 (20.40) 93.3 (19.93)
Gaussian mixture:
β0 94.8 (57.54) 95.2 (75.42) 95.4 (61.95) 95.0 (61.33)
β1 94.7 (58.00) 96.2 (76.05) 95.4 (66.66) 95.3 (66.13)
β2 94.3 (28.49) 95.3 (37.35) 95.3 (32.65) 94.0 (32.50)
β3 94.7 (26.16) 94.9 (34.38) 94.9 (28.91) 94.5 (29.10)
β4 94.4 (12.68) 94.4 (16.60) 94.4 (14.24) 94.7 (14.09)
β5 95.3 (17.70) 94.7 (23.25) 94.7 (19.86) 95.3 (19.92)
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Appendix A.7. Definitions of variables in the TraumaBase dataset

In this section, we define the selected quantitative variables:

• Age: Age.

• Poids: Weight.

• Taille: Height.

• BMI: Body Mass index, BMI = Weight in kg
(Height in m)2

• Glasgow: Glasgow Coma Scale.

• Glasgow.moteur: Glasgow Coma Scale motor component.

• PAS.min: The minimum systolic blood pressure.

• PAD.min: The minimum diastolic blood pressure.

• FC.max: The maximum number of heart beats per unit time (usually a minute).

• PAS.SMUR: Systolic blood pressure at ambulance arrival.

• PAD.SMUR: Diastolic blood pressure at ambulance arrival.

• FC.SMUR: Heart rate at ambulance arrival.

• Hemocue.init: Capillary hemoglobin concentration.

• SpO2.min: Oxygen saturation.

• Remplissage.total.colloides (or RT.colloides): Fluid expansion colloids.

• Remplissage.total.cristalloides (or RT.cristalloides): Fluid expansion cristalloids.

• SD.min (= PAS.min−PAD.min): Pulse pressure for the minimum values of diastolic
and systolic blood pressure.

• SD.SMUR (= PAS.SMUR− PAD.SMUR): Pulse pressure at ambulance arrival.

Figure A.14 shows the histogram and the empirical cumulative distribution function of
some of the covariates in TraumaBase. Several of these are not symmetric. In practice, it
is possible to consider that suitable transformation of covariates can be approximated by
normal distributions. For example, transformations of the form log(c + x) and log(c − x),
may be appropriate for right-skewed and left-skewed distributions respectively. We applied
the proposed methodology to the real dataset after the log-transformation. However, the
prediction results from cross-validation did not show any advantage to transforming the
variables. Indeed when a log transformation is used as a prepossessing step, it only operates
on the observed part, which is appropriate under MCAR values. Consequently, we have
decided not to use any transformation on the dataset.
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Figure A.14: Empirical distributions of variables from TraumaBase. (a) Histograms of covariates; (b) The
black line is the empirical cumulative distribution while the red one corresponds to the normal distribution.

Appendix A.8. Details on the predictive performance on TraumaBase data

Details on the predictive performance on TraumaBase data are given in Table A.7.

Table A.7: Comparisons of the mean of the predictive performance (values are multiplied by 100) of
different methods that can deal with missing data. AUC is the area under the ROC curve; the accuracy is
the number of true positives plus true negatives, divided by the total number of observations; the sensitivity
is the true positive rate; the specificity is the true negative rate; the precision is the number of true positives
over all positive predictions. Best results are shown in bold.

Metrics SAEM missForest impMean impPCA mice predRF predSVM
AUC 88.5 88.8 88.9 89.0 87.7 88.0 80.4
Accuracy 86.9 87.0 87.3 86.7 85.3 87.2 88.3
Precision 41.1 41.6 42.2 41.0 37.9 41.6 44.0
Sensitivity 74.6 74.3 73.2 75.0 75.2 71.5 66.0
Specificity 88.2 88.4 88.8 87.9 86.4 88.9 90.6

Supplementary material

R-package: The R package misaem containing the implementation of the SAEM algorithm
to fit the logistic regression model with missing data is available on CRAN [20].

Codes: Code to reproduce the experiments is provided on GitHub [21].
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Additional supplementary materials: Additional simulation results can be found here:
[27].

Acknowledgment

Wei Jiang was supported by grants from Region Ile-de-France: https://www.dim-mathinnov.
fr. The authors are thankful for fruitful discussion with Kevin Bleakley and Antoine Ogier.

References

[1] A. P. Dempster, N. M. Laird, D. B. Rubin, Maximum likelihood from incomplete data via the EM
algorithm, Journal of the Royal Statistical Society. Series B (Methodological) 39 (1977) 1–38.

[2] X.-L. Meng, D. B. Rubin, Using EM to obtain asymptotic variance-covariance matrices: The SEM
algorithm, Journal of the American Statistical Association 86 (1991) 899–909.

[3] T. A. Louis, Finding the observed information matrix when using the EM algorithm, Journal of the
Royal Statistical Society. Series B (Methodological) 44 (1982) 226–233.

[4] R. J. Little, D. B. Rubin, Statistical Analysis with Missing Data, second ed., John Wiley & Sons, Inc.,
2002.

[5] S. Seaman, J. Galati, D. Jackson, J. Carlin, What is meant by “missing at random”?, Statist. Sci. 28
(2013) 257–268.

[6] J. G. Ibrahim, M.-H. Chen, S. R. Lipsitz, Monte Carlo EM for missing covariates in parametric
regression models, BIOMETRICS 55 (1999) 591–596.

[7] J. G. Ibrahim, M.-H. Chen, S. R. Lipsitz, A. H. Herring, Missing-data methods for generalized linear
models: A comparative review, Journal of the American Statistical Association 100 (2005) 332–346.

[8] G. C. G. Wei, M. A. Tanner, A Monte Carlo implementation of the EM algorithm and the poor man’s
data augmentation algorithms, Journal of the American Statistical Association 85 (1990) 699–704.

[9] G. McLachlan, T. Krishnan, The EM algorithm and extensions, Wiley series in probability and statis-
tics, 2. ed ed., Wiley, Hoboken, NJ, 2008.

[10] W. R. Gilks, P. P. Wild, Adaptive rejection sampling for Gibbs sampling, Appl. Statist 41 (1992)
337–348.

[11] M. Lavielle, Mixed Effects Models for the Population Approach: Models, Tasks, Methods and Tools,
Chapman and Hall/CRC, 2014.

[12] G. Claeskens, F. Consentino, Variable selection with incomplete covariate data, Biometrics 64 (2008)
1062–9.

[13] F. Consentino, G. Claeskens, Missing covariates in logistic regression, estimation and distribution
selection, Statistical Modelling 11 (2011) 159–183.

[14] J. Jiang, T. Nguyen, J. S. Rao, The E-MS algorithm: Model selection with incomplete data, Journal
of the American Statistical Association 110 (2015) 1136–1147.

[15] Y. Liu, Y. Wang, Y. Feng, M. M. Wall, Variable selection and prediction with incomplete high-
dimensional data, Ann. Appl. Stat. 10 (2016) 418–450.

[16] W. K. Chow, A look at various estimators in logistic models in the presence of missing values, Technical
Report, RAND CORP SANTA MONICA CA, 1979.

[17] K. Yuen Fung, B. A. Wrobel, The treatment of missing values in logistic regression, Biometrical Journal
31 (1989) 35 – 47.

[18] D. B. Rubin, Multiple Imputation for Nonresponse in Surveys, volume 307, John Wiley & Sons, 2009.
[19] R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical

Computing, Vienna, Austria, 2017.
[20] W. Jiang, misaem: Logistic regression with missing covariates, 2019. R package version 0.9.1.
[21] W. Jiang, Codes and implementations for ”Logistic regression with missing covariates – parameter

estimation, model selection and prediction within a joint-modeling framework”, https://github.com/
wjiang94/miSAEM_logReg, 2019.

28

https://www.dim-mathinnov.fr
https://www.dim-mathinnov.fr
https://github.com/wjiang94/miSAEM_logReg
https://github.com/wjiang94/miSAEM_logReg


[22] S. I. Hay, et al., Global, regional, and national disability-adjusted life-years (dalys) for 333 diseases and
injuries and healthy life expectancy (hale) for 195 countries and territories, 1990–2016: a systematic
analysis for the global burden of disease study 2016, The Lancet 390 (2017) 1260 – 1344.

[23] S. R. Hamada, T. Gauss, F.-X. Duchateau, J. Truchot, A. Harrois, M. Raux, J. Duranteau, J. Mantz,
C. Paugam-Burtz, Evaluation of the performance of french physician-staffed emergency medical service
in the triage of major trauma patients, Journal of Trauma and Acute Care Surgery 76 (2014) 1476–1483.

[24] S. R. Hamada, T. Gauss, J. Pann, M. W. Dünser, M. Léone, J. Duranteau, European trauma guideline
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