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The structural and functional organization of biological tissues relies on the intricate interplay
between chemical and mechanical signaling. Whereas the role of constant and transient mechan-
ical perturbations is generally accepted, several studies recently highlighted the existence of long-
range mechanical excitations (i.e., waves) at the supracellular level. Here, we confine epithelial cell
mono-layers to quasi-one dimensional geometries, to force the establishment of tissue-level waves of
well-defined wavelength and period. Numerical simulations based on a self-propelled Voronoi model
reproduce the observed waves and exhibit a phase transition between a global and a multi-nodal
wave, controlled by the confinement size. We confirm experimentally the existence of such a phase
transition, and show that wavelength and period are independent of the confinement length. To-
gether, these results demonstrate the intrinsic origin of tissue oscillations, which could provide cells
with a mechanism to accurately measure distances at the supracellular level.

Supracellular organization plays a key role in establish-
ing and maintaining structure, function and homeostasis
in tissues. In the early stages of embryonic development,
where features need to arise spontaneously from a ho-
mogeneous state, this organization closely follows mor-
phogenic chemical patterns. Turing pioneered the idea
that symmetry breaking results from linear instabilities
in the reaction-diffusion dynamics of morphogens [1]. In
the most general case, however, chemical reactions, os-
motic pressures and mechanical forces all cooperate to
determine the tissue-level organization. This is confirmed
by an increasing number of recent studies, which indi-
cate that cell proliferation, differentiation and motility
are strongly impacted by the physical properties of the
microenvironment [2–6]. Therefore, a full physical under-
standing of tissue mechanics and morphogenesis requires
treating chemical and mechanical effects simultaneously.
Several recent works reported that wave-like patterns of
the local cell velocity spontaneously appear in colonies
of epithelial cells [7, 8]. Those velocity waves have also
been observed in spreading epithelial sheets [9–11], re-
gardless of cell proliferation [12], and are correlated to
oscillations of the forces exerted by the cells on the sub-
strate [13]. Such long wavelength patterns also appear
in confined geometries where cell migration is limited to
local cell rearrangements [14–18]. These waves are char-
acterized by a wavelength λ and a period T , and show a
surprisingly large spatial and temporal coherence. They
can be modelled either at the particle level [17] or using
continuum approaches [12, 18], based on a coupling be-
tween cell motility and intercellular forces. In this Letter,
we explore whether period and wavelength of collective
wave excitations in epithelial cell monolayers are intrin-
sically encoded in the activity of the cell, or if they are

affected by external constraints such as a specific set of
boundary conditions. To achieve this, we analyzed the
collective motion of epithelial cells confined to a quasi-
one-dimensional channel. The experiments were accom-
panied by a series of numerical simulations, based on
a self-propelled Voronoi model (SPV) [19–21], adapted
to take into account the confining geometry. Our re-
sults show that tuning the length of the confining channel
drives a phase transition between a state of global oscil-
lations and a multinodal wave state. This transition is a
consequence of the interplay between local cell active dy-
namics and global confinement. The effect is robust and
does not require detailed knowledge of molecular pro-
cesses but relies on a simple polarity-velocity alignment
mechanism studied in the physics of dense active matter
systems.

To confine cells to a quasi one-dimensional pattern,
we prepared adherent stripes on soft polyacrylamide gels
(E ' 40 kPa), as described previously [22] (outlined in
Fig. 1a). Stripes of different length (100 to 2000 µm),
but of the same width (40 µm), were patterned on the
same substrate. Epithelial Madin-Darby Canine Kid-
ney (MDCK) cells were then seeded on the patterned
substrates with initial concentration of 2.5 ± 0.5×104

cells/cm2. The samples were washed with fresh medium
1h after seeding, then placed in the incubator (37◦ C
and 5% CO2) until the end of the experiments. Cells
were imaged in-situ unsing in-line holographic (defocus)
microscope (see SI and Fig SI-1) [23] for ' 48 hours
after confluence, gathering one image every 10 minutes
(e.g., Fig. 1a-Phase). Cell velocities were computed with
a custom-made Particle Image Velocimetry algorithm
(PIV) with a final resolution of 20 min and 14 µm. To
generate the kymograph, we cropped the videos in time
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to consider only confluent tissues, in an interval where the
average absolute velocity was higher than 4 µm/h [24].
We then averaged the horizontal component of the speed
along the transverse direction vx (x; t) = 〈v (x, y; t)〉y.
We removed low frequency drifts using a Gaussian high-
pass filter cropping 50% of the signal at 700 µm and 10 h.
The kymograph in Fig. 1b represents the spatio-temporal
evolution of the velocity field over 22 hours and over the
whole stripe. Fig. 1c shows the instantaneous velocity
profile, where a periodic oscillation of the speed appears.
To quantify the period and the wavelength of these oscil-
lations, we computed the autocorrelation function of the
kymograph g(δx, δt) = 〈vx (x, t) vx (x+ δx, t+ δt)〉x,t,
displayed in Fig. 1d. We observe the appearance of an
oscillating pattern in the autocorrelation function, both
along the spatial and the temporal directions (respec-
tively shown in panels e and f in Fig. 1). This pat-
tern indicates the establishment of an extended multi-
nodal standing wave, with the wavelength and period
λ = 370 ± 30µm and T = 4.7 ± 0.7 h, respectively (er-
rors represent the standard deviation, n = 59) (see his-
tograms in Fig. 1e-f).

To obtain a detailed understanding of oscillations in
tissues, we consider a computational framework based
on a recently introduced self-propelled Voronoi model
(SPV) [19–21]. The model used in this study is similar to
that used in Ref. [21] to describe flocking transitions in
confluent tissues, with an important modification that in-
stead of using periodic boundary conditions, we imposed
confinement through a repulsive rectangular wall of size
(LX , LY ), to reproduce the experiments geometry. Full
details of the model and its implementation can be found
in Ref. [20] (also see Supplemental Material for the pa-
rameters used). Briefly, the confluent cell monolayer is
modeled as a two-dimensional network of Voronoi poly-
gons covering the plane (Voronoi tessellation of all cell
centre positions, see Fig. 2a). Each configuration of cells
is described by the positions of cell centroids with its
energy given by the commonly used Vertex Model [25],
which depends on the area and perimeter of each cell.
The parameters of the Vertex model include area and
perimeter stiffness constants (K and Γ ) and target area
and perimeter (A0 and P 0). These parameters were cho-
sen to describe a monolayer in a solid like regime (with

a shape factor p0 = P 0/
√
A0 = 2.5) [19, 26], to avoid

shear flows induced by the boundaries. As in Refs. [19–
21], we consider an overdamped dynamics, i.e., a force
balance between frictional force with the substrate, self-
propulsion at a constant velocity v0 along the direction of
cell polarity, ni, and mechanical forces between the cells
determined as a negative gradient with respect to cell
position of the SPV model energy functional. The value
of v0 can be set to match the experimental observations
(Fig. 2b-d), but does not affect the general oscillatory be-
havior. The dynamics of the cell polarity ni, described
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FIG. 1. (a) Top: MDCK cells are seeded onto a polyacry-
lamide (PA) gel patterned with fibronectin stripes (width: 40
µm, length: 100-2000 µm). Center: Phase-contrast image of
confluent tissue confined to a 1500 µm long stripe and the
relative velocity field measured by PIV (bottom). Velocities
pointing in the positive (negative) x-axis direction are shown
in blue (red), in agreement with the arrows reported under
the image. b) Kymograph representing the average horizon-
tal velocity v‖(x; t) in time and and an example of velocity
profile (c) along the dashed line. We removed low frequency
drifts using a Gaussian high-pass filter. To quantify the peri-
odicity of oscillations, we calculate the spatio-temporal auto-
correlation of the kymograph (d) and measure peak spacing
along the spatial (e) and temporal coordinates (f) (insets: dis-
tribution of peak periodicity for n=59 independent stripes).
Images in panels (d) and (f) were smoothed for visualization
purposes with a low-pass Gaussian filter (σx=15 µm, σt=30
min). Smoothing was not applied to panels (e), (g) and (h).

by the angle θi with the x-axis of the laboratory reference
frame (i.e., ni = (cos(θi), sin(θi))) is

∂θi
∂t

=
1

τal
sin(θi − φi) + νri (t), (1)

with φi being the angle between the velocity of cell i
and the x-axis, and νri (t) being an orientational Gaus-
sian noise. The angular dynamics is thus controlled by
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FIG. 2. Self-propelled Voronoi Model for collective oscilla-
tions in confluent tissues. (a) Example of tissue configuration
obtained from the integration of the SPV model. Voronoi
tessellation of the plane and centroid positions. (b) Velocity
field of the centroids of the tesselation. Velocities pointing to
the positive direction on the x-axis are represented in red and
to the negative direction in blue. (c) Kymograph represent-
ing the average horizontal velocity (v‖(x; t)) over time and its
profile (d) along the dotted line. (e) Phase diagram of oscilla-
tion patterns in the monolayer. Oscillations are observed for
small enough values of the feedback timescale (τal < τ cal ≈ 17
model time units). For τal < τal, multi-nodal oscillations
are observed for large systems LY > Lc(τal) whereas small
systems oscillate as a block (global oscillations). The dots
delimiting the two phases indicate the value of Lc(τal) and
are determined by the number of nodes in the spatial veloc-
ity autocorrelation functions (0 in the case of global oscilla-
tions) and the full line is a power law fit. Insets show the
autocorrelation of the typical kymographs of x-velocity in the
corresponding phases.

the interplay of rotational diffusion (kept constant in this
study) and the polarity-velocity alignment with rate τ−1al ,
with τal being the time required by the cell to reorient its
polarization in the direction of its velocity. This feedback
mechanism leads to oscillations in confinement, where τal
plays the role of an effective inertia, and the oscillations
are along the lowest-energy elastic modes of the mate-
rial [27]. This feedback mechanism is also at the origin
of flocks of in non-confined tissues [21].

Simulations of confined tissue layers show steady

state oscillations akin to those observed in experiments
(Fig. 2b) In the following, we study the dependence of
these oscillations on the confining length LX and show
that a feedback mechanism for alignment (through τal)
is key to observe such mechanical waves in SPV. First
we consider the case of long confining channels, where
multinodal oscillations were observed in the experiments
(Fig. 1). The simulation results displayed in Fig. 2c-d
are obtained for a system with the same confining length
(about 3 cells in y−direction) and aspect ratio as in the
experiments in Fig. 1. We observe a pattern in the x-
component of the velocity, vx, and using the same analy-
sis tools as in Fig. 1, we extract the wavelength λSPV ≈
22 model length units and the period TSPV ≈ 8 model
time units. Note that by approximately matching the
timescale of the model to the experiments (through the
cells velocity), one would get from these simulation data
λ ≈ 300 µm and for the period T ≈ 2 hours. This in-
dicates that this model is able to reproduce the features
observed in the experiments, although some fine tuning
of parameters is required for a quantitative match. Note
that although the instantaneous velocity profiles and au-
tocorrelation plots appear to be similar to the experi-
ments, the full spatio-temporal dynamics of the model
does not corresponds to standing wave oscillations. If
the system size LX is decreased (keeping the value of
τal constant), the number of nodes also decreases up to a
point where the system size can only accommodate a sin-
gle spatial period of oscillation, and the system reaches a
regime of global oscillation, where the direction of motion
of all cells is coordinated. This transition is illustrated
in Fig. 2e. The feedback timescale also plays an impor-
tant role as no oscillations are observed if τal is too large
(i.e., the noise dominates over the coupling), and the crit-
ical length at which one observes multi-nodal oscillations
increases with τal. In the small system regime, the pe-
riod of oscillations increases linearly with the system size
as previously reported [17, 18], and also with τal (un-
til oscillations eventually vanish for large values of τal),
consistent with the role of the feedback mechanism as an
effective inertia [27]. Therefore, the SPV model describes
the transition controlled by the stripe length Lc(τal) be-
tween global oscillations where all cells coordinate their
motion to a regime where patches of cells coordinate their
motion direction locally.

To verify this prediction, we varied the length LX of
the stripe between 100 µm and 2000 µm (Fig. 3a), in
order to tune the system across the critical length Lc.
In approximately 95% of experiments, in agreement with
model predictions, we observed two types of behaviors:
1) A global movement of all cells that alternates between
rightward and leftward motion (as seen from the auto-
correlation function of the kymograph in Fig. 3b) and 2)
The establishment of a multinodal standing wave with
the antinodal cells moving back and forth, while cells in
the nodes are being alternately compressed and dilated.
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The incidence of the two behaviors strongly depends on
L, with a transition for L ' λ. In the experiments with
L < 200 µm, the global oscillation statistically domi-
nated. In this case, the period scales linearly with the
tissue size (Fig. 3d, blue area), while the wavelength is
imposed by the confinement. In large structures (L >
500 µm), we only found multinodal waves, with the pe-
riod and wavelength independent of L (Fig. 3d, red area).
Fig. 3c quantifies the transition, with on average 39 tis-
sues per point, obtained from three independent exper-
iments. Our experiments confirmed the existence of a
self-sustained oscillatory mode in the epithelial layers.
Using the typical period and wavelength, we can define
an effective velocity uφ = L/T ' 78± 13 µm/h, which is
independent of the pattern size. Even for small patterns
(L <500 µm), this velocity is preserved as the period
scales linearly with the pattern length. We also note
that uφ is approximately ten-fold larger than the average
speed of individual cells within the epithelial layer (be-
tween 4 and 12 µm/h, depending on cell density [24, 28]).
Eventually, the spatial coherence of supracellular waves
exceeds the largest pattern observable with our micro-
scope.

Simulations using the SPV model show the emergence
of sustained collective oscillations in confined monolay-
ers. We identified two crucial conditions to produce these
oscillations: 1) The existence of a delayed feedback be-
tween the cell velocity and self-propulsion direction that
introduces a new timescale in the dynamics and 2) A
very limited number of cellular rearrangement, at the
limit of the solid-like regime. These ingredients allow the
system to be described by linear elasticity, and for oscil-
lations along the lowest energy elastic modes to dominate
the dynamics [27]. One could thus envision tuning the
oscillations by controlling cell-cell interactions through
RAB5 or cadherin-mediated junctions, without affecting
cells’ individual mobility [21, 29]. Contrarily to experi-
ments, where multi-nodal standing waves are observed,
the SPV model describes propagating oscillations. Sev-
eral reasons may explain the difference. First, a stand-
ing wave is established only when the wavelength exactly
matches the boundary conditions. Thus, a fine-tuning of
the pattern length is needed in models, while the intrinsic
variability between cells could make the real epithelium
more adaptable to small variations of the confinement
size. Second, a different choice of the coupling mecha-
nism could also introduce a new timescale in the model
and better describe standing waves in confined tissue.
Two-dimensional SPV models are usually adapted to de-
scribe spatially extended monolayers, while the stringent
confinement used experimentally makes the system be
quasi-onedimensional. Moreover, whereas in the exper-
iments the cells appear to be more elongated near the
boundary, the constraint of maintaining a Delaunay tri-
angulation (dual of the Voronoi tesselation) in the SPV
prevents elongated cell configurations, and hence the tis-
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FIG. 3. Dependence of oscillatory behaviour on the stripe
length. a) The velocity field superimposed on phase con-
trast images for short stripes of length 200 µm and 300 µm
displays global oscillations, generating a characteristic two-
dimensional autocorrelation (right). Longer lines (500 µm
and 1000 µm) display multinodal oscillations (b), which give
rise a different pattern in the autocorrelation image. Veloc-
ities pointing in the positive x-axis direction are represented
in blue, those pointing in the negative x-axis direction are
represented in red, in agreement with the arrows reported in
the schemes under each image. For each length, we display
the frequency of each phenotype (c) and the characteristic
time and space periodicity (d) calculated. Bars represent the
standard error of the mean.

sue configuration in simulation do not realistically cap-
ture the shape of cells near the containment boundary. In
conclusion, we demonstrate that the typical period and
wavelength of epithelial tissue oscillations are intrinsi-
cally encoded in the cells, and are not adapted to external
confinements. For this system, our SPV model predicts
a transition between global oscillation and multi-nodal
waves, the existence of which is confirmed experimen-
tally for a pattern length Lc ' 400 µm. From a biologi-
cal perspective this transition could be significant. If in
small systems all the cells behave similarly - the entire
layer alternately moves back and forth - in large systems
cells located either in the nodes or in the anti-nodes ex-
perience different mechanical stimuli and may undergo
different fates, which can ultimately lead to supracellu-
lar patterning. The existence of an intrinsic wavelength
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λ also provides an intrinsic metric, likely encoded in the
cell. It is interesting to note that λ roughly corresponds
to the typical sizes of an embryo (e.g. in Drosophyla em-
bryo, both length and circumference approaches 400-500
µm). Based on this, two important biological questions
arise. Is this intrinsic metric used by the organism to
measure distance inside a developing embryo? Does a
collective long range excitation allow cells to probe their
distant environment, in a timescale much shorter that
that allowed by their own motility?
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