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Location of turning ratio and flow sensors for flow
reconstruction in large traffic networks

Martin Rodriguez-Vegaa,∗, Carlos Canudas-de-Wita, Hassen Fouratia

aCNRS, Gipsa-Lab, Grenoble INP, Univ. Grenoble Alpes, INRIA, 38000 Grenoble, France

Abstract

In this work we examine the problem of minimizing the number of sensors needed
to completely recover the vehicular flow in a steady state traffic network. We
consider two possible sensor technologies: one that allows the measurement of
turning ratios at a given intersection and the other that directly measures the
flow in a road. We formulate an optimization problem that finds the optimal
location of both types of sensors, such that a minimum number is required.
To solve this problem, we propose a method that relies on the structure of the
underlying graph, which has a quasi-linear computational complexity, resulting
in less computing time when compared to other works in the literature. We
evaluate our results using dynamical traffic simulations in synthetic networks.
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1. Introduction

Traffic state monitoring and estimation play a key role in the development of
intelligent transportation systems. Because of the high installation and main-
tenance cost of sensors, it is of great importance to efficiently locate the least
amount of sensors that give enough information about the network state. For-
tunately, as different sensing technologies start to become available at a smaller
cost, heterogeneous data can be incorporated in a cooperative way in order to
optimize the information while minimizing the sensing locations.

In this paper, we consider the use of two types of sensing technologies to
reconstruct the state of the traffic network. Flow sensors are installed in road
segments and return the number of vehicles that passed over the location during
a period of time. On the other hand, turning ratio sensors are installed on
intersections and can estimate the percentage of vehicles turning to any of the
exits of the junction. In contrast to flow sensors, turning ratio sensors are
required to measure routing choices, and not necessarily total flow. For instance,
Abbott-jard et al. (2013) and Bhaskar et al. (2015) studied the use of Bluetooth
and WiFi technology to obtain vehicle trajectories, and by identifying entry/exit
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road pairs in intersections, routing proportions can be estimated. This strategy
does not provide the total flow since the penetration rate is usually unknown.
A different strategy is the use of data recollection campaigns with mobile flow
sensors to construct a database of average routing behavior. Other methods
were briefly discussed by Bianco et al. (2001).

In the literature, different approaches have been considered for the determi-
nation of the minimum number of sensors according to the degree of knowledge
of the network and the available sensing technologies. Bianco et al. (2001) de-
fined the region of influence of flow sensors located at intersections, and with the
knowledge of turning ratios in the network, they were able to provide necessary
conditions for flow observability and some heuristic bounds on the number of
sensors. Bianco et al. (2006) performed a deeper analysis and determined that
the sensor location problem is NP-complete.

Some methods, developed by Castillo et al. (2008) and Hu et al. (2009)
formulated the problem by enumerating all possible paths of the network to
construct a matrix of constraints to give bounds on the required number of
sensors to achieve flow reconstruction. Furthermore, they analyzed the effect
of different network topologies on these bounds. Additionally, if there is avail-
able information about unused paths, Castillo et al. (2013) and Castillo et al.
(2014) provided extensions to reduce the number of possibilities that need to
be enumerated. Hu and Liou (2014) and Fu et al. (2016) used these methods
to consider the use of not only stationary flow sensors, but also active sensors
capable of providing floating car data.

A different alternative was presented by Ng (2012), who considered the con-
servation of flow equations at intersections instead of path flows. This method
requires no enumeration of paths and is able to calculate the number of sensors
as a function of the number of nodes and edges in a graph. Additionally, they
proposed an algorithm for flow sensor location. This method was improved by
He (2013), who provided an efficient algorithm based on the topology of the
network and graph theory. However, as this approach uses little assumptions
about the network (only topology is used), the number of sensors may be large
for real applications Viti et al. (2014).

More robust approaches to this problem have also been studied. He (2013),
Viti et al. (2014) and Rinaldi and Viti (2017) proposed methods to assess and
locate sensors for partial observability, i.e. only some of the flows of the network
are reconstructed. Other works such as Xu et al. (2016) and Lovisari et al.
(2016) deal with measurement noise presenting a trade-off between the number
of sensors and the quality of flow reconstruction. More complete reviews about
models and methods used for flow reconstruction and sensor location can be
found in Gentili and Mirchandani (2012) and Castillo et al. (2015).

Our contribution in this paper consists in solving the sensor location problem
by considering flow and turning ratio sensors. This allows for a cost trade-off
between these sensing technologies which can reduce the total number of sensors.
The method only relies on knowledge of network topology, and does not require
any knowledge about route choices or O/D paths which may be hard to obtain
in certain cases. Additionally, we noted while studying the literature that most
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Table 1: Basic notations used in this work

Notation Description
I Identity Matrix
1 Vector of ones
0 Vector of zeros
ui Standard basis vector with 1 in the i-th coordinate.

|A| or nA Cardinality of set A.
A \B Relative complement of sets A and B.
kerA Null space (or kernel) of matrix A
ei ∈ A i-th element of set A

Ai,j Element of matrix A at row i and column j.
v(j) j-th component of vector v.

of the proposed methods present a high computational complexity. We propose
sensor location algorithms that allow for complete flow reconstruction with the
minimal number of sensors, with quasi-linear complexity with respect to the
number of intersections and roads. Thus, these algorithms can be used for very
large traffic networks.

2. Notation and definitions

In this paper, calligraphic letters A are used for sets, uppercase letters A
are used for matrices, boldface lowercase letters a are used for vectors, and
lowercase letters a are used for scalars. Some basic notations used throughout
this work are shown in Table 1.

We represent traffic networks by means of a directed graph. The nodes of the
graph are partitioned in two disjoint sets C and N: C corresponds to source and
sink nodes of the network and N = {1, 2, . . . , nN} represents intersections which
are not able to generate or store vehicular flow. The edges E = {1, 2, . . . , nE}
represent the set of roads of the network. Denote I(k) as the set of incoming
edges to some node k and O(k) as the set of outgoing edges from k. We define a
partition of E in three sets: Ein =

⋃
k∈C O(k) are the boundary incoming roads,

Eout =
⋃

k∈C I(k) are the boundary outgoing roads, and Enet = E \ (Ein ∪ Eout)
are the internal roads of the network.

Definition 1. A feasible traffic network is a directed graph {C ∪ N,E} such
that the following conditions are met:

• Every edge is part of a path that starts with an edge from Ein and ends
with an edge from Eout.

• The graph contains no self loops.

• ∀k ∈ N we have I(k) ∩ Eout = ∅ and O(k) ∩ Ein = ∅.

• There is no production or storage of vehicles in the nodes in N.
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Definition 2. A turning ratio ri,j is the percentage of vehicular flow in road
i ∈ E that turns to road j ∈ E at some intersection k ∈ N for which i ∈ I(k)
and j ∈ O(k). �

From now on if two roads i and j are not connected to the same node as
indicated in Definition 2, we denote ri,j = 0.

3. Problem statement

Our problem is to locate flow and turning ratio sensors such that the road
flows (also known as link or edge flows) of the network can be inferred from the
measurements while minimizing the number of sensors. In the literature this is
known as the network sensor location problem, Hu et al. (2009, 2016). We point
out that we do not recover path or origin-destination flows in this paper.

To formulate this problem, we must first define the linear constraints that
arise from the flow conservation equations.

3.1. Flow conservation equations at intersections

As we are considering steady-state, each road e ∈ E is characterized by a
unique vehicular flow ϕe. From the definition of the turning ratios (Definition 2),
each of the outgoing flows of any intersection k ∈ N can be expressed as the
sum of the contributions of the incoming flows weighted by the corresponding
turning ratio:

ϕj −
∑

i∈I(k)

ri,jϕi = 0 , ∀j ∈ O(k). (1)

Additionally, the flow conservation requires that the total incoming flow must
be equal to the total outgoing flow:∑

j∈O(k)

ϕj −
∑

i∈I(k)

ϕi = 0. (2)

Note that these two equations imply that
∑

j ri,j = 1.
It can be seen that eq. (1) can only be used when the turning ratios are

known. Let R ⊆ N be the set of intersections equipped with turning ratio
sensors. For each of the outgoing edges of the intersections in R, an equa-
tion following (1) can be written. Define matrix A(R) as the collection of the
resulting equations for all intersections in R:

A(R)i,j =

{
1 if ei = j

−rj,ei else
, (3)

where ei is the i-th element of the ordered set
⋃

k∈R O(k). As an edge can
only belong to one source node, it is clear that the sets O(k) for all k ∈ N are
mutually disjoint. Therefore, the number of rows of A(R) is |

⋃
k∈R O(k)| =∑

k∈R degout(k), where degout(k) is the out-degree (number of outgoing edges)
of node k.
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Let U = N \ R be the set of unmeasured intersections. Following a similar
discussion to R, each of the intersections in U has assigned an equation analogue
to (2). Define matrix B(U) as the collection of resulting equations for each
k ∈ U:

B(U)i,j =

 1 if j ∈ O(ki)
−1 if j ∈ I(ki)

0 else
, (4)

where ki is the i-th element of the ordered set U. Check that B(U) has size
(nN − nR)× nE with nR = |R|.

3.2. System of linear constraints

To represent the location of flow sensors, let S ⊆ E be the set of roads with
cardinality |S| = ns equipped with flow sensors. We define a matrix C(S) ∈
{0, 1}ns×nE such that C(S)i,j = 1 if the i-th sensor is located in the j-th road.
Note that we can write C(S) = [ue1 ue2 · · · uenS

]T , where ei is the i-th element
of the set S. We assume that the elements of S are distinct, and so rank C(S) =
nS.

Using these matrices, we can write the linear constraints on the system.[
L(R)
C(S)

]
ϕ =

[
0
ϕm

]
, (5)

where L(R) = [A(R)T B(U)T ]T and ϕm are the measurements given by the flow
sensors.

Example 1. Consider the traffic network shown in Figure 1. Denote C =

v−

v+
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Figure 1: Simple traffic network.

{v+, v−} where v+ is a source node and v− is a sink node. Additionally, the in-
tersections are denoted by N = {1, 2, . . . , 6} and the roads by E = {1, 2, . . . , 11}.
Assume that turning ratio sensors are located at intersection R = {2, 3}, and
thus U = {1, 4, 5, 6}. Applying the previous description, the linear constraint
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matrices are

A(R) =

ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7 ϕ8 ϕ9 ϕ10 ϕ11



ϕ3 0 −r23 1 0 −r53 0 0 0 0 0 0

ϕ6 0 −r26 0 0 −r56 1 0 0 0 0 0

ϕ4 0 0 0 1 0 0 0 −r84 −r94 0 0

ϕ5 0 0 0 0 1 0 0 −r85 −r95 0 0

ϕ7 0 0 0 0 0 0 1 −r87 −r97 0 0

,

B(U) =

ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7 ϕ8 ϕ9 ϕ10 ϕ11


1 1 0 −1 −1 0 0 0 0 0 0 0

4 0 0 0 0 0 −1 −1 0 0 1 0

5 0 0 0 0 0 0 0 1 0 0 −1

6 0 0 0 0 0 0 0 0 1 −1 1

.

The first two rows of A(R) correspond to the outgoing edges of intersection
2 (roads 3 and 6), and the last three rows are related to the outgoing edges
of intersection 3 (roads 4, 5 and 7). Similarly, each of the rows of B(U) are
associated with intersections 1, 4, 5 and 6. Now consider that sensors are
located at edges S = {1, 9}. The resulting sensing matrix is

C(S) =

ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7 ϕ8 ϕ9 ϕ10 ϕ11[ ]
1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0

.

Note that the first row of C(S) is uT
1 and the second one is uT

9 .
As a specific case, let the turning ratios be such that the input flows 2,

5, 8 and 9 are distributed evenly to their corresponding destinations. It is
straightforward to check that

rank

 A(R)
B(U)
C(S)

 = 11.

Therefore, this matrix is invertible and flow reconstruction can be done. �

It is clear that the system (5) has a solution when the matrix in the left
hand side has rank equal to the number of columns (the number of roads in the
network nE). Therefore, the condition for full road flow observability is

rank

([
L(R)
C(S)

])
= nE. (6)
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3.3. Network sensor location problem

Our objective is to find the minimum number of flow and turning ratio
sensors and their positions. For the moment, we will consider the scenario
where the number of turning ratio sensors |R| is a known number nR and the
number of flow sensors |S| is minimized. Later, in Section 6, we will expand the
results to the general case where both |R| and |S| are the decision variables.

The problem formulation is to find the optimal sets R∗ and S∗ that solve

R∗, S∗ = argmin
R,S

|S|

subject to rank

([
L(R)
C(S)

])
= nE

|R| = nR

, (7)

where nR is a given number of intersections to be equipped with turning ratio
sensors.

Proposition 1. For any nR ∈ {0, 1, . . . , nN}, problem (7) has at least one
feasible solution.

Proof. Consider S = E for which C(E) = InE
. It is straightforward that

rank

([
L(R)
C(E)

])
= nE for any matrix L(R). This selection of sets R, S satisfies

the constraints, hence the feasible set is non empty.

It can be seen that this problem is combinatorial. Using a brute force ap-
proach, i.e. calculate the cost for every possible combination and selecting the
optimal one, would require O((nN/nR)

nR 2nE) operations, which is expensive
to solve. Because of this, we consider a partition of this problem into two prob-
lems with a lower degree of complexity. The first consists in independently
calculating the optimal set of turning ratio sensors as

R∗ = argmax
R

rank L(R)

subject to |R| = nR
. (8)

Once we find the set R∗, the second problem consists in finding any set S∗ that
satisfies the following conditions:

find any S∗ ⊆ E

such that rank C(S∗) = nE − rank L(R∗)

rank

([
L(R∗)
C(S∗)

])
= rank C(S∗) + rank L(R∗)

. (9)

Next, we show that solving problems (8) and (9) is equivalent to solving
problem (7).

Lemma 1. For any given set R∗ ⊆ N, problem (9) has at least one solution.
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Proof. From the definition of L(R∗), it can be seen that

0 < rank L(R∗) ≤
∑
k∈N

degout(k) < nE.

Consider S = E so C(E) = I, and rank C(E) = nE. It follows that

rank C(E) + rank L(R∗) > nE. However, rank

([
L(R∗)
C(E)

])
= nE, so some

rows of C(E) are linear combinations of the other rows. We can find a solution
with the following iterative process:

1. Initialize S = E.

2. While rank L(R∗) + rank C(S) > nE
2.1 Find s ∈ S such that the corresponding row of C(S) is linear combi-

nation of the other rows of the matrix.
2.2 Assign S← S \ {s}

3. Define S∗ ← S

As the process only removes redundant rows, the rank of the augmented ma-
trix is still equal to nE. Additionally, the algorithm only ends when rank L(R∗)+
rank C(S) = nE. Therefore, for a given R∗, it is always possible to find an S∗

which satisfies the constraints.

Lemma 2. Let R∗, S∗ be an optimal solution to problem (7). Then, the rows
of matrices L(R∗) and C(S∗) are linearly independent.

Proof. We proceed by contradiction. Assume that the rows of C(S∗) are not
linearly independent to the rows of L(R∗). There exist at least one row of C(S∗),

uT
s such that s ∈ S∗, which is a linear combination of the rows of

[
L(R∗)
C(S∗)

]
.

Define a new set S′ = S∗ \ {s}. Matrix C(S′) is the same as C(S∗) but with

row uT
s removed. It is evident that rank

([
L(R∗)
C(S′)

])
= nE so the constraints

are still satisfied. Additionally, |S′| = n∗S − 1 < |S∗|, making S∗ non optimal,
which is a contradiction.

Theorem 1. R∗, S∗ is a solution to (7) if and only if R∗ is a solution to (8)
and S∗ is a solution to (9).

Proof. Recall, by construction, rank C(S) = |S| for any S ⊆ E.
First, we prove implication. Assume that R∗, S∗ is a solution to (7). From

Lemma 2 and the constraints of (7), it is evident that S∗ is a solution to (9).
Assume there exists R′, |R′| = nR such that rank L(R′) > rank L(R∗). Because
of Lemma 1, we can find S′ satisfying (9). It is easy to check that the pair R′, S′

lie in the feasible region of (7), and that |S′| < |S∗|. This implies that S∗ is
not an optimal solution. This is a contradiction, so this R′ cannot exist and
therefore, rank L(R∗) ≥ rank L(R) for any R, |R| = nR, so R∗ is a solution to
(8).
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Now we proceed to necessity. Assume that R∗ is a solution to (8) and S∗

is a solution to (9), so |S∗| = nE − rank L(R∗). Consider that the pair R′, S′

is an optimal solution to (7), so |S′| ≤ |S∗|. By construction, it must be that
rank L(R∗) ≥ rank L(R′), and by Lemma 2, rank L(R∗) ≥ nE − |S′|. This
implies that |S∗| ≤ |S′|, and thus, |S∗| = |S′|, so the pair R∗, S∗ is also an
optimal solution to (7).

As these problems can be solved separately, complexity is reduced. How-
ever, problem (8) still requires to try out O((nN/nR)

nR) combinations, and

problem (9) has O(n
rank L(R∗)
E ) possible combinations which in turns require to

calculate the rank of big matrices. In the following sections we provide efficient
solutions to these problems.

4. Optimal location of turning ratio sensors

Theorem 2 (later in this section) allows to write rank of matrix L(R) for
any R as a function of the number of intersections in the network and their
out-degrees, i.e.

rank L(R) = nN − nR +
∑
k∈R

degout(k). (10)

Using this expression, problem (8) can be rewritten as

R∗ = argmax
R

∑
k∈R degout(k)

subject to |R| = nR
. (11)

To solve this problem, we propose the following algorithm:

Algorithm 1. Location of turning ratio sensors

Inputs: Directed graph {C ∪N,E} and number of turning ratio sensors nR.
Output: Set of intersections R∗.

1. Calculate the vector of out-degrees: d(k)← degout(k), ∀k ∈ N.

2. Sort d from highest to lowest and return the sorting vector λ, i.e. λ(1)
is the index of the highest element of d, λ(2) is the index of the second
highest, and so on.

3. Construct R∗ ← {λ(1),λ(2), . . . ,λ(nR)}. �

Remark: Several solutions are possible depending on the multiplicity of the
out-degrees of the nodes of the network, however, all these solutions are optimal.

Example 2. Consider the traffic network shown in Figure 1. Furthermore,
assume that nR = 2. By applying Algorithm 1 to these inputs we obtain:

1. The vector of out-degrees is d = [1 2 3 1 1 2]T .
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2. After sorting d, the resulting sorting vector is λ = [3 2 6 1 4 5]T .

3. The output is found by selecting the first two elements of λ: R∗ = {2, 3}.

Note however that there are several nodes with the same out-degree. Because
of this, the set {3, 6} would also be a solution to problem (11). �

The following propositions show that problem (8) can be converted into
problem (11).

Lemma 3. For any feasible traffic network {C ∪ N,E} (see Definition 1) and
any set of intersections R ⊆ N, matrix A(R) is full row rank.

Proof. Without loss of generality assume that the ordering of the elements of E
is such that the smaller indexes correspond to Ein, followed by Enet and ending
with Eout. Denote |Ein| = nin and |Eout| = nout.

For now, let R = N. Using the proposed indexing, we can write

A(N)i,j =

{
1 if i = j + nin

−rj,i+nin
else

,

for i = 1, 2, . . . , nE − nin and j = 1, 2, . . . , nE.
We can split A(N) = [X Y ] where Y is a square matrix of size nE−nin and

can be written as Y = I−RT with Ri,j = ri+nin,j+nin
for i, j ∈ {1, 2, . . . , nE −

nin}. Matrix R has the following properties:

1. The diagonal entries of R are zero as ri,i = 0.

2. All roads in Eout have no downstream neighbors, so ri,j = 0 , ∀i ∈ Eout.
Thus, the last nout rows of R are zero. Nevertheless, by flow conservation,
all the other rows of R sum to 1.

3. For every row i of R there is a sequence of nonzero elements of R of the
form Ri,i1 , Ri1,i2 , . . . , Riq,j such that j ∈ Eout.

Properties 1 and 2 imply that Y T is weakly diagonally dominant matrix, i.e.
Yi,i ≥ |

∑
j 6=i Yi,j |, where the strict inequality is true only for the last nout

rows. Nevertheless, property 3 states that for every row i, there is a sequence
of nonzero elements that connect row i to one of the last nout rows. Because of
this, Y T is a special type of matrix called weakly chained diagonally dominant,
which is known to be non-singular [Shivakumar and Chew (1974)]. Thus all
rows of A(N) form a linearly independent set.

For any arbitrary R ⊆ N, the resulting matrix A(R) is just a reduced ver-
sion of A(N) with some of its rows removed. As the rows A(N) are linearly
independent, it is straightforward that A(R) is full row rank as well.

Lemma 4. For any feasible traffic network {C ∪ N,E} (see Definition 1) and
any set of intersections U ⊆ N, matrix B(U) is full row rank.

Proof. Initially assume that U = N. By construction, each column of B(N) ∈
{−1, 0, 1}nN×nE has only 2 non-zero entries which sum to 0. The only exceptions
are columns corresponding to indexes Ein which have only one non-zero element
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equal to -1, and columns corresponding to indexes Eout with one non-zero entry
equal to 1. Note that B(N) is the incidence matrix of {N,E}.

We proceed by contradiction. Assume that B(N) is not full rank. This im-
plies that there exist two sets U1 ⊂ N and U2 ⊂ N such that

∑
k∈U1

B(N)k,j =
−
∑

k∈U2
B(N)k,j , ∀j, which is equivalent to

⋃
k∈U1

O(k) =
⋃

k∈U2
I(k) and⋃

k∈U1
I(k) =

⋃
k∈U2

O(k). This means that for every node in U1, any down-
stream neighbor must be a member of U1 or U2. Subsequently, any downstream
chain of nodes must be contained in one of these two sets. As every edge is part
of path ending in an element of Eout, the previous statements imply that there
exists a node k ∈ N such that I(k)∩Eout 6= ∅, which is a contradiction. Hence,
the rows of B(N) form a linearly independent set.

Following a similar discussion as at the end of the proof of Lemma 3, we
note that for U ⊆ N, the corresponding B(U) implies only the removal of rows
from B(N), so the remaining rows are still linearly independent, and thus B(U)
is full row rank.

Theorem 2. For any feasible network {C∪N,E}, and sets R ⊆ N and U = N\R,
it holds that rank L(R) = rank A(R) + rank B(U).

Proof. For an arbitrary k ∈ N, we can check that 1TA({k}) = B({k}). This
is due to the fact that

∑
i ri,j = 1 for all j, and that ri,j = 0 if j is not a

downstream neighbor of i. Conversely, 1TA({k}) and B({p}) share no non-zero
entries for k 6= p, because O(k) ∩ O(p) = ∅ and I(k) ∩ I(p) = ∅ if k 6= p.
Thus, for an arbitrary set K ⊆ N, each row of B(K) can be obtained by the
combination of unique rows of A(K). As R ∩ U = ∅, no row of B(U) can
be written as a combination of rows of A(R), so both matrices have linearly
independent rows.

5. Optimal location of flow sensors

In this section we discuss an efficient solution to problem (9). The following
Corollary provides a way to calculate the optimal number of flow sensors n∗s.

Corollary 1. For any feasible traffic network {C ∪ N,E} and any set of in-
tersections R∗ ⊆ N with cardinality nR, the minimum number of flow sensors
required to infer all flows in the network is

n∗s = nE − nN + nR −
∑
k∈R∗

degout(k). (12)

Proof. Let S∗ be an optimal solution to (9), so n∗S = |S∗| = rank C(S∗) =
nE − rank L(R∗). Thus, the corollary follows directly from Theorem 2.

To solve the sensor location problem we require a method that locates the
number of sensors indicated in the corollary in such a way that the rows of C(S∗)
and the rows of L(R∗) are linearly independent.

Because of the efficiency and simplicity of graph-based approaches such as
the one of He (2013), we decided to expand these techniques to include partial
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information of turning ratios. We propose Algorithm 2 which makes use of the
topological structure of the traffic network and the information given by the
set R∗. The algorithm creates spanning trees of the input graph by using the
well known Depth First Search (DFS), which is a well known graph traversal
algorithm.

Algorithm 2. Location of flow sensors

Inputs: Directed graph {C ∪N,E} and set R∗ ⊆ N.
Output: Set of measured edges S∗.

1. Replace all nodes in C with a single node v0 such that Ein = O(v0) and
Eout = I(v0).

2. Initialize ER ← ∅ and E′ ← E. For each k ∈ R∗:

2.1 Find {e1, e2, . . . , eq} = O(k).
2.2 Assign ER ← {e2, . . . , eq}.
2.3 Assign E′ ← E′ \ ER.

3. Ignoring edge direction, perform a depth first search (DFS) over {N ∪
{v0},E′} starting at v0. Denote NT and ET as the visited nodes and
edges, respectively.

4. While R∗ \NT 6= ∅:

4.1 For each k ∈ R∗ \NT :

4.1.1 Construct Mk = {m ∈ N | ∃j ∈ O(k) ∩ I(m) ∩ ER}.
4.1.2 If ∃m ∈Mk ∩NT :

4.1.2.1 Find j ∈ O(k) ∩ I(m).
4.1.2.2 Return k and j. Exit loop.

4.2 Find e1 ∈ O(k) ∩ E′.
4.3 Assign E′ ← E′ \ {e1}
4.4 Assign ER ← (ER \ {j}) ∪ {e1}
4.5 Ignoring edge direction, perform a DFS over {N ∪ v0,E′} starting at

k. Denote Nk and Ek the visited nodes and edges, respectively.
4.6 Assign NT ← NT ∪Nk.
4.7 Assign ET ← ET ∪ Ek ∪ {j}.

5. Assign S∗ = E′ \ ET .

Remark: for the case R∗ = ∅, only steps 1, 3 and 5 are performed, and our
algorithm becomes the same as the one presented in He (2013).

The first step of the algorithm aggregates the sources and sinks into a single
node. The resulting node will satisfy the flow conservation equations and will
make the graph strongly connected. Step 2 removes all but one of the out-
going edges for each of the nodes in R∗. Then, step 3 constructs a tree from
the remaining edges. However, because of the removal of edges in step 2, the
resulting graph may become disconnected, so the DFS algorithm may not reach
all of the nodes in the graph. Step 4 redoes the removal of outgoing edges from
R∗ such that the resulting graph is connected, and finishes the construction of
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a spanning tree of the original graph. Finally, flow sensors are located in edges
which are not included in the spanning tree or the removed edges.

Remark: The removal of links in step 2 and the construction of spanning trees
using the DFS algorithm are not unique, and alternative node and edge indexing
might yield different sensor configuration. Nevertheless, all multiple solutions
provide the same number of sensors, and are thus equally optimal.

Example 3. Consider the traffic network shown in Figure 1. Let R∗ = {2, 3}
as obtained in Example 2. The optimal location of flow sensors is given by
Algorithm 2: the application of step 1 will generate the graph shown in Figure
2.
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Figure 2: Graph after Step 1.

During step 2 the algorithm iterates over the elements of R∗. For intersection
2, it can be seen that O(2) = {3, 6}, where edge 6 is arbitrarily selected and
added to set ER. Similarly for node 3, O(3) = {4, 5, 7}, and edges 4 and 5 are
arbitrarily selected and added to ER. Then, ER = {4, 5, 6} is removed from the
graph. The resulting graph is shown in Figure 3.
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Figure 3: Graph after Step 2.

Next, step 3 performs a DFS staring at v0 yielding NT = {v0, 1, 2} and
ET = {2, 3}. However, it can be seen that the graph of Figure 3 is disconnected
and that intersection 3 does not belong to the visited nodes NT . Thus, we
proceed with step 4, where we search for a node in R∗ that has an outgoing
edge that connects to one of the nodes in NT , i.e. node 3. Recall that in step 2,
edge 7 was arbitrarily selected to remain in the graph. We now remove edge 7

13



from the graph and add it to ER. Then, we perform a DFS staring from node 3,
adding the visited nodes N3 = {3, 4, 5, 6} and edges E3 = {8, 10, 11} to NT and
ET . Finally, edge 4 is removed from ER and added to ET , hence reconnecting
the disconnected components (see Figure 4).
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Figure 4: Graph after Step 4.

After these steps, the visited nodes are NT = {v0, 1, 2, 3, 4, 5, 6} and the
visited edges are ET = {2, 3, 4, 8, 10, 11}. Figure 4 shows the resulting graph,
where the edges belonging to ET are shown in blue and the remaining edges
are marked in red. Note that the subgraph {NT ,ET } contains all the nodes, is
connected, and has no cycles. Thus, it is a spanning tree of the original input.
Finally, sensors are located in the remaining edges S∗ = {1, 9}, shown with
boxes in the figure. �

In Appendix A we show that the output of Algorithm 2 is indeed a solution
to Problem (9).

6. Cost minimization

Until now, we considered the case where the number of turning ratio sensors
was fixed and the number of flow sensors was minimized. Nevertheless, another
case of interest might be when the quantities of both sensors are to be decided
such that another variable (e.g. installation cost) is the decision criteria. This
can be formulated as,

argmin
R,S

cS|S|+ cR|R|

subject to rank

([
L(R)
C(S)

])
= nE

, (13)

where cR, cS are the overall costs of the turning ratio and flow sensors, respec-
tively. For the rest of this section, we will write |S| = nS and |R| = nR to
simplify notation.

In the previous sections it was shown that for any fixed nR the minimum
number of flow sensors corresponds to

nS = nE − nN + nR −
∑
k∈R

degout(k).
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Without loss of generality, assume a permutation of the node indexing such that
degout(k) ≥ degout(k + 1) for all k ∈ N. This can be achieved by the sorting
operation used in Algorithm 1. With this indexing, we define

f(k) =

k∑
m=1

degout(m) , k ∈ N. (14)

To solve (13), first find the value of nR that satisfies

argmin
nR

cSnS + cRnR

subject to nS = nE − nN + nR − f(nR)
0 ≤ nR ≤ nN

, (15)

and then use this number as an input to Algorithms 1 and 2. It is straightforward
to check that this procedure provides a solution to (13): for any nR, it was shown
that the algorithms generate sets S and R that satisfies the constraints of (13)
and (15).

Problem (15) can be simplified to

argmin
nR

(cS + cR)nR − cSf(nR)

subject to 0 ≤ nR ≤ nN
. (16)

Due to the choice of node indexing, degout(k) is non-increasing, and therefore,
f(k) is concave. The cost function in (16) is then convex, so gradient-based
approaches are guaranteed to work. After straightforward manipulations we
find that the optimal nR is such that

degout(nR) ≥ cS + cR
cS

≥ degout(nR + 1). (17)

This problem is easily solved by performing a simple search and returning the
corresponding index. To satisfy the constraints, if (cS + cR)/cS is greater than
degout(1), then nR = 0. On the other hand, if this ratio is 1, we let nR to be
the largest integer for which degout(nR) = 2. This is because locating turning
ratio sensors in nodes with only one outbound edge will not provide any useful
information.

Note that the case where (cS + cR)/cS is an integer, there may be multiple
equally optimal solutions to the problem.

7. Computational complexity

7.1. Sensor location

To solve the original problem postulated in (7), it was shown that it could
be split into two simpler problems (8) and (9), for which the solutions are
given using Algorithms 1 and 2 respectively. Therefore, the total computational
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complexity of the proposed method is the sum of the complexities of these two
algorithms.

For Algorithm 1, the only required operation is the sorting of the vector of
out-degrees, which is known to have complexity O(nN log nN). For Algorithm
2, it can be seen that steps 3 and 4 contain the more complex operations, as
they require to perform graph traversing and to search for particular structures.
It was discussed that step 2 of Algorithm 2 could generate a disconnected graph
with q connected components. As each of the subgraphs must contains at least
one node with an outgoing edge the previously connected to another subgraph,
it must be that q ≤ nR. For each of the subgraphs {Ni,Ei}, i = 0, . . . , q − 1, a
Depth First Search is performed (Steps 3 and 4). As each of this searches has
complexity O(|Ni|+ |Ei|), the total complexity is

q−1∑
i=0

O (|Ni|+ |Ei|) = O

(
q−1∑
i=0

|Ni|+
q−1∑
i=0

|Ei|

)
= O(nN + nE).

On the other hand, step 4 requires to find for every subgraph an edge that
connects to the main graph. This search operation has an average complexity
of O(log nN) that must be repeated at most nR times.

By taking into account all the operations from both algorithms, we obtain
a total complexity of

O(nN log nN + nE).

This represents a significant improvement when compared to other works in
the literature such as Hu et al. (2009) and Ng (2012) that rely on Gaussian
elimination, and have computational complexity of O(nNn

2
E).

7.2. Flow reconstruction

To calculate the flow value for all roads in the network, we use the inversion of
system (5). It has been shown that the result of Algorithms 1 and 2 generates

a square matrix

[
L(R∗)
C(S∗)

]
with complete rank. Without loss of generality,

assume an indexing of roads such that C(S∗) = [0 I]. The flow vector ϕ can be
split into two components, namely the measured flows ϕm and the unmeasured

flows ϕu, such that ϕ =

[
ϕu

ϕm

]
. Additionally, consider a partition L(R∗) =

[Lu Lm], where Lu is a square matrix. Because the matrix

[
Lu Lm

0 I

]
is full

rank, it is easy to show that Lu is invertible. After straightforward calculations,
it can be seen that

ϕu = −L−1u Lmϕm. (18)

As the values of ϕm are known, the whole flow vector can be reconstructed.
This calculation has a computational complexity O(n3N + n3R − n3S), which is a
reduction with respect to the original matrix inversion.
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These results are comparable with other works in the literature, which also
involve matrix inversion. However, it should be noted that the algorithm devel-
oped by He (2013) was able to reconstruct road flows in quasi-linear complexity,
albeit only for the case R = ∅. It is unclear if this method can be extended to
the general case R ⊆ N in order to reduce complexity. These extensions are to
be analyzed in future research.

8. Study case 1: grid-like network

In this section, we evaluate the performance of the proposed method by us-
ing a randomly generated network, which is shown in Figure 5. This network
has a Manhattan-like structure with randomly added and deleted edges to bet-
ter represent a real urban traffic grid. The network contains 24 source/sink
nodes, 117 intersections and 254 roads. For evaluation purposes, we consider
two different experiments. In the first one, we analyze the trade-off between the
two different sensing technologies. In the second, we evaluate the performance
of flow reconstruction, even when the underlying assumption of steady-state
condition is not satisfied by using a dynamic traffic simulation.

Figure 5: Simulated network with 24 source/sink nodes, 117 intersections and 254 edges.
Optimal locations of turning ratio and flow sensors are shown for the case nR = 30 and
n∗
S

= 75.

8.1. Location of sensors

For a given value of nR we solved problems (9) and (11). The process was
done iteratively by using different values of nR varying from 0 to |N|. In Figure 6
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Figure 6: Trade off between turning ratio and flow sensors for the simulated network. The x-
axis represents the ratio of monitored intersections nR/nN and the y-axis is the ratio between
flow sensors and roads nS/nE.

we show the required number of flow sensors for each value of nR. It can be
seen that when nR = 0, it is required to monitor more than half of the roads,
result which is coherent with those shown by Ng (2012) and Viti et al. (2014),
who estimated that for real networks it is required to monitor up to 60% of all
roads. By including the information of turning ratios, we can effectively reduce
the number of flow sensors. The different slopes of the plot correspond to the
distribution of the out degrees of the nodes in the network. Note that when
nodes have several outgoing edges, the rate of decrease of sensors is highest. As
expected, when intersections have only one outgoing edge, placing turning ratio
sensors give no information at all and the number of sensors stays constant.

As an example, Figure 5 shows the sensor configuration obtained by arbi-
trarily setting nR = 30 and running the algorithms. With this inputs, 75 flow
sensors were required. For comparison purposes, we also implemented the Gaus-
sian reduction method used in Hu et al. (2009) and Ng (2012), which yielded the
same number of sensors. The running time of both methods was also measured:
our graph based approach took 0.24 seconds in average, whereas the algebraic
approach took approximately 0.19 seconds. As the network size is small, the
measured times are similar.

8.2. Dynamic traffic simulation

To evaluate the performance of the flow reconstruction method, we used
this network to perform a dynamic simulation of traffic flows. We use the Cell
Transmission Model (CTM) which is a discretization of the well known LWR
traffic model [Daganzo (1995)]. In the CTM, each road i ∈ E has associated
three variables: upstream flow ϕup

i (t), downstream flow ϕdn
i (t), and vehicular
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Table 2: Parameters for the dynamic traffic simulation

Parameter Symbol Value

Road length L 150 m

Time step ∆t 0.5 s

Free flow speed v0 60 km/h

Jam density ρmax 125 veh/km

Capacity ϕmax 2400 veh/h

Critical density ρc 40 veh/km

Congested wave propagation speed ω 28.2 km/h

density ρi(t). The equation of the CTM is given as

ρi(t+ ∆t) = ρi(t) +
∆t

Li

[
ϕup
i (t)− ϕdn

i (t)
]
, (19)

where ∆t is the discretized time step and Li is the road length. Furthermore, at
each iteration the upstream and downstream flows are must be specified. To do
this, the CTM uses the triangular fundamental diagram coupled with a junction
model,

ϕdn(t) = argmax
ϕdn(t)

nE∑
i=1

ϕdn
i (t)

subject to ϕdn
i (t) ≤ min{v0ρi(t), ϕmax}

nE∑
i=1

ri,jϕ
dn
i (t) ≤ min{ω(ρmax − ρj(t)), ϕmax}

0 ≤ ϕdn
i (t) ≤ ϕmax

,

where the free flow speed v0, the capacity ϕmax, the jam density ρmax, and
the congested wave propagation speed ω, are the parameters of the triangular
fundamental diagram. The critical density ρc = ϕmax/v0 is defined as the
density when traffic flow is at its maximum; all roads with density below ρc are
said to be in free flow, whereas roads with density above ρc are said to be in
congestion. For the simulations we used the values shown in Table 21.

The turning ratios used in the simulation where chosen to reflect that most of
the congestion is only present in a few main roads, whereas most of the secondary
roads are lightly used. The values were calculated in the following manner: ini-
tially, all of the possible turns were given the same priority by assigning each
one a constant weight. Next, for each source/sink node pair the shortest path

1Because of numerical stability, the parameter ∆t must be chosen such that L/∆t > v0
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was identified. The turns that were contained in these shortest paths were given
a higher priority by increasing their values with a predefined amount. Finally,
the ratios where normalized such that the condition

∑
j ri,j = 1 was satisfied.

Because of this choice, vehicular flow is highest by following the shortest paths
from the entries of the network towards the exits, but a small percentage takes
other directions. Thus, the flow and density distribution of the simulation are
non-homogeneous among the roads.

Remark: The selection of turning ratios is a simplification of real world scenar-
ios. For a more realistic modeling, dynamic traffic assignment models should
be employed, which determine the routing behavior by taking into account the
network state. This choice was made to simplify the simulation.

The methodology described in this article for sensor location and flow recon-
struction is based on a steady state network. This can be stated in the condition
ϕup(t) = ϕdn(t) = ϕ for all t, which in turn implies that there is no evolution
in time of the density ρ(t + ∆t) = ρ(t). If this condition is not met, then it
is expected to obtain errors in the reconstruction of flows. To evaluate the ef-
fect of moderate time-varying network conditions, we performed the following
experiment:

1. A step input of constant boundary inflows was applied to the network
with zero internal flows and zero density as initial conditions.

2. After a period of time, the network reached an equilibrium state. This
state was recorded as ϕss for flows and ρss for the densities.

3. Using the previous steady-state as an initial condition, a second simulation
was performed by adding a sine wave to the boundary inflows: ϕup

i (t) =
ϕss
i +A sin(2πt/T ) for i ∈ Ein. The period was chosen to be T = 2 hours.

4. At every time instant, flow measurements are obtainedϕm(t) = C(S∗)ϕdn(t).

5. Flow estimates are calculated using (18).

6. The error is quantified using the Normalized Root Mean Squared Devia-
tion (NRMSD):

NRMSD(t) =

√√√√ 1

nE

nE∑
i=1

[ϕdn
i (t)− ϕ̂i(t)]

2

1

nE

nE∑
i=1

ϕdn
i (t)

.

This process was performed for two different cases, one where all of the roads
of the network remain in free flow at every time instant, and another where some
of the roads are in congestion.

8.2.1. Free flow case

In the first simulation case, the network was initialized using a constant
demand flow of 25% of the capacity, i.e. 600 veh/h. Figure 7 shows the network’s
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Figure 7: Equilibrium density obtained with a step input of 25% of the maximum flow. Blue
points denote source/sink nodes. All roads are in free flow.

equilibrium density, which was obtained 5 minutes after the step impulse was
applied. Because of the choice of turning ratios, most of the roads present
very light traffic conditions, whereas the shortest paths connecting source and
sink nodes (blue dots) present higher densities. Nevertheless, all the roads have
densities lesser than the critical value, so the network is in free flow. Using
this equilibrium state as an initial condition for a subsequent simulation, the
inputs were added a sine wave with an amplitude of 60 veh/h and a period of 2
hours during a total time of 4 hours. Figure 8 shows the network’s response to
the time-varying input. To simplify the display, only the indexed roads 1-6 in
Figure 7 are shown.

From Figure 8 it can be seen that the internal states of the network have
a sinusoidal behavior. This is due to two reasons: first, the settling time of
the system is very small compared to the wave’s period, which causes a quick
response of the states to follow the inputs. Second, as the traffic network is in
free flow, it can be modeled as a linear system, which explains the propagation
of the values of the inputs, albeit in a delayed manner.

To test the reconstruction method, sensors where located using the same
configuration as Figure 5, using 30 turning ratio and 75 flow sensors. The
NRMSD of the flow reconstruction is shown in Figure 9. As the simulation
uses an equilibrium sate as an initial condition, the error at time t = 0 is
zero. As time progresses, the error shows a time-varying behavior related to
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Figure 8: Response of the system to a time varying input. Despite the periods of higher
inflows, all the roads remain in free flow. To simplify visualization, only a selection of roads
are shown.

the rate of change of the network’s state. When the slope of the input signal
is zero, ρ(t + 1) ≈ ρ(t) and the steady-state condition is met, and hence the
reconstruction has zero error. However, as the time variation of the system
increases, the reconstruction error becomes higher. Nevertheless, even when
the basis assumption of our method is not satisfied, we were able to obtain
errors under 18%.

8.2.2. Congested case

In an analogous manner to the previous case, we initialized the simulation
with zero density for all roads in the network. To obtain a congested situation,
the boundary input demands were set to 29.8% of the capacity, i.e 715 veh/h.
The network’s equilibrium state is shown in Figure 10.

From the figure, it is clear that some of the roads have densities higher than
ρc, so their equilibrium state is in congestion. This causes the settling time
to be higher compared to the free flow case, to just under 20 minutes. This
is because many of the origin-destination paths use the same roads, generating
bottlenecks and vehicle accumulation in some roads. For example, road 1 has
density close to the critical value, which limits the number of vehicles from road
2 that want to enter. The congestion in road 2 travels upstream towards the
source node (road 3). This situation is similar to the bottleneck in road 4 that
limits the maximum flow in road 5. During our testing, we found that using
higher input demands would cause the system to develop gridlock conditions.

Using the equilibrium state as an initial condition, the inputs demands were
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Figure 9: Reconstruction error for the time-varying input simulation.

Figure 10: Response of the system to a step input of 29.8% of the maximum flow. The system
stabilizes after 30 minutes, with some of the roads in congestion.
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Figure 11: Response of the system to a time varying input. To simplify visualization, only a
selection of roads are shown.

added a sine wave with a period of 2 hours and an amplitude of 36 veh/h. The
resulting system response is shown in Figure 11, where only the indexed roads
1 to 6 are shown. The non-linearities of the traffic network are evident: some of
the roads present saturation, followed by a rapid transition from congestion to
free flow when the input demand decreases. This quick transitions cause very
high derivatives in the internal states, which drives the system away from the
steady-state condition.

The flow reconstruction error is shown in Figure 12. Albeit the non-linearity
of the system, the reconstruction error still approaches zero when the time
derivative of the system’s states is small. Similarly, the error is highest when
the rate of change is at its maximum. The rapid increments of the error and
the spikes are associated with the quick transitions between congestion and free
flow seen in Figure 11.

9. Study case 2: city of Grenoble

The GTL-Ville is an initiative of the Scale-FreeBack2 project which consists
on the analysis of traffic in the city of Grenoble, France. In this context, we are
interested in the location of flow and turning ratio sensors which will allow the
estimation of the traffic state in the city.

In this paper, we considered a central section of the city spanning an area

2Scale-Free control for complex physical network systems, http://scale-freeback.eu.

24



Figure 12: Reconstruction error for the time-varying input simulation.

of approximately 4 km × 4 km. The traffic network is shown in Figure 13.
This section was selected because it contains the regularly congested areas of
downtown, and some of the principal roads. The nodes that lie outside of the
area are considered as source/sink nodes. Additionally, all internal nodes with
only outgoing edges or only incoming edges were also labeled in this category, as
they do not satisfy the conservation equations. As a result of this preprocessing,
the obtained network presents 92 source/sink nodes, 2924 intersections and 5880
roads. It can be seen that the size of the network is considerable, and many
of the tools discussed in the literature would fail to solve the sensor location
problem in a reasonable amount of time.

To evaluate the algorithms, we proceeded using a similar process as in Sec-
tion 8: for every value nR = 0, 1, . . . , nN, we found the locations of turning
ratio and flow sensors using the algorithms. Figure 14, shows the corresponding
number of flow sensors for each nR ∈ [0, nN]. From Figs. 6 and 14, it can be
seen that the knowledge of turning ratios is most useful in the case of complex
traffic networks, which can contain intersections with high outdegree, and thus
generate regions of very high rate of decrease of the number of sensors. Addi-
tionally, for the presented cases, the absolute minimum number of flow sensors
that can be obtained (e.g. R = N) is equal to the number of boundary entering
flows |Ein|. This result is in agreement with the work of Lovisari et al. (2016).
Figure 14 shows the resulting configuration of turning ratio and flow sensors
when nR = 1000 (about 34% of the intersections) and nS = 1041 (about 18%
of the roads).

To benchmark the computational complexity of the presented method, the
running time of the sensor location algorithms was measured for each iteration.
The time values ranged between 5.6 and 7.7 seconds, with a mean of 6.4 sec-
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Figure 13: Traffic network of the city of Grenoble, for a section of dimension ≈ 4 km × 4
km. The network has 92 source/sink nodes, 2924 intersections and 5880 roads. The location
of flow and turning ratio sensor are presented for the case nR = 1000 and nS = 1041.

onds. For comparison purposes, the method presented in Ng (2012) (which is
based on Gaussian reduction) was also implemented for one iteration, yielding
a processing time of 32 minutes. This shows that the proposed algorithms are
suitable for large traffic networks due to low computational complexity. These
times were obtained while using an Intel processor i7-4600U running at 3 GHz
clock speed with 8 GB of RAM.

10. Concluding remarks

In this work, we solved the network sensor location problem by using two
types of sensing technologies. This allows to reduce the number of flow sensors
that are originally required. We solved this problem by finding the solution
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Figure 14: Trade off between turning ratio and flow sensors for the simulated network. The x-
axis represents the ratio of monitored intersections nR/nN and the y-axis is the ratio between
flow sensors and roads nS/nE.

of two independent problems: optimally locating a given number of turning
ratio sensors, and then, using this result as an input, we locate flow sensors.
These problems were shown to have computationally efficient solutions, as the
first one only requires vector sorting, and the second one can be solved by the
construction of spanning trees. The methods were shown to give an optimal
solution to the original problem. The complexity of the proposed algorithms
was shown to be O(nN log nN+nE), where nN is the number of intersections and
nE is the number of roads, which is much more efficient than previous methods
that rely on algebraic computations providing complexities of O(nNn

2
E).

The proposed methods were tested using two simulated networks. In both
cases, it was shown that the knowledge of turning ratios of around 30% on the
intersections would require to monitor less than 30% of the roads. Nevertheless,
some applications might still find these results to yield unfeasible number of
sensors. As future work, we will analyze partial observability to further reduce
sensing locations. Additionally, we will investigate on extensions to dynamic
traffic networks, in order to be able to reconstruct traffic states in the presence
of time-varying input demands.
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Appendix A. Validity of Algorithm 2

Algorithm 2 presented in Section 5 constructs a basis for the nullspace of
L(R∗) and then locates sensors in such a way that the dimension of kerL(R∗)
is reduced to 0. Recall that C(S) can be written as the concatenation of rows
uT
s for s ∈ S. It can be shown that if there exists any v ∈ kerL(R∗) such that

v(i) 6= 0, then uT
i is linearly independent to the rows of L(R∗), and thus, this

row reduces the dimension of the nullspace.
In the following propositions, we show that the proposed algorithm provides

a solution to problem (9). First, we show that the algorithm locates exactly the
optimal number of flow sensors n∗s. Subsequently, we show that the collection
of uT

s for s ∈ S is linearly independent to the rows of L(R∗).

Appendix A.1. Number of sensors

Proposition 2. Given any feasible network {C∪N,E} and any set R∗ ⊂ N, the
graph {NT ,ET } generated by Algorithm 2 is a spanning tree of {N ∪ {v0},E}.

Proof. From the original graph, we know that every edge is part of a directed
path that begins with an element of Ein and ends with an element of Eout.
Because of this, step 1 of the algorithm generates a strongly connected graph:
for any node k ∈ N, there is a directed path from v0 to k and another from k
to v0.

As step 2 implies the removal of edges, it is possible that the result is a
disconnected graph. For now, consider the case when the graph is connected.
Step 3 performs a DFS over a connected graph, so every node is visited, and thus
step 4 is not performed. Therefore, {NT ,ET } is a spanning tree of {N∪{v0},E}.

Now consider the case when step 2 generates a disconnected graph. Assume
that there are q connected components Gi = {Ni,Ei}, i = 0, 1, . . . , q−1, and let
G0 be the subgraph containing node v0. The DFS in step 3 will visit only the
nodes in G0. In step 4, we begin by searching some k ∈ R that belongs to some
Gi, i 6= 0, such that originally there is an edge j ∈ O(k) that would connect
Gi and G0. As the original graph is strongly connected, every node is part of a
directed path connecting to v0 ∈ G0, so such k and j must always exist. Next,
the single remaining outgoing edge of k is also removed. If this causes Gi to
become disconnected, denote Gq as the new connected component, which will
be treated in the following iterations. The DFS starting from k will generate
a spanning tree of Gi. Then, the addition of edge j connects subgraphs Gi and
G0 without creating any cycles. This process is carried out iteratively until all
nodes haven been visited, creating a spanning tree of {N ∪ {v0},E}.

Corollary 2. For any set of intersections R∗, with cardinality |R∗| = nR, the
described algorithm locates n∗s sensors, where n∗s follows Corollary 1.

Proof. From step 1, we start with a graph that has nN + 1 nodes and nE edges.
At the end of step 4, the algorithm obtains a spanning tree of this graph, which
is known to have nN edges. It follows that there are nE−nN edges not contained
in the tree. However, step 2 removes degout(k)− 1 edges for each k ∈ R∗, for a
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total of
∑

k∈R∗ degout(k) − nN removed edges. As sensors are to be located in
edges not belonging to the tree nor the set of removed edges, we end up with
nE+n∗R−

∑
k∈R∗ degout(k)−nN locations, which is the same result as Corollary

1.

Appendix A.2. Linearly independence of sensor locations

The algorithm must also find the location of these sensors such that the
rows of C(S) and L(R∗) are linearly independent. To do this, we first discuss
the relationship of the null space of matrix L(R∗) with the cycles of the graph.
Then, we show that by placing sensors in edges that ”break” the cycles we
obtain a set of linearly independent rows to matrix L(R∗).

Definition 3. Given a path P ⊂ E, P = {e1, e2, . . . , el} such that there are no
repeated edges, the corresponding path vector is defined as v ∈ {−1, 0, 1}nE×1

where v(e1) = 1, v(ei) = 0 if ei /∈ P, and v(ei) = v(ei−1) if edges ei, ei−1 have
the same direction or v(ei) = −v(ei−1) else.

Lemma 5. Let P be a cycle that does not include any node belonging to R∗.
The corresponding path vector v belongs to the null space of L(R∗).

Proof. If R∗ = ∅, then L(∅) = B(N) is the incidence matrix of the graph
{N ∪ {v0},E} and the proposition has already been proved by Castillo et al.
(2014).

For an arbitrary R∗, as the nodes comprised by P do not belong to R∗, then
each one of them is associated to a row of B(U). As this matrix is just a reduced
version of B(N), B(U)v = 0 must hold.

We can see that j ∈ P ⇐⇒ j /∈
⋃

k∈R∗ O(k) and j /∈
⋃

k∈R∗ I(k). Therefore,
A(R∗)v = 0. With these two results, L(R∗)v = 0.

Lemma 6. Let k ∈ R∗ such that e0 ∈ I(k) and O(k) = {e1, e2, . . . , eq}. Let
Pi = {ei, . . . , e0} for i = 1, . . . , q be a feasible path, with associated path vector
vi, such that it does not include any node from R∗ other than k. Then v =∑

i re0,eivi belongs to the null space of L(R∗).

Proof. Note that each of the paths Pi is a cycle: the path ends with e0 which
is connected via k to the starting edge ei. We have B(U)vi = 0. Also, A(R∗ \
{k})vi = 0, as there are no shared edges between Pi and

⋃
h∈R∗,h6=k O(h) or⋃

h∈R∗,h6=k I(h). It can be seen that

A({k})vi = ui −


re0,e1
re0,e2

...
re0,eq

 .
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Thus,

A({k})v =

q∑
i=1

re0,eiA({k})vi

=

q∑
i=1

re0,eiui −


re0,e1
re0,e2

...
re0,eq


q∑

i=1

re0,ei

=


re0,e1
re0,e2

...
re0,eq

−

re0,e1
re0,e2

...
re0,eq


A({k})v = 0

.

Thus, A(R∗)v = 0, which implies that L(R∗)v = 0 finalizing the proof.

In general, for each j ∈ I(k) for some k ∈ R∗, the cycles that connect every
outgoing edge of k to j must appear together in the elements of kerL(R∗).

Theorem 3. The rows of C(S) calculated via the described algorithm and the
rows of L(R∗) form a linearly independent set.

Proof. The algorithm generates a set S of sensor locations such that this edges
do not belong to a constructed spanning tree or a set of removed edges. It is
well known that adding an edge s ∈ S to the tree generates a single cycle Ps.
Additionally, if the corresponding path vector to Ps is vs, the collection of vs

for s ∈ S is a linearly independent set. Consider a partition of S in SU and SR,
such that SU consists of the edges that when added to the tree will generate
cycles that do not include any node from R∗.

Consider one element s0 ∈ SU. From Lemma 5, vs0 ∈ kerL(R∗). As s0 ∈ Ps0

then vs0(s0) 6= 0, therefore uT
s0 is linearly independent to the rows of L(R∗).

Now define L′ = [L(R∗)T us0 ]T . Consider another s1 ∈ SU , s0 6= s1. Because
s1 /∈ Ps0 , it is clear that us0(s1) = 0, hence vs1 ∈ kerL′. Following the previous
reasoning we obtain that uT

s1 is linearly independent to the rows of L′. Repeating
this process iteratively, it can be seen that the collection of uT

s for all s ∈ SU is
linearly independent to the rows of L(R∗).

Now consider one element s0 ∈ SR which forms a cycle Ps0 that includes some
k ∈ R∗ when added to the tree. From Lemma 6, there is at least one vector
v in the null space of L(R) such that v(s0) 6= 0, so uT

s0 is linearly independent
to L(R∗). Consider another s1 ∈ SR associated with cycle Ps1 such that Ps1

also includes node k. If there exist i ∈ O(k) ∩ Ps0 and j ∈ O(k) ∩ Ps1 with
i 6= j, then Lemma 6 implies that the path vectors vs0 ,vs1 form part of the
same v ∈ kerL(R∗). Therefore, {uT

s0 ,u
T
s1} and the rows of L(R∗) do not form

a linearly independent set.
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Nevertheless, step 2 of the algorithm removes all but one of the outgoing
edges for the intersections in R∗, implying that it is not possible to form two
cycles Ps0 ,Ps1 that include two different outgoing edges from the same k ∈ R∗

by only adding elements from S to the tree. Thus, all the path vectors vs for all
s ∈ SR are related to linearly independent vectors in the null space of L(R∗).
Hence, the collection of uT

s for all s ∈ SR are linearly independent to the rows
of L(R∗).

Furthermore, note that as the cycles generated by the elements of SU do
not include any node from R∗, Lemma 6 does not apply to them so they are
independent to the cycles formed by the elements of SR. Thus, the the rows of
C(S) and the rows of L(R∗) form a linearly independent set.
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