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Generalized Linear Quaternion Complementary

Filter for Attitude Estimation from Multi-Sensor

Observations: An Optimization Approach
Jin Wu, Member, IEEE, Zebo Zhou, Hassen Fourati, Rui Li, Member, IEEE and Ming Liu, Senior Member, IEEE

Abstract—Focusing on generalized sensor combinations, this
paper deals with attitude estimation problem using a linear
complementary filter. The quaternion observation model is
obtained via a gradient descent algorithm (GDA). An additive
measurement model is then established according to derived
results. The filter is named as the generalized complementary
filter (GCF) where the observation model is simplified to its limit
as a linear one that is quite different from previous-reported
brute-force computation results. Moreover, we prove that
representative derivative-based optimization algorithms are
essentially equivalent to each other. Derivations are given to
establish the state model based on the quaternion kinematic
equation. The proposed algorithm is validated under several
experimental conditions involving free-living environment, harsh
external field disturbances and aerial flight test aided by robotic
vision. Using the specially designed experimental devices, data
acquisition and algorithm computations are performed to give
comparisons on accuracy, robustness, time-consumption and
etc. with representative methods. The results show that not only
the proposed filter can give fast, accurate and stable estimates
in terms of various sensor combinations, but it also produces
robust attitude estimation in the presence of harsh situations
e.g. irregular magnetic distortion.

Note to Practitioners—Multi-sensor attitude estimation
is a crucial technique in robotic devices. Many existing methods
focus on the orientation fusion of specific sensor combinations. In
this paper we make the problem more abstract. The results given
in this paper are very general and can significantly decrease
the space consumption and computation burden without losing
the original estimation accuracy. Such performance will be of
benefit to robotic platforms requiring flexible and easy-to-tune
attitude estimation in the future.
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I. INTRODUCTION

THE development of consumer electronics brings a world-

wide mania in cellphones, smart wearables, interactive

devices and etc. [1], [2], [3]. Such electronic products indeed

improve the quality of our living. As a matter of fact, each

product is a mixture of many recent technological advances.

Among all these techniques, the sensor fusion is of importance

since it gives state estimation of the body’s motion from

multi-sensor observations [4], [5], [6]. Attitude estimation, as

part of the overall sensor fusion module, plays a big role

in detecting object’s attitude and further produces signals for

gait analysis, gravity sensing and etc [7], [8]. The attitude

estimation techniques will provide key bases for later robotic

estimation and navigation [9].

Not only consumer electronics, but many other professional

applications also have a high demand on attitude estimation

[10], [11]. For instance, one satellite needs to be stablized

on the orbit and to achieve this, the attitude estimator should

give accurate estimates for the control task [12]. Moreover,

such applications can also be operated under harsh external

conditions i.e. strong vibration, sudden external acceleration,

irregular magnetic distortion and etc. [13], [14], which makes

the attitude estimation more challenging [15], [16], [17]. In en-

gineering practice, a navigation system should have sufficient

redundant computation resources to ensure the robustness of

the system when emergence happens [18]. For example, an

unmanned aerial vehicle (UAV) system needs to act quickly

for failsafe when some incidents take place such as motor

failure, GPS outage, main controller failure [19], [20]. This

in a degree requires the navigation part to be computationally

cheap.

In fact Kalman filter (KF) [21] is an optimal filtering ap-

proach in the sense of minimum mean squared error (MMSE).

Although other filtering approaches e.g. H∞ filter [22] have

been widely spread, KF still remains its definite coverage

in industrial applications. The attitude estimation can be ef-

ficiently achieved via KF-related algorithms [23]. However,

conventional KF methods still have some drawbacks:

1) Classical KF requires the state and observation models to

be linear. Besides, the noise sources for the two models

should be white Gaussian and uncorrelated.
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2) Although many techniques have been developed to deal

with non-linearities e.g. the extended Kalman filter (EKF)

[24], the unscented Kalman filter (UKF) [25] and etc.

[26], they will significantly increase the computational

burden.

3) In principle, a 3-order KF can obtain good attitude esti-

mates [27]. For engineering requirements, some KF-based

attitude estimators are designed to accommodate high-

dimension observation models [15], [28], which makes

the filtering time-costly.

Complementary filter (CF) approaches are popular alterna-

tives for low-cost platforms with need of attitude estimation

[29], [30], [31], [32]. Associated thoughts have been pro-

posed for many years [33]. Recent advances mainly focus

on the combination of magnetic, angular rate and gravity

(MARG) sensors i.e. the magnetometer, gyroscope and ac-

celerometer. Marins et al. uses the Gauss-Newton algorithm

(GNA) to obtain the quaternion solution to the accelerometer-

magnetometer attitude determination [34]. Another method

using the error cross product is studied by Euston et al.

and Mahony et al. [35], [36]. Madgwick et al. [37] give

another point of view where the gradient descent algorithm

(GDA) is adopted. In the similar way, Tian et al. proposed the

method based on improved Gauss-Newton algorithm (IGNA)

[38], [39] while Fourati et al. [40], [41] use the Levenberg-

Marquardt algorithm (LMA). After attitude determination

from vector observations, these methods jointly employ the

linear complementary filter (LCF) as the attitude observer.

It can be seen that these advances mainly face the attitude

solution from the accelerometer-magnetometer combination.

In fact, this is a specific case of the Wahba’s problem [42],

[43]. This leads to a new CF algorithm developed by Marantos

et al. [19] which uses the singular value decomposition (SVD,

[44], [45]) as Wahba’s solution, which compensates for the

gyroscope’s random drift. However, Wahba’s problem will

have two solutions when there is only one vector observation

that makes the attitude solution ambiguous at the same time

[43], [46].

Above all methods generate efficient attitude estimation but

they have some joint or respective disadvantages:

1) They just focus on almost the same sensor combination

i.e. MARG sensors. Generalized sensor combinations

under optimal framework are not well studied.

2) For GDA, IGNA, LMA, brute-force use of the optimiza-

tion will make the algorithms computationally expensive

i.e. some mathematical internals should be investigated

further.

Inspired by above representative methods along with their

advantages and disadvantages, this paper deals with a novel

CF scheme whose main contributions are:

1) Using quaternion representation, the generalized attitude

estimation is solved using GDA. Various strapdown

sensors like accelerometer, magnetometer, camera, sun

sensor, nadir sensor and etc. can be efficiently fused. The

architecture is derived to be additive and linear which is

simple for implementation and fault detection.

2) With finding in this paper, previous derivative-based

optimization methods for attitude estimation are proven

to be equivalent to each other.

Experiments on robotic platforms are designed and carried out

which verify the proposed filter’s effectiveness and advantages

compared with representative methods.

This paper has the following arrangement of contents:

Section II introduces the proposed problem formulation of the

generalized sensor fusion from vector observations. Section III

contains the proposed GDA method for attitude determination

from strapdown sensors. Section IV involves the proposed

complementary filter design including the basic structure, ro-

bustness ensurance and some further discussions of mathemati-

cal properties. Hardware, experiments and results are presented

in Section V showing the effectiveness of the proposed filter

with respect to reference device and representative methods.

Section VI gives the concluding remarks.

II. GENERALIZED SENSOR FUSION

For a sensor combination on a rigid platform, its fusion

equation can be given by





Db
1 = CDr

1

Db
2 = CDr

2

· · ·
Db

n = CDr
n

(1)

where Db
i =

(
Db

x,i, D
b
y,i, D

b
z,i

)⊤
denotes the ith vector obser-

vation in the body frame b while Dr
i =

(
Dr

x,i, D
r
y,i, D

r
z,i

)⊤
denotes the ith vector observation in the reference frame r.

C stands for the direction cosine matrix (DCM). The above

equation can be converted to a least-square loss function

J (C) =

n∑

i=1

∥∥CDr
i −Db

i

∥∥2 (2)

with the aim of

argmin
CC⊤ = C⊤C = I,det(C)=+1

J (C) (3)

where I is the identity matrix with proper dimension and ‖·‖
is the simplification of Euclidean norm. A possible solution

for this problem using SVD is given in [44]. When the weights

of various sensors are concerned, the problem will be equal

to the Wahba’s problem [42], such that

argmin
CC⊤=C⊤C=I,det(C)=+1

n∑

i=1

ai
∥∥CDr

i −Db
i

∥∥2 (4)

where ai denotes the positive weight of the ith sensor with the

property of
n∑

i=1

ai = 1. Wahba’s solutions include a variety of

famous algorithms e.g. QUEST, FOAM and SVD [47], [48],

[45]. A recent fast solver FLAE maintains the same accuracy
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as developed in[49]. Now we study the fusion for a single

sensor. The sub-equation of (1) can be further given by

Db
i = CDr

i =




C11 C12 C13

C21 C22 C23

C31 C32 C33






Dr
x,i

Dr
y,i

Dr
z,i




= Dr
x,i




C11

C21

C31


+Dr

y,i




C12

C22

C32


+Dr

z,i




C13

C23

C33




= Dr
x,iC1 +Dr

y,iC2 +Dr
z,iC3

(5)

where Cij is the element of C in the i-th row and j-th column

while Ci denotes the i-th column of C. Namely, Db
i is the

linear combination of the three columns of the DCM.

When the DCM is represented by the quaternion q =
(q0, q1, q2, q3)

⊤, the columns can be decomposed such as [49]

C1 =




q20 + q21 − q22 − q33
2q1q2 − 2q0q3
2q0q2 + 2q1q3




=




q0 q1 −q2 −q3
−q3 q2 q1 −q0
q2 q3 q0 q1







q0
q1
q2
q3


 = P1(q)q

(6)

C2 =




2q1q2 + 2q0q3
q20 − q21 + q22 − q23
−2q0q1 + 2q2q3




=




q3 q2 q1 q0
q0 −q1 q2 −q3
−q1 −q0 q3 q2







q0
q1
q2
q3


 = P2(q)q

(7)

C3 =




−2q0q2 + 2q1q3
2q2q3 + 2q0q1

q20 − q21 − q22 + q23




=




−q2 q3 −q0 q1
q1 q0 q3 q2
q0 −q1 −q2 q3







q0
q1
q2
q3


 = P3(q)q

(8)

Then (5) can be further given by

Db
i = Dr

x,1C1 +Dr
y,iC2 +Dr

z,iC3

= [Dr
x,iP1(q) +Dr

y,iP2(q) +Dr
z,iP3(q)]q

(9)

With this equation, we can extend the 1-dimensional equation

to (1). The fusion error function of the ith sensor is defined

by

f(q, i) =
[
Dr

x,iP1(q) +Dr
y,iP2(q) +Dr

z,iP3(q)
]
q −Db

i

(10)

Naturally, the error function for the whole sensor combination

can be given by the augmented form

f(q, {w, v, · · · , n}) =




f(q, w)
f(q, v)
· · ·

f(q, n)


 (11)

where {w, v, · · · , n} denotes the set of the indexes of valid

sensors which has been sorted in ascending order. In terms of

the weights, the corresponding error function is defined by

f(q, {w, v, · · · , n}, {aw, av, · · · , an}) =




√
awf(q, w)√
avf(q, v)

...√
anf(q, n)




(12)

In this way the original problem in (4) can be shifted to

argmin
‖q‖=1

‖F (q)‖2 (13)

where for simplicity, we use

F (q) = f(q, {w, v, · · · , n}, {aw, av, · · · , an}) (14)

to represent the error function (12). Such problem can be

solved via optimization methods. Previously, we have shown

that the error function is convex with respect to quaternion

[50]. In the following section we are going to introduce a

gradient-descent algorithm.

III. PROPOSED GDA METHOD

The Gradient Descent Algorithm (GDA) is known to be

an efficient method for optimization problems [37], [38]. It

requires the derivative information of the target function with

respect to the variables to be solved. In this case, the state of

the system is chosen as the quaternion q. The implementation

of the GDA can be given by

qy,k = qy,k−1 − χk∇F (qy,k−1), χk > 0 (15)

where χk is the step size of the kth iteration. The gradient of

the sub-error function f(q, i) can be computed by

∇f(q, i) = J⊤
i f(q, i) (16)

where the Jacobian matrix Ji can be calculated by

Ji =
∂f(q, i)

∂q
= Dr

x,i

∂C1

∂q
+Dr

y,i

∂C2

∂q
+Dr

z,i

∂C3

∂q
(17)

The details of ∂C1

∂q
, ∂C2

∂q
, ∂C3

∂q
are given by

∂C1

∂q
=




2q0 2q1 −2q2 −2q3
−2q3 2q2 2q1 −2q0
2q2 2q3 2q0 2q1


 = 2P1(q)

∂C2

∂q
=




2q3 2q2 2q1 2q0
2q0 −2q1 2q2 −2q3
−2q1 −2q0 2q3 2q2


 = 2P2(q)

∂C3

∂q
=




−2q2 2q3 −2q0 2q1
2q1 2q0 2q3 2q2
2q0 −2q1 −2q2 2q3


 = 2P3(q)

(18)

Consequently Ji can be written as

Ji = 2[Dr
x,iP1(q) +Dr

y,iP2(q) +Dr
z,iP3(q)] (19)

Then the overall gradient of F (q) can be given by

∇F (q) = J⊤
{w,v,··· ,n}F (q) (20)
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where

J{w,v,··· ,n} =




√
awJw√
avJv

· · ·√
anJn


 (21)

Thereby (20) can be further given by

∇F (q) = J⊤
{w,v,··· ,n}F (q)

=
(√

awJ
⊤
w ,

√
avJ

⊤
v , · · · ,√anJ

⊤
n

)



√
awf(q, w)√
avf(q, v)

· · ·√
anf(q, n)




=
∑

i∈{w,v,··· ,n}

aiJ
⊤
i f(q, i)

(22)

Letting (see Appendix)

P⊤
1 (q)Db

i = M1

(
Db

i

)
q

P⊤
2 (q)Db

i = M2

(
Db

i

)
q

P⊤
3 (q)Db

i = M3

(
Db

i

)
q

(23)

, the gradient arrives at

∇F (q)

=
∑

i∈{w,v,··· ,n}

ai[
1

2
J

⊤
i (q)Ji(q)q − J

⊤
i (q)Db

i ]

= 2
∑

i∈{w,v,··· ,n}

ai





1

4
J

⊤
i (q)Ji(q)−D

r
x,iM1(D

b
i )

−D
r
y,iM2(D

b
i )−D

r
z,iM3(D

b
i )



q

(24)

The operator Σ(q) is defined by

Σ(q) =
∑

i∈{w,v,··· ,n}

ai





1

4
J

⊤
i (q)Ji(q)−D

r
x,iM1(D

b
i )

−D
r
y,iM2(D

b
i )−D

r
z,iM3(D

b
i )



 (25)

Theorem 1. The equation




P⊤
1 (q)P1(q)q = q

P⊤
2 (q)P2(q)q = q

P⊤
3 (q)P3(q)q = q

(26)

always holds for arbitrary unit quaternion.

Proof. See the Appendix.

Lemma 1. With the derivation of Theorem 1, we have the

following equalities holding as well:
[
P⊤

j (q)Pk(q) + P⊤
k (q)Pj(q)

]
q = 04×1 (27)

where the indexes j, k = 1, 2, 3 and j 6= k.

Following Lemma 1, we have

1

4
J⊤
i (q)Ji(q)q = q (28)

Then the operator is simplified from a nonlinear multiplicative

function with time complexity of O(n2) to a linear one with

complexity of O(n):

Σ(q)

=
∑

i∈{w,v,··· ,n}

ai

[
I −Dr

x,iM1(D
b
i )

−Dr
y,iM2(D

b
i )−Dr

z,iM3(D
b
i )

]
(29)

The GDA measurement update equation finally arrives at

qy,k = qy,k−1 − 2χkΣ(qy,k−1)qy,k−1 (30)

where subscript y denotes the observation model source.

This simplification converts the original 4 × 3n-by-3n × 1
matrix multiplication J⊤

{w,v,··· ,n}F (q) to an additive sum of

4 × 4 matrices, which decreases the space complexity of the

algorithm.

IV. COMPLEMENTARY FILTER

A. Filter Design

A linear complementary filter can be written as the follow-

ing observer [51]
{

x̂k = Φx̂k−1 +L(yk − ŷk)
ŷk = Hx̂k

(31)

where k denotes the kth time epoch, x denotes the state vector,

y denotes the measurement vector. Φ,H are transition matrix

and measurement matrix respectively. L is the feedback gain

matrix. p̂k stands for the estimation of the p at epoch k.

The feedback gain matrix L is empirically diagonal but may

degenerates to a constant for convenience of implementation

and gain-determination when

L = βI (32)

where β denotes a constant [38]. If the state vector is the

quaternion q in our case, the linear observer can be further

designed as
{

q̂k = Φq̂k−1 +L(qy,k − q̂y,k)
q̂y,k = Hq̂k

(33)

where

H = I (34)

Using the angular rate ω = (ωx, ωy, ωz)
⊤

, this equation

generally leads to the following quaternion kinematic equation,

such that [52]
dq

dt
=

1

2
[Ω×] q (35)

where [Ω×] defines the skew symmetric matrix of angular rate

in Hamilton space Ω = (0, ωx, ωy, ωz)
⊤

[Ω×] =




0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0


 (36)

Hence we approximately have [53]

Φ ≈ I +
∆t

2
[Ω×] (37)

where ∆t denotes the time span. Expanding the state process

equation, (33) can be further given by

q̂k = Φq̂k−1 +L (qy,k − q̂y,k)
⇒ (I +L) q̂k = qω,k +Lqy,k

⇒ q̂k = (I +L)
−1

(qω,k +Lqy,k)

⇒ q̂k = (I +L)
−1

qω,k + (I +L)
−1

Lqy,k

⇒ q̂k = (I +L)
−1

qω,k +
(
L−1 + I

)−1
qy,k

(38)
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where 



qy,k = [I − 2χkΣ(q̂k−1)]q̂k−1

qω,k =

{
I +

∆t

2
[Ω×]

}
q̂k−1

(39)

Let the complementary gain G =
(
L−1 + I

)−1
, (38) can be

given by

q̂k = (I +L)
−1

qω,k +
(
L−1 + I

)−1
qy,k

= (I −G) qω,k +Gqy,k

=

{
G [I − 2χkΣ(q̂k−1)]
+ (I −G)

(
I + ∆t

2 [Ω×]
)
}
q̂k−1

=

{
I +

∆t

2
(I −G) [Ω×]− 2χkGΣ(q̂k−1)

}
q̂k−1

(40)

B. Robustness Ensurance

As described before, the measurement from vector obser-

vations compensates for the gyro bias. However, when highly

dynamic conditions take place, the performance of the filter

will be significantly affected. For instance, in previous works,

when exposed to large external acceleration or magnetic

distortion, the filter is influenced at the same time. In this

paper, we invest a new way for norm verification to reject

sensor outliers and thus make the proposed algorithm more

robust.

The Euclidean norm information can be obtained during

data acquisition of the ith sensor, such that

Normi =
∥∥Db

i

∥∥ =

√
(Db

x,i)
2
+ (Db

y,i)
2
+ (Db

z,i)
2

(41)

Before the filtering process, we should have some priori

knowledge of the adopted sensor. For any sensor, when it

is operated with smooth motion under environments with

stable external field e.g. gravity field, earth-magnetic field,

the norm of the output should be around a certain constant.

We call this constant the standard norm STDNormi. When

the motion becomes drastic, the norm of the sensor output

will have relatively big deviation from the standard norm. In

this circumstance, the sensor is no longer trustworthy and

associated item in Σ(q̂k−1) should be deleted. Hence the

weights in (24) should be revised in this case as

ãi =

{
ai, |Normi − STDNormi| < µi

0, |Normi − STDNormi| ≥ µi
(42)

and µi denotes a threshold for detecting drastic modes [15].

Finally, the whole filtering process including data acquisition

and state update is given in Algorithm 1.

C. Determination of Parameters

There are some parameters to be determined before the filter

begins. The initial quaternion qinit is the initial state of the

attitude estimator and it can be obtained using initial alignment

from strapdown sensors [28]. The complementary gain G

is commonly set as an diagonal matrix whose components

are empirically adjusted using the estimator’s response. The

determination of step length χ0 is very similar. The weights

can be determined using the initial standard deviations of

Algorithm 1 Generalized complementary filter using strap-

down vector observations via GDA (GCF).

Initialize:

Time epoch k = 0
Initial state qk=0 = qinit
Complementary gain G

Step length χk = χ0

Sorted valid sensors’ indexes w, v, · · · , n
Weights aw, av, · · · , an
Standard norm list {STDNormi|i = w, v, · · · , n}
Threshold list {µw, µv, · · · , µn}
Output: q̂k.

while no stop commands received do

1) k = k + 1
2) Input:

a) Valid normalized strapdown sensor observations:

Db
w,D

b
v, · · · ,Db

n

b) Normalized reference vectors: Dr
w,D

r
v, · · · ,Dr

n

c) Angular rate in (rad/s): ω = (ωx, ωy, ωz)
⊤

d) If gyroscope is not valid: G = I

3) Calculate norms Normi =
∥∥Db

i

∥∥
4) Deduce outlier rejection:

ãi =

{
ai, |Normi − STDNormi| < µi

0, |Normi − STDNormi| ≥ µi

5) Normalization: Db
i =

Db

i

‖Db

i‖
6) Calculate:

Σ̃(q̂k−1) =
∑

i∈{w,v,··· ,n}

ãi



I −Dr

x,iM1(D
b
i )

−Dr
y,iM2(D

b
i )

−Dr
z,iM3(D

b
i )




7) Perform time update:

q̂k =





I +
∆t

2
(I −G) [Ω×]

−2χkGΣ̃(q̂k−1)



 q̂k−1

8) Normalization: q̂k = q̂k

‖q̂k‖

end while

different sensor [54]. When the robust ensurance step is

applied, the standard norm list can be given according to

the regular ranges of the sensors’ norms. The thresholds is

chosen empirically in terms of the smoothness of the filter

i.e. it decides how many ’unusual’ sensor observations with

unusual norms are neglected.

D. Initial Alignment

The initial alignment problem is in fact the attitude determi-

nation from strapdown vector observations in the initial stage.

The following scheme is depicted for initial alignment with

our proposed filter.

qinit,k = qinit,k−1 −Σ(qinit,k−1)qinit,k−1

while ‖qinit,k−1 − qinit,k−2‖ > κ
(43)

in which k = 1, 2, · · · and κ is the threshold indicating the

relative accuracy. More specifically, in steady state, we have

Σ(qinit)qinit = 0 (44)
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Expanding it, it is obtained that the initial quaternion belongs

to the following eigenvalue problem



∑

i∈{w,v,··· ,n}

Dr
x,iM1

(
Db

i

)
+

Dr
y,iM2

(
Db

i

)
+

Dr
z,iM3

(
Db

i

)


 qinit = qinit (45)

The optimal solution is the eigenvector associated with the

eigenvalue that is closest to 1, which can be solved with our

recent method FLAE [49].

E. Further Identities and Equivalences

Remark 1. Recalling (30), we may rewrite it as

qy,k = qy,k−1 − 2χkΣ(qy,k−1)qy,k−1

= qy,k−1 − 2χk











I −

∑

i∈{w,v,··· ,n}

ai







D
r
x,iM1(D

b
i )

+D
r
y,iM2(D

b
i )

+D
r
z,iM3(D

b
i )

















qy,k−1

= (1− 2χk)qy,k−1 + 2χk

∑

i∈{w,v,··· ,n}

ai







D
r
x,iM1(D

b
i )

+D
r
y,iM2(D

b
i )

+D
r
z,iM3(D

b
i )






q

(46)

If we treat the step size as a complimentary gain, then

observation model actually leads to a filtered quaternion. This

shows that the GDA is not only an optimization solver, but

a smoother as well. Such identity makes the obtained attitude

estimates more smooth than that directly derived from Wahba’s

solutions.

Theorem 2. Derivative-based optimization methods including

GDA, GNA and LMA for optimal attitude determination from

vector observations are essentially equivalent to each other.

Proof. The Gauss-Newton algorithm (GNA) is a classical

optimization problem but it may fail when the Jacobian matrix

is singular. Consequently, some other algorithms e.g. the

Levenberg-Marquadt algorithm (LMA) are designed to over-

come this drawback. The searching equation can be written

as

qk = qk−1 −
(
J⊤
{w,v,···n}J{w,v,···n} + λI

)−1

J⊤
{w,v,···n}f(qk−1, {w, v, · · ·n})

(47)

Then we have(
J⊤
{w,v,··· ,n}J{w,v,··· ,n} + λI

)
qk =

(
J⊤
{w,v,··· ,n}J{w,v,··· ,n} + λI

)
qk−1−

J⊤
{w,v,··· ,n}f (qk−1, {w, v, · · · , n})

(48)

Note that (
J⊤
{w,v,··· ,n}J{w,v,··· ,n} + λI

)
qk−1

=


λI +

∑

i∈{w,v,··· ,n}

aiJ
⊤
i Ji


 qk−1

= (1 + λ)qk−1

(49)

Defining the quaternion error as

∆q =
(
J⊤
{w,v,··· ,n}J{w,v,··· ,n} + λI

)
(qk − qk−1) (50)

which is fully relevant to the original quaternion error qk −
qk−1 according to invertible priori matrix multiplication, we

finally obtain

∆q ≈ (1 + λ)(qk − qk−1)−
J⊤
{w,v,··· ,n}f (qk−1, {w, v, · · · , n})

(51)

In other words, the LMA obtains the same optimization

results in steady state with GDA. This shows that GDA is

sufficient for optimization update and LMA-based method like

[40] would only produce advance in smoothness. Besides,

notice that LMA is in fact an improved algorithm based on

Gauss-Newton algorithm (GNA). This shows that related GNA

methods like [38] are equivalent to the proposed GDA as well.

As the mentioned GNA, LMA and GDA are representatives

of derivative-based optimization, the equivalence connections

are established.

V. HARDWARE, EXPERIMENTS AND RESULTS

A. Sensors

Employed sensors in this section are a 3-axis

microelectromachnical-system (MEMS) accelerometer, a

3-axis MEMS gyroscope, a 3-axis MEMS magnetometer and

a monocular camera. Each sensor has its sensing principle

and mathematical model. Here, we simply introduce the

details of these sensors.

A 3-axis accelerometer measures the object’s specific

force. Its output in the object’s body frame can be expressed

by Ab = (ax, ay, az)
⊤. A 3-axis gyroscope gives the

angular rate data of the object and its output is given by

ω = (ωx, ωy, ωz)
⊤. The magnetometer measures the Earth’s

geomagnetic field and its output is M b = (mx,my,mz)
⊤.

Fig. 1: Designed hardware platform. The platform consists

of integrated AHRS, a monocular camera, a battery, an USB

debugger and an embedded computer.
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Camera has been widely used with the development of con-

sumer electronics . Using a camera, we can capture numbers

of images and videos. In fact, motion can be extracted from

a recorded video stream since continuous pictures correspond

to changes of attitude and translation. To achieve this task,

characteristics of pictures are necessary. There are many

feature extraction methods including scale-invariant feature

transform (SIFT) [55], gradient location-orientation histogram

(GLOH) [56], speeded-up robust features (SURF) [57] and

etc. Extracted features from two neiboughring images are in

a degree similar. This provides an approach to determine

the attitude and the translation vector with respect to the

previous acquired image. Since the correlation of the 3D

features are easily disturbed by noises, the random sample

consensus (RANSAC) algorithm [58] can be used for rejecting

outliers according to probabilistic functions. Using the final

valid features’ correspondence, the relative attitude can be

obtained from (3) via the SVD method by Arun et al. [44].

If the vision field is wide enough and the motion is relatively

moderate, the attitude of the object can be directly obtained

using the difference between the current and initial images.

B. Hardware Configuration

To verify the effectiveness of the proposed filter, an experi-

mental platform is designed (see Fig. 1). The system integrates

a commercial attitude and heading reference system (AHRS)

which is composed of magnetic, angular rate and gravity

(MARG) sensors. The AHRS can give high precision reference

attitude angles along with raw sensor outputs and has been

widely verified for its high reliability in navigation tasks such

as UAV, land vehicles and robots. The reference attitude angles

from the AHRS is chosen as the ground truth. A camera is

attached firmly to the installed AHRS to maintain relatively

identical attitude determination. It should be noted that the

design of the camera is motivated by PX4FLOW [59] but has

been modified for broader vision field and higher image reso-

lution. In fact there is a micro controller on the camera board

making the calculations faster. The navigation computer is

formed by an STM32F4-based board with multiple interfaces.

To achieve wireless and highly reliable data transmission, an

Xbee Pro S3B telemetry is installed on board.

In the following sub-sections, we are going to carry out

several experiments with the above sensors in order to evaluate

the performances of accuracy, robustness, time consumption.

of the proposed algorithm compared with representative meth-

ods:

1) The first one integrates a gyroscope, an accelerometer

and a magnetometer together which generates a typical

full-attitude AHRS. In such combination, the vector pairs

are
{
D

b
1 = (ax,ay, az)

T

D
b
2 = (mx,my,mz)

T
,

{
D

r
1 = (0, 0, 1)

T

D
r
2 = (mN , 0,mD)

T
(52)

where ax, ay, az and mx,my,mz are normalized vector

measurements in the body frame b from the accelerom-

eter and magnetometer respeceively. mN and mD are

reference vector components of the magnetometer in

the North-East-Down frame which can be referenced

from the geomagnetic model according to local geodetic

location.

2) The second experiment involves a gyroscope, an ac-

celerometer, a magnetometer and a monocular camera in

a hovering flight, where the vector pairs are




D
b
1 = (ax, ay, az)

T

D
b
2 = (mx,my,mz)

T

D
b
3 = (px,1, py,1, pz,1)

T

...

D
b
n =

(
px,n−2,

py,n−2, pz,n−2

)T

,





D
r
1 = (0, 0, 1)

T

D
r
2 = (mN,0,mD)

T

D
r
3 =

(
prx,1, p

r
y,1, p

r
z,1

)T

...

D
r
n =

(
prx,n−2,

pry,n−2, p
r
z,n−2

)T

(53)

in which px,i, py,i, pz,i are normalized coordinates of

the i-th transformed feature points in the body frame.

prx,i, p
r
y,i, p

r
z,i are normalized i-th transformed feature

points reference obtained in initial image capture of the

ground.

With vector pair configurations shown above, we can easily

fuse them with the procedure provided in Algorithm 1.

C. Case 1: AHRS with MARG Sensors

The accelerometer and magnetometer are introduced, adding

a compensation of pitch, roll and yaw angles from gravity-

field and magnetic-filed sensing data. The MARG sensors are

calibrated for initial biases and misalignment. To ensure good

results, the operating temperature of the sensors is stablized

at 45◦C using a controlled thermal resistance. Constant iron

and soft magnetic distortion to the magnetometer are also

compensated for before all the experiments [60]. To verify

the performance of the proposed GCF, representative meth-

ods like Wahba’s Complementary Filter (WCF) by Marantos

et al. [19], Algebraic-QUaternion-Algorithm-based quaternion

Kalman filter (AQUA q-KF) by Valenti et al. [23], Levenberg-

Marquadt-Algorithm Complementary Observer (LMA-CO) by

Fourati et al. [40] are used for comparisons. The parameters

of different filters are tuned as follows

1) WCF: The parameters are wa = 0.9, wm = 0.8, ca1 =
cm1 = 0.7, ca2 = cm2 = 0.3, ca3 = 8500, cm3 = 5500 as

described in [19].

2) AQUA q-KF: The variance matrices are

Σgyro = diag(0.0013, 0.0013, 0.0013)
Σacc = diag(0.01, 0.01, 0.02)
Σmag = diag(0.05, 0.05, 0.05)

3) LMA-CO: The gain is set to 0.1 and the positive number

for LMA is set to λ = 0.000001
4) Proposed GCF: The weights are set to aacc = 0.7 and

amag = 0.3 to enhance the accelerometer’s effect while

the complementary gain is set to G = 0.1I . The gain of

the proposed GCF is tuned to achieve relatively good at-

titude estimation results in the case of such experimental

conditions.

With the recorded data in previous experiment, the attitude

estimation errors are obtained and shown in Fig. 2. In this
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Fig. 2: Attitude estimation errors during a flat motion from

WCF, AQUA q-KF, LMA-CO and the proposed GCF. Ac-

celerometer and magnetometer are jointly utilized.

TABLE I: RMSEs of attitude angles

Algorithms Roll Pitch Yaw

WCF 4.5075
◦

2.7846
◦

3.5715
◦

AQUA q-KF 2.1736
◦

1.0264
◦

1.3266
◦

LMA-CO 1.6172
◦

1.0539
◦

1.7120
◦

Proposed GCF 1.6018
◦

1.0107
◦

1.0998
◦

evaluation, the norm verification is not performed since the

motion is not drastic. As can be seen from the figure, WCF is

the worst among all filters. The estimation accuracy of AQUA

q-KF and LMA-CO is close to that of the proposed filter. To

further verify the performances, we calculate the Root-Mean-

Squared Errors (RMSEs) of various algorithms with respect

to reference angles from high precision AHRS (see Table I).

We can see that for roll and pitch angles, the proposed GCF

reaches almost the same accuracy with LMA-CO while GCF

is the best for estimating attitude angles. This shows that the

proposed GCF is efficient for quasi-static attitude estimation.

As described before, the performance of the filter is being

tested out when drastic conditions occur. The magnetometer

can be easily disturbed by iron or magnetic objects i.e. it is

sensitive to magnetic distortion. In the next experiment, the

designed hardware remains still on a table and is perturbed

by a moving magnet. Fig. 3 reflects the raw data from the

magnetometer along with its norm. We can see that the

magnetic distortion is very large with the norm of up to

10 Gauss. Using the acquired data, attitude estimation errors

are calculated and shown in Fig. 4. The threshold for norm

verification of magnetometer is set to µmag = 0.2. We can

find out that the filter without outlier rejection undergoes

very evident disturbances of yaw angles as magnetic distortion

happens. The proposed GCF is disturbed in this case, not only

for yaw but also for roll and pitch angles. However, GCF with

Fig. 3: 1: Raw data from magnetometer. 2: Norm of the

measured magnetic field. 3: Modes of the motion.

Fig. 4: Attitude errors from various sources in the presence of

magnetic distortion.

outlier rejection shows interesting behaviour since it is hardly

perturbed by the magnetic distortion. The third sub-figure of

Fig. 3 shows that the filter can detect the magnetic distortion

at a high level. Although most magnetometer’s outputs are

being disturbed, there are still some trustworthy data. Using

these data, the filter maintains stable with convergent yaw

estimation. The RMSEs are shown in Table II.

TABLE II: RMSEs of attitude angles when magnetic distortion

takes place

Algorithms Roll Pitch Yaw

GCF with outlier rejection 0.6637
◦

0.5525
◦

1.1507
◦

GCF without outlier rejection 5.7659
◦

4.0821
◦

99.4968
◦
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D. Case 2: MARG Sensors and A Monocular Camera

Fig. 5: A quadrotor is used for validation of the attitude

estimation system involving MARG sensors and a monocular

camera.

Fig. 6: Attitude estimation results from different sources. The

’SVD solution’ refers to Arun et al.’s method while ’Nonlinear

Observer’ is the algorithm developed by Bras et al.

In this sub-section, a quadrotor is used to carry the designed

platform (see Fig. 5). The quadrotor is equipped with carbon-

fibre body and properlers and is operated under human’s con-

trol via a flight controller of DJI Wookong-M. The camera is

pre-calibrated for its intrinsic parameters using the geometric

method proposed by Zhang [61]. The 2D feature points are

converted to the 3D camera frame via intrinsic parameters and

instant rotation prediction from angular rate measurements.

During a hovering flight, when the attitude and altitude are

relatively stable, raw inertial data, raw images and reference

attitude angles are recorded with the frequency of 50Hz. A

certain image is chosen as the reference image. The images are

processed with SIFT and RANSAC for point cloud matching.

An amount of at least 4 point pairs and 12 point pairs at most

is designed for the selecting of vector observations. All the

point pairs are ensured not to be collinear with each other. The

accelerometer and magnetometer are also adopted for sensor

fusion.

TABLE III: RMSEs of attitude angles

Algorithms Roll Pitch Yaw

SVD 2.1848
◦

2.0441
◦

2.4495
◦

QUEST 1.4628
◦

1.0825
◦

1.9269
◦

Sergio’s Observer 0.6998
◦

0.3990
◦

0.6816
◦

Proposed GCF 0.3798
◦

0.3377
◦

0.1731
◦

Fig. 7: Attitude estimation results from vector observations.

The SVD solution proposed by Arun et al., QUEST algorithm

proposed by Shuster et al. and the proposed GDA are adopted

for comparisons.

The attitude estimation results are calculated with the pro-

posed complementary filter, an attitude observer proposed by

Bras et al. [62], the SVD method proposed by Arun et al

[44] and the QUEST solution to Wahba’s problem [47]. The

related attitude angles are depicted in Fig. 6. As can be seen

from the figure, the proposed filter’s attitude estimation is

the closest to reference angles. While for other algorithms,

the variance is evidently larger than the proposed GCF. The

RMSEs of the attitude angles from different sources are given

in Table III. As the matter of fact, the proposed GDA method

provides us with a new approach for attitude determination

from vector observations. Using the raw data collected, the

comparisons on attitude angles with various algorithms are

depicted in Fig. 7. The results show that the batch attitude

determination from SVD and Wahba’s solution are much more

noisy with respect to the proposed GDA. This indicates that

the proposed GDA can properly determinate the attitude with

smooth outputs. This can be applied to related areas for

reliable attitude determination from camera outputs.

E. Evaluation of Open Datasets

In nowdays autonomous driving equipments, there are al-

ways sensors like IMU, GNSS receiver to perform accu-

rate state estimation of vehicles. The KITTI dataset [63],

released by the Karlsruhe Institute of Technology and Toy-

ota Technological Institute at Chicago in 2012, has been
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widely employed in algorithmic evaluations in representative

works. It provides the users with a large variety of sensor

measurements including angular rate, acceleration, velocity,

position and ground-truth values. Here we use the dataset

2011_09_26_drive_0096_extract in the city scenes.

We use the accelerometer and GNSS velocity measurements

to form the vector observation pairs such that

{
Db

1 = (aF , aL, aU )
⊤

Db
2 = (0,−1, 0)⊤

,

{
Dr

1 = (0, 0,−1)⊤

Dr
2 = (vF , vL, vU )

⊤

where aF , aL, aU and vF , vL, vU are normalized measure-

ments of the acceleration and velocity respectively in the

Forward-Left-Up frame. The weights of the two strapdown

measurements are given equally i.e. 0.5 and 0.5 [64]. The

complementary gain is set to G = 0.01I while the GDA

step size is χ = 0.1. The acceletometer-GNSS fusion is

enabled only when the velocity norm is over 1m/s to ensure

reliable heading determination. Filtering with the angular rate,

the attitude results are computed in Fig. 8. The proposed

GCF gradually converge to the ground-truth over the initial

time period. In fact the filter’s convergence largely depends

on the filter gain and GDA correction step length. Here the

experimental result has proven the correctness and efficiency

of the proposed filter. In later works, we will try to find how

to adaptively tune the filter gain so that the attitude estimation

would be more closer to the ground truth all the time.

Fig. 8: The attitude estimation results using KITTI dataset.

F. Time Consumption

This sub-section shows the execution cost regarding the time

consumption of the proposed filter. Several comparisons are

conducted to verify the performances.

Fig. 9: Time consumption of different algorithms for MARG

fusion.

Fig. 10: Time consumption of different algorithms for attitude

determination from camera outputs.

1) Comparisons with Various Algorithms: Most of the

adopted algorithms in previous sub-sections are evaluated for

time consumption results. Fig. 9 shows the comparisons of

time consumption between attitude algorithms for MARG

fusion. Among all the algorithms, the proposed GCF owns

the least time consumption while LMA-CO is the slowest.

The WCF in fact uses an SVD solution to Wahba’s problem

[45] to form a complementary filter. LMA-CO requires the

calculation of Jacobian and inversion thus makes it slow.

AQUA q-KF is based on Kalman filter theory which needs

many matrix operations. The proposed filter, however, is free

of inversion and other operations. Hence, in a word, the

mathematical design of the proposed GCF makes it faster

than other algorithms. When we use camera to obtain attitude
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determination, the amount of vector observations significantly

increases. At this time, various algorithms have quite different

behaviours. The related evaluated time consumption is given

in Fig. 10.

Fig. 11: Time consumption of the proposed filter varies with

the amount of the vector observations. The legend denotes the

index of the repeated simulation.

We can see that the QUEST algorithm is the fastest among

all algorithms. However, QUEST, as a batch attitude deter-

mination algorithm, can only produce unfiltered results from

vector observations. In real applications, we need smooth state

estimates to ensure the operating quality of the system. It

should be noted that the proposed GDA, as described before,

can be seen as an attitude smoother (see Fig. 7). The results

show that the proposed GDA is the second fastest among

all the algorithms. This proves that the proposed GDA can

determinate attitude with relatively fast speed and much more

smooth outputs. The mean time consumption and related

standard deviation of different algorithms are presented in

Table IV.

TABLE IV: Mean and standard deviation of time consumption

of various algorithms for each vector observation. Each algo-

rithm is executed for 20 times to obtain the average values.

Algorithms Mean Time STD

Proposed GCF 3.4141× 10
−5s 2.9987× 10

−6s

WCF 9.2680× 10
−5s 9.1729× 10

−6s

LMA-CO 9.9289× 10
−5s 1.2806× 10

−5s

AQUA q-KF 6.8710× 10
−5s 1.1821× 10

−5s

Nonlinear Observer 6.3368× 10
−5s 8.2699× 10

−6s

QUEST 2.9176× 10
−5s 3.6136× 10

−6s

SVD 5.4259× 10
−5s 5.8520× 10

−6s

2) Time Complexity Test: Numbers of simulations are also

carried out to show the relationship between the amount of

vector observations and time consumption. We repeated one

simulation with various amount of vector observations for 15

times and the details are gathered and shown in Fig. 11. Multi-

ple simulations show that the relationship is linear between the

amount of vector observations and time consumption. Hence

this algorithm owns a time complexity of O(n). The reason

is that the proposed filter simplifies the computation of the

Jacobian matrix and thus converts the sophisticated matrix

multiplication to a sum of matrices. The low time complexity

of the proposed filter makes it easy to be applied on platforms

with low-configurations. The saved time can be reserved for

fault detection, failsafe, reliability enhancement and etc.

VI. CONCLUSION

This paper deals with the generalized sensor fusion problem.

Based on some previous works, the problem is transformed

into minimizing a new error function. The minimization prob-

lem is then solved using the gradient descent algorithm (GDA).

Different from existing works, we obtain some meaningfull

findings of the sensor fusion that significantly simplifies the

computation of the Jacobian matrix. The original huge matrix

multiplication is then converted to a sum of several matrices.

The proposed approach in fact gives a new method for attitude

determination from vector observations. A complementary

filter is designed further to fuse the angular rate and measure-

ment quaternion from vector observations together. The filter

is then named as the generalized complementary filter (GCF).

Moreover, we study some mathematical properties of the

proposed GCF. Results show that for quaternion-based attitude

estimation from angular rate information and strapdown vector

observations, the proposed GDA is equivalent to Levenberg

Marquadt Algorithm (LMA).

Experiments and simulations are designed and carried out to

verify the correctness and effectiveness of the proposed filter.

Throughout experiments using MARG sensors, the results

prove that the proposed filter can produce accurate attitude

estimation in both normal and harsh cases. The algorithm is

then extended to attitude estimation using inertial information

and visual data from a monocular camera. The comparisons

show that the filter can also achieve a satisfactory attitude

accuracy with respect to ground truth and other representative

methods. Execution time consumption from various sources

is also investigated which proves that the proposed filter is

computation-efficient and owns a time complexity of O(n)
with respect to the number of vector observations that makes

it easier to be implemented on low-configuration platforms.

We believe that the proposed filter can potentially bene-

fit related applications. Related codes have been upload on

https://github.com/zarathustr/GCF. Also, we think that the de-

termination of an adaptive gain to the filter for better dynamic

performance will be another task for us in the future.

APPENDIX

MANDATORY PROOFS

A. Linear Matrix Conversion

P⊤
1 (q)Db

i =




Db
x,iq0 −Db

y,iq3 +Db
z,iq2

Db
x,iq1 +Db

y,iq2 +Db
z,iq3

Db
y,iq1 −Db

x,iq2 +Db
z,iq0

Db
z,iq1 −Db

y,iq0 −Db
x,iq3


 (54a)
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=



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z,i −Db
y,i

0 Db
x,i Db

y,i Db
z,i

Db
z,i Db

y,i −Db
x,i 0

−Db
y,i Db

z,i 0 −Db
x,i


 q = M1(D

b
i )q

P⊤
2 (q)Db

i =



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(54b)

B. Quaternion Identities

One can easily write out

P
⊤
1 (q)P1(q) =









q20 + q22 + q23 q1q0 −q1q3 q1q2
q0q1 q21 + q22 + q23 q0q3 −q0q2
−q3q1 q3q0 q20 + q21 + q22 q2q3
q1q2 −q0q2 q2q3 q20 + q21 + q23









(55)

With the same technique, we obtain





P⊤
1 (q)P1(q) = I4×4 +U1(q)

P⊤
2 (q)P2(q) = I4×4 +U2(q)

P⊤
3 (q)P3(q) = I4×4 +U3(q)

(56)

where

U1(q) =




−q21 q0q1 −q1q3 q1q2
q0q1 −q20 q0q3 −q0q2
−q1q3 q0q3 −q23 q2q3
q1q2 −q0q2 q2q3 −q22


 (57a)

U2(q) =




−q22 q2q3 q0q2 −q1q2
q2q3 −q23 −q0q3 q1q3
q0q2 −q0q3 −q20 q0q1
−q1q2 q1q3 q0q1 −q21




U3(q) =




−q23 −q2q3 q1q3 q0q3
−q2q3 −q22 q1q2 q0q2
q1q3 q1q2 −q21 −q0q1
q0q3 q0q2 −q0q1 −q20




(57b)

Then with expansions, we have

U1(q)q = U2(q)q = U3(q)q = 04×1 (58)

which finishes the proof of Theorem 1.
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