

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible

This is an author's version published in: <u>http://oatao.univ-toulouse.fr/20692</u>

To cite this version:

Davit, Yohan and Zami-Pierre, Frédéric and Loubens, Romain de and Quintard, Michel Complex fluids: non-Newtonian flows in porous media: upscaling problems. (2018) In: 4th Summer School "Flow and Transport in Porous and Fractured media: Development, Protection, Management ad Sequestration of Subsurface Fluids", 25 June 2018 - 7 July 2018 (Cargèse, France).

Any correspondence concerning this service should be sent to the repository administrator: <u>tech-oatao@listes-diff.inp-toulouse.fr</u>

4th Cargèse Summer School, 2018

Non-Newtonian Flows in Porous Media: upscaling problems

https://www.dropbox.com/s/mcgg0ifpogsznv2/non_newtonian_V00.pdf?dl=0

Davit Y.¹, Zami-Pierre F.^{1,2}, de Loubens R.² and Quintard M.¹

¹Institut de Mécanique des Fluides de Toulouse (IMFT) -Université de Toulouse, CNRS-INPT-UPS, Toulouse FRANCE ²Total, CSTJF, Avenue Larribau, 64018 Pau, France

Objective/Outline

- Motivation: flow of polymer solutions, question about heuristic models in Res. Engng
- Upscaling
 - Introduction (generalized Stokes)
 - Transition
 - Induced anisotropy, effect of disorder, effect of size of the UC, ...
- Further problems: exclusion zone, viscoelastic
- Conclusions

Multi-Scale Analysis

M. Quintard

- Sequential multi-scale pattern
- Used in DRP, Res. Engng, Hydro., etc...
- Objectives of macro-scale theories:
 - Smoothing operator (.) \rightarrow Macro variables, Eqs & BCs
 - Micro-macro link \rightarrow

Determination of Effective Properties

Needs Scale Separation:

 $l_{\beta}, l_{\sigma} \ll \text{REV}? \ll L$

(process dependent)

Multi-Scale Analysis: Upscaling Techniques

• Form of the equations?

- -averaging and TIP (Marle, Gray, Hassanizadeh, ...)
- -averaging and closure (Whitaker, ...)
- homogenization (Bensoussan et al., Sanchez-Palencia, Tartar, ...), also "closure"
- stochastic approaches (Dagan, Gelhar, ...)

Effective properties calculations?

- Assuming the form of Eqs: interpret experiments or DNS
- Upscaling with "closure" (averaging, homogenization, stochastic): provides *local* Unit Cell problems
- Many Open Problems: High non-linearities, Strong couplings, Evolving pore-scale structure, ...

A simple introduction to upscaling with "closure"

Flow of a non-Newtonian fluid Case of Generalized Stokes equation **Pore-Scale problem (Re~0)** $\nabla \cdot \left| \mu_{\beta} \left(\dot{\gamma} \right) \left(\nabla \mathbf{v}_{\beta} + {}^{\mathsf{T}} \left(\nabla \mathbf{v}_{\beta} \right) \right) \right| - \nabla p_{\beta} + \rho_{\beta} \mathbf{g} = 0 \text{ in } V_{\beta}$ 10⁰ $\nabla \cdot \mathbf{v}_{\beta} = 0$ in V_{β} ; $\mathbf{n}_{\beta\sigma} \cdot \mathbf{v}_{\beta} = 0$ at $A_{\beta\sigma}$ μ_0 **Rheology:** plateau + power law $\mu_{\beta} = \mu_{0} \hat{\mu} (\dot{\gamma}) \qquad \dot{\gamma} = \left\| \frac{1}{2} \left(\nabla \mathbf{v}_{\beta} + {}^{\mathsf{T}} \left(\nabla \mathbf{v}_{\beta} \right) \right) : \left(\nabla \mathbf{v}_{\beta} + {}^{\mathsf{T}} \left(\nabla \mathbf{v}_{\beta} \right) \right) \right\|$ Carreau 10⁻¹ 10^{-3} 10^{-2} 10^{-1} 10^{0} 10^{1} 10^{2} 10³ $\dot{\gamma}/\dot{\gamma}_{c}$ Upscaling: (vol. aver. $\langle \psi_{\beta} \rangle = \varepsilon_{\beta} \langle \psi_{\beta} \rangle^{\beta}$ with $\varepsilon_{\beta} = V_{\beta} / V$)? $p_{\beta} = \langle p_{\beta} \rangle^{\beta} + \tilde{p}_{\beta} ; \mathbf{v}_{\beta} = \langle \mathbf{v}_{\beta} \rangle^{\beta} + \tilde{\mathbf{v}}_{\beta}$ 6/27 M. Quintard **Transport in Porous Media**

Upscaling flow of a non-Newtonian fluid

• Averaging (vol. aver. $\langle \psi_{\beta} \rangle = \varepsilon_{\beta} \langle \psi_{\beta} \rangle^{\beta}$ with $\varepsilon_{\beta} = V_{\beta}/V$) $\nabla \cdot \left\langle \mathbf{v}_{\beta} \right\rangle = 0$ macro $\left\{ -\varepsilon_{\beta} \left(\nabla \left\langle p_{\beta} \right\rangle^{\beta} - \rho_{\beta} \mathbf{g} \right) + \frac{1}{V} \int_{A_{\beta\sigma}} \mathbf{n}_{\beta\sigma} \cdot \left[\mu_{\beta} \left(\tilde{\gamma} \right) \left(\nabla \tilde{\mathbf{v}}_{\beta} + {}^{\mathsf{T}} \left(\nabla \tilde{\mathbf{v}}_{\beta} \right) \right) - \tilde{p}_{\beta} \right] dA = 0$ Closure? +... micro $\begin{cases} 0 = -\nabla \tilde{p}_{\beta} + \nabla \cdot \left(\mu_{\beta} \left(\nabla \tilde{\mathbf{v}}_{\beta} + \nabla \tilde{\mathbf{v}}_{\beta}^{T}\right)\right) - \left(\nabla \left\langle p_{\beta} \right\rangle^{\beta} - \rho_{\beta} \mathbf{g}\right) \\ \nabla_{\cdot} (\tilde{\mathbf{v}}_{\beta}) = 0 \\ \tilde{\mathbf{v}} = -\left\langle \mathbf{v}_{\beta} \right\rangle^{\beta} \text{ at } A_{\beta\sigma} \end{cases}$

 \Rightarrow Problem must be solved for each value of $\langle v_{\beta} \rangle^{\beta}$!

M. Quintard Transport in Porous Media

"Closure"?

Under several constraints: scale separation, far from BCs, ...

Tentatively:

$$\tilde{\mathbf{v}}_{\beta} = \mathbf{B} \cdot \langle \mathbf{v}_{\beta} \rangle^{\beta} + \dots$$

 $\tilde{p}_{\beta} = \mu_0 \mathbf{b} \cdot \langle \mathbf{v}_{\beta} \rangle^{\beta} + \dots$

$$\left(\nabla \cdot \left[\hat{\mu} \left(\hat{\gamma} \right) \left(\nabla \mathbf{B} + {}^{\mathsf{T}} \left(\nabla \mathbf{B} \right) \right) \right] - \nabla \mathbf{b} \right) \cdot \left\langle \mathbf{v}_{\beta} \right\rangle^{\beta} = \left\langle \nabla \cdot \left[\hat{\mu} \left(\hat{\gamma} \right) \left(\nabla \mathbf{B} + {}^{\mathsf{T}} \left(\nabla \mathbf{B} \right) \right) \right] - \nabla \mathbf{b} \right\rangle^{\beta} \cdot \left\langle \mathbf{v}_{\beta} \right\rangle^{\beta}$$

$$\left(\nabla \cdot \mathbf{B} \right) \cdot \left\langle \mathbf{v}_{\beta} \right\rangle^{\beta} = 0 ; \quad \mathbf{B} \cdot \left\langle \mathbf{v}_{\beta} \right\rangle^{\beta} = -\mathbf{I} \cdot \left\langle \mathbf{v}_{\beta} \right\rangle^{\beta} \text{ at } A_{\beta\sigma}$$

$$\mathbf{B} \left(\mathbf{r} \right) = \mathbf{B} \left(\mathbf{r} + h\mathbf{e}_{i} \right) \text{ and } \mathbf{b} \left(\mathbf{r} \right) = \mathbf{b} \left(\mathbf{r} + h\mathbf{e}_{i} \right) \text{ for } i = 1, 2, 3 \text{ (periodicity)}$$

$$\left\langle \mathbf{b} \right\rangle = 0$$

$$\text{with } \hat{\gamma} = \left\| \left(\nabla \mathbf{B} + {}^{\mathsf{T}} \nabla \mathbf{B} \right) \cdot \mathbf{e}_{\beta} \right\| \left\| \left\langle \mathbf{v}_{\beta} \right\rangle^{\beta} \right\|$$

$$\mathbf{e}_{\beta} = \left\langle \mathbf{v}_{\beta} \right\rangle^{\beta} / \left\| \left\langle \mathbf{v}_{\beta} \right\rangle^{\beta} \right\|$$

 $\Rightarrow Problem must be solved for each value of \langle v_{\beta} \rangle^{\beta}!$

A classical story: the linear case and Darcy's law (see Sanchez-Palencia, Whitaker,)

 Closure (any solution is a linear combination of elementary solutions for (v_β)^β=e_i for i=1,2,3)

$$\tilde{\mathbf{v}}_{\beta} = \mathbf{B} \cdot \left\langle \mathbf{v}_{\beta} \right\rangle^{\beta} + \dots$$
$$\tilde{p}_{\beta} = \mu_0 \mathbf{b} \cdot \left\langle \mathbf{v}_{\beta} \right\rangle^{\beta} + \dots$$

$$\left(\nabla \cdot \left(\nabla \mathbf{B}^{\mathsf{T}} (\nabla \mathbf{B})\right) - \nabla \mathbf{b}\right) = \left\langle \nabla \cdot \left(\nabla \mathbf{B}^{\mathsf{T}} (\nabla \mathbf{B})\right) - \nabla \mathbf{b} \right\rangle^{\beta}$$
$$\left(\nabla \cdot \mathbf{B}\right) = 0 \; ; \; \mathbf{B} = -\mathbf{I} \text{ at } A_{\beta\sigma} \qquad \text{over a UC!}$$
$$\mathbf{B}(\mathbf{r}) = \mathbf{B}(\mathbf{r} + h\mathbf{e}_{i}) \text{ and } \mathbf{b}(\mathbf{r}) = \mathbf{b}(\mathbf{r} + h\mathbf{e}_{i}) \text{ for } i = 1, 2, 3 \text{ (periodicity)}$$
$$\left\langle \mathbf{b} \right\rangle = 0$$

Macro-Scale equation and effective properties

Darcy's law:

$$\left\langle \mathbf{v}_{\beta} \right\rangle = -\frac{1}{\mu_0} \mathbf{K}_0 \cdot \left(\nabla \left\langle p_{\beta} \right\rangle^{\beta} - \rho_{\beta} \mathbf{g} \right)$$

Intrinsic permeability:
$$\mathbf{K}_{0}^{-1} = \frac{1}{V} \int_{V_{\beta}} \left(\nabla \cdot \left(\nabla \mathbf{B} + {}^{\mathsf{T}} \left(\nabla \mathbf{B} \right) \right) - \nabla \mathbf{b} \right) dV$$

M. Quintard

Important: Proof of symmetry of K₀ requires periodicity!

Calculations of the permeability

Case of "diffusion" problem: e.g., permeability, effective diffusion

3 possibilities

- Initial closure problem
- Transformation of closure problem into ~Stokes with source term and periodic pressure and velocity
- "permeameters": noperiodicity

• Making image periodic?

- I: Percolation problem
- II: Loss of anisotropy
- III: potentially various bias

See discussion in Guibert et al., 2015

M. Quintard

=

Calculations over non-periodic images

- "permeameters" – All methods have bias – $\langle v_x \rangle^{\beta \neq 0}$
 - $-K_{xy}\neq K_{yx}$
- Note: minimal bias if large sample and anisotropy along the axis

See discussion in: Manwart et al. 2002; Piller et al. 2009; Guibert et al., 2015; ...

M. Quintard

Non-Linear Case: Non-Newtonian Fluid

 No generic closure independent of fluid velocity! Generic macroscale law:

$$\langle \mathbf{v}_{\beta} \rangle = -\mathbf{K}_{gen}\left(\langle \mathbf{v}_{\beta} \rangle\right) \cdot \left(\nabla \langle p_{\beta} \rangle^{\beta} - \rho_{\beta} \mathbf{g}\right)$$

M. Quintard

permeance

Representation as a deviation from Darcy's law

$$\langle \mathbf{v}_{\beta} \rangle = -\frac{1}{\mu_0} \mathbf{k}_n \mathbf{P} \cdot \mathbf{K}_0 \cdot \left(\nabla \left\langle p_{\beta} \right\rangle^{\beta} - \rho_{\beta} \mathbf{g} \right)$$

newtonian velocity

- k_n, P (rotation
 "matrix"): depend on
 (v_β)^β (modulus and
 orientation)

Needs very fine grid!

² ⁴ ⁶ $\dot{\gamma} (s^{-1})$ (k) B1

M. Quintard

Transport in Porous Media

14/27

Resolution with OpenFoam

- FVM with OpenFOAM (SIMPLE, second-order scheme)
- Use of HPC, calculations up to 100 millions mesh elements
- a total of 100000 hours of CPU time.

M. Quintard

- Conform orthogonal hexahedral elements.
- Multi-criteria grid convergence study = OK.

- Computations allows to analyze various features:
 - Properties of porescale fields (PDFs)

M. Quintard

- Transition:
 - Starts in a few narrow constrictions
 - Scaling for transition?

average

Structure of the Velocity Field

17/27

Transition Scaling

Impact of Domain Size $\dot{\gamma}_{\rm c} = 1 {\rm s}^{-1}$; n = 0.70 $\langle \mathbf{v}_{\boldsymbol{R}}^{n\neq 1} \rangle$ $U^* \gg 1$ $\theta = 22^{\circ}$ n =1 6 $\cdots \sigma = 0$ $\cdots \sigma = 0$ 24 ∠4 ∇(*p* _β)^β-ρβ**g** $\sigma = 0.2$ $\sigma = 0.2$ 4 22 2 a (degree) 20 0 kn -2 -4 16 -6¹

• Anisotropy induced by non-linear behavior decreases with \nearrow L for disordered media

2

3

L

5

6

7

• Effective property variance decreases with $\nearrow L$

2

3

L

M. Quintard

Impact of disorder and velocity

Transport in Porous Media

M. Quintard

21/27

Practical Consequences

Eng. Practice: apparent Darcy's law

Discussion:

$$\left\langle \mathbf{v}_{\beta} \right\rangle = -\frac{1}{\mu\left(\dot{\gamma}_{eq}\right)} \mathbf{K}_{0} \cdot \left(\nabla \left\langle p_{\beta} \right\rangle^{\beta} - \rho_{\beta} \mathbf{g} \right)$$

$$\dot{\gamma}_{eq} = 4 \alpha \frac{\left\|\left\langle \mathbf{v}_{\beta} \right\rangle\right\| / \varepsilon_{\beta}}{\sqrt{8K_0 / \varepsilon_{\beta}}}$$

- Fitting parameter (rock dependent)
- -P=I for all $\langle v_{\beta} \rangle^{\beta}$ if isotropic disordered media and REV (\rightarrow need tests for various sizes)!
- -Apparent permeability ~ scales with $(K_{\theta})^{\frac{1}{2}}$ \rightarrow classical scaling "may" introduce artificial dependence upon parameters such as porosity:

$$\langle U_c \rangle_{FL} = \alpha' \dot{\gamma}_c \sqrt{K_0}$$
 versus $\langle U_c \rangle_{FL} = \frac{1}{\alpha \sqrt{2\varepsilon_\beta}} \dot{\gamma}_c \sqrt{K_0}$

 Description of transition near the critical velocity may not be well described by an apparent viscosity (no observed angle in the apparent permeability in the case of PLCO)

Further upscaling

 Depletion layer treated as an effective BC

$$\mathbf{v}_{\beta} = -\ell \,\mathbf{n} \cdot \left(\nabla \mathbf{v}_{\beta} + (\nabla \mathbf{v}_{\beta})^{T}\right) \cdot (\mathbf{I} - \mathbf{n}\mathbf{n})$$

Zami-Pierre et al., 2017

see Chauveteau (1982), Sorbie & Huang (1991) (double-layer model)

M. Quintard

Further upscaling

Viscoelastic fluids

$$\rho_l \frac{\partial \mathbf{v}_l}{\partial t} + \rho_l \mathbf{v}_l \cdot \nabla \mathbf{v}_l = -\nabla p_l + \rho_l \mathbf{g} + \underbrace{\nabla \cdot \left(\mu_s \left(\nabla \mathbf{v}_l + \nabla \mathbf{v}_l^T\right)\right)}_{solvent} + \nabla \cdot \boldsymbol{\tau}_v$$

$$\vec{\boldsymbol{\tau}}_{v} = \frac{\partial \boldsymbol{\tau}_{v}}{\partial t} + \mathbf{v}_{l} \cdot \nabla \boldsymbol{\tau}_{v} - \nabla \mathbf{v}_{l}^{T} \cdot \boldsymbol{\tau}_{v} - \boldsymbol{\tau}_{v} \cdot \nabla \mathbf{v}_{l} \qquad \text{upper convected Derivative}$$

Rheological models

M. Quintard

FENE-P: $f(\tau_{v})\tau_{v} + \lambda \overline{\tau}_{v} = 2 a \mu_{p} \frac{1}{2} \left(\nabla \mathbf{v}_{l} + \nabla \mathbf{v}_{l}^{T} \right)$ $f(\tau_{v}) = 1 + \frac{3 a + (\lambda/\mu_{p}) \operatorname{tr}(\tau_{v})}{L^{2}} ; a = \frac{L^{2}}{L^{2} - 3}$

 $L^2 \rightarrow \infty$ gives Oldroyd-B model (no-elongation limit)

Example of results: De et al., soft matter, 2018

Further perspectives: N-momentum equations, multi-component aspects, ...

Superfluid: 2 momentum equations → complex behavior → macroscale model?

see Allain et al. (2010, 2013, 2015), Soulaine et al. (2015, 2017)

- Polymer solution as multi-component systems:
 - Mechanical segregation, degradation (bio., mech.)
 - Model?
 - Momentum balances:
 - -diffusion theory or
 - -N-momentum equations
 - Composition:
 - -Continuous models or
 - -PBM (population balance model), ...

mol. weight

Conclusions

- Upscaling tells that this is not always possible to separate in an apparent Darcy's law permeability and viscosity
- Specific anisotropy effects
- Simplifications arise for disordered media
- Various results published in the literature for various rheology: power-law (...), Ellis and Herschel–Bulkley fluids (Sochi & Blunt, 2008), Yield-Stress Fluids (Sochi, 2008), etc...
- Additional problems: retention effects, Inaccessible Pore Volume (IPV), mobile/immobile effects
- Perspectives: viscoelastic, multicomponent, coupling with other transport problems (transport of species, heat transfer, etc...), ...