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A methodologyto calibrateand to validate effectivesolid potentials of
heterogeneouporousmediafrom computedtomographyscans and
laboratory-measuredanoindentationdata

SiavashMonfared" ® ¢ Hadrien Laubie! € Farhang Radjaf® € Mija Hubler* € Roland Pellen®®e 'SBO[ +PT.FG 6 MN

Abstract

Built on the framework of effective interaction potentials using lattice element method, a methodology to calibrate and to
validate the elasticity of solid constituents in heterogeneous porous media from experimentally measured nanoindentation
moduli and imported scans from advanced imaging techniques is presented. Applied to computed tomography (CT) scans
of two organic-rich shales, spatial variations of effective interaction potentials prove instrumental in capturing the effective
elastic behavior of highly heterogeneous materials via the brst two cumulants of experimentally measured distributions of
nanoindentation moduli. After calibration and validation steps while implicitly accounting for mesoscale texture effects via
CT scans, Biot poroelastic coefbcients are simulated. Analysis of stress percolation suggests contrasting pathways for load
transmission, a ref3ection of microtextural differences in the studied cases. This methodology to calibrate elastic energy
content of real materials from advanced imaging techniques and experimental measurements paves the way to study other
phenomena such as wave propagation and fracture while providing a platform to Pne-tune effective behavior of materials
given advancements in additive manufacturing and machine learning algorithms.

KeywordsEffective poroelasticity Heterogeneous Mesoscale Organic-rich shale

1 Introduction years, the combination of multi-scale micromechanics-
based models and grid nanoindentatiakb, [ 56], later

It is well known that the effective mechanical and coupled with wave-dispersive spectroscop$6][ has

poromechanical properties of heterogeneous media depemtayed a signibcant role in providing insights into the

on the chemical composition, mechanical properties of thenechanics of heterogeneous porous solids. However,

constituents, as well as their spatial distributions. In recentlassical continuum micromechanics51] 62- and
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continuum microporomechanicg19, 20]-based homoge-
nization methods,primarily built on EshelbyOinclusion
problem [22] and scale separations,reduce the spatial
distribution of the constituents and their mechanical
interactionsto effective textures,namely matrix/inclusion
[6, 42] and granular[13, 26, 27, 32]. The failure of con-
tinuum-basedapproacheso explicitly incorporatemesos-
caletextureeffectsby accountingor spatialdistributionof
constituentsand the local variations of mechanicalprop-
erties limits their ability to provide insights into the
mechanicsof highly heterogeneousnedia. In addition,
perturbation-basedsolutions in statistical continuum
mechanicsare limited to small Buctuationsin mechanical
properties[7] andthusunableto captureheavy-taileddis-
tributions characteristicsof highly heterogeneousnedia.
Moreover, challengesinvolved with debninga represen-
tative elementaryvolume that satispesscale separability
delineatethe intrinsic limitations of the continuummodel
in dealingwith highly heterogeneousmedia. Meanwhile,
emergingmodelingandsimulationtechniquegpropelledby
high-performanceomputinghaspavedthe way for multi-
scale, multi-physics material modeling, providing a link
betweemmicroscalemechanismandfunctionalbehaviorat
the macroscale.More recently, high-resolutionimaging
techniquessuch as computedtomography(CT) scanson
porous heterogeneoussolids (see, e.g., [28, 48]) have
provided accessto spatial distribution of pore and solid
phasespaving the way to isolate mesoscaldextural con-
tribution to the effective elasticityvia directimportationof
suchscansnto a computationaframework.Subsequently,
the calibrationof elasticenergycontentof a heterogeneous
poroussolid for a Pnite-sizedsimulationbox againstlab-
oratory-measurethechanicatlatacanserveasa departure
point for simulatingother phenomenauchas wave prop-
agation,plastic deformation,fracture. To addresghe lim-
itations of continuum-basedapproachesn dealing with
highly heterogeneousnaterials while utilizing advance-
mentsin high-performancecomputingand imaging tech-
niques, we presenta methodologyto calibrate and to
validate effective solid potentialsof heterogeneouporous
solidsfrom experimentallymeasuredhanoindentatiordata
and imported CT scans.In addition to providing insights
into the interplay of effective poroelasticbehavior and
microtexutralfeaturessucha frameworkcanbe utilized to
designnewsustainablenddurablematerialswith imposed
effective mechanicalbehavior, with applicationsranging
from car manufacturing,aerospacendustry to biological
tissue engineeringgiven the advancementsn additive
manufacturingand machinelearningalgorithms.

In this study, CT scansand laboratory-measuredistri-
butionsof grid nanoindentatiomoduli on two organic-rich
shalesaareemployed Firsttwo cumulantof experimentally
measuredlistributionsare usedfor calibrationof effective

interacton potentials of the solids. To this end, sub-vol-
umes of characteristic length similar to that of a volume
activated when probed by a nanoindenter are brst extracted
and grouped into calibration and validation structure sets.
Utilizing lattice element method 3] 25, 54] and the
framework of effective interaction potential89], elastic-

ity of the solid phases, with spatial Buctuations within a
phase, are calibrated using the calibration structure set.
Then, the validation structure set is utilized as independent
means for validation. With the elastic energy contents
calibrated, Biot poroelastic coefbcients are simulated using
ensemble-based debnitions for highly heterogeneous media
[40]. Lastly, analyses of stress transmissions through larger
sub-volumes extracted from the scans highlight the distinct
underlying microtextural features and load-bearing phases
in each case.

2 Materials

Computed tomography (CT) scans on samples from two
different organic-rich shale formations (s&8] for details)

are employed in this work. These CT scans are taken on
samples of dimensions &% 64Im  100Im with a
5.4-keV energy source and a resolution of approximately
64 nm. Such recently developed advanced imaging tech-
nigues provide the spatial distribution of different con-
stituents of real materials. The same group of samples have
been characterized extensively using instrumented
nanoindentation, energy-dispersive X-ray spectroscopy
(EDX) and X-ray diffraction (XRD) L]. In addition, the
organic contents have been modeled from reconstructed
kerogen structures utilizing a hybrid reverse Monte-Carlo
simulation (HRMC) methodJ2]. Herein, scan A refers to
segmented CT data taken from Antrim formation with its
organic content considered to be immature, while scan B
represents the segmented CT data associated with the
Haynesville formation with its organic content considered
to be mature 1, 28]. Maturity refers to the process of
physical, chemical and structural evolution of organic
content with geologic time due to exposure to high-pres-
sure and high-temperature environmends,[53]. Such
evolution results in microtextural changes that impact the
effective poroelastic behavior of organic-rich shales as a
geocomposite41]. Utilizing an informed OtsuOs method,
Hubler et al. P8 segmented the CT scans by grouping all
their constituents into four phasesNthree solid phases
(clay, inclusions, organics) and a pore phase. The organics
phase is considered to be kerogen. The inclusions phase
encompasses all inorganic solids other than clay. A cross
section from scan B is displayed in Figy, highlighting the
well-preserved features of the raw data in the segmented
image.



2.1 Calibration and validation structure sets

3.1 Effective solid potentials

Instrumented grid nanoindentation experiments have been

shown to be an effective tool for characterizing the
mechanical response of highly heterogeneous medi

The reference conbguration (see HJy.consists of
Bt ¥4ne ny N0, total number of mass points arranged

[15, 56). Hence, the proposed methodology to calibrateon a cubic lattice of unit sizeag, each exhibiting six

effective elastic potential of constituents of a highly
heterogeneous, multi-solid phase, porous medium utilize

degrees of freedom: three translatiahand three rotations
8. Each mass poinit(reference positiorx; and position in

instrumented nanoindentation data. This is done byleformed conbgurations;) interacts with a bxed number
extracting sub-volumes from the stack of CT scans, i.e., 3f neighboring point$ (a maximum of 26 corresponding to
volume, that correspond to the volume activated by & cutoff radiusrey off ¥4 33 in Potential-of-Mean-Force
nanoindenter. Considering an average indentation depth @bMF) approaches) via a potential that considers both two-
900 nm results in an activated volume with a characteristicbody and three-body interactions between two mass points

length of about 3 900 nm B3]. This translates into cubic

sub-volumes of 42 42 42 voxels, given the 64 nm

resolution of the CT scans. From each scan, 1000 spatiall
random sub-volumes are extracted. This forms the cali
bration structure sets (CSS). The remaining 1300 sub-v
umes from scan A and 2886 sub-volumes from scan
make up the validation structure sets (VSS). The prob
bility density function (PDF) of volume fractions for clay,

i andj, in the form:
yij vaUsh UP 8i2 Vs

where U

alp

j Is a stretch term andUiﬁ’ represent a bending

Ol_l['erm. For the case of linear poroelasticity applied to a

structure close to its equilibrium position, this implies a

harmonic expression for the two-body interaction term:
|

inclusions, kerogen and pore phas&¥®: finc; fker./  are 2

plotted in Figs.2 and3 for scans A and B, respectively,
and as a function different coarse-graining length sdale,
which characterizes the length of the extracted cubic subwith i denoting the axial energy parameter. Similarly, the
volumes and will be explored more later in this paper.  three-body and rotational interactions read in the harmonic
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3 Lattice element method and effective 1.5 d o d d
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interaction potentials i 745 9 i 0 i
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The lattice element method (LEMB][ 25, 54] is employed & o d d
L I

here to investigate both the elastic and the poroelastic i

behavior of highly heterogeneous real materials, utilizing
the framework of effective interaction potential39 and
ensemble-based debnitions for Biot coefbciedtd.[This
is achieved by importing CT scans directly into LEM and
discretizing the volume into a number of mass points.

[0
ij
1 2 2
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&P

where }] is the transverse energy parameter &]hw krj K
(with 1y Yax X % Ii‘J?gn) representing the distance
between mass pointsandj in the reference conbguration.
The energy parameterg;tpof the solid can be calibrated
to recover the desired effective elastic behavior for a
homogeneous, isotropic or transversely isotropic, solid
following the procedure outlined in3p]. The conjugated
forces to translational degrees of freedom derive from the
potentiaI,Eij Y oU;=od;. For such a discrete system, the
stresses are modeled using the virial expressidi [

X

1 .
riYa— F/ &b

Iy

Lij

Fig. 1 A cross section of scan B displaying raw CT data (left) and the
segmented image (right)



Fig. 2 Probability density functions for the volume fraction of the considered four phasesNporagity, kerogen @Ef), inclusions ¢Bl) and
clay (jE))Nas a function of coarse-graining length scaten scan A



Fig. 3 Probability density functions for the volume fraction of the considered four phasesNporaglty, kerogen @Ef), inclusions ¢B) and
clay (E))Nas a function of coarse-graining length scaten scan A



Fig. 4 a Degrees of freedom associated with a bond element between hadeés; b D3Q26 unit cell;c simulation box

with V; % a3 denoting the volume of the unit cell arld®  Following ensemble depnitions of Monfared et &0], C
representing the number of nod@®s neighboring mass can be obtained in the NVT-ensemble through imposing a
points. The virial expression provides a truly discreteregular displacement boundary conditiortsE x at the
description of the system as opposed to the continuumboundary ¢V) of the simulation box whilep ¥ 0. Given
based stress dePnition employed in classical Pnite-elemerthis mechanical boundary value probleég;p % 0b C is
based approaches. The stress in voluméy, obtained by considering the curvature of the potential

&, 1bn, 1&, 1B composed ofa total dfi, unit ~ €nergy of the solid around the relaxed state:

cells is simply the volume average of the local stresses; that oE3
. ply g 1/411 POt = &b
: VOE o
; %ix‘“ Vi &sp Where E5, is the potential energy of the solid
V., phase(s) which in this case coincides with the free energy

) ) ) o of the solid phases in the debPned NVT-ensemble.
what thus differs between different material domains is the

interaction potential from which forces and moments are

derived. 4 Methodology for calibrations of energy

: - parameters
3.2 Effective elasticity

The state equations for stresB, and porosity change,  oyganic-rich shales are considered to exhibit a trans-
/"I, forlinear poroelastic materials can be expressed aggsely isotropic elastic behavior at the length scale rele-

[11: vant to nanoindentation experiment. Laboratory-measured
1 oE i i i i izi i

Ry, 1900ty . bp b |n§trumeqted nanplndentatlon moduli, characterizing .thIS
V oE anisotropic behavior, are employed as means for calibra-

1 0Epor _ p tion of the effective potentials of the solid cpnstituents. The
I loYa Vop YabiEp 0/b  experimental data represent a material®s response to a

nanoindenter as it probes the sample on a predetermined
whereE % he,, is the averagestrainappliedto the solidD  grid. For a transversely isotropic media, for which the
pore compositeat the boundaryoV, while pressurep is  nonzero components of the stiffness tensorNin Voigt
imposedat the solidbporenterface.C is the fourth-order  notationNare Cy; ¥4 Cyp, Ciz, Cis ¥4 Coz, Cas, Cas ¥4 Css,
elasticstiffnesstensor,b is the second-ordetensorof Biot  \while C;; Cy, % 2Csg; the indentation moduli can be
pore-pressureoefpcientsand N denotesthe solid Biot  expressed asl):

modulus. Given the objective of calibrating effective S .
interaction potentialsof the solid constituentsfrom labo- Ma Ya 2 CuCszs C%4 1 2
ratory-measurethdentationmoduli, the effective elasticity 3 Cu1 Cus C11Ca3p Ci3

of the porous composite needs to be determined Prst. b



M, CuC} ¢ My siop D respectively, while™ mitPy,int NP quantify mechani-

Csz Cpp cal interaction at the interface of the two phases. The

] ] ] sensitivity of the results to this depbnition for the interfaces
whereM; andM3 representindentation moduli parallelto the i pe discussed later.

plane of symmetryd; ande, directions) and axis of rota-

tional symmetry €;-direction), respectively. The calibration 4 1 Input elasticity of the organic phase

procedure involves simulating the full stiffness tensor asso-

ciated with each sub-volume in the calibration structure setgpq organic phase is considered to be kerogen and to
and utilizing Egs. §) and (L0) to calculate the associated exhibit isotropic elastic behavior, fully characterized by
indentation moduli. Then, by the means of brst two cumuy,q elastic moduli. Based on the molecular simulations of
lants of the distributions of both simulated and experimenta o sige et al. 2] on reconstructed organic structures and
measured moduli, the effective potentials of the constituentg, ,ti-scale molecular informed micromechanics model of
are calibrated. The distributions of experimentally meas”reﬂ/lonfared and Um 41, m, %025 and MA, ¥

. . . . ker.
indentation moduli for scan A and scan B are plotted Ny 427GPa for scan A andr,. ¥4 0:25 and ME, v

Figs.5 and6, respectively. The brst and second cumulant ker.

L . 24 GPa for scan B are chosen as inpWk.refers to
of a distribution, also known as the mean and the variance a .. .
o . ) isotropic indentation modulus, dePnedMs/4 E=81 Mk
a distribution, respectively, are debned as:

mdenotes PoissonOs ratio @hdepresents YoungOs mod-
hxi . Yahxi 011b  ulus. The distinct elasticity of the kerogen phase for these
2 1 hi h xi2 8120 two_ s_arn_ples is a consequence of their maturity level and
hcic Ya i h xi their initial compositions.
wherehxi and hx?i represent the brst two moments of a
distribution, respectively. In general, tmth-moment of a

distribution can be debned as:
4
W Ya  paxdx g13p  Since the CT data are oblivious to pore space below 64 nm,

resolution of the CT data per voxel, and represent a length

with pdx representing the probability density function (PDF) scale too coarse to account for the variations of clay min-
of random variablex. As previously discussed, the segmen-€ral platelets and their orientations (see, e 2flj)[ the clay
tation of CT scans reduce all the solid constituents to thre@Nase is modeled as a porous aggregate of clay particles
solid phases, including an organic phase. Due to abundance §ffectively exhibiting a transversely isotropic elastic
interfaces in these organic/inorganic porous media and iRehavior. To fully capture this behavior, bve elastic con-
order to account for the interfaces (and discontinuities) nobtants are needed. To this end, the values obtained through
captured given the resolution of the imaging instrument, alfhe inversion of ultrasonic pulse velocity data through the
voxels are modeled as springs in series, similar to colloidainulti-scale molecular informed micromechanics model of

models for cementd7, 38). For example in a simple one- Monfared ~and Ulm 41] are considered, i.e.,

dimensional case, thisimplies that for voxiesidj in phase, ~ C11 741030 GPa,Cyp ¥4 41:6 GPa,Cy3 ¥4 341 GPa,Ca3 ¥4

the effective spring constaky; is debned as: 43:3 GPa andCy4 ¥ 7:7 GPa. However, such transversely
I isotropic behavior cannot be reproduced in LEM, in its

1 : : L )
@, v. 1b 1 814p current formulation, since it violateS9]:
L7 ke

4.2 Degrees of freedom: clay and inclusion
effective potentials

C12 Ces i.e. C12 %Cll ) C13 C44 alep

For simulations in LEM, the elasticity of each solid con-

stituents is calibrated through the framework of effectiveThus, clay is modeled as a quasi-transversely isotropic
interaction potentials3g], given a Pnite-sized simulation material in a reduced stiffness space. Specipbcally, only four

box. At the interface of different phases, the mechanicaklastic moduli, instead of bve, are used for calibration of
interaction for node in phasea and neighboring nodgin  &*"for the clay phase. The four elastic moduli &fl and
phaseb (and vice-versa) is modeled as follows: M; as debned in Eqs9) and (L0), respectively; as well as

1 1 ! VoigtbReussbHill averages for bulkygry, and shear,

bulk _f_h;tpp bulk NP Gvrr, moduli [9] for a material exhibiting a hexagonal
U ! elastic symmetry which includes the transversely isotropic
wherebulk ﬁ‘“?tpandbulk MtPyenote the potential parameters case. Thus, the following elastic constants describe the

ji : . . : .
calibrated to produce the desired elasticity of phasaad  quasi-transversely isotropic behavior of the clay phase in

int; dMtPy, int; dith
int: i v, int: i 1,2
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this work: M; ¥26235GPa, M3 ¥%2925GPa, antb,
Kvru ¥ 46:81 GPa, andsyry ¥4 17:63 GPa. Since voxels i
belonging to each phase are modeled as springs in series

N . Wherek is a directionally independent force constant and
the calibration of energy parameters is based on ,

M;;My;G ;K where M, ¥aM;=2, M, ¥ M3=2, K ¥4 G is adirectionally dependent force constant pre-factor.

E =861 2ntb and G Y E =®381lp ntb where E ¥  Since ﬁ-mp 0 for instability reasons, a two-parameter

05M,pM, & nmbp and m%u®BKyry 2Gvrn B univariate Weibull distribution§9, 60] characterized by a
3Kyrr b 2Gyre P It is well known that clay exhibits a Shape factora2 Ry o, and a scale factoh 2 Ry o, is
range of elastic behaviors based on its typechosen to model the distribution of force constlafir sub-
[4, 24, 31, 31, 49, 57]. Additionally, experimental obser- Volumem:
vations of [L0] using transmission electron microscopy my  \weg,,; b, b Hop
coupled with energy-dispersive X-ray spectroscopy (TEM- o S
EDX) hint at the spatial heterogeneity of clay particles AS an example, Fig8 illustrates the spatial distribution
even at nanometer length scales. To capture this, smaff 7 in a cross section of one of the sub-volumes. In
Ructuations around the mean values &tpm the clay summary, each sub-volume used for calibration has two
. . degrees of freedom associated with the inclusions phase,
phase are introduced for all 1000 sub-volumes durm%vh'l 42 d ¢ freedom bel to the whol ;
calibration. Specibcally, for the links in the plane of lle S; andS; degrees o reedom belong fo the whole se
symmetrye, e,[ " ! forthe 4 box-links of rest length of sub-volumes. Hence, with a calibration structure set of
on ==t St o 1000 sub-volumes, there are 100@p 2 %2002 total
I" %280 oriented in thee,- and e,-directions, and 7 4 degrees of freedom for each scan. For initial values and

for the 4 in-plane diagonals of length2a; see Fig4 ]  based on Fig7, scan A seems to be dominated by Quartz.
Ructuations around a mean value are modeled as a Gaupnys, as initial guesses for its isotropic elasticity’ K/x

sian distribution: 37:90GPa and 5, ¥%4430GPa are choser8¢]. XRD

?ﬁtb N ;’-ﬁn;n:fq 8i 2 1;4g &7 data, as shown ir_1 Fi@, suggest that the inc_lusions p_ha_ts_e
for scan B is dominated by Quartz and Calcite. As an initial

quess, a VoigtbReussbHill (VRH) average assuming each

phase contributes with equal weights is employed. This

iﬁranslates into R % 46:98 GPa and shear modulu§ G/s

a?.5:42 GPa using elastic properties as reported3ig.[

. 2 . 2
2k 19 ke 10 aop

where ?;tbdenotes the average value, calibrated based o

the effective potential framework of Laubie et a8 and
S represents the directionally dependent variance, i.e.,
e,, introduced as a degree of freedom to quantify spati
Buctuations in clay elasticity. Additionally, for the 2 box-
links oriented in thee;-direction, i.e., §, spatial Buctua-
tions are introduced similar to EqL7):

4.3 Numerical optimization

The optimization was performed using NLOPT libragg]

3 N gg dl8p  with Constrained Optimization By Linear Approximation

] ] o . (COBYLA) algorithm [44, 45 while utilizing message
with S representing the directionally dependent variance)assing interface (MPI) to simulate 1000 sub-volumes at a
in &; while assuming distributions outlined in Eqd7fand  ime for calibration of each scan and for each iteration step of

(18 are independently distributed. In summary, WO e gpiimization process. The objective function is dePned as:
degrees of freedont and S are introduced to quantify ,
mindl rb o1b

the spatial heterogeneity of clay elasticity. Furthermore, the 4

inclusions phase encompasses a variety of minerals with a . . )
e : . . wherer, the correlation coefpbcient reads:

range of elasticity. Figur@ displays pie-charts for the P

components of what is considered to be the inclusions ,, _ ‘& hxiBy, hyip

phase based on XRD datd]]. Similar to the clay phase, “H "3 h xi I3P & hvi B

the inclusions phase is modeled as a porous (sub-CT res- i (i Ny

olution) aggregate of polycrystals effectively exhibiting anyhere

isotropic elastic behavior. In order to capture the range of n 0

elasticity represented by this diverse group of mineralsx¥a HK™Myi; F™M?2i 2% FI™Mi ; FImM2i ®3p

while maintaining the degrees of freedom at a minimum, n

o
: . . . N - 2:05. . a2; 0:5
Pfor the inclusions phase can be written as: yYa FPMai M P Mai g HFPPM3i ¢ @4p

a2b
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b Fig. 6 Probability density 4, b), cumulative probability densityc(  cumulants based on experimentally measured distributions
d) and quantilebBquantile plot®,(f) for experimentally measured 5re symmarized in Tablg In addition, these values are
nanoindentation moduli for scan B with btted lognormal, Stable and lotted in Fig.9 tati f th librati
nonparametric normal kernel distributions plo e 'r_] 9.9 as a representation o e calibration

quality with r ¥20:991 for scan A and % 0:994 for scan

B. The probability density and cumulative probability

with d denoting the set containing degrees of freedomdensity functions for the optimized shape factdmg, and

d¥% £ fagfbg with jdj % 2002 given 1000 sub- scale factorg b;g for both scans A and B are displayed in
volumes from each scan employed for calibration Fig. 10. These parameters characterize the Weibull distri-

butions for the energy parameters of the inclusions phase.
Furthermore, for the clay phase in scan AS Y

5 Results 5291 GP& and*S; % 50.48 GP& and for scan BES V.
15:16 GP& andBS ¥4 15:79 GP& were obtained. In terms
5.1 Calibration and validation results of elastic moduli, Figll displays the distributions for

inclusions elasticity for both scans, while the three-com-
The brst two cumulants of the distributions for calibratedponent Gaussian mixture bt parameters for both cases are
indentation moduli for both scans and the correspondingummarized in Tabl@. Similarly, the small variations in
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Fig. 7 Mineralogical composition of the inclusions phase from XRD data as reportediljrfdr scan A @) and scan Bf)
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Fig. 8 a Cross section of a discretized sub-volume extracted from CT scans. Colors red, orange, blue and gray correspond to inclusions, clay,
pore and kerogen phases, respectivddyGolor map for { variations in the inclusions phase as showmjit Weibull distribution of 7 energy
parameter, as an example, shown spatially ifcolor bgure online)



Table 1 First and second cumulants of the distributions of indentation moduli of calibration structure set and experimentally measured

hexllMliC expr . HexFIMs ic expMé . sim:M:L . sim:M% . sim:M:3 . sim:M?Z, .
Scan A 30.933 144.816 25.483 235.540 29.271 197.354 36.020 372.159
Scan B 40.892 151.057 35.528 426.536 40.923 175.110 35.167 68.531
45 Fig. 10 Probability density and cumulative probability density
fszg functions for optimized shape factorsag, and scale factord;,b;g,
407 characterizing the Weibull distributions for the inclusions phase for
35 scan A &, ¢, g g) and scan Blg, d, f, h)
é L]
g 30 . .
£ belonging to the pore space. Equatio?5) debPnes the
g % interaction between pore and solid mass points in the form
20 of externally supplied work. This perturbation of the sys-
15 temOs equilibrium is resolved through the theory of mini-
. mum potential energy as a new equilibrium position is
10 inimizati
10 20 30 20 sought through energy m|n|m|zat|9r35[, 4Q].
Simulations The second-order tensor of Biot pore-pressure coefp-

) o _ _ 205 rer - cients,b, is determined in théVT-ensemble at the com-
Fig. 9 ?.%f'sm'zed and experimentally measutdsi o, IMiic” Msic  hogite scale [solid(s) pore] where the macroscopic strain
andfMgsi ™ for scans A and B E is zero while a constant pressupeprevails in the pore

the elasticity of cl h h i Eie T i space, exerting this pressure onto the solid-pore interface.
e elasticity of clay phase are shown in Fig: To vali- For such a boundary conditiorge %2 0;pb b can be

date the results, the VSS is employed for each scan. Thg di iy . . .
t f librated int tion f :
obtained distributions fof a;g andf b;g (see Fig.10) are xpressed in e"SS of equilibrate |nlerac lon forot:[

employed to generate random numbers in a forward RAVIP 1 1 X X .

applications for simulating sub-volumes belonging to VSSP ¥ 0 K g EAplyl  &@ep
of each scan. The resulting distributions are plotted in 12Vs ¥l

Fig 13for scan A and Fidl4 for scan B and summarized in The Biot solid modulusN, can be simulated in thBIPT-

Table3 in terms of Pprst twp cumulants.. This provide.s ensemble applied to the solid phase(s), while presptise
independent means to validate the calibrated effectlv%pp”ed to the entire solid boundaryo\() utilizing

interaction potentials.

ClapeyronOs formula for linear elastic porous sokd [

5.2 Biot poroelastic coefficients %1/4 2VI\§/PT'° s bbS: & bb -
Ensemble-based dePnitions for Biot poroelastic coefp- — .
cients 0] are employed to simulate poroelastic responsé’\’hereWg‘\I is the Helmholtz free energy of the solid
of these highly heterogeneous, porous solids given thBhase ands ¥%:C * is the effective fourth-order compli-
calibrated effective interaction potentials of its solid con-ance tensor of the composite. Since clay is modeled in the
stituents. To model the effect of pressure in the porereduced stiffness space, application of BE@is challenged
domain on the deformation behavior of the solid phase(s)given its dependence on effective compliance tenSoff,o

the saturated drained case is considered. This case impli€§cumvent this, for the case of small displacement and

a hydrostatic stress state¥. pl, which can be simulated inpnitesimal strains, the discrete mass points can be
in the pore domain by imposing a central force Meshed into volumetric Pnite elements of known relative

(F) ¥4 Fi"e,) on each link associated with a node inside the!'©d2! displacements} i X;, wherex; andX; denote

pore domain through the following relationshigd); position vectors of mass point in the reference and
6oV deformed conbgurations, respectively. For such an ele-
oPVp

F{':n 1, ’ &sp  ment, the strains can be calculated using the classical linear
Fij n. Pnite element approach (see, for instansg: [
whereV, represents the volume of the pore domain afd

denotes the number of links associated with node “* Bi Ny @8p
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Fig. 11 Distributions of calibrated isotropic elasticityl("; nf°) of the inclusions phase with three-component Gaussian mixture model bts for
M"¢ for scan A &, ) and scan BIf, d). See Table for three-component Gaussian mixture model btting parameters

Table 2 Three-component Gaussian mixture model ptting parameterig. 12 Distributions of calibrated quasi-transversely isotropit; {c
for the isotropic indentation modulus, of the inclusion phase for Ms, Kvru, Gvrn) for the clay phase with normal bts for scand ¢,

scans A and B as shown in Fifj1 e, g) and scan Bl, d, f, h)
W1 I 1 W2 | 2 W3 | 3
Scan A 056 4817 006 23977 038 o9115Using the strain  compatibility condition, i.e.,

treEP Y&l [ btidebj p & /b Thus, in thel VT-
ensemble, an alternative access to the Biot modulus is
obtained from:

g 1,8V & /,phdepj, @29
1,1

_ _ ~y-y  ,BYTP 38B0p
n, is the vector of nodal displacements of the elementN p

Scan B 0.48 91.40 0.16 217.21 0.36 77.91

| ;(GPa) denotes the mean of ttth-component and;; the associated
weight

where Bj; is the elementOs strain-displacement matrix

The simulated Biot pore-pressure coefpbcients for scan A
are plotted in Figl5 and for scan B in Figl6. Biot solid
moduli for both scans are plotted in Fig. Lastly, the brst
two cumulants for the distribution of Biot poroelastic
coefbcients are summarized in Taldle

and g Vi feqq; &); 633; 2612, 263; 2@19T is a vector repre-
sentationof the linearized strain tensor representativeof
the strain statein the solid element.The advantageof this
approachis its focus on solid bulk deformation,which is
requiredfor the determinatiorof the poroelastiqproperties
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Fig. 13 Probability density 4, b) and cumulative probability densityc,(d) of scan A for simulated indentation moduli and experimentally
measured nanoindentation moduli using validation structure set in a forward application for validation

5.3 Interface behavior sensitivity analysis 5.4 Stress transmission

The sensitivity of effective behavior, specibcally simulatedForce Bow and stress transmission through heterogeneous
indentation moduli, on interface behavior is assessed bynaterials can provide a wealth of information regarding
varying the interface behavior, i.e., energy parameters fotheir microtexture (see for instance84, 36, 46]). To
the bond element connecting nodeandj that belong to  explore this, prst stress percolation in both scans due to an
two different phases. To this end, interface properties arénposed uniaxial displacement (tension test) is studied.
?w;tp; ]_éih;tb i?w;tp; jéih;tb with  Then, fqr e_ach scan, the local stres;gs are coarse-grained
) . ) and their distributions plotted. Examining the response of
r(?sults .for CSS of scap B shown in F@ along with coarse-grained stresses can be instrumental in determining
simulation results for .|nte.rface behavior afs,. ‘,’ep”ed b¥he scale at which a representative elementary volume (rev)
Eq. 15). The results_ h|gh||ght the low sensitivity _Of the can be debned and thus continuum mechanics treatment
Compl%teo! outcome in this paper to the depned mterfacgan be applied. To achieve this, extracted sub-volumes are
behavior in Eg. £9). subjected to a uniaxial displacement while the simulation
inputs are those obtained during calibration of effective
interaction potentials of clay and inclusions phases. In
addition, extracted sub-volumes of 150150 150

varied from min to max
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Fig. 14 Probability density 4, b) and cumulative probability densityc,(d) of scan B for simulated indentation moduli and experimentally
measured nanoindentation moduli using validation structure set in a forward application for validation

Table 3 First and second cumulants of the distributions of indentation moduli of validation structure set and experimentally measured

hexFIMlic expr . I’FXPM3 ic eng% . sim:M:L . sim:Mf . sim:M3 . sim:Mg .
Scan A 30.933 144.816 25.483 235.540 29.501 207.437 24.130 204.381
Scan B 40.892 151.057 35.528 426.536 41.761 246.700 35.317 311.076

voxels from each scan are characterized using the radi@formation with regard to spatial correlation between the
distribution function. The radial distribution function (only particles, with unity corresponding to no spatial correlation
dependent onr Yakr; r,k) is used as an additional [55]. The radial distribution functions for each phase are
descriptor that carries information about position correla-displayed in Fig.19. The radial distribution functions show

tions in the system. It can be debned as: a strong correlation between the clay and pore phases in
&b scan A, while for scan B, a strong correlation is observed

1 q alp . . .
gdr b /4—q2 between the inclusion and clay phases. Moreover, spatial

distribution of clay phase in both scans are most correlated
where g bis the local density, whileg is the average while spatial distribution of the inclusions and kerogen
number density. The deviation gbr Pfrom unity provides phases in both scans are least correlated.
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