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A��methodology��to��calibrate��and��to��validate��effective��solid��potentials��of��
heterogeneous��porous��media��from��computed��tomography��scans��and��
laboratory-measured��nanoindentation��data

€ Hadrien��Laubie1��€��Farhang��Radjai2,3��€��Mija��Hubler4��€��Roland��Pellenq2,5��€���'�S�B�O�[���+�P�T�F�G���6�M�N��•Siavash��Monfared1��

Abstract
Built on the framework of effective interaction potentials using lattice element method, a methodology to calibrate and to
validate the elasticity of solid constituents in heterogeneous porous media from experimentally measured nanoindentation
moduli and imported scans from advanced imaging techniques is presented. Applied to computed tomography (CT) scans
of two organic-rich shales, spatial variations of effective interaction potentials prove instrumental in capturing the effective
elastic behavior of highly heterogeneous materials via the Þrst two cumulants of experimentally measured distributions of
nanoindentation moduli. After calibration and validation steps while implicitly accounting for mesoscale texture effects via
CT scans, Biot poroelastic coefÞcients are simulated. Analysis of stress percolation suggests contrasting pathways for load
transmission, a reßection of microtextural differences in the studied cases. This methodology to calibrate elastic energy
content of real materials from advanced imaging techniques and experimental measurements paves the way to study other
phenomena such as wave propagation and fracture while providing a platform to Þne-tune effective behavior of materials
given advancements in additive manufacturing and machine learning algorithms.

KeywordsEffective poroelasticity� Heterogeneous� Mesoscale� Organic-rich shale

1 Introduction

It is well known that the effective mechanical and
poromechanical properties of heterogeneous media depend
on the chemical composition, mechanical properties of the
constituents, as well as their spatial distributions. In recent

years, the combination of multi-scale micromechanics-
based models and grid nanoindentation [15, 56], later
coupled with wave-dispersive spectroscopy [16], has
played a signiÞcant role in providing insights into the
mechanics of heterogeneous porous solids. However,
classical continuum micromechanics [51, 62]- and
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interaction potentials of the solids. To this end, sub-vol-
umes of characteristic length similar to that of a volume
activated when probed by a nanoindenter are Þrst extracted
and grouped into calibration and validation structure sets.
Utilizing lattice element method [3, 25, 54] and the
framework of effective interaction potentials [35], elastic-
ity of the solid phases, with spatial ßuctuations within a
phase, are calibrated using the calibration structure set.
Then, the validation structure set is utilized as independent
means for validation. With the elastic energy contents
calibrated, Biot poroelastic coefÞcients are simulated using
ensemble-based deÞnitions for highly heterogeneous media
[40]. Lastly, analyses of stress transmissions through larger
sub-volumes extracted from the scans highlight the distinct
underlying microtextural features and load-bearing phases
in each case.

2 Materials

Computed tomography (CT) scans on samples from two
different organic-rich shale formations (see [28] for details)
are employed in this work. These CT scans are taken on
samples of dimensions 64lm � 64lm � 100lm with a
5.4-keV energy source and a resolution of approximately
64 nm. Such recently developed advanced imaging tech-
niques provide the spatial distribution of different con-
stituents of real materials. The same group of samples have
been characterized extensively using instrumented
nanoindentation, energy-dispersive X-ray spectroscopy
(EDX) and X-ray diffraction (XRD) [1]. In addition, the
organic contents have been modeled from reconstructed
kerogen structures utilizing a hybrid reverse Monte-Carlo
simulation (HRMC) method [12]. Herein, scan A refers to
segmented CT data taken from Antrim formation with its
organic content considered to be immature, while scan B
represents the segmented CT data associated with the
Haynesville formation with its organic content considered
to be mature [1, 28]. Maturity refers to the process of
physical, chemical and structural evolution of organic
content with geologic time due to exposure to high-pres-
sure and high-temperature environments [47, 53]. Such
evolution results in microtextural changes that impact the
effective poroelastic behavior of organic-rich shales as a
geocomposite [41]. Utilizing an informed OtsuÕs method,
Hubler et al. [28] segmented the CT scans by grouping all
their constituents into four phasesÑthree solid phases
(clay, inclusions, organics) and a pore phase. The organics
phase is considered to be kerogen. The inclusions phase
encompasses all inorganic solids other than clay. A cross
section from scan B is displayed in Fig.1, highlighting the
well-preserved features of the raw data in the segmented
image.

continuum��microporomechanics��[19,��20]-based��homoge-
nization��methods,��primarily��built��on��EshelbyÕs��inclusion��
problem��[22]�� and��scale��separations,��reduce��the��spatial��
distribution��of�� the��constituents��and��their�� mechanical��
interactions��to��effective��textures,��namely��matrix/inclusion��
[6,��42]��and��granular��[13,��26,��27,��32].��The��failure��of��con-
tinuum-based��approaches��to��explicitly��incorporate��mesos-
cale��texture��effects��by��accounting��for��spatial��distribution��of��
constituents��and��the��local��variations��of��mechanical��prop-
erties��limits�� their��ability�� to��provide��insights��into�� the��
mechanics��of��highly��heterogeneous��media.��In��addition,��
perturbation-based��solutions�� in�� statistical�� continuum��
mechanics��are��limited��to��small��ßuctuations��in��mechanical��
properties��[7]��and��thus��unable��to��capture��heavy-tailed��dis-
tributions��characteristics��of��highly��heterogeneous��media.��
Moreover,��challenges��involved��with��deÞning��a��represen-
tative��elementary��volume��that��satisÞes��scale��separability��
delineate��the��intrinsic��limitations��of��the��continuum��model��
in��dealing��with��highly��heterogeneous��media.��Meanwhile,��
emerging��modeling��and��simulation��techniques��propelled��by��
high-performance��computing��has��paved��the��way��for��multi-
scale,��multi-physics��material��modeling,��providing��a��link��
between��microscale��mechanisms��and��functional��behavior��at��
the��macroscale.��More��recently,��high-resolution��imaging��
techniques��such��as��computed��tomography��(CT)��scans��on��
porous��heterogeneous��solids��(see,��e.g.,��[28,��48])�� have��
provided��access��to��spatial��distribution��of��pore��and��solid��
phases,��paving��the��way��to��isolate��mesoscale��textural��con-
tribution��to��the��effective��elasticity��via��direct��importation��of��
such��scans��into��a��computational��framework.��Subsequently,��
the��calibration��of��elastic��energy��content��of��a��heterogeneous��
porous��solid��for��a��Þnite-sized��simulation��box��against��lab-
oratory-measured��mechanical��data��can��serve��as��a��departure��
point��for��simulating��other��phenomena��such��as��wave��prop-
agation,��plastic��deformation,��fracture.��To��address��the��lim-
itations��of��continuum-based��approaches��in��dealing��with��
highly��heterogeneous��materials��while��utilizing��advance-
ments��in��high-performance��computing��and��imaging��tech-
niques,��we��present��a��methodology��to��calibrate��and��to��
validate��effective��solid��potentials��of��heterogeneous��porous��
solids��from��experimentally��measured��nanoindentation��data��
and��imported��CT��scans.��In��addition��to��providing��insights��
into��the��interplay��of��effective��poroelastic��behavior��and��
microtexutral��features,��such��a��framework��can��be��utilized��to��
design��new��sustainable��and��durable��materials��with��imposed��
effective��mechanical��behavior,��with��applications��ranging��
from��car��manufacturing,��aerospace��industry��to��biological��
tissue��engineering��given��the��advancements��in��additive��
manufacturing��and��machine��learning��algorithms.

In��this��study,��CT��scans��and��laboratory-measured��distri-
butions��of��grid��nanoindentation��moduli��on��two��organic-rich��
shales��are��employed.��First��two��cumulants��of��experimentally��
measured��distributions��are��used��for��calibration��of��effective



2.1 Calibration and validation structure sets

Instrumented grid nanoindentation experiments have been
shown to be an effective tool for characterizing the
mechanical response of highly heterogeneous media
[15, 56]. Hence, the proposed methodology to calibrate
effective elastic potential of constituents of a highly
heterogeneous, multi-solid phase, porous medium utilizes
instrumented nanoindentation data. This is done by
extracting sub-volumes from the stack of CT scans, i.e., 3D
volume, that correspond to the volume activated by a
nanoindenter. Considering an average indentation depth of
900 nm results in an activated volume with a characteristic
length of about 3� 900 nm [33]. This translates into cubic
sub-volumes of 42� 42� 42 voxels, given the 64 nm
resolution of the CT scans. From each scan, 1000 spatially
random sub-volumes are extracted. This forms the cali-
bration structure sets (CSS). The remaining 1300 sub-vol-
umes from scan A and 2886 sub-volumes from scan B
make up the validation structure sets (VSS). The proba-
bility density function (PDF) of volume fractions for clay,
inclusions, kerogen and pore phasesf clay; f inc; f ker; /

� �
are

plotted in Figs.2 and3 for scans A and B, respectively,
and as a function different coarse-graining length scale,k,
which characterizes the length of the extracted cubic sub-
volumes and will be explored more later in this paper.

3 Lattice element method and effective
interaction potentials

The lattice element method (LEM) [3, 25, 54] is employed
here to investigate both the elastic and the poroelastic
behavior of highly heterogeneous real materials, utilizing
the framework of effective interaction potentials [35] and
ensemble-based deÞnitions for Biot coefÞcients [40]. This
is achieved by importing CT scans directly into LEM and
discretizing the volume into a number of mass points.

3.1 Effective solid potentials

The reference conÞguration (see Fig.4) consists of
Ntot: ¼ nx � ny � nz total number of mass points arranged
on a cubic lattice of unit sizea0, each exhibiting six
degrees of freedom: three translationsd and three rotations
#. Each mass pointi (reference positionxi and position in
deformed conÞgurationsXi) interacts with a Þxed number
of neighboring pointsj (a maximum of 26 corresponding to
a cutoff radiusrcut� off ¼

���
3

p
a0 in Potential-of-Mean-Force

(PMF) approaches) via a potential that considers both two-
body and three-body interactions between two mass points
i and j, in the form:

Uij ¼ Us
ij þ Ub

ij 8i 2 Vs ð1Þ

where Us
ij is a stretch term andUb

ij represent a bending
term. For the case of linear poroelasticity applied to a
structure close to its equilibrium position, this implies a
harmonic expression for the two-body interaction term:

Us
ij ¼

1
2

� n
ij

dn
j � dn

i

l0ij

 ! 2

ð2Þ

with � n
ij denoting the axial energy parameter. Similarly, the

three-body and rotational interactions read in the harmonic
case [35]:

Ub
ij ¼

1
2

� t
ij

db
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þ
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where� t
ij is the transverse energy parameter andl0ij ¼ krij k

(with r ij ¼ xj � xi ¼ l0ij en) representing the distance
between mass pointsi andj in the reference conÞguration.

The energy parameters� n;tð Þ
ij of the solid can be calibrated

to recover the desired effective elastic behavior for a
homogeneous, isotropic or transversely isotropic, solid
following the procedure outlined in [35]. The conjugated
forces to translational degrees of freedom derive from the
potential,F j

i ¼ � oUij =odi. For such a discrete system, the
stresses are modeled using the virial expression [14]:

r i ¼
1
Vi

XNb
i

j¼1

r ij � F j
i ð4Þ

Fig. 1 A cross section of scan B displaying raw CT data (left) and the
segmented image (right)



Fig. 2 Probability density functions for the volume fraction of the considered four phasesÑporosity (aÐc), kerogen (dÐf), inclusions (gÐi) and
clay (jÐl)Ñas a function of coarse-graining length scalek in scan A



Fig. 3 Probability density functions for the volume fraction of the considered four phasesÑporosity (aÐc), kerogen (dÐf), inclusions (gÐi) and
clay (jÐl)Ñas a function of coarse-graining length scalek in scan A



with Vi ¼ a3
0 denoting the volume of the unit cell andNb

i
representing the number of nodeiÕs neighboring mass
points. The virial expression provides a truly discrete
description of the system as opposed to the continuum-
based stress deÞnition employed in classical Þnite-element-
based approaches. The stress in volumeV ¼
nx � 1ð Þny � 1

� �
nz � 1ð ÞVi composed of a total ofNtot: unit

cells is simply the volume average of the local stresses; that
is:

r ¼
1

2V

XNtot:

i¼1

Vir i ð5Þ

what thus differs between different material domains is the
interaction potential from which forces and moments are
derived.

3.2 Effective elasticity

The state equations for stress,R and porosity change,
/ � / 0, for linear poroelastic materials can be expressed as
[11]:

R ¼
1
V

oEpot

oE
¼ C : E � bp ð6Þ

/ � / 0 ¼ �
1
V

oEpot

op
¼ b : Eþ

p
N

ð7Þ

Following ensemble deÞnitions of Monfared et al. [40], C
can be obtained in the NVT-ensemble through imposing a
regular displacement boundary conditionn ¼ E � x at the
boundary (oV) of the simulation box whilep ¼ 0. Given
this mechanical boundary value problem,E; p ¼ 0ð Þ, C is
obtained by considering the curvature of the potential
energy of the solid around the relaxed state:

C ¼
1
V

o
oE

oEs
pot

o
E

� �
ð8Þ

where Es
pot is the potential energy of the solid

phase(s) which in this case coincides with the free energy
of the solid phases in the deÞned NVT-ensemble.

4 Methodology for calibrations of energy
parameters

Organic-rich shales are considered to exhibit a trans-
versely isotropic elastic behavior at the length scale rele-
vant to nanoindentation experiment. Laboratory-measured
instrumented nanoindentation moduli, characterizing this
anisotropic behavior, are employed as means for calibra-
tion of the effective potentials of the solid constituents. The
experimental data represent a materialÕs response to a
nanoindenter as it probes the sample on a predetermined
grid. For a transversely isotropic media, for which the
nonzero components of the stiffness tensorÑin Voigt
notationÑare C11 ¼ C22, C12, C13 ¼ C23, C33, C44 ¼ C55,
while C11 � C12 ¼ 2C66; the indentation moduli can be
expressed as [17]:

M3 ¼ 2

����������������������������������������������������������������������������������
C11C33 � C2

13

C11

1
C44

þ
2

��������������
C11C33

p
þ C13

� � � 1
s

ð9Þ

Fig. 4 a Degrees of freedom associated with a bond element between nodesi andj; b D3Q26 unit cell;c simulation box

where��E��¼ hei V��is��the��average��strain��applied��to��the��solidÐ
pore��composite��at��the��boundary��oV,��while��pressure��p��is��
imposed��at��the��solidÐpore��interface.��C��is��the��fourth-order��
elastic��stiffness��tensor,��b��is��the��second-order��tensor��of��Biot��
pore-pressure��coefÞcients,��and��N��denotes��the��solid��Biot��
modulus.��Given��the��objective��of�� calibrating��effective��
interaction��potentials��of��the��solid��constituents��from��labo-
ratory-measured��indentation��moduli,��the��effective��elasticity��
of��the��porous��composite��needs��to��be��determined��Þrst.



M1 �

����������������������������������������������
C11

C33

r
C2

11 � C2
12

C11
M3

s

ð10Þ

whereM1 andM3 represent indentation moduli parallel to the
plane of symmetry (e1 ande2 directions) and axis of rota-
tional symmetry (e3-direction), respectively. The calibration
procedure involves simulating the full stiffness tensor asso-
ciated with each sub-volume in the calibration structure sets
and utilizing Eqs. (9) and (10) to calculate the associated
indentation moduli. Then, by the means of Þrst two cumu-
lants of the distributions of both simulated and experimental
measured moduli, the effective potentials of the constituents
are calibrated. The distributions of experimentally measured
indentation moduli for scan A and scan B are plotted in
Figs.5 and6, respectively. The Þrst and second cumulants
of a distribution, also known as the mean and the variance of
a distribution, respectively, are deÞned as:

hxi c ¼ hxi ð11Þ

hx2i c ¼ hx2i � h xi 2 ð12Þ

where hxi and hx2i represent the Þrst two moments of a
distribution, respectively. In general, thenth-moment of a
distribution can be deÞned as:

hxni ¼
Z

p xð Þxndx ð13Þ

with p xð Þrepresenting the probability density function (PDF)
of random variablex. As previously discussed, the segmen-
tation of CT scans reduce all the solid constituents to three
solid phases, including an organic phase. Due to abundance of
interfaces in these organic/inorganic porous media and in
order to account for the interfaces (and discontinuities) not
captured given the resolution of the imaging instrument, all
voxels are modeled as springs in series, similar to colloidal
models for cement [37, 38]. For example in a simple one-
dimensional case, this implies that for voxelsi andj in phasea,
the effective spring constantka

eff is deÞned as:

ka
eff ¼

1
ka

i
þ

1
ka

j

! � 1

ð14Þ

For simulations in LEM, the elasticity of each solid con-
stituents is calibrated through the framework of effective
interaction potentials [35], given a Þnite-sized simulation
box. At the interface of different phases, the mechanical
interaction for nodei in phasea and neighboring nodej in
phaseb (and vice-versa) is modeled as follows:

int:� n;tð Þ
ij ¼ int:� n;tð Þ

ji ¼ 2
1

bulk� n;tð Þ
ij

þ
1

bulk� n;tð Þ
ji

! � 1

ð15Þ

wherebulk� n;tð Þ
ij andbulk� n;tð Þ

ji denote the potential parameters
calibrated to produce the desired elasticity of phasesa and

b, respectively, whileint:� n;tð Þ
ij ¼ int:� n;tð Þ

ji quantify mechani-
cal interaction at the interface of the two phases. The
sensitivity of the results to this deÞnition for the interfaces
will be discussed later.

4.1 Input elasticity of the organic phase

The organic phase is considered to be kerogen and to
exhibit isotropic elastic behavior, fully characterized by
two elastic moduli. Based on the molecular simulations of
Bousige et al. [12] on reconstructed organic structures and
multi-scale molecular informed micromechanics model of
Monfared and Ulm [41], mA

ker: ¼ 0:25 and MA
ker: ¼

10:27 GPa for scan A andmB
ker: ¼ 0:25 and MB

ker: ¼
2:24 GPa for scan B are chosen as inputs.M refers to
isotropic indentation modulus, deÞned asM ¼ E= 1 � m2ð Þ,
mdenotes PoissonÕs ratio andE represents YoungÕs mod-
ulus. The distinct elasticity of the kerogen phase for these
two samples is a consequence of their maturity level and
their initial compositions.

4.2 Degrees of freedom: clay and inclusion
effective potentials

Since the CT data are oblivious to pore space below 64 nm,
resolution of the CT data per voxel, and represent a length
scale too coarse to account for the variations of clay min-
eral platelets and their orientations (see, e.g., [21]), the clay
phase is modeled as a porous aggregate of clay particles
effectively exhibiting a transversely isotropic elastic
behavior. To fully capture this behavior, Þve elastic con-
stants are needed. To this end, the values obtained through
the inversion of ultrasonic pulse velocity data through the
multi-scale molecular informed micromechanics model of
Monfared and Ulm [41] are considered, i.e.,
C11 ¼ 103:0 GPa,C12 ¼ 41:6 GPa,C13 ¼ 34:1 GPa,C33 ¼
43:3 GPa andC44 ¼ 7:7 GPa. However, such transversely
isotropic behavior cannot be reproduced in LEM, in its
current formulation, since it violates [35]:

C12 � C66 i.e. C12 �
1
3

C11

� �
; C13 � C44 ð16Þ

Thus, clay is modeled as a quasi-transversely isotropic
material in a reduced stiffness space. SpeciÞcally, only four
elastic moduli, instead of Þve, are used for calibration of

� n;tð Þ
ij for the clay phase. The four elastic moduli areM1 and

M3 as deÞned in Eqs. (9) and (10), respectively; as well as
VoigtÐReussÐHill averages for bulk,KVRH, and shear,
GVRH, moduli [9] for a material exhibiting a hexagonal
elastic symmetry which includes the transversely isotropic
case. Thus, the following elastic constants describe the
quasi-transversely isotropic behavior of the clay phase in
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Fig. 5 Probability density (a, b), cumulative probability density (c, d) and quantile-quantile plots (e, f) for experimentally measured
nanoindentation moduli for scan A with Þtted lognormal, Stable and nonparametric normal kernel distributions



this work: M1 ¼ 62:35 GPa, M3 ¼ 29:25 GPa,
KVRH ¼ 46:81 GPa, andGVRH ¼ 17:63 GPa. Since voxels
belonging to each phase are modeled as springs in series,
the calibration of energy parameters is based on
M�

1; M�
3; G� ; K�

� �
where M�

1 ¼ M1=2, M�
3 ¼ M3=2, K� ¼

E� = 3 1� 2mð Þð Þ and G� ¼ E� = 2 1þ mð Þð Þ where E� ¼
0:5 M�

1 þ M�
3

� �
1 � mð Þ and m¼ 3KVRH � 2GVRHð Þ=

6KVRH þ 2GVRHð Þ. It is well known that clay exhibits a
range of elastic behaviors based on its type
[4, 24, 31, 31, 49, 57]. Additionally, experimental obser-
vations of [10] using transmission electron microscopy
coupled with energy-dispersive X-ray spectroscopy (TEM-
EDX) hint at the spatial heterogeneity of clay particles
even at nanometer length scales. To capture this, small

ßuctuations around the mean values of� n;tð Þ
ij in the clay

phase are introduced for all 1000 sub-volumes during
calibration. SpeciÞcally, for the links in the plane of
symmetrye1 � e2 [ � n

1; � t
1

� �
for the 4 box-links of rest length

l0 ¼ a0 oriented in thee1- and e2-directions, and � n
4; � t

4

� �

for the 4 in-plane diagonals of length
���
2

p
a0; see Fig.4 ]

ßuctuations around a mean value are modeled as a Gaus-
sian distribution:

� n;tð Þ
i 	 N �� n;tð Þ

i ; S2
1

� �
8i 2 f 1; 4g ð17Þ

where�� n;tð Þ
i denotes the average value, calibrated based on

the effective potential framework of Laubie et al. [35] and
S2

1 represents the directionally dependent variance, i.e., in
e1, introduced as a degree of freedom to quantify spatial
ßuctuations in clay elasticity. Additionally, for the 2 box-
links oriented in thee3-direction, i.e.,� n

3, spatial ßuctua-
tions are introduced similar to Eq. (17):

� n
3 	 N �� n

3; S2
3

� �
ð18Þ

with S2
3 representing the directionally dependent variance

in e3 while assuming distributions outlined in Eqs. (17) and
(18) are independently distributed. In summary, two
degrees of freedom,S2

1 and S2
3 are introduced to quantify

the spatial heterogeneity of clay elasticity. Furthermore, the
inclusions phase encompasses a variety of minerals with a
range of elasticity. Figure7 displays pie-charts for the
components of what is considered to be the inclusions
phase based on XRD data [41]. Similar to the clay phase,
the inclusions phase is modeled as a porous (sub-CT res-
olution) aggregate of polycrystals effectively exhibiting an
isotropic elastic behavior. In order to capture the range of
elasticity represented by this diverse group of minerals
while maintaining the degrees of freedom at a minimum,

� n;tð Þ
ij for the inclusions phase can be written as:

� n;tð Þ
ij ¼ k n;tð Þ

ij l0ij
� � 2

¼ kC n;tð Þ
ij l0ij

� � 2
ð19Þ

wherek is a directionally independent force constant and

C n;tð Þ
ij is a directionally dependent force constant pre-factor.

Since � n;tð Þ
ij 
 0 for instability reasons, a two-parameter

univariate Weibull distribution [59, 60] characterized by a
shape factor,a 2 R[ 0, and a scale factor,b 2 R[ 0, is
chosen to model the distribution of force constantk for sub-
volumem:

mk 	 W am; bmð Þ ð20Þ

As an example, Fig.8 illustrates the spatial distribution
of � n

1 in a cross section of one of the sub-volumes. In
summary, each sub-volume used for calibration has two
degrees of freedom associated with the inclusions phase,
while S2

1 andS2
3 degrees of freedom belong to the whole set

of sub-volumes. Hence, with a calibration structure set of
1000 sub-volumes, there are 1000� 2 þ 2 ¼ 2002 total
degrees of freedom for each scan. For initial values and
based on Fig.7, scan A seems to be dominated by Quartz.
Thus, as initial guesses for its isotropic elasticity, KA

inc ¼
37:90 GPa and GAinc ¼ 44:30 GPa are chosen [39]. XRD
data, as shown in Fig7, suggest that the inclusions phase
for scan B is dominated by Quartz and Calcite. As an initial
guess, a VoigtÐReussÐHill (VRH) average assuming each
phase contributes with equal weights is employed. This
translates into KBinc ¼ 46:98 GPa and shear modulus GB

inc ¼
35:42 GPa using elastic properties as reported in [39].

4.3 Numerical optimization

The optimization was performed using NLOPT library [29]
with Constrained Optimization By Linear Approximation
(COBYLA) algorithm [44, 45] while utilizing message
passing interface (MPI) to simulate 1000 sub-volumes at a
time for calibration of each scan and for each iteration step of
the optimization process. The objective function is deÞned as:

min
d

1 � rð Þ ð21Þ

wherer, the correlation coefÞcient reads:

r ¼
P n

i xi � h xið Þyi � h yið Þ
��������������������������������������������������������P n

i xi � h xið Þ2
P n

i yi � h yið Þ2
q ð22Þ

where

x ¼ hsim:M1i c; hsim:M2
1i 0:5

c ; hsim:M3i c; hsim:M2
3i 0:5

c

n o
ð23Þ

y ¼ hexp:M1i c; hexp:M2
1i 0:5

c ; hexp:M3i c; hexp:M2
3i 0:5

c

n o
ð24Þ
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with d denoting the set containing degrees of freedom,
d ¼ S2

1; S2
3; f aig; f big


 �
with jdj ¼ 2002 given 1000 sub-

volumes from each scan employed for calibration.

5 Results

5.1 Calibration and validation results

The Þrst two cumulants of the distributions for calibrated
indentation moduli for both scans and the corresponding

cumulants based on experimentally measured distributions
are summarized in Table1. In addition, these values are
plotted in Fig.9 as a representation of the calibration
quality with r ¼ 0:991 for scan A andr ¼ 0:994 for scan
B. The probability density and cumulative probability
density functions for the optimized shape factors,f aig, and
scale factorsf big for both scans A and B are displayed in
Fig. 10. These parameters characterize the Weibull distri-
butions for the energy parameters of the inclusions phase.
Furthermore, for the clay phase in scan A,AS2

1 ¼
52:91 GPa2 and AS2

3 ¼ 50:48 GPa2 and for scan B,BS2
1 ¼

15:16 GPa2 andBS2
3 ¼ 15:79 GPa2 were obtained. In terms

of elastic moduli, Fig.11 displays the distributions for
inclusions elasticity for both scans, while the three-com-
ponent Gaussian mixture Þt parameters for both cases are
summarized in Table2. Similarly, the small variations in
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Fig. 7 Mineralogical composition of the inclusions phase from XRD data as reported in [41] for scan A (a) and scan B (b)
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Fig. 8 a Cross section of a discretized sub-volume extracted from CT scans. Colors red, orange, blue and gray correspond to inclusions, clay,
pore and kerogen phases, respectively.;b Color map for� n

1 variations in the inclusions phase as shown ina; c Weibull distribution of� n
1 energy

parameter, as an example, shown spatially inb (color Þgure online)

b Fig. 6 Probability density (a, b), cumulative probability density (c,
d) and quantileÐquantile plots (e, f) for experimentally measured
nanoindentation moduli for scan B with Þtted lognormal, Stable and
nonparametric normal kernel distributions



the elasticity of clay phase are shown in Fig.12. To vali-
date the results, the VSS is employed for each scan. The
obtained distributions forf aig and f big (see Fig.10) are
employed to generate random numbers in a forward
applications for simulating sub-volumes belonging to VSS
of each scan. The resulting distributions are plotted in
Fig 13 for scan A and Fig14 for scan B and summarized in
Table3 in terms of Þrst two cumulants. This provides
independent means to validate the calibrated effective
interaction potentials.

5.2 Biot poroelastic coefficients

Ensemble-based deÞnitions for Biot poroelastic coefÞ-
cients [40] are employed to simulate poroelastic response
of these highly heterogeneous, porous solids given the
calibrated effective interaction potentials of its solid con-
stituents. To model the effect of pressure in the pore
domain on the deformation behavior of the solid phase(s),
the saturated drained case is considered. This case implies
a hydrostatic stress state,r ¼ � p1, which can be simulated
in the pore domain by imposing a central force
(F j

i ¼ Fj;n
i en) on each link associated with a node inside the

pore domain through the following relationship [40]:

Fj;n
i ¼ �

6p
rij

Vp

np
•

ð25Þ

whereVp represents the volume of the pore domain andnp
•

denotes the number of links associated with nodes

belonging to the pore space. Equation (25) deÞnes the
interaction between pore and solid mass points in the form
of externally supplied work. This perturbation of the sys-
temÕs equilibrium is resolved through the theory of mini-
mum potential energy as a new equilibrium position is
sought through energy minimization [35, 40].

The second-order tensor of Biot pore-pressure coefÞ-
cients,b, is determined in thelVT-ensemble at the com-
posite scale [solid(s)? pore] where the macroscopic strain
E is zero while a constant pressurep prevails in the pore
space, exerting this pressure onto the solid-pore interface.
For such a boundary condition,E ¼ 0; pð Þ, b can be
expressed in terms of equilibrated interaction forces [40]:

b ¼ �
R l VTð Þ

p
¼

1
p

1
2V

X

i2Vs

XNb
i

j¼1

r ij � F j
i

0

@

1

A þ / 01 ð26Þ

The Biot solid modulus,N, can be simulated in theNPT-
ensemble applied to the solid phase(s), while pressurep is
applied to the entire solid boundary (oVs) utilizing
ClapeyronÕs formula for linear elastic porous solids [40]:

1
N

¼
2W NPTð Þ

s

p2V
� 1 � bð Þ: S : 1 � bð Þ ð27Þ

where W NPTð Þ
s is the Helmholtz free energy of the solid

phase andS ¼ C� 1 is the effective fourth-order compli-
ance tensor of the composite. Since clay is modeled in the
reduced stiffness space, application of Eq.27 is challenged
given its dependence on effective compliance tensor,S. To
circumvent this, for the case of small displacement and
inÞnitesimal strains, the discrete mass points can be
meshed into volumetric Þnite elements of known relative
nodal displacements,di ¼ xi � Xi , wherexi andXi denote
position vectors of mass pointi in the reference and
deformed conÞgurations, respectively. For such an ele-
ment, the strains can be calculated using the classical linear
Þnite element approach (see, for instance [5]):

ei ¼ Bij
� 


�
nj

	
ð28Þ

Table 1 First and second cumulants of the distributions of indentation moduli of calibration structure set and experimentally measured

exp:M1h ic exp:M2
1

� �
c

exp:M3h ic exp:M2
3

� �
c

sim:M1
� �

c
sim:M2

1

� �
c

sim:M3
� �

c
sim:M2

3

� �
c

Scan A 30.933 144.816 25.483 235.540 29.271 197.354 36.020 372.159

Scan B 40.892 151.057 35.528 426.536 40.923 175.110 35.167 68.531
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Fig. 9 Optimized and experimentally measuredhM1i c, hM2
1i 0:5

c , hM3i c

andhM2
3i 0:5

c for scans A and B

cFig. 10 Probability density and cumulative probability density
functions for optimized shape factors,f aig, and scale factors,f big,
characterizing the Weibull distributions for the inclusions phase for
scan A (a, c, e, g) and scan B (b, d, f, h)
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where Bij
� 


is the elementÕs strain-displacement matrix,
�

nj

	
is the vector of nodal displacements of the element,

using the strain compatibility condition, i.e.,
tr Eð Þ ¼ 1 � / 0ð Þhtr eð ÞiVs

þ / � / 0ð Þ. Thus, in thel VT-
ensemble, an alternative access to the Biot modulus is
obtained from:

/ � / 0ð Þl VTð Þ¼ � 1 � / 0ð Þhtr eð ÞiVs
ð29Þ

1
N

¼
1
p

/ � / 0ð Þl VTð Þ ð30Þ

The simulated Biot pore-pressure coefÞcients for scan A
are plotted in Fig.15 and for scan B in Fig.16. Biot solid
moduli for both scans are plotted in Fig17. Lastly, the Þrst
two cumulants for the distribution of Biot poroelastic
coefÞcients are summarized in Table4.

Fig. 11 Distributions of calibrated isotropic elasticity (Minc; minc) of the inclusions phase with three-component Gaussian mixture model Þts for
Minc for scan A (a, c) and scan B (b, d). See Table2 for three-component Gaussian mixture model Þtting parameters

Table 2 Three-component Gaussian mixture model Þtting parameters
for the isotropic indentation modulus,M, of the inclusion phase for
scans A and B as shown in Fig.11

w1 l 1 w2 l 2 w3 l 3

Scan A 0.56 48.17 0.06 239.77 0.38 91.15

Scan B 0.48 91.40 0.16 217.21 0.36 77.91

l i (GPa) denotes the mean of theith-component andwi the associated
weight

cFig. 12 Distributions of calibrated quasi-transversely isotropic (M1,
M3, KVRH, GVRH) for the clay phase with normal Þts for scan A (a, c,
e, g) and scan B (b, d, f, h)

and��ei��¼ fe11;��e22;��e33;��2e12;��2e23;��2e31g
T�� is��a��vector��repre-

sentation��of��the��linearized��strain��tensor��representative��of��
the��strain��state��in��the��solid��element.��The��advantage��of��this��
approach��is��its��focus��on��solid��bulk��deformation,��which��is��
required��for��the��determination��of��the��poroelastic��properties





5.3 Interface behavior sensitivity analysis

The sensitivity of effective behavior, speciÞcally simulated
indentation moduli, on interface behavior is assessed by
varying the interface behavior, i.e., energy parameters for
the bond element connecting nodesi and j that belong to
two different phases. To this end, interface properties are

varied from min � n;tð Þ
ij ; � n;tð Þ

ji

� �
to max � n;tð Þ

ij ; � n;tð Þ
ji

� �
with

results for CSS of scan B shown in Fig.18, along with
simulation results for interface behavior as deÞned by
Eq. (15). The results highlight the low sensitivity of the
computed outcome in this paper to the deÞned interface
behavior in Eq. (15).

5.4 Stress transmission

Force ßow and stress transmission through heterogeneous
materials can provide a wealth of information regarding
their microtexture (see for instance [34, 36, 46]). To
explore this, Þrst stress percolation in both scans due to an
imposed uniaxial displacement (tension test) is studied.
Then, for each scan, the local stresses are coarse-grained
and their distributions plotted. Examining the response of
coarse-grained stresses can be instrumental in determining
the scale at which a representative elementary volume (rev)
can be deÞned and thus continuum mechanics treatment
can be applied. To achieve this, extracted sub-volumes are
subjected to a uniaxial displacement while the simulation
inputs are those obtained during calibration of effective
interaction potentials of clay and inclusions phases. In
addition, extracted sub-volumes of 150� 150� 150
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Fig. 13 Probability density (a, b) and cumulative probability density (c, d) of scan A for simulated indentation moduli and experimentally
measured nanoindentation moduli using validation structure set in a forward application for validation



voxels from each scan are characterized using the radial
distribution function. The radial distribution function (only
dependent onr ¼ kr1 � r2k) is used as an additional
descriptor that carries information about position correla-
tions in the system. It can be deÞned as:

g rð Þ ¼
q rð Þ
q2

ð31Þ

where q rð Þis the local density, whileq is the average
number density. The deviation ofg rð Þfrom unity provides

information with regard to spatial correlation between the
particles, with unity corresponding to no spatial correlation
[55]. The radial distribution functions for each phase are
displayed in Fig.19. The radial distribution functions show
a strong correlation between the clay and pore phases in
scan A, while for scan B, a strong correlation is observed
between the inclusion and clay phases. Moreover, spatial
distribution of clay phase in both scans are most correlated
while spatial distribution of the inclusions and kerogen
phases in both scans are least correlated.

0 50 100 150
0

0.2

0.4

0.6

0.8

1

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

(a) (b)

(c) (d)

Fig. 14 Probability density (a, b) and cumulative probability density (c, d) of scan B for simulated indentation moduli and experimentally
measured nanoindentation moduli using validation structure set in a forward application for validation

Table 3 First and second cumulants of the distributions of indentation moduli of validation structure set and experimentally measured

exp:M1h ic exp:M2
1

� �
c

exp:M3h ic exp:M2
3

� �
c

sim:M1
� �

c
sim:M2

1

� �
c

sim:M3
� �

c
sim:M2

3

� �
c

Scan A 30.933 144.816 25.483 235.540 29.591 207.437 24.130 204.381

Scan B 40.892 151.057 35.528 426.536 41.761 246.700 35.317 311.076
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