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FINITE FREQUENCY EXTERNAL MODULATION IN DOUBLY DIFFUSIVE CONVECTION

Convective oscillations in porous and fluid media are studied numerically. A two-dimensional, square, differentially heated cavity, filled with a porous medium saturated by a binary fluid or simply by a binary fluid, is considered. This cavity is subjected to linear harmonic oscillations in the vertical direction. The formulation is based on the Darcy-Brinkman-Forchheimer-Boussinesq model. The time dependent Darcy-Brinkman-Forchheimer-Boussinesq equations are solved using a pseudo-spectra l Legendre collocation method. The instantaneous and mean characteristics of the flows are studied and discussed. An intensification of the heat and mass transfers is observed at low frequency for sufficiently high vibration intensity. A comparison between the response to the imposed

I 7 vibrations is made for Darcy numbers varying from Da s 10 to Da s 10.

INTRODUCTION

It is well known that one of the most interesting phenomena in binary mixtures is the arising of stratified flows responsible, particularly, for the formation of stratified structures in crystal growth in terrestrial or microgravity conditions. According to the existing knowledge, such flows arise as a result of instability of specific states in which the density variations are because of inhomogeneities in the temperature and concentration.

Fundamental studies on natural convection, within an enclosure subjected to intermittent he at flux from the side and filled with a fluid or with a fluid-saturate d porous medium, have demonstrate d the existence of convection resonance when the heat pulsation frequency approaches the natural flow frequency of the system. The case of periodic horizontal he ating was studied by Antohe and Lage w1, 2x focusing on the natural resonance within a porous enclosure under a fixed amplitude of the he at flux. Their numerical simulations covered a wide range of input he at frequencies with the Darcy number (Da) varying from 10 y2 to 10 number Pr increased or decreased from the value Pr ; 1. Their results indicated a reduced response of porous systems to oscillatory heating as the solid matrix became less permeable, the response being undetectable when Da F 10 y6 within the range of parameters investigated. Concerning the effect of a mechanical vibrational field, our statement of the problem is close to that of Gershuni and w x w x Zhukhovitsky 3 and Yurkov 4 but is formulate d for a two-component ( Darcy ] Brinkman ] Forchheimer model. In the case of a porous medium with a ) Darcy model the effect of vibrational convection exists, but only in the case of ( w x) finite frequency Khallouf, Gershuni, and Mojtabi 5 . Khallouf et al. found that this effect disappeared in the limiting case of high frequency and thought that this result was linked to the simplification they adopted using the Darcy model. Generally speaking, oscillatory phenomena are smoothe d in a dissipative medium like a Darcy porous medium. In addition, oscillatory motions can appear in binary ( w x w x) mixtures Brand and Steinberg 6 , Ourzazi and Bois 7 as the result of convective instabilities.

PROBLEM DESC RIPTION

We consider a two-dimensional square cavity of length L , filled with a nonreactive Boussinesq binary-fluid mixture saturated porous medium, subjected to lateral forcing by imposed temperature and concentration differences:

T s T , 1 C s C at x s 0, and T s T , C s C at x s L , with D T s T y T G 0, D C s C 1 2 2 1 2 1
y C F 0. The cavity is also subjected to vertical linear harmonic oscillations. The 2 binary fluid has density r and kinematic viscosity n . The effective thermal conductivity of the porous medium is l . The effective thermal diffusivity of the porous ) medium and the effective solutal diffusivity of the heavier component are, respective ly, a and D . The porous medium is characterized by a porosity e , a

) )

volumetric specific heat ratio s , a permeability K, a viscosity ratio J, and a Forchheimer inertia coefficient I. Soret and Dufour effects will not be explicitly taken into account but can be incorporated easily into the treatment that follows by me ans of a transformation , including the Soret ] Dufour equations into those ( w x) used below Knobloch 8 . We assume that within the range of temperature and concentration expected, the density varies linearly with the temperature and concentration: ) )

( ) ( ( ) ( )) ( ) r T , C s r 1 y b T y T y b C y C 1 re f T ref C ref
The resulting dimensionless equations are

( ) = ? U s 0 3 U 2 2 ( ) q U ? = U s y = P q e J Pr= U t 2 ( )( ( ) ) q e Ra Pr T y NC 1 q Rsin v t z T ( ) 4 Ie 2 Pre 2 5 5 y U U y U Da Da s T 2 ( ) ( ) q U ? = T s = T 5 e t C 1 2 ( ) ( ) q U ? = C s = C 6 t Le
where U s ux q wz is the dimensionless filtration velocity vector, and Ra , R , T respectively, are the thermal Ra and the ratio between the vibration and the gravity accelerations. The dimensionless frequency is defined by v s 2p f and parameter ( ) J in Eq. 4 accounts for the ratio of the effective viscosity of the fluid-saturate d porous medium to the viscosity of the fluid. In the following, parameter J and the ratio s r e are taken equal to one; Pr is fixed and equal to 0.71. The expression for

( ( 3 ) 1 r 2 ) ( )
the Forchheimer inertia parameter I s 1.75 Da r 150e , shown in Eq. 4 w x follows the Ergun model 9 . In the dimensionless variables, the flow domain is ( ) w x w x x, z g V ' 0, 1 = 0, 1 . The horizontal walls are taken to be insulating and across these two walls the normal mass flux is zero. No-slip boundary conditions are imposed along all boundaries. Thus ( )

U s 0 along V 7 ( ) ( ) ( ) ( ) ( ) T x s 0, z y 1 s T x s 1, z s C x s 1, z y 1 s C x s 0, z s 0 8 T C ( ) ( ) ( ) x, z s 0, 1 s x, z s 0, 1 s 0 9 z z
We consider here the situation in which the buoyanc y forces because of the thermal and solutal gradient contributions reinforce each other and are of equal intensity; i.e., the ratio of solutal and thermal buoyanc y forces is equal to one:

b D C C ( ) N s s 1 10 b D T T

NUMERICAL METHOD

In this section we give a brief description of the numerical method employed and prove its accuracy when applied to a problem of natural convection in a ( ) differentially he ated square cavity our physical configuration filled with a porous ( ) ( ) ( ) n q 1 ( medium. The time dependent Eqs. 4 , 5 , 6 are discretized at time t s n q ) 1 D t, where n is the time level and D t is the time step. The advection-diffusion energy, species conservation, and momentum equations are approximated semiimplicitly using an implicit second-orde r Euler backward scheme for linear terms and an Adams ] Bashforth scheme for the nonlinear terms. Hence the semidiscrete equations re ad as follows: 3s
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)

Da e Pr2 D t n q 1 ( ) ( ) = U s 0 14
A high accuracy spectral method, namely, the Legendre collocation method, with the Gauss ] Lobatto zeros as collocation points, is used to solve the Helmholtz ( ) ( ) ( ) ( ) problem 11 , 12 and the projection problem 13 , 14 . The well-known successive diagonalization technique is implemented to invert the corresponding operators. We must mention here that such a solver is direct and guarantees a spectral accuracy solution with free divergence for the U field on the whole domain, including the boundaries. The method, called projection diffusion, was developed w x by Azaõ ez, Ben Belgacem, Grundmann, and Khallouf 10 and solves the system in È two steps:

( ) ( ) U * q = P s S on V 15 
( ) ( ) = U * s 0 on V 16 U 2 ( ) ( ) U * ? n s y = U ? n along V 17 ( ) t
which is called the projection step, where U * s U r t y = 2 U is the solenoidal ( ) part of S in Eq. 15 . Next, the diffusion step is considered to determine the field U using a vectorial Helmoltz equation on U: The mean global Nu and Sh, respectively, Nu, Sh, independent of the position x in the cavity, are defined by with t s 1 r f. The purpose is to examine the effect of the frequency vibration on ( ) the heat and mass transfer in the cavity. See Figure 1. Resonance in Amplitude R -10 and Pr = 0.71. The vibrations do not ( affect the me an flow, but the amplitude s of all instantaneous fields velocity, ) temperature, and concentration depend on f. Vibrational Mean Flow R ) 10 and Pr = 0.71. In this paragraph , acceleration because of the vibrational field is more than 10 g. In Figure 4 The nonlinear effects of the vibrational field appear for low frequencies via many superharmonics in the response of the system. These superharmonics could have an energy larger than the one at the source frequency f. The inset of Figure 4 shows the Fourier diagram of Nu for f s 50. The major frequency in the spectrum of Nu is f s 2 f. When the vibration frequency is increased, a thermovibrational flow appears. The ( ) ( ) interaction between natural one cell and vibrational four cells convection leads to considerable modifications of the flow structure s and isotherms. The recirculations disappear progressively as f increases, and the flow structure tends to a main cell, which occupies the entire cavity. Concurrently the isotherms become perpendicular to the axis of vibration, that is, horizontal in the core region, which corresponds to the well-known natural or thermosolutal structure or both. This w x behavior has been observed by Lizee 13 .
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RESULTS AND DISC USSION
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In this part we study the flow response for Da lower than or equal to 10 y4 . The characteristics of instantaneous and me an fields greatly change with the ratio R. First, these characteristics are listed and compared with the binary fluid cases ) very low relative variation of the mean Nu. In Figure 6 the diagram of the Fourier transform of the Sh is plotted for R s 1 r 5 and Le s 1. A very small nonlinear effect is observed for f F 50 with the presence of a superharmonic f s 2 f. It out disappears totally for sufficiently high frequencies. We observe a similar behavior ( ) to that in a binary fluid see Figure 3 . This result is extended to Le varying from 1 to 20.

However, a resonance in am plitude for instantaneous heat and mass transfers ( ) is obtained for f ; 40 in the case R s 1 r 5 and for all the Le values studied. In Figure 7 the variation of these amplitudes with frequency for R s 1 r 5 and Le This resonance phenom enon has been observed already by Antohe and Lage w x 1, 2 . Their system, a fluid or a fluid-saturated porous medium, was subjected to a constant temperature on x s 0 and to a periodical he at flux on x s 1. The horizontal walls were insulated and no-slip boundary conditions applied for the velocity. Using the Darcy ] Brinkman ] Forchheimer model under the Boussinesq approximation, they obtaine d a resonance frequency. A scaling analysis coupled with numerical results demonstrate d the equality between the period of recirculation into the cavity and the resonance's period. Vibrational Mean Flow R ) 10, Pr = 0.71, and Da = 10 y 4 . For the case R ) 10, at low frequencies, the mean Nu and Sh greatly depend on the frequency, as observed in binary fluids.

Figure 8 compares the cases R s 0, R s 1, and R s 10 for Ra s 100 and D Le s 1. For R s 1, the heat transfe r increases slightly with f and asymptoticall y tends to the case R s 0. For R s 10, the he at transfer decreases with f , becomes ( ) lower than that calculated for R s 0 i.e., no vibration for f G 40, and re aches a constant value for f G 300. A major superharmonic f s 2 f and many superharout monics for low frequencies reveal the presence of nonlinear effects, whereas no m ean field varies with frequency for f G 300. Only the frequency of the source is ( ) transmitte d by the system Figure 8c for f s 400. The typical ellipsoidal signal of ( ) the phase diagram in the u y w plane Figure 8 b is observed for f s 400.

Figure 9 shows the variation with frequency of me an streamfunction and isotherm fields for Ra s 100, R s 10, and Le s 1. A thermal boundary layer D regime is observed for low frequencies and, as f increases, isotherms become perpendicular to the axis of vibration in the core region. Concurrently, for increasing frequencies, the streamfunctions tend to the natural thermosolutal convection with a main cell occupying the entire cavity. In Figure 10, Fourier transform of the instantaneous Nu into frequency are presented for different imposed frequencies, for Ra s 100, R s 10, and Le s 1.

D

For low frequencies, the superharmonic f s 2 f , with many other superharmonout ics, characterizes the nonlinear effects. Their intensity decreases with increasing f and totally disappears for high frequencies.

Figure 11 shows the variation of Nu and Sh Fourier transform with Le for f s 10, Ra s 10, and R s 10. We can define a ratio r between the intensity for D I f s 2 f and the intensity for f s f. For Sh, it is shown that this ratio decreases out out from 3 for Le s 1 to 0.2 for Le s 20, whereas r stays constant and equal to 3 for I the he at transfer as Le varies. Consequently, the mean mass transfer becomes independent of the frequency faster than the me an he at transfer. This result is confirmed by the variation with f of the Nu and Sh in Figure 12 for Ra s 10 and D R s 10, plotted for different Le. Sh is constant for f G 30, whereas Nu ceases to vary with frequency for f G 120. . For all imposed Da, me an he at transfers decrease with the frequency and tend to a constant value for f G 150. This behavior is studied more precisely in Figure 14 for Da s 10 y 6 , Le s 1, and different values of R.

Maximum transfers correspond to the presence of high superharmonic intensity at ( ) f s 2 f for low frequencies see Figure 14 a , and me an fields do not vary with out the frequency for f G 200. This is confirmed by the plot in Figure 14 b of the instantaneous Nu Fourier transform into frequency for f s 400. The intensity of the superharmonic at f s 2 f is negligible and insures constant me an fields. showed the me an isotherm field becoming perpendicular to the vibrational axis in the core region for increasing f and enhanced heat transfer for low frequencies with a thermal boundary layer regime. It is shown also that as f increases all the me an fields tend to the well-known thermal natural convection. 

C ONCLUSION

Convective oscillations have been considered both in binary fluids and in a porous medium saturated with a binary fluid in a square, differentially he ated cavity subjected to vertical oscillations. The instantaneous and me an characteristics of the flows have been studied. In the limiting case of high frequencies, effects of vibrational convection disappear in binary fluids and fluid-saturate d porous media. Consequently, an averaged equations version of the Darcy ] Brinkman ] Forchheimer model is valid within the range of sufficiently high frequencies.

( )

When the ratio R s Ra r Ra is low R F 10 , the me an flow is not

T V T

affected by the vibrations, but a resonance of the amplitude of instantaneous Nu and Sh is observed. The intensity of the resonance is smoothed in the porous medium compared with the fluid one. The resonance frequency is independent of the Le in the range of parameters investigated. ( ) When the ratio R is high enough R G 10 , it is shown that significant modifications of the mean flows and of me an heat and mass transfers are obtained in the range of low frequencies, leading to an intensification of heat and mass transfers in the cavity. Vibrational effects decrease when the frequency increases, whereas the basic natural or thermosolutal convection flow or both is establishe d in the limiting case of infinite frequencies.

The results are of great importance for space experiments, in which the g-jitter produces accelerations at least 10 times larger than the residual gravity. 

the

  Rayleigh number Ra varying from 10 to 10 . Numerical simulations T indicated that natural convection resonance was smoothe d when the Prandtl ( )

  where r is the density at temperature T s T and mass fraction C s C . In re f ref 2 ref 1 the following, we assume constant coefficients of thermal and solutal expansion b T and b , respectively. For most fluids, b is positive. Assuming that C is the mass C T fraction of the he avier component, b is negative. To simulate convective flows C both in fluid medium and in porous medium, we adopt a Darcy ] Brinkman ] Fochheimer model, written in the oscillating coordinate system. Thus the gravity field has to be replaced by the sum of the gravity and the vibrational acceleration, the frequency f of vibration by the classical relation v s 2p f. and concentration are taken to be T y T r D T ref ( ) and C y C r y D C. Length, time, and velocity are nondimensionalize d with L , re f e L 2 r a , a r L .

0 xs 0. 5 Figure 1 .

 051 Figure 1. Cavity configuration.

  ( ) ( ) The model 3 ] 6 degenerates in the Navier ] Stokes set of equations when Da ) 10. Consequently, for Da ) 10 the Da variation does not affect the structure ( ) ( ) of the flow. This was confirmed by direct numerical simulations of Eqs. 3 ] 6 with ( ) ( ) boundary conditions 7 ] 9 .

Figure 2 .

 2 Figure 2. Amplitude of the instantaneous Sherwood number Sh versus the vibration frequency for different values of the Lewis number Le. Set 5 of parameters: Da s 10, Ra s 10 , Pr s 0.71, and R s 1 r 5. Resolu- T

is plotted the 4 me

 4 an Nu value Nu varying with the frequency f for R s 0, 10, and 100; Ra s 10 ; T Da s 10; and Le s 1. The he at transfer is enhanced whenever the values of f and the he at flux increases with R. Effects of vibrations are singularly different at low or high frequencies.

Figure 3 .

 3 Figure 3. Fourier transform into frequency of the instantaneous Sherwood number for different 5 vibration frequencies f. Set of parameters: Le s 10, Pr s 0.71, Da s 10, Ra s 10 , andT

Figure 4 .

 4 Variation of the me an Nusselt number Nu with the frequency f for R s 0 dashed 4 ) ( ) line , R s 10 and R s 100, Pr s 0.71, Ra s 10 , Da s 10, and Le s 1 solid lines . Inset T for R s 100: upper left, Fourier transform into frequency of the Nusselt number for f s 50 ( ) ( ) and, right, parametric velocities diagram in the u x s z s 0.25 y w x s z s 0.25 plane and the Fourier transform into frequency of the Nusselt number for f s 800. Resolution is 33 = 33.

Figure 5

 5 Figure5presents the me an streamfunctions and the me an isotherms for ( ) various frequencies f when R s 100. At low frequencies f -120 , the he at transfe r is enhanced by a thermal boundary layer regime. The flow consists of a four-vortex structure that is characteristic of the vibrational convection mechanism. When the vibration frequency is increased, a thermovibrational flow appears. The ( ) ( ) interaction between natural one cell and vibrational four cells convection leads to considerable modifications of the flow structure s and isotherms. The recirculations disappear progressively as f increases, and the flow structure tends to a main cell, which occupies the entire cavity. Concurrently the isotherms become perpendicular to the axis of vibration, that is, horizontal in the core region, which corresponds to the well-known natural or thermosolutal structure or both. This w x behavior has been observed byLizee 13 . 

Figure 5 . 4 Ra s 10 ,D 10 y 4 .

 5410104 Figure 5. Mean streamlines and me an isotherms for different frequencies f. Set of parameters: 4 Ra s 10 , R s 100, Da s 10, Pr s 0.71, and Le s 1. For increasing f, isotherms become T perpendicular to the axis of vibration. Resolution is 33 = 33.

Figure 6 .R s 1 r 5 .

 65 Figure 6. Fourier transforms into frequency of instantaneous Sherwood numbers for different y 4 vibration frequencies f. Set of parameters: Da s 10 , Pr s 0.71, Le s 1, Ra s 100, andD

Figure 7 .

 7 Figure 7. Amplitudes of global instantaneous Nusselt and Sherwood numbers, ( ) ( ) respectively, A Nu and A Sh , versus the frequency f for different Lewis ( ) ( ) ( numbers, Le s 20 dotted-dashed lines , Le s 10 dotted lines , Le s 5 dashed y 4 ) ( ) lines , and Le s 1 solid lines . Set of parameters: Da s 10 , Ra s 100, D

Figure 8 .

 8 Figure 8. Variation of the mean Nusselt number Nu with the frequency f for ( ) ( ) R s 0 dotted-dashed lines , R s 1 and R s 10 solid lines . Set of y 4 parameters: Ra s 100, Da s 10 , Pr s 0.71, and Le s 1. Inset for D ( ) R s 10: a Fourier transform into frequency of the instantaneous Nusselt ( ) ( ) ( number for f s 10; b phase diagram in the u x s z s 0.5 y w x s z s ) ( ) 0.5 plane ; and c Fourier transform into frequency of the instantaneous Nusselt number for f s 400. Resolution is 33 = 33.

Figure 9 .D 10 ,

 910 Figure 9. Me an streamlines and isotherms for different frequencies f. Set of parameters: y 4 Ra s 100, R s 10, Da s 10 , Pr s 0.71, and Le s 1. Resolution is 33 = 33.D

  Khallouf et al. 5 studied the problem for a pure fluid using the Darcy model. ( ) For Ra s 200 corresponding to Ra as defined here and R s 5 r 2, the study T D

Figure 10 .

 10 Figure 10. Fourier transform into frequency of the instantaneous Nusselt number for y 4 different vibration frequencies f. Set of parameters: Ra s 100, R s 10, Da s 10 , D Pr s 0.71, and Le s 1. A superharmonic f s 2 f is observed at low frequency and ou t disappe ars progressively with increasing f. Resolution is 33 = 33.

Figure 11 . 4 Da s 10 ,

 11410 Figure 11. Fourier transforms of the global instantaneous Nusselt and Sherwood numbers for different Lewis numbers. Set of parameters: Ra s 10, R s 10, D y 4 Da s 10 , Pr s 0.71, and f s 10. For the Sherwood number, the ratio between the intensity at f s 2 f and that at f s f decre ase with the Lewis number. Resolution ou t ou t

Figure 12 . 4

 124 Figure 12. Variation of the mean Nusselt Nu and Sherwood Sh numbers with the ( ) frequency f for different Lewis numbers, Le s 20 dotted-dashed lines , Le s 5 ( ) ( ) dotted lines , and Le s 1 solid lines . Set of parameters: Ra s 10, R s 10, D y 4 Pr s 0.71, and Da s 10 . For increasing Le, the Nu decreases while the Sh incre ases. Resolution is 33 = 33.

Figure 13 .

 13 Figure 13. Variation of the mean Nusselt number Nu with the frequency f for different y 4 y 5 y 6 ( ) ( ) ( Darcy numbers, Da s 10 solid lines , Da s 10 dotted line , Da s 10 dashed y 7 ) ( ) lines , and Da s 10 dotted-dashed lines . Set of parameters: Ra s 10, R s 10, D

Figure 14 . 6 R

 146 Figure 14. Variation of the me an Nusselt number Nu with the frequency f for y 6 R s 0, R s 1, and R s 10. Set of parameters: Ra s 10, Da s 10 , Pr s 0.71, D ( ) and Le s 1. Inset for R s 10: a Fourier transform into frequency of the ( ) Nusselt number for f s 10, and b Fourier transform into frequency of the Nusselt number for f s 400. Resolution is 43 = 43.
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