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Abstract
Built on the framework of effective interaction potentials using lattice element method, a methodology to calibrate and to

validate the elasticity of solid constituents in heterogeneous porous media from experimentally measured nanoindentation

moduli and imported scans from advanced imaging techniques is presented. Applied to computed tomography (CT) scans

of two organic-rich shales, spatial variations of effective interaction potentials prove instrumental in capturing the effective

elastic behavior of highly heterogeneous materials via the first two cumulants of experimentally measured distributions of

nanoindentation moduli. After calibration and validation steps while implicitly accounting for mesoscale texture effects via

CT scans, Biot poroelastic coefficients are simulated. Analysis of stress percolation suggests contrasting pathways for load

transmission, a reflection of microtextural differences in the studied cases. This methodology to calibrate elastic energy

content of real materials from advanced imaging techniques and experimental measurements paves the way to study other

phenomena such as wave propagation and fracture while providing a platform to fine-tune effective behavior of materials

given advancements in additive manufacturing and machine learning algorithms.

Keywords Effective poroelasticity � Heterogeneous � Mesoscale � Organic-rich shale

1 Introduction

It is well known that the effective mechanical and

poromechanical properties of heterogeneous media depend

on the chemical composition, mechanical properties of the

constituents, as well as their spatial distributions. In recent

years, the combination of multi-scale micromechanics-

based models and grid nanoindentation [15, 56], later

coupled with wave-dispersive spectroscopy [16], has

played a significant role in providing insights into the

mechanics of heterogeneous porous solids. However,

classical continuum micromechanics [51, 62]- and
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interaction potentials of the solids. To this end, sub-vol-

umes of characteristic length similar to that of a volume

activated when probed by a nanoindenter are first extracted

and grouped into calibration and validation structure sets.

Utilizing lattice element method [3, 25, 54] and the

framework of effective interaction potentials [35], elastic-

ity of the solid phases, with spatial fluctuations within a

phase, are calibrated using the calibration structure set.

Then, the validation structure set is utilized as independent

means for validation. With the elastic energy contents

calibrated, Biot poroelastic coefficients are simulated using

ensemble-based definitions for highly heterogeneous media

[40]. Lastly, analyses of stress transmissions through larger

sub-volumes extracted from the scans highlight the distinct

underlying microtextural features and load-bearing phases

in each case.

2 Materials

Computed tomography (CT) scans on samples from two

different organic-rich shale formations (see [28] for details)

are employed in this work. These CT scans are taken on

samples of dimensions 64 lm� 64 lm� 100 lm with a

5.4-keV energy source and a resolution of approximately

64 nm. Such recently developed advanced imaging tech-

niques provide the spatial distribution of different con-

stituents of real materials. The same group of samples have

been characterized extensively using instrumented

nanoindentation, energy-dispersive X-ray spectroscopy

(EDX) and X-ray diffraction (XRD) [1]. In addition, the

organic contents have been modeled from reconstructed

kerogen structures utilizing a hybrid reverse Monte-Carlo

simulation (HRMC) method [12]. Herein, scan A refers to

segmented CT data taken from Antrim formation with its

organic content considered to be immature, while scan B

represents the segmented CT data associated with the

Haynesville formation with its organic content considered

to be mature [1, 28]. Maturity refers to the process of

physical, chemical and structural evolution of organic

content with geologic time due to exposure to high-pres-

sure and high-temperature environments [47, 53]. Such

evolution results in microtextural changes that impact the

effective poroelastic behavior of organic-rich shales as a

geocomposite [41]. Utilizing an informed Otsu’s method,

Hubler et al. [28] segmented the CT scans by grouping all

their constituents into four phases—three solid phases

(clay, inclusions, organics) and a pore phase. The organics

phase is considered to be kerogen. The inclusions phase

encompasses all inorganic solids other than clay. A cross

section from scan B is displayed in Fig. 1, highlighting the

well-preserved features of the raw data in the segmented

image.

continuum microporomechanics [19, 20]-based homoge-

nization methods, primarily built on Eshelby’s inclusion 
problem [22] and scale separations, reduce the spatial 
distribution of the constituents and their mechanical 
interactions to effective textures, namely matrix/inclusion 
[6, 42] and granular [13, 26, 27, 32]. The failure of con-
tinuum-based approaches to explicitly incorporate mesos-

cale texture effects by accounting for spatial distribution of 
constituents and the local variations of mechanical prop-
erties limits their ability to provide insights into the 
mechanics of highly heterogeneous media. In addition, 
perturbation-based solutions in statistical continuum 
mechanics are limited to small fluctuations in mechanical 
properties [7] and thus unable to capture heavy-tailed dis-
tributions characteristics of highly heterogeneous media. 
Moreover, challenges involved with defining a represen-
tative elementary volume that satisfies scale separability 
delineate the intrinsic limitations of the continuum model 
in dealing with highly heterogeneous media. Meanwhile, 
emerging modeling and simulation techniques propelled by 
high-performance computing has paved the way for multi-

scale, multi-physics material modeling, providing a link 
between microscale mechanisms and functional behavior at 
the macroscale. More recently, high-resolution imaging 
techniques such as computed tomography (CT) scans on 
porous heterogeneous solids (see, e.g., [28, 48]) have 
provided access to spatial distribution of pore and solid 
phases, paving the way to isolate mesoscale textural con-
tribution to the effective elasticity via direct importation of 
such scans into a computational framework. Subsequently, 
the calibration of elastic energy content of a heterogeneous 
porous solid for a finite-sized simulation box against lab-
oratory-measured mechanical data can serve as a departure 
point for simulating other phenomena such as wave prop-
agation, plastic deformation, fracture. To address the lim-

itations of continuum-based approaches in dealing with 
highly heterogeneous materials while utilizing advance-
ments in high-performance computing and imaging tech-
niques, we present a methodology to calibrate and to 
validate effective solid potentials of heterogeneous porous 
solids from experimentally measured nanoindentation data 
and imported CT scans. In addition to providing insights 
into the interplay of effective poroelastic behavior and 
microtexutral features, such a framework can be utilized to 
design new sustainable and durable materials with imposed 
effective mechanical behavior, with applications ranging 
from car manufacturing, aerospace industry to biological 
tissue engineering given the advancements in additive 
manufacturing and machine learning algorithms.

In this study, CT scans and laboratory-measured distri-
butions of grid nanoindentation moduli on two organic-rich 
shales are employed. First two cumulants of experimentally 
measured distributions are used for calibration of effective



2.1 Calibration and validation structure sets

Instrumented grid nanoindentation experiments have been

shown to be an effective tool for characterizing the

mechanical response of highly heterogeneous media

[15, 56]. Hence, the proposed methodology to calibrate

effective elastic potential of constituents of a highly

heterogeneous, multi-solid phase, porous medium utilizes

instrumented nanoindentation data. This is done by

extracting sub-volumes from the stack of CT scans, i.e., 3D

volume, that correspond to the volume activated by a

nanoindenter. Considering an average indentation depth of

900 nm results in an activated volume with a characteristic

length of about 3� 900 nm [33]. This translates into cubic

sub-volumes of 42� 42� 42 voxels, given the 64 nm

resolution of the CT scans. From each scan, 1000 spatially

random sub-volumes are extracted. This forms the cali-

bration structure sets (CSS). The remaining 1300 sub-vol-

umes from scan A and 2886 sub-volumes from scan B

make up the validation structure sets (VSS). The proba-

bility density function (PDF) of volume fractions for clay,

inclusions, kerogen and pore phases f clay; f inc; f ker;/
� �

are

plotted in Figs. 2 and 3 for scans A and B, respectively,

and as a function different coarse-graining length scale, k,
which characterizes the length of the extracted cubic sub-

volumes and will be explored more later in this paper.

3 Lattice element method and effective
interaction potentials

The lattice element method (LEM) [3, 25, 54] is employed

here to investigate both the elastic and the poroelastic

behavior of highly heterogeneous real materials, utilizing

the framework of effective interaction potentials [35] and

ensemble-based definitions for Biot coefficients [40]. This

is achieved by importing CT scans directly into LEM and

discretizing the volume into a number of mass points.

3.1 Effective solid potentials

The reference configuration (see Fig. 4) consists of

Ntot: ¼ nx � ny � nz total number of mass points arranged

on a cubic lattice of unit size a0, each exhibiting six

degrees of freedom: three translations d and three rotations

#. Each mass point i (reference position xi and position in

deformed configurations Xi) interacts with a fixed number

of neighboring points j (a maximum of 26 corresponding to

a cutoff radius rcut�off ¼
ffiffiffi
3

p
a0 in Potential-of-Mean-Force

(PMF) approaches) via a potential that considers both two-

body and three-body interactions between two mass points

i and j, in the form:

Uij ¼ Us
ij þ Ub

ij 8i 2 Vs ð1Þ

where Us
ij is a stretch term and Ub

ij represent a bending

term. For the case of linear poroelasticity applied to a

structure close to its equilibrium position, this implies a

harmonic expression for the two-body interaction term:

Us
ij ¼

1

2
�nij

dnj � dni
l0ij

 !2

ð2Þ

with �nij denoting the axial energy parameter. Similarly, the

three-body and rotational interactions read in the harmonic

case [35]:

Ub
ij ¼

1

2
�tij

dbj � dbi
l0ij

� #t
i

 !2

þ
dtj � dti

l0ij
þ #b

i

 !2
8
<

:

þ
dbj � dbi

l0ij
� #t

i

 !

#t
i � #t

j

� �
þ

dtj � dti
l0ij

þ #b
i

 !

� #b
j � #b

i

� �
þ 1

3
#b
j � #b

i

� �2
þ #t

i � #t
j

� �2� �	

ð3Þ

where �tij is the transverse energy parameter and l0ij ¼ krijk
(with rij ¼ xj � xi ¼ l0ijen) representing the distance

between mass points i and j in the reference configuration.

The energy parameters �
n;tð Þ
ij of the solid can be calibrated

to recover the desired effective elastic behavior for a

homogeneous, isotropic or transversely isotropic, solid

following the procedure outlined in [35]. The conjugated

forces to translational degrees of freedom derive from the

potential, F
j
i ¼ �oUij=odi. For such a discrete system, the

stresses are modeled using the virial expression [14]:

ri ¼
1

Vi

XNb
i

j¼1

rij � F
j
i

ð4Þ
Fig. 1 A cross section of scan B displaying raw CT data (left) and the

segmented image (right)



Fig. 2 Probability density functions for the volume fraction of the considered four phases—porosity (a–c), kerogen (d–f), inclusions (g–i) and
clay (j–l)—as a function of coarse-graining length scale k in scan A



Fig. 3 Probability density functions for the volume fraction of the considered four phases—porosity (a–c), kerogen (d–f), inclusions (g–i) and
clay (j–l)—as a function of coarse-graining length scale k in scan A



with Vi ¼ a30 denoting the volume of the unit cell and Nb
i

representing the number of node i’s neighboring mass

points. The virial expression provides a truly discrete

description of the system as opposed to the continuum-

based stress definition employed in classical finite-element-

based approaches. The stress in volume V ¼
nx � 1ð Þ ny � 1

� �
nz � 1ð ÞVi composed of a total of Ntot: unit

cells is simply the volume average of the local stresses; that

is:

r ¼ 1

2V

XNtot:

i¼1

Viri ð5Þ

what thus differs between different material domains is the

interaction potential from which forces and moments are

derived.

3.2 Effective elasticity

The state equations for stress, R and porosity change,

/� /0, for linear poroelastic materials can be expressed as

[11]:

R ¼ 1

V

oEpot

oE
¼ C : E� bp ð6Þ

/� /0 ¼ � 1

V

oEpot

op
¼ b : Eþ p

N
ð7Þ

Following ensemble definitions of Monfared et al. [40], C

can be obtained in the NVT-ensemble through imposing a

regular displacement boundary condition n ¼ E � x at the

boundary (oV) of the simulation box while p ¼ 0. Given

this mechanical boundary value problem, E; p ¼ 0ð Þ, C is

obtained by considering the curvature of the potential

energy of the solid around the relaxed state:

C ¼ 1

V

o

oE

oEs
pot

o
E

� �
ð8Þ

where Es
pot is the potential energy of the solid

phase(s) which in this case coincides with the free energy

of the solid phases in the defined NVT-ensemble.

4 Methodology for calibrations of energy
parameters

Organic-rich shales are considered to exhibit a trans-

versely isotropic elastic behavior at the length scale rele-

vant to nanoindentation experiment. Laboratory-measured

instrumented nanoindentation moduli, characterizing this

anisotropic behavior, are employed as means for calibra-

tion of the effective potentials of the solid constituents. The

experimental data represent a material’s response to a

nanoindenter as it probes the sample on a predetermined

grid. For a transversely isotropic media, for which the

nonzero components of the stiffness tensor—in Voigt

notation—are C11 ¼ C22, C12, C13 ¼ C23, C33, C44 ¼ C55,

while C11 � C12 ¼ 2C66; the indentation moduli can be

expressed as [17]:

M3 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11C33 � C2

13

C11

1

C44

þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11C33

p
þ C13

� ��1
s

ð9Þ

Fig. 4 a Degrees of freedom associated with a bond element between nodes i and j; b D3Q26 unit cell; c simulation box

where E ¼ heiV is the average strain applied to the solid–
pore composite at the boundary oV , while pressure p is 
imposed at the solid–pore interface. C is the fourth-order 
elastic stiffness tensor, b is the second-order tensor of Biot 
pore-pressure coefficients, and N denotes the solid Biot 
modulus. Given the objective of calibrating effective 
interaction potentials of the solid constituents from labo-
ratory-measured indentation moduli, the effective elasticity 
of the porous composite needs to be determined first.



M1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11

C33

r
C2
11 � C2

12

C11

M3

s

ð10Þ

whereM1 andM3 represent indentationmoduli parallel to the

plane of symmetry (e1 and e2 directions) and axis of rota-

tional symmetry (e3-direction), respectively. The calibration

procedure involves simulating the full stiffness tensor asso-

ciated with each sub-volume in the calibration structure sets

and utilizing Eqs. (9) and (10) to calculate the associated

indentation moduli. Then, by the means of first two cumu-

lants of the distributions of both simulated and experimental

measured moduli, the effective potentials of the constituents

are calibrated. The distributions of experimentally measured

indentation moduli for scan A and scan B are plotted in

Figs. 5 and 6, respectively. The first and second cumulants

of a distribution, also known as the mean and the variance of

a distribution, respectively, are defined as:

hxic ¼ hxi ð11Þ

hx2ic ¼ hx2i � hxi2 ð12Þ

where hxi and hx2i represent the first two moments of a

distribution, respectively. In general, the nth-moment of a

distribution can be defined as:

hxni ¼
Z

p xð Þxndx ð13Þ

with p xð Þ representing the probability density function (PDF)
of random variable x. As previously discussed, the segmen-

tation of CT scans reduce all the solid constituents to three

solid phases, including an organic phase. Due to abundance of

interfaces in these organic/inorganic porous media and in

order to account for the interfaces (and discontinuities) not

captured given the resolution of the imaging instrument, all

voxels are modeled as springs in series, similar to colloidal

models for cement [37, 38]. For example in a simple one-

dimensional case, this implies that for voxels i and j in phase a,

the effective spring constant kaeff is defined as:

kaeff ¼
1

kai
þ 1

kaj

!�1

ð14Þ

For simulations in LEM, the elasticity of each solid con-

stituents is calibrated through the framework of effective

interaction potentials [35], given a finite-sized simulation

box. At the interface of different phases, the mechanical

interaction for node i in phase a and neighboring node j in

phase b (and vice-versa) is modeled as follows:

int:�
n;tð Þ
ij ¼ int:�

n;tð Þ
ji ¼ 2

1

bulk�
n;tð Þ
ij

þ 1

bulk�
n;tð Þ
ji

!�1

ð15Þ

where bulk�
n;tð Þ
ij and bulk�

n;tð Þ
ji denote the potential parameters

calibrated to produce the desired elasticity of phases a and

b, respectively, while int:�
n;tð Þ
ij ¼ int:�

n;tð Þ
ji quantify mechani-

cal interaction at the interface of the two phases. The

sensitivity of the results to this definition for the interfaces

will be discussed later.

4.1 Input elasticity of the organic phase

The organic phase is considered to be kerogen and to

exhibit isotropic elastic behavior, fully characterized by

two elastic moduli. Based on the molecular simulations of

Bousige et al. [12] on reconstructed organic structures and

multi-scale molecular informed micromechanics model of

Monfared and Ulm [41], mAker: ¼ 0:25 and MA
ker: ¼

10:27GPa for scan A and mBker: ¼ 0:25 and MB
ker: ¼

2:24GPa for scan B are chosen as inputs. M refers to

isotropic indentation modulus, defined as M ¼ E= 1� m2ð Þ,
m denotes Poisson’s ratio and E represents Young’s mod-

ulus. The distinct elasticity of the kerogen phase for these

two samples is a consequence of their maturity level and

their initial compositions.

4.2 Degrees of freedom: clay and inclusion
effective potentials

Since the CT data are oblivious to pore space below 64 nm,

resolution of the CT data per voxel, and represent a length

scale too coarse to account for the variations of clay min-

eral platelets and their orientations (see, e.g., [21]), the clay

phase is modeled as a porous aggregate of clay particles

effectively exhibiting a transversely isotropic elastic

behavior. To fully capture this behavior, five elastic con-

stants are needed. To this end, the values obtained through

the inversion of ultrasonic pulse velocity data through the

multi-scale molecular informed micromechanics model of

Monfared and Ulm [41] are considered, i.e.,

C11 ¼ 103:0GPa, C12 ¼ 41:6GPa, C13 ¼ 34:1GPa, C33 ¼
43:3GPa and C44 ¼ 7:7GPa. However, such transversely

isotropic behavior cannot be reproduced in LEM, in its

current formulation, since it violates [35]:

C12 �C66 i.e. C12 �
1

3
C11

� �
; C13 �C44 ð16Þ

Thus, clay is modeled as a quasi-transversely isotropic

material in a reduced stiffness space. Specifically, only four

elastic moduli, instead of five, are used for calibration of

�
n;tð Þ
ij for the clay phase. The four elastic moduli are M1 and

M3 as defined in Eqs. (9) and (10), respectively; as well as

Voigt–Reuss–Hill averages for bulk, KVRH, and shear,

GVRH, moduli [9] for a material exhibiting a hexagonal

elastic symmetry which includes the transversely isotropic

case. Thus, the following elastic constants describe the

quasi-transversely isotropic behavior of the clay phase in
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Fig. 5 Probability density (a, b), cumulative probability density (c, d) and quantile-quantile plots (e, f) for experimentally measured

nanoindentation moduli for scan A with fitted lognormal, Stable and nonparametric normal kernel distributions



this work: M1 ¼ 62:35GPa, M3 ¼ 29:25GPa,

KVRH ¼ 46:81GPa, and GVRH ¼ 17:63GPa. Since voxels

belonging to each phase are modeled as springs in series,

the calibration of energy parameters is based on

M�
1 ;M

�
3 ;G

�;K�� �
where M�

1 ¼ M1=2, M�
3 ¼ M3=2, K� ¼

E�= 3 1� 2mð Þð Þ and G� ¼ E�= 2 1þ mð Þð Þ where E� ¼
0:5 M�

1 þM�
3

� �
1� mð Þ and m ¼ 3KVRH � 2GVRHð Þ=

6KVRH þ 2GVRHð Þ. It is well known that clay exhibits a

range of elastic behaviors based on its type

[4, 24, 31, 31, 49, 57]. Additionally, experimental obser-

vations of [10] using transmission electron microscopy

coupled with energy-dispersive X-ray spectroscopy (TEM-

EDX) hint at the spatial heterogeneity of clay particles

even at nanometer length scales. To capture this, small

fluctuations around the mean values of �
n;tð Þ
ij in the clay

phase are introduced for all 1000 sub-volumes during

calibration. Specifically, for the links in the plane of

symmetry e1 � e2 [ �n1; �
t
1

� �
for the 4 box-links of rest length

l0 ¼ a0 oriented in the e1- and e2-directions, and �n4; �
t
4

� �

for the 4 in-plane diagonals of length
ffiffiffi
2

p
a0; see Fig. 4 ]

fluctuations around a mean value are modeled as a Gaus-

sian distribution:

�
n;tð Þ
i 	N ��

n;tð Þ
i ; S21

� �
8i 2 f1; 4g ð17Þ

where ��
n;tð Þ
i denotes the average value, calibrated based on

the effective potential framework of Laubie et al. [35] and

S21 represents the directionally dependent variance, i.e., in

e1, introduced as a degree of freedom to quantify spatial

fluctuations in clay elasticity. Additionally, for the 2 box-

links oriented in the e3-direction, i.e., �
n
3, spatial fluctua-

tions are introduced similar to Eq. (17):

�n3 	N ��n3; S
2
3

� �
ð18Þ

with S23 representing the directionally dependent variance

in e3 while assuming distributions outlined in Eqs. (17) and

(18) are independently distributed. In summary, two

degrees of freedom, S21 and S23 are introduced to quantify

the spatial heterogeneity of clay elasticity. Furthermore, the

inclusions phase encompasses a variety of minerals with a

range of elasticity. Figure 7 displays pie-charts for the

components of what is considered to be the inclusions

phase based on XRD data [41]. Similar to the clay phase,

the inclusions phase is modeled as a porous (sub-CT res-

olution) aggregate of polycrystals effectively exhibiting an

isotropic elastic behavior. In order to capture the range of

elasticity represented by this diverse group of minerals

while maintaining the degrees of freedom at a minimum,

�
n;tð Þ
ij for the inclusions phase can be written as:

�
n;tð Þ
ij ¼ k

n;tð Þ
ij l0ij

� �2
¼ kC n;tð Þ

ij l0ij

� �2
ð19Þ

where k is a directionally independent force constant and

C n;tð Þ
ij is a directionally dependent force constant pre-factor.

Since �
n;tð Þ
ij 
 0 for instability reasons, a two-parameter

univariate Weibull distribution [59, 60] characterized by a

shape factor, a 2 R[ 0, and a scale factor, b 2 R[ 0, is

chosen to model the distribution of force constant k for sub-

volume m:

mk	W am; bmð Þ ð20Þ

As an example, Fig. 8 illustrates the spatial distribution

of �n1 in a cross section of one of the sub-volumes. In

summary, each sub-volume used for calibration has two

degrees of freedom associated with the inclusions phase,

while S21 and S23 degrees of freedom belong to the whole set

of sub-volumes. Hence, with a calibration structure set of

1000 sub-volumes, there are 1000� 2þ 2 ¼ 2002 total

degrees of freedom for each scan. For initial values and

based on Fig. 7, scan A seems to be dominated by Quartz.

Thus, as initial guesses for its isotropic elasticity, KA
inc ¼

37:90GPa and GA
inc ¼ 44:30GPa are chosen [39]. XRD

data, as shown in Fig 7, suggest that the inclusions phase

for scan B is dominated by Quartz and Calcite. As an initial

guess, a Voigt–Reuss–Hill (VRH) average assuming each

phase contributes with equal weights is employed. This

translates into KB
inc ¼ 46:98GPa and shear modulus GB

inc ¼
35:42GPa using elastic properties as reported in [39].

4.3 Numerical optimization

The optimization was performed using NLOPT library [29]

with Constrained Optimization By Linear Approximation

(COBYLA) algorithm [44, 45] while utilizing message

passing interface (MPI) to simulate 1000 sub-volumes at a

time for calibration of each scan and for each iteration step of

the optimization process. The objective function is defined as:

min
d

1� rð Þ ð21Þ

where r, the correlation coefficient reads:

r ¼
Pn

i xi � hxið Þ yi � hyið Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i xi � hxið Þ2
Pn

i yi � hyið Þ2
q ð22Þ

where

x ¼ hsim:M1ic; hsim:M2
1i

0:5
c ; hsim:M3ic; hsim:M2

3i
0:5
c

n o
ð23Þ

y ¼ hexp:M1ic; hexp:M2
1i

0:5
c ; hexp:M3ic; hexp:M2

3i
0:5
c

n o
ð24Þ
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with d denoting the set containing degrees of freedom,

d ¼ S21; S
2
3; faig; fbig


 �
with jdj ¼ 2002 given 1000 sub-

volumes from each scan employed for calibration.

5 Results

5.1 Calibration and validation results

The first two cumulants of the distributions for calibrated

indentation moduli for both scans and the corresponding

cumulants based on experimentally measured distributions

are summarized in Table 1. In addition, these values are

plotted in Fig. 9 as a representation of the calibration

quality with r ¼ 0:991 for scan A and r ¼ 0:994 for scan

B. The probability density and cumulative probability

density functions for the optimized shape factors, faig, and
scale factors fbig for both scans A and B are displayed in

Fig. 10. These parameters characterize the Weibull distri-

butions for the energy parameters of the inclusions phase.

Furthermore, for the clay phase in scan A, AS21 ¼
52:91GPa2 and AS23 ¼ 50:48GPa2 and for scan B, BS21 ¼
15:16GPa2 and BS23 ¼ 15:79GPa2 were obtained. In terms

of elastic moduli, Fig. 11 displays the distributions for

inclusions elasticity for both scans, while the three-com-

ponent Gaussian mixture fit parameters for both cases are

summarized in Table 2. Similarly, the small variations in

Quartz

Albite

Pyrite

Dolomite

Sanidine

Quartz

Feldspar

Carbonate

(a) (b)

Fig. 7 Mineralogical composition of the inclusions phase from XRD data as reported in [41] for scan A (a) and scan B (b)
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Fig. 8 a Cross section of a discretized sub-volume extracted from CT scans. Colors red, orange, blue and gray correspond to inclusions, clay,

pore and kerogen phases, respectively.; b Color map for �n1 variations in the inclusions phase as shown in a; c Weibull distribution of �n1 energy
parameter, as an example, shown spatially in b (color figure online)

bFig. 6 Probability density (a, b), cumulative probability density (c,
d) and quantile–quantile plots (e, f) for experimentally measured

nanoindentation moduli for scan B with fitted lognormal, Stable and

nonparametric normal kernel distributions



the elasticity of clay phase are shown in Fig. 12. To vali-

date the results, the VSS is employed for each scan. The

obtained distributions for faig and fbig (see Fig. 10) are

employed to generate random numbers in a forward

applications for simulating sub-volumes belonging to VSS

of each scan. The resulting distributions are plotted in

Fig 13 for scan A and Fig 14 for scan B and summarized in

Table 3 in terms of first two cumulants. This provides

independent means to validate the calibrated effective

interaction potentials.

5.2 Biot poroelastic coefficients

Ensemble-based definitions for Biot poroelastic coeffi-

cients [40] are employed to simulate poroelastic response

of these highly heterogeneous, porous solids given the

calibrated effective interaction potentials of its solid con-

stituents. To model the effect of pressure in the pore

domain on the deformation behavior of the solid phase(s),

the saturated drained case is considered. This case implies

a hydrostatic stress state, r ¼ �p1, which can be simulated

in the pore domain by imposing a central force

(F
j
i ¼ F

j;n
i en) on each link associated with a node inside the

pore domain through the following relationship [40]:

F
j;n
i ¼ � 6p

rij

Vp

n
p
‘

ð25Þ

where Vp represents the volume of the pore domain and n
p
‘

denotes the number of links associated with nodes

belonging to the pore space. Equation (25) defines the

interaction between pore and solid mass points in the form

of externally supplied work. This perturbation of the sys-

tem’s equilibrium is resolved through the theory of mini-

mum potential energy as a new equilibrium position is

sought through energy minimization [35, 40].

The second-order tensor of Biot pore-pressure coeffi-

cients, b, is determined in the lVT-ensemble at the com-

posite scale [solid(s) ? pore] where the macroscopic strain

E is zero while a constant pressure p prevails in the pore

space, exerting this pressure onto the solid-pore interface.

For such a boundary condition, E ¼ 0; pð Þ, b can be

expressed in terms of equilibrated interaction forces [40]:

b ¼ �R lVTð Þ

p
¼ 1

p

1

2V

X

i2Vs

XNb
i

j¼1

rij � F
j
i

0

@

1

Aþ /01 ð26Þ

The Biot solid modulus, N, can be simulated in the NPT-

ensemble applied to the solid phase(s), while pressure p is

applied to the entire solid boundary (oVs) utilizing

Clapeyron’s formula for linear elastic porous solids [40]:

1

N
¼ 2W NPTð Þ

s

p2V
� 1� bð Þ : S : 1� bð Þ ð27Þ

where W NPTð Þ
s is the Helmholtz free energy of the solid

phase and S ¼ C�1 is the effective fourth-order compli-

ance tensor of the composite. Since clay is modeled in the

reduced stiffness space, application of Eq. 27 is challenged

given its dependence on effective compliance tensor, S. To

circumvent this, for the case of small displacement and

infinitesimal strains, the discrete mass points can be

meshed into volumetric finite elements of known relative

nodal displacements, di ¼ xi � Xi, where xi and Xi denote

position vectors of mass point i in the reference and

deformed configurations, respectively. For such an ele-

ment, the strains can be calculated using the classical linear

finite element approach (see, for instance [5]):

ei ¼ Bij

� 
�
nj

	
ð28Þ

Table 1 First and second cumulants of the distributions of indentation moduli of calibration structure set and experimentally measured

exp:M1h ic exp:M2
1

� �
c

exp:M3h ic exp:M2
3

� �
c

sim:M1

� �
c

sim:M2
1

� �
c

sim:M3

� �
c

sim:M2
3

� �
c

Scan A 30.933 144.816 25.483 235.540 29.271 197.354 36.020 372.159

Scan B 40.892 151.057 35.528 426.536 40.923 175.110 35.167 68.531
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Fig. 9 Optimized and experimentally measured hM1ic, hM2
1i

0:5
c , hM3ic

and hM2
3i

0:5
c for scans A and B

cFig. 10 Probability density and cumulative probability density

functions for optimized shape factors, faig, and scale factors, fbig,
characterizing the Weibull distributions for the inclusions phase for

scan A (a, c, e, g) and scan B (b, d, f, h)
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where Bij

� 

is the element’s strain-displacement matrix,

�
nj

	
is the vector of nodal displacements of the element,

using the strain compatibility condition, i.e.,

tr Eð Þ ¼ 1� /0ð Þhtr eð ÞiVs
þ /� /0ð Þ. Thus, in the lVT-

ensemble, an alternative access to the Biot modulus is

obtained from:

/� /0ð Þ lVTð Þ¼ � 1� /0ð Þhtr eð ÞiVs
ð29Þ

1

N
¼ 1

p
/� /0ð Þ lVTð Þ ð30Þ

The simulated Biot pore-pressure coefficients for scan A

are plotted in Fig. 15 and for scan B in Fig. 16. Biot solid

moduli for both scans are plotted in Fig 17. Lastly, the first

two cumulants for the distribution of Biot poroelastic

coefficients are summarized in Table 4.

Fig. 11 Distributions of calibrated isotropic elasticity (Minc; minc) of the inclusions phase with three-component Gaussian mixture model fits for

Minc for scan A (a, c) and scan B (b, d). See Table 2 for three-component Gaussian mixture model fitting parameters

Table 2 Three-component Gaussian mixture model fitting parameters

for the isotropic indentation modulus, M, of the inclusion phase for

scans A and B as shown in Fig. 11

w1 l1 w2 l2 w3 l3

Scan A 0.56 48.17 0.06 239.77 0.38 91.15

Scan B 0.48 91.40 0.16 217.21 0.36 77.91

li(GPa) denotes the mean of the ith-component and wi the associated

weight

cFig. 12 Distributions of calibrated quasi-transversely isotropic (M1,

M3, KVRH, GVRH) for the clay phase with normal fits for scan A (a, c,
e, g) and scan B (b, d, f, h)

and ei ¼ fe11; e22; e33; 2e12; 2e23; 2e31gT 
is a vector repre-

sentation of the linearized strain tensor representative of 
the strain state in the solid element. The advantage of this 
approach is its focus on solid bulk deformation, which is 
required for the determination of the poroelastic properties





5.3 Interface behavior sensitivity analysis

The sensitivity of effective behavior, specifically simulated

indentation moduli, on interface behavior is assessed by

varying the interface behavior, i.e., energy parameters for

the bond element connecting nodes i and j that belong to

two different phases. To this end, interface properties are

varied from min �
n;tð Þ
ij ; �

n;tð Þ
ji

� �
to max �

n;tð Þ
ij ; �

n;tð Þ
ji

� �
with

results for CSS of scan B shown in Fig. 18, along with

simulation results for interface behavior as defined by

Eq. (15). The results highlight the low sensitivity of the

computed outcome in this paper to the defined interface

behavior in Eq. (15).

5.4 Stress transmission

Force flow and stress transmission through heterogeneous

materials can provide a wealth of information regarding

their microtexture (see for instance [34, 36, 46]). To

explore this, first stress percolation in both scans due to an

imposed uniaxial displacement (tension test) is studied.

Then, for each scan, the local stresses are coarse-grained

and their distributions plotted. Examining the response of

coarse-grained stresses can be instrumental in determining

the scale at which a representative elementary volume (rev)

can be defined and thus continuum mechanics treatment

can be applied. To achieve this, extracted sub-volumes are

subjected to a uniaxial displacement while the simulation

inputs are those obtained during calibration of effective

interaction potentials of clay and inclusions phases. In

addition, extracted sub-volumes of 150� 150� 150
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Fig. 13 Probability density (a, b) and cumulative probability density (c, d) of scan A for simulated indentation moduli and experimentally

measured nanoindentation moduli using validation structure set in a forward application for validation



voxels from each scan are characterized using the radial

distribution function. The radial distribution function (only

dependent on r ¼ kr1 � r2k) is used as an additional

descriptor that carries information about position correla-

tions in the system. It can be defined as:

g rð Þ ¼ q rð Þ
q2

ð31Þ

where q rð Þ is the local density, while q is the average

number density. The deviation of g rð Þ from unity provides

information with regard to spatial correlation between the

particles, with unity corresponding to no spatial correlation

[55]. The radial distribution functions for each phase are

displayed in Fig. 19. The radial distribution functions show

a strong correlation between the clay and pore phases in

scan A, while for scan B, a strong correlation is observed

between the inclusion and clay phases. Moreover, spatial

distribution of clay phase in both scans are most correlated

while spatial distribution of the inclusions and kerogen

phases in both scans are least correlated.
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Fig. 14 Probability density (a, b) and cumulative probability density (c, d) of scan B for simulated indentation moduli and experimentally

measured nanoindentation moduli using validation structure set in a forward application for validation

Table 3 First and second cumulants of the distributions of indentation moduli of validation structure set and experimentally measured

exp:M1h ic exp:M2
1

� �
c

exp:M3h ic exp:M2
3

� �
c

sim:M1

� �
c

sim:M2
1

� �
c

sim:M3

� �
c

sim:M2
3

� �
c

Scan A 30.933 144.816 25.483 235.540 29.591 207.437 24.130 204.381

Scan B 40.892 151.057 35.528 426.536 41.761 246.700 35.317 311.076



defined as such that each voxel satisfying the stress

thresholding criteria has a neighboring voxel, based on 26-

connectivity, that also meets the stress threshold, rth:. Sub-
volumes of 150� 150� 150 voxels are extracted from

each scan. A uniaxial displacement in the form of nd ¼
ndei for i 2 f1; 2; 3g is imposed on the extracted sub-vol-

umes and for five realizations of the obtained Weibull

distributions for the inclusions effective interaction poten-

tials. As an example, percolation path for one of the real-

izations is shown in Fig. 20. A quantity of interest,
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Fig. 15 Probability density (a–c), cumulative probability density (d–f) and quantile-quantile plots (g–i) for simulated Biot pore-pressure

coefficients b1, b2, b3 for scan A with fitted Weibull and Stable distributions

5.4.1 Stress percolation and localization

The percolating stress is defined as the stress threshold at 
which stresses form a continuous path through the sample 
in the direction of the loading (displacement or traction). 
This can be found by thresholding the stress, starting from 
highest stress in the sample and continuously monitoring 
the localization of the stresses until a continuous path of 
stresses greater than or equal to the threshold is formed in 
the direction of the imposed loading. A continuous path is



highlighting the underlying microtextural features of a

highly heterogeneous media, is the ratio of average stresses

in the direction of imposed load to the stress threshold. For

the cases examined, this ratio is summarized in Table 5. In

addition, the radial distribution function for stresses greater

than the percolating stress, for all five realizations for clay

and inclusions phases’ elasticity, is shown in Fig. 21. The

results highlight the important role of local stiffness vari-

ations on percolating stress paths with the e1 direction

(parallel to the bedding planes) in scan A least affected and

the e3 direction (perpendicular to the bedding planes) in

scan B most affected by such variations.
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Fig. 16 Probability density (a–c), cumulative probability density (d–f) and quantile-quantile plots (g–i) for simulated Biot pore-pressure

coefficients b1, b2, b3 for scan B with fitted Weibull and Stable distributions



of the obtained Weibull distributions for the inclusions

effective interaction potentials. The local stresses are

coarse-grained by averaging them over sub-volumes of

increasing length, k=a0ð¼ 1Þ while applying a periodic

boundary condition. The resulting distributions plotted for

Fig. 17 Distributions for Biot solid modulus for scan A (a) and scan B (b)

Table 4 First and second cumulants of the distributions for Biot poroelastic coefficients

hb1ic hb21ic hb2ic hb22ic hb3ic hb23ic hN�1ic N�1ð Þ2
D E

c

Scan A 0.182 0.016 0.198 0.019 0.182 0.016 0.0062 0.0019

Scan B 0.089 0.007 0.087 0.007 0.085 0.006 0.0043 8.9659 910-5
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Fig. 18 Distributions for simulated indentation moduli, M1 as shown in a and M3 as shown in b, for different interface models

5.4.2 Stress coarse-graining

Sub-volumes of size 300 � 300 � 300 voxels are extracted 
for both scans and subjected to a uniaxial displacement of
the form nd ¼ ndei for i 2 f1; 2; 3g and for five realizations



different coarse-graining length scale, k=a0ð¼ 1Þ are

shown in Figs. 22 and 23, for scans A and B, respectively.

The length scale dependency of these PDFs provides the

means to identify the scale at which a representative ele-

mentary volume (rev) for these highly heterogeneous

media can be defined. For k[ 50, the number of coarse-

grained samples falls below 200 and thus excluded for

statistical analysis. For k ¼ 50, representing 216 samples,

both scans display multimodal behaviors though with sig-

nificantly less noise compared to the cases for k\50. Such

multimodal behavior is a reflection of existence of com-

peting load-bearing phases at this coarse-graining length

scale. Additionally, the dependency of the results on dif-

ferent stiffness realizations should be noted. For example

for k ¼ 50, both multimodal and bimodal behaviors can be

observed.

6 Discussions

It is shown that capturing the heavy-tailed distributions of

experimentally measured indentation moduli requires

introducing spatial fluctuations in the effective interaction

potential of the inclusions and clay phases. For the inclu-

sions phase, this is achieved by modeling these spatial

variations with a continuous univariate Weibull

distribution while for the clay phase, small spatially

dependent fluctuations are introduced following Gaussian

distributions. The PDFs for calibrated elasticity of the

inclusions phases for each scan, as shown in Fig. 11, reflect
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Fig. 19 Pair-correlation function for clay, pore, kerogen and inclu-

sions phases corresponding to sub-volumes of size 150� 150� 150

voxels

Fig. 20 Percolating stress path in e1 and for scan A (a), for scan B (b),
in e2 and for scan A (c) and scan B (d), in e3 and for scan A (e) and
scan B (f). Colors red and orange indicate inclusions and clay phases,

respectively. g Defines the coordinate system (color figure online)



the range of elasticity represented by the diverse group of

the inorganic minerals (see Fig. 7 for compositional pie-

charts) considered to be part of the inclusions phase. This is

evident by the multimodal nature of these PDFs. The fitted

three-component Gaussian mixture model parameters, as

outlined in Table 2, reflect the composition of the inclu-

sions phase as displayed in Fig. 7. With a focus on iso-

tropic indentation modulus, the typical elasticity values

reported in the literature (see, e.g., [39]) are

MQuartz ¼ 95:28GPa, MAlbite � MFeldspar ¼ 78:51GPa,

MPyrite ¼ 313:30GPa, MCalcite ¼ 93:91GPa and

MDolomite ¼ 127:71GPa which are very comparable to

values reported in Table 2. This convergence of XRD data

and calibrated effective interaction potential of inclusions

phase from laboratory-measured nanoindentation moduli

highlights the utility of modeling spatial fluctuations of

inclusion elasticity using a two-parameter Weibull model.

The small range of obtained Poisson’s ratio can be attrib-

uted to maintain a constant ratio between �
n;tð Þ
i in different

directions, as outlined in Eq. (19). Relaxing this condition

would result into higher spatial fluctuations in Poisson’s

ratio while increasing the degrees of freedom associated

with the calibration procedure. Furthermore, additional

refinements can be considered in the future by introducing

multivariate continuous random variables with spatial

correlations (see, e.g., [58]). The local variations of

mechanical properties, spatially and within a phase, are

observed experimentally in a range of materials with some

studies attributing enhanced mechanical behavior to such

spatial variations [18, 52, 61] while more recently high-

lighting the role of stiffness heterogeneity in cell

mechanics [8].

The experimentally measured indentation moduli can be

modeled by both lognormal and Stable distributions as

shown in Figs. 5 and 6. The quantile–quantile plots suggest

Stable distribution to be a slightly better model to fit the

data given the deviations at the distribution tails from the

models. In fact, it is well known that Stable distributions

Table 5 Ratio of mean stresses to stress threshold for a given direc-

tion of applied load

hr11i=rth:11 hr22i=rth:22 hr33i=rth:33

Scan A 2.88–3.87 3.54–4.51 2.78–3.13

Scan B 1.28–1.69 1.34–1.53 0.93–1.16
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Fig. 21 Radial distribution function for the percolated stress path due to imposed uniaxial displacement in different directions for scan A (a–
c) and scan B (d–f)



arise from interaction of very wide-PDFs [30], in this case

a manifestation of the highly heterogeneous nature of

organic-rich shales even at very small length scales (see,

e.g., [2]) from the generalized central limit theorem [23].

This observation can also be extended to the simulated

effective Biot pore-pressure coefficients, as shown in

Figs. 15 and 16, with the simulated data captured well with

Weibull and Stable distributions, except for the heavy-tails.

The simulated Biot solid moduli do not follow any para-

metric distributions, and thus, only the simulated results are

shown as PDFs in Fig. 17 for both scans. Notable from

these PDFs, simulated Biot solid moduli for scan B cover a

wider range compared to scan A. The first two cumulants

of the simulated Biot poroelastic coefficients are summa-

rized in Table 4. The first cumulants suggest no significant

anisotropy given the length scale associated with simulated

sub-volumes. It should be noted that, on average, the Biot

poroelastic coefficients of scan A are two times greater

than that of scan B. This is partly due to scan A having a

higher porosity, on average, compared to scan B as shown

in Figs. 2 and 3.

The distribution of stresses as a result of an imposed

uniaxial displacement was also studied. It was shown that

stresses percolated at a higher threshold in scan A com-

pared to scan B as summarized in Table 5. The percolation

path as shown in Fig. 20 points at the underlying
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coarse-grained stresses, r11 due to nd ¼ nde1; e–h correspond to coarse-grained stresses, r22 due to nd ¼ nde2 and i–l correspond to coarse-

grained stresses, r33 due to nd ¼ nde3



informed microporoelastic model of [41] where a self-

consistent homogenization scheme is used to model mature

systems, e.g., scan B, implying an effective granular tex-

ture while for immature systems, e.g., scan A, a Mori–

Tanaka homogenization scheme, implying a matrix-inclu-

sion effective texture is employed. Furthermore, coarse-

grained stresses, as shown in Figs. 22 and 23, suggest that

at a coarse-graining length scale of k ¼ 50 less noisy,

multimodal response emerges highlighting the competition

between different load-bearing phases.

In the future, calibration based on higher order cumu-

lants can be considered for refinement of the results while

relaxing conditions on, for example, constant ratio of �
n;tð Þ
ij
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grained stresses, r33 due to nd ¼ nde3

microtextural differences in transmitting the load. For scan 
A, the percolating path consists of what seems to be 
elongated grains, mostly in the clay phase, while for scan 
B, the load-bearing path seems more granular, spatially 
dispersed and consisted of both inclusions and clay phases. 
This is further quantified using g rð Þ of the percolating path 
as shown in Fig. 21. One general observation consistent 
with Fig. 21 indicates short-range nature of percolating 
stresses in scan A compared to long-ranged one for scan B. 
However, the results vary based on different realizations of 
spatial stiffness. These results are also consistent with 
earlier continuum mechanics-based homogenization 
approaches, and indeed the backbone of the molecular



as discussed before. This would also require overcoming

limitations of LEM in its current formulation in capturing

the range of transversely isotropic behavior (see Eq. 16)

and isotropic behavior beyond m ¼ 0:25 by examining

comparable methods that have addressed such restrictions

such as peridynamics [50] and elastic networks [43].

7 Conclusions

Utilizing advancements in high-performance computing

and imaging techniques, a methodology to calibrate and to

validate effective interaction potentials of the solid con-

stituents of a highly heterogeneous porous solid is pre-

sented. The spatial variations of elasticity are shown to be

necessary ingredients for capturing heavy-tails of measured

indentation data. The measured indentation data and sim-

ulated effective poroelastic pore-pressure coefficients

generally seem to follow a Stable distribution, a manifes-

tation of interactions of wide underlying PDFs. Stress

transmission highlights the distinct percolation paths in

each scan due to underlying microtextural features, while

stress coarse-graining delineates the highly heterogeneous

nature of the materials examined and the challenges

involved in defining a representative elementary volume

for continuum-based analysis. The proposed framework

provides new insights into the interplay of texture and

effective behavior of real materials while paving the way

for designing durable and sustainable materials with

imposed effective mechanical behavior.
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