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Flow-fiber coupled injection molding simulations with non-uniform fiber
concentration effects

Tianyi Lia,∗, Jean-François Luyéa

aPromold, 42 rue Boursault, 75017 Paris, France

Abstract

We propose to account for non-uniform fiber concentration effects in a novel fiber-flow coupled injection
molding simulation framework. The rheological properties of fiber suspensions are characterized by an
optimal scalar viscosity defined by a minimization principle. Comprehensive theoretical analyses are carried
out to gain further physical insights into this approximate orientation-dependent model. The flow-induced
fiber orientation and migration are numerically computed and then injected into the constitutive equation at
every time-step. Based on careful post-processing of the obtained kinematics and fiber evolution, simulation
results on a center-gated disk suggest a stronger coupling behavior due to a spatially-varying concentration.
This multiphysics coupling leads to a further improvement in terms of fiber orientation prediction compared
with experimental results.

Keywords: Fiber orientation, Fiber concentration, Anisotropy, Multiphysics coupling, Injection molding
simulation

1. Introduction

An accurate prediction of the final fiber orientation is crucial for injection-molded fiber reinforced
composites. Fiber-induced material anisotropy leads to non-homogeneous effective thermomechanical
properties [1] and may also impact the fatigue, damage and ultimate failure mechanisms of these composites
[2, 3]. The fiber microstructure evolution during the molding process is greatly governed by complex
flows produced by an anisotropic non-Newtonian suspension [4]. More advanced theoretical models and
numerical methods need to be developed to correctly characterize the flow kinematics and flow-induced
filler evolution.

Flow-fiber coupled simulations are identified by a mutual exchange of information between the flow
kinematics and the fiber evolution via an anisotropic constitutive model, see [5, 6] for a review and [7–
14] for some more recent updates on this subject. According to the dimensional analysis of [15], such
fiber-dependent rheological equations are needed especially at high fiber concentration regime [16] and for
chunky geometries [17]. Nevertheless, flow-fiber coupling is still not gaining popularity in the injection
molding community, probably because such constitutive models are not yet implemented in a majority of
commercial simulation software for production use.

In our previous work [18], we developed the optimal scalar viscosity model as an approximation to
the homogenization-based anisotropic fiber-induced viscosity tensor and successfully implemented it in
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the Moldflow Insight API framework [19]. The effective rheological behavior of the fiber suspension is
thus characterized by a scalar value depending on the microstructure and the current deformation mode.
Independently, a similar idea [13] has emerged recently with their particular applications to compression
molding simulations. In this paper, we propose in Section 2 to carry out a comprehensive theoretical analysis
of this orientation-dependent scalar viscosity, with a focus on its approximate nature. The objective is to
determine if the model can indeed be used with confidence in real injection molding simulations, with a
correct rheological modeling and a controllable approximation error.

Another important aspect of this work is the consideration of non-uniform fiber concentration effects
in such flow-fiber coupling framework. Admittedly, filler concentration is already accounted for in these
micromechanical constitutive models in particular via their particle number coefficient, see [5]. However,
only non-uniform fiber orientation is taken into account in most fiber-flow coupled simulations reported
in the literature. The fiber orientation state is often computed by various orientation models based on the
work of [20, 21]. The viscosity function is then updated at every time step using the current calculated
fiber orientation, with the implicit assumption that fiber concentration is spatially homogeneous and is at its
nominal value. The effect of a non-homogeneous concentration distribution in a flow-fiber coupling context
has been considered for instance in [22] in a simplifying framework. Inter-fiber interaction [21] is not taken
into account and the results are reported based on an empirical fiber volume fraction profile prescribed in
the gapwise direction that remains constant as the flow advances.

However, fiber migration phenomenon is also known to take place during injection molding, resulting
in a non-uniform fiber concentration both in the thickness direction and along the flow path, see for instance
[23–26]. According to a recent work [26], such effect could induce an important influence on the material
constitutive behaviors especially in the core region, where fiber concentration could be significantly higher
than the nominal value. The authors also suggest a coupling between fiber orientation and concentration
computations to better predict the final fiber microstructure.

This multiphysics coupling is achieved in this paper via the above orientation-and concentration-
dependent optimal scalar viscosity. Contrary to [22], the flow-fiber coupling is now accompanied addi-
tionally by a fiber migration model that computes numerically a spatially and temporarily varying fiber
volume fraction, see Fig. 1. By coupling separately fiber orientation and concentration with the flow equa-
tions, it induces automatically an indirect relation between orientation and concentration. More information
on the fiber orientation and concentration models used in this paper will also be specified at the end of
Section 2, where more details on our flow-fiber coupled simulation framework are given. The idea of using
a non-uniform fiber concentration computed by specific numerical methods has also emerged recently in
[27] for a better prediction of the stress response during rheological measurements. The objective of this
paper is thus to extend this concept to a three-dimensional non-Newtonian flow problem.
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Figure 1: (a) Standard uncoupled solving procedure (b) Flow-fiber coupling with an orientation- and concentration-dependent
viscosity.

The center-gated disk geometry along with its characteristic radially diverging flow is a well-studied

2



benchmark problem representative of injection molding. In Section 3, numerical simulations are carried out
in order to validate the proposed coupled simulation framework against the well-documented experimental
results reported in [10, 24, 28]. The objective is to numerically illustrate the effect of a non-uniform fiber
concentration on the flow kinematics, the rheological behavior and the final fiber orientation. Conclusions
and future research directions drawn from the numerical studies are indicated in Section 4.

2. Flow-fiber coupled injection molding simulation framework

2.1. Anisotropic fiber-induced constitutive behaviors
The point of departure of flow-fiber coupled simulations are the so-called anisotropic fluid constitutive

models, cf. for instance [5, 15, 29] and references therein for a review on this subject. Using a micromechan-
ical approach, these models provide a theoretical characterization of the macroscopic rheological behaviors
of those filler suspensions. For typical short or long fiber-reinforced thermoplastics with a relatively large
aspect ratio (r > 20 for example) and a high concentration level (for instance when φr > 1 where φ is the
fiber volume concentration), the anisotropic constitutive behavior induced by the presence of these immersed
fibers can be reasonably predicted by the model proposed by [30], where the macroscopic stress tensor σ
reads

σ = −pI + 2VD = −pI + 2ηD + 2ηNpAD. (1)

In (1), p is the pressure, I is the 2nd order identity tensor, D = 1
2 dev(∇u + ∇Tu) is the deviatoric strain

rate tensor (deviatoric part of the symmetrized velocity gradient), η refers to the viscosity of the matrix
(suspending fluid without fibers) and finally A designates the 4th-order fiber orientation tensor introduced
in [31]. From a mathematical point of view, the viscosity V of the suspension modeled by (1) is now a
4th-order tensor

V = η(I + NpA) , (2)

with I the 4th order identity operator. The 4th-order viscosity tensor V is in general anisotropic due to the
presence of fibers.

As a scalar measure, the particle number Np introduced by [15] that is present in (1) and (2) characterizes
the importance of the anisotropic contribution of fibers to the overall viscosity. It is a function of the
microstructural properties of the fiber suspension, and in particular the geometric shape (aspect ratio r) of
fibers and the fiber volume fraction φ. For very dilute suspensions as φ→ 0, the particle number Np is also
expected to become vanishingly small Np → 0, and one recovers the fiber-independent matrix viscosity. In
the anisotropic fluid models developed for dilute suspensions such as [32], the particle number coefficient
is linearly proportional to the volume fraction. In the meanwhile, experimental findings indicate a much
more rapid increase of Np as φ becomes larger, cf. for instance [16] for a recent discussion on the subject.
For this reason, the Np expression proposed by [30] seems more appropriate for typical fiber-reinforced
thermoplastics. For a specific volume fraction φ and fiber aspect ratio r , the value of Np is given by the
following expression

Np =
φr2(2 − φ/A)

4(ln 2r − 1.5)(1 − φ/A)2
, (3)

where A is referred to as the maximum allowable volume fraction in [30]. In this paper however, it is merely
regarded a dimensionless fitting parameter. With a standard fiber aspect ratio r = 25, the Np expression (3)
is illustrated in Fig. 2 with two values of the A parameter. For comparison, the traditional linear theory of
[32] for dilute suspensions is also indicated. For the material that will be considered in Section 3 (Valox 420,
PBT-GF30), the Np expression of [30] predicts a larger fiber-induced anisotropic contribution at its nominal
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mass fraction of 30%. We can also observe an increase of the Np value as the A parameter becomes smaller.
Contrary to previous work in the literature, here the fiber volume fraction φ in the expression of Np will not
be considered as a constant (its nominal value φ) but a spatially and temporarily variable that will be solved
along with fiber orientation.
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Figure 2: Particle number Np given by [30] as a function of the mass fraction for two values of the A parameter.

2.2. Fiber-dependent optimal scalar viscosity model
Ideally, the anisotropic fiber-induced 4th-order viscosity tensor (2) can be used to couple flow equa-

tions and fiber evolution models in an actual injection molding simulation, see [6, 7, 10, 11, 33] among
others. However, probably due to numerical and implementation difficulties it is not yet possible for several
widely used commercial injection molding simulation software. For instance, in the Moldflow Insight API
framework described in [19], only a scalar user-defined viscosity function can be implemented. Due to this
reason, in [13, 18] several authors independently proposed a scalar viscosity model designed to approximate
the original 4th-order viscosity model (2). Compared to standard generalized Newtonian models such as
the Cross model [34] frequently used in injection molding simulations, the “optimal scalar viscosity model”
of [18] or the “informed isotropic viscosity model” proposed by [13] is now a function of the complete
deviatoric strain rate tensorD (and not just its magnitude ‖D‖). The objective is hence to provide an adequate
scalar viscosity measure, depending on the current fiber orientation state and the deformation mode.

Motivated by the fact that the 4th-order viscosity tensor V is perceived by the stress tensor via its
application VD on the deviatoric strain rate tensor D, in [18] the optimal scalar viscosity η∗ is defined such
that the scalar multiplication η∗D is as close as possible to VD

σ∗ = −pI + 2η∗D ≈ σ = −pI + 2VD =⇒ (η∗D − VD) → min . (4)

Since the resulting 2nd-order tensor VD is not guaranteed to be invertible nor positive-definite, the most
natural scalar approximation error is using the standard Euclidian (Frobenius) norm (square root of the sum
of all components squared). From (4), since the volumetric part of the stress tensor can be absorbed by the
pressure p, it now seems more adequate to minimize only the deviatoric part the approximation error

eη∗ = ‖dev(η∗D − VD)‖ = min
v
‖dev(vD − VD)‖ , (5)

where dev D designates the deviatoric part dev D = D −
(

1
3 tr D

)
I of a 3-dimensional 2nd-order tensor (tr is

the trace operator). Using the definition of the 4th-order viscosity tensor (2), a direct minimization of (5)
4



(by differentiating e2
η∗

with respect to D) leads to the following optimal scalar viscosity approximating the
4th-order anisotropic viscosity when D , 0

η∗ = (1 + Npa∗)η with a∗ =
D · AD
‖D‖2

, (6)

where the dot “·” refers to the standard Euclidian inner product. The same expression of η∗ is found as in
[18], even though here in (5) only the deviatoric part is being minimized. This is due to the fact that the
strain rate tensor D is assumed to be deviatoric. Note that the motivation as well as the final expression of
our optimal scalar viscosity are extremely similar in essence to the “informed isotropic viscosity” proposed
in [13, 35].

Optimal scalar viscosity for typical deformation modes and fiber orientation states. As suggested in [18],
some additional theoretical studies of the proposedmodel (6) are now carried out here to gain further physical
insights. The “optimal scalar” a∗ of the 4th-order fiber orientation tensor in (6) is regarded as a flow-fiber
coupling factor that adapts our fiber-dependent viscosity to the current deformation mode. Its value for
two particular orientation states (fully random and perfectly unidirectional (UD) orientation) under several
typical flow types is indicated in Fig. 3 for two commonly used closure models (the ORT model of [36] and
the quadratic model reviewed in [31]) for the 4th-order fiber orientation tensor. Note that we do not observe
much differences between the ORT closure and the IBOF model [37]. For visualization purposes, the zero
value is replaced by an extremely short bar that can be barely seen in Fig. 3.
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Figure 3: Coupling factor a∗ for two particular orientation states under several typical flow types: (a) using the ORT closure and
(b) using the quadratic closure.

From Fig. 3 (a), while a completely random fiber orientation state gives always the same value 2
15 for all

deformation types, for the unidirectional orientation state (UD) the coupling factor behaves anisotropically
and ranges from 0 for simple shear, up to 2

3 when the uniaxial elongational flow is considered. The importance
of the closure model used to compute A is also obvious from Fig. 3, where the random fiber orientation
state always leads to a vanishing value of a∗ when using the quadratic closure as is the case in [38]. For
simple shear situations this seems to contradict experimental findings [39] where the effective viscosity of a
randomly orientated suspension should be higher than the case when fiber are completely orientated along
the shear direction. In [13] it has been shown that the optimal scalar viscosity model is also capable of
reproducing the overshoot phenomenon as fibers gradually reorient toward the shear direction.

The TUB triangle proposed by [40] provides a concise parametrization of all possible fiber orientation
states using the two major principal values a1 ≥ a2 of the 2nd-order tensor a, since the 3rd principal value
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can be computed using the condition tr a = a1 + a2 + a3 = 1. For a given deformation mode D, the variation
of the coupling factor a∗ can thus be illustrated on this orientation space to better understand the behavior
of the proposed model (6). An additional approximation error measure similar to (5) is defined for the
dimensionless coupling factor in order to quantify the discrepancy induced by the scalar model

ea∗ = ‖dev(a∗D − AD)‖ = min
a
‖dev(aD − AD)‖ for ‖D‖ = 1. (7)

By comparing (5) and (7), the actual approximation error on the viscosity eη∗ can be recomputed from ea∗
using eη∗ = (Npη)ea∗ for ‖D‖ = 1. The additional norm condition on D leads to a unique normalized error
since we have ea∗(kD) = kea∗(D) for k ∈ R. In Fig. 4, the coupling factor a∗ as well as the dimensionless
approximation error ea∗ are illustrated on the TUB orientation space for the uniaxial elongation case.
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Figure 4: (a) Coupling factor a∗ and (b) the dimensionless approximation error ea∗ on the TUB orientation space for uniaxial
elongation.

Note that in Fig. 4 (a) the uniaxial extension direction coincides with the principal material direction
corresponding to a1. On the one hand, it can be verified that the flow-fiber coupling is maximum for the
UD case (a1,a2) = (1,0) and minimum for the random orientation state (a1,a2) = (

1
3,

1
3 ). On the other

hand, the largest approximation error measured by (7) in this particular case is less than 0.04, and is attained
somewhere between the fully random state and the planar random state (a1,a2) = (0.5,0.5).

Remark 1. An approximation error of zero does not necessarily imply that the 4th-order viscosity tensor V
is fully recovered by our optimal scalar approximation η∗ at a given deformation mode D. According to our
error measure (5) and (7), it merely means the error η∗D−VD is volumetric, i.e. proportional to the identity
matrix.

Anisotropy captured by the optimal scalar model. The anisotropy of the original 4th-order viscosity tensor
(2) and the optimal scalar viscosity model (6) can be generally perceived as its directional dependence for
different deformation modes D, see for instance the UD situation in Fig. 3 (a) for 3 different D’s. In [35], the
author provides an excellent visualization of anisotropy for planar orientation states a3 = 0 and a particular
class of deformation modes. Here, a more general and mathematical approach is adopted to quantify the
anisotropy of these models. The objective is to verify if the proposed scalar optimal viscosity model actually
also possesses a similar anisotropic behavior.
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Similarly for anisotropic elastic tensors, a scalar anisotropy index in the sense of [41] can also be
defined for our anisotropic 4th-order viscosity / fiber orientation tensors (2). In this paper, the dimensionless
anisotropic index A will be simply defined as the Euclidian distance

A = ‖A − Aiso‖ (8)

between the original 4th-order orientation tensor A and its closest isotropic projection Aiso, see [42] for in
particular its explicit expression.

Due to the scalar nature of the proposed viscosity model (6), its extent of anisotropy can only be
quantified by the range (interval between the minimum and maximum values) of η∗, or equivalently of the
dimensionless coupling factor a∗, as the deformation mode D varies. As is correctly noted by [35], the
expression of a∗ in (6) is nothing but the Rayleigh quotient associated with the corresponding 4th-order
tensorA. The optimal scalar viscosity can thus be regarded as an approximate eigenvalue at the deformation
mode D. Since the latter is required to be deviatoric tr D = 0, and we are only interested in the deviatoric part
of the approximation error (7), it can be shown that the extreme values of a∗ can be obtained by considering
the following unconstrained symmetric eigenvalue problem

A′D̂i = λiD̂i where A′ = dev ◦A ◦ dev , (9)

where the eigen-deformation mode D̂i is only required to be a symmetric 2nd-order tensor of dimension 6.
The composition of two deviatoric operators keeps the symmetric nature of the problem and permits us to
only analyze traceless deformation modes D̂i. Among the 6 eigenvalues extracted from (9), the volumetric
mode D̂vol for which tr D̂vol , 0 as well as its corresponding zero eigenvalue λvol = 0 must be discarded.
The other 5 eigenvalues

λmax = λ1 ≥ λ2 ≥ λ3 ≥ λ4 ≥ λ5 = λmin

and their respective traceless and orthonormal (both thanks to symmetry) eigen-deformation modes D̂i

constitute the spectral decomposition of the deviatoric orientation tensor A′. From standard mathematical
arguments, it follows that our dimensionless flow-fiber coupling factor a∗ can be regarded as the Rayleigh
quotient associated with A′, and achieves its maximal (resp. maximal) value of λmax (resp. λmin) at the
corresponding eigenmode D̂max (resp. D̂min)

a∗(D) ∈ [λmin, λmax] and a∗(D̂i) = λi (10)

The numerical rangemax(a∗)−min(a∗) of a∗ can thus be computed through a standard symmetric eigenvalue
analysis and can be used to measure the extent of anisotropy of the optimal scalar model. In practice, the
4th-order tensor A′ can be readily represented by a symmetric 6 × 6 matrix using an orthonormal basis of
the symmetric 2nd-order tensor space, see [40, 42].

In Fig. 5, the anisotropy index A defined in (8) for original 4th-order fiber orientation tensors and the
numerical range of the optimal scalar coupling factor a∗ are presented on the TUB orientation space. On the
one hand, both A and the numerical range are 0 for the isotropic orientation state. This confirms the intuition
that the tensor is directionally independent. On the other hand, anisotropy is well maximum for both the
original and the optimal scalar models for the UD state, as expected. This shows that the proposed optimal
scalar viscosity model successfully recovers the desired anisotropy from the original 4th-order tensor.

According to (10), for different orientation states (so different A′) the maximum value of the coupling
factor a∗ is actually attained at different maximizing deformation modes D̂max. In Tab. 1, three fiber
orientation states are analyzed, where a typical orientation (a1,a2) = (0.8,0.15) in injection molding is also
indicated. In such case, the deformation mode that actually maximizes a∗ is a general elongational flow
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Figure 5: (a) Anisotropy index A of the 4th-order fiber orientation tensor; (b) numerical range λmax−λmin of the proposed flow-fiber
coupling factor a∗.

toward the e1 direction, and the contraction is slightly biased in the e3 direction. The UD case confirms
what we have observed in Fig. 3 (a), while in the planar random state the maximum value of 1

4 is actually
achieved for any linear combination of the simple shear flow and the planar elongation in the same plane.

Table 1: Maximizing eigen-deformation modes D̂max for different fiber orientation states.

Fiber orientation state in TUB D̂max max(a∗)

UD (a1,a2) = (1,0) Uniaxial elongation 2/3
Typical (a1,a2) = (0.8,0.15) General elongation (D11,D22) ≈ (0.82,−0.4) ≈ 0.44
Planar random (a1,a2) = (0.5,0.5) Simple shear or planar elongation in the plane 1/4

Maximum approximation error of the optimal scalar model. In Fig. 4 (b), the dimensionless approximation
error ea∗ given by (7) is calculated in the TUB orientation space for a particular deformation mode (uniaxial
elongation). Based on the above outlined analogy between the coupling factor a∗ regarded as the Rayleigh
quotient ofA′ and the associated eigenvalue problem, we can actually compute themaximum approximation
error that can be committed by an orientation state at a corresponding deformation mode. By decomposing
the deviatoric strain rate tensor into the above principal basis D = DiD̂i, the approximation error can be
expanded as follows

e2
a∗ =

∑(λi − a∗)DiD̂i

2
=

∑
(λi − a∗)2D2

i where a∗ =
∑

λiD2
i , (11)

where the second equality comes from the orthonormality of the basis D̂i. A few remarks are in order:

• As a standard Rayleigh quotient, the approximation error is actually zero when the deformation mode
D coincides with one of the 5 eigenmodes D̂i in (9). In particular, at the maximizing deformationmode
D̂max the flow-fiber coupling factor a∗ is maximum and the optimal scalar viscosity approximation is
also perfect. This point can be verified in Fig. 4 (b), where at the UD orientation state (a1,a2) = (1,0)
the approximation error is indeed zero for its maximizing uniaxial elongation mode.
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• It can also be shown from (11) that the approximation error reaches its maximum value of (λmax −

λmin)/2 in the direction exactly between the minimizing and the maximizing eigen-deformation modes

max(ea∗) = ea∗

(√
2

2
(D̂min ± D̂max)

)
=
λmax − λmin

2
. (12)

In (12), either addition or subtraction will work, and note that multiple minimizing (resp. maximizing)
eigenmodes corresponding to the same minimal (resp. maximal) eigenvalue may exist. It can be
observed that the maximal approximation error is nothing but a rescaled numerical range of our
coupling factor, see again Fig. 5 (b). Hence, while at the UD orientation state (a1,a2) = (1,0) the
extent of anisotropy is maximal, it may also commit the highest approximation error (7) of 1

3 as we
reduce the 4th-order tensor to a scalar. For instance, for the typical fiber orientation state studied in
Tab. 1, a maximal approximation error of about 0.21 can be obtained at a deformation mode D̃ that
combines the maximizing general elongation and the shear flow in the 2-3 plane

D̃ ≈

0.58 0 0

0 −0.28 0.5
0 0.5 −0.30

 .
Luckily, for injection molding this kind of flow mode should not be frequent.

Remark 2. Note the absolute nature of the above approximation errors eη∗ and ea∗ in (5) and (7). A relative
approximation error in the sense of eη∗/‖dev(VD)‖ could also be defined but requires further mathematical
development.

2.3. Fiber orientation and concentration models and implementation details
Other ingredients of our flow-fiber coupled injection simulation framework will be briefly discussed,

since further improvements of these fiber evolution models themselves are beyond the scope of this paper.
The computed orientation a and concentration φ will be simply “injected” into the optimal scalar viscosity
model (6), via the dimensionless coupling factor a∗ and the particle number Np defined by (3).

Fiber orientation model. In this paper only the Reduced Strain Closure (RSC) fiber orientation model [43]
will be used to compute the 2nd-order fiber orientation tensor. In addition to the interaction coefficient
Ci that measures diffusion due to entanglement [21], the model introduces a reduction factor 0 < κ ≤ 1
that slows down fiber orientation rate in an objective way. Based on their respective simulation results,
authors of [13, 18] found that flow-fiber coupling effects are more important when slow orientation kinetics
are explicitly introduced into the fiber orientation model. The classical Folgar-Tucker model [21] simply
predicts an orientation evolution too fast to benefit greatly from a fiber-dependent viscosity.

Fiber concentration model. The suspension balance model (SBM) implemented in Moldflow Insight 2019
Technology Preview [44] is used to compute a spatially varying fiber volume concentration φ that will feed
the Np expression (3). Also based on a micromechanical (homogenization) approach, the SBM is designed
to capture shear-induced migration of fillers and will produce a non-uniform volume concentration that are
also observable for injection molded parts [4]. The interested readers can refer to [45] for a recent review
of this model. Nevertheless, such model is not yet popularized in injection molding simulations, probably
because some theoretical improvements outlined in [46] are still awaited. Some recent successful attempts
have been made in the community [47, 48] to validate the SBM against experimentally measured fiber
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concentration distributions reported in the literature. Among the many physical parameters of the model,
we will be mainly interested in two scalar parameters: the fiber equivalent radius Req that characterizes the
size of fibers and a similar A parameter (maximum packing volume fraction) in the particle normal stress
viscosity like in the Np expression. The same value of A will be used in the SBM and in (3).

Implementation in the Moldflow API framework. The optimal scalar viscosity model (6) is implemented
in the Moldflow Insight API framework [19], see [18]. Recall that in (6) the viscosity η refers to that of
the unfilled matrix. Based on the assumption that rheological measurements on fiber-reinforced materials
ηMF are conducted at high shear rates, in [18] a simple a11 ≈ 1 parameter is introduced to characterize the
quasi-unidirectional fiber alignment (a1,a2) =

(
a11,

1
2 (1 − a11)

)
in such situations. Using (6), the viscosity

of the suspending fluid η can be estimated by

η =
ηMF

1 + Np(φ)a∗
, (13)

where a∗ is computed with such quasi-UD orientation states and the simple shear deformation mode. In this
paper since fiber concentrations are assumed to be non-uniform in general, it is further assumed in (13) that
the volume concentration is at its nominal value φ when computing the particle number coefficient Np using
(3). Using (13), a non-dimensional viscosity scaling factor η̂ can thus be introduced to compute effectively
the optimal scalar viscosity (6) given the Moldflow viscosity

η∗ = η̂ · ηMF =
1 + Npa∗

1 + Np(φ)a∗
ηMF.

The scaling factor η̂ characterizes the relative increase of decrease of the nominal viscosity ηMF due to the
interaction between actual fiber orientation, concentration and deformation mode. Its variation with respect
to the coupling factor a∗ is indicated in Fig. 6 using the nominal parameters (volume concentration in
particular) of the material considered. It can be seen that at the maximum coupling situation a∗ = 2

3 , a factor
of 20 can be obtained compared to the standard fiber-independent viscosity. As in Fig. 2, the decrease of
A slightly increases the coupling effect. Note that in the nominal concentration case, as Np becomes larger,
the scaling factor would converge to its maximal curve a∗ / a∗. Similar situation can also be found in [35].

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
a *

100

101

Valox 420 (PBT-GF30), nominal  and a11 = 0.95

A = 50%
A = 35%
Max

Figure 6: Viscosity scaling factor η̂ as a function of a∗ for two values of the A parameter, using the nominal material parameters of
Valox 420.

As in our previous work [18] and similarly in [11, 13], a weakly-coupled approach is adopted to couple
flowequations andfiber evolution. The coupling information (orientation and concentration into the proposed
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viscosity model) is thus exchanged at one time-step delay. The obtained flow-fiber coupled injection molding
simulation framework is extremely robust and efficient: no convergence issues have yet been found, and
virtually nor significantly higher computational overhead compared to a standard uncoupled simulation. On
a standard workstation (Intel Xeon 3.6 GHz, 16 GB of RAM, 4 cores, automatic parallelization), a typical
simulation that will be discussed in Section 3 (1.2 million tetrahedral elements) requires approximately 1
hour 20 minutes for uncoupled simulations, and 1 hour 30 minutes for coupled ones.

3. Numerical simulations

3.1. Problem statement
The geometry and the measurement positions of the considered center-gated disk of total thickness

2H = 1.38 mm are recalled in Fig. 7. In those experiments the disks were in fact only filled partially up
to approximately 90% of the total radial flow length. Consequently the outer radius rout = 51.53 mm of the
incomplete disk is used for simulation and only the filling stage (without packing) is considered in this work.
The melt is injected through a conic sprue of radius rin = 2.97 mm at the junction with the disk.

rout = 51.53 mm

rin = 2.97 mm

2H = 1.38 mm

rB
= 22.425 mm

rC = 46.575 mm

B C
40%

90%

(a)

ez

er

rin = 2.97 mm rout = 51.53 mm
B C40% 90%

z = H

z = −H

Shell layer

Transition layer

Core layer

0.75H

0.42H

0.08H

rB = 22.425 mm rC = 46.575 mm

O

(b)

Figure 7: Geometrical parameters and measurement positions of the center gated plate: (a) 3d view with B and C two measurement
radial positions along the thickness direction (b) cut view with three additional measurement height levels (shell, transition and
core layers) along the radial direction.

The injection molding parameters used for experiments and our simulations are summarized in Tab. 2.
An abundance of experimental fiber orientation / concentration measurements is available for this problem.
In this paper for validation purposes, the gapwise (z) variation of fiber orientation at 2 radial positions
reported in [24, 28] are considered: rB = 22.425 mm (40% of the flow length R = rout − rin) corresponding
to the lubrication region, and rC = 46.575 mm (90% of R) in the near-end-of-fill region. In addition,
fiber orientation measured at 3 height levels along the radius (r) direction are also used: the shell layer at
z = 0.75H, the transition layer z = 0.42H and the core layer z = 0.08H, cf. [10] and Fig. 7 (b). Finally, the
fiber volume concentration measurements of [24] will also be compared with our simulation predictions:
one at the flow length center (r = 27.25 mm), and the other in the entry region.

The injected material is a 30 wt% short glass fiber filled polybutylene terephthalate (PBT-GF30) under
the trade name Valox 420. For their simulations the authors of [10, 28] used a Newtonian viscosity model
η = 350 Pa · s according to the experimental findings in the shear-rate range from 10−1 1/s to 102 1/s. In this
work a shear-rate dependent viscosity ηMF stored in the Moldflow database is used to estimate the viscosity
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Table 2: Injection molding parameters.

Injection time Melt temperature Mold temperature

1 s 260 ◦C 90 ◦C

of the unfilled matrix using (13). We find that the Moldflow viscosity ηMF agrees well with the reported
constant viscosity value within the range, and presents further shear-thinning phenomenon at higher shear
rates. Note also that a temperature-dependence is also included in ηMF under Moldflow Insight along with
the computation of the temperature field T at every time step as the flow advances. In [10, 28] however, an
isothermal condition is assumed.

The parameters for the fiber orientation and concentration models are summarized in Tab. 3 along
with other parameters in our flow-fiber coupled simulation framework. Note that the default equivalent
radius parameter Req = 0.02 mm agrees fairly well with the experimental data [24] which gives 0.022 mm.
Using A = 50%, the resulting particle number Np is equal to 47, larger than that considered in [10]. The
RSC parameters are chosen via a systematic parametric optimization procedure that will be described in a
separate paper. Note that the values used are close to those fitted with rheological experiments and used in
[10, 28, 43].

Table 3: Parameters of the flow-fiber coupled simulation framework used in this work.

Fiber orientation Fiber concentration Optimal scalar viscosity

(Ci, κ) = (0.015,0.2) Req = 0.02 mm, A = 50% A = 50% for Np, a11 = 0.95 in (13)

Remark 3. In this section, “uncoupled” simulation refers to standard injection simulations where fiber-
independent viscosity ηMF is used; “coupled” simulation refers to the simulation framework described
in Section 2 via the optimal scalar viscosity (6). When non-uniform fiber concentration effects are not
considered, the nominal fiber concentration value (30 wt%) is used for Np.

3.2. Settings and post-processing of numerical simulations
The simulations are performed with Moldflow Insight 2019 Technology Preview [44]. From a computa-

tional point of view, the sprue is meshed with beam elements and the center-gated disk is spatially discretized
with a non-structured surface mesh with a typical mesh size h ≈ 1 mm, see Fig. 8 (a). With a 3-dimensional
modeling approach, 16 layers of tetrahedrons are generated in the thickness z direction and totally we have
approximately 1.2 million elements. We have verified that a refined mesh with 20 layers of tetrahedrons
does not lead to much variations in the simulation results. Interested readers can refer to the supplementary
material available online.

In [10, 28], the numerical simulations are conducted on an effective 2-dimensional domain where
axisymmetry is taken into account directly into the formulation. Due to the 3-dimensional nature of our
analysis and the non-structured mesh, the obtained simulation results are not perfectly axisymmetric with
respect to the z-axis. We believe that these numerical variabilities can be justified since they can represent
various physical imperfections or uncertainties during the experiments: geometrical, material, injection
settings, etc. To quantify and extract information from these variabilities, an angular averaging procedure is
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(a) (b)

Figure 8: (a) Non-structured surface mesh used for simulations; (b) qualitative illustration of the velocity field on the midplane of
the disk at the end of fill, with indications of two radial B / C measurement “cylindrical rings” in yellow.

used to post-process the simulation results: velocity, fiber orientation and concentration in particular. In Fig.
8 (b), a qualitative illustration of the velocity field on the midplane of the disk at the end of fill is presented.
The following formula is used to obtain the averaged gapwise radial velocity vr (z) at two measurement
positions B and C illustrated by two “cylindrical rings”

vr (z) =
1

2π

∫ 2π

0
vr (θ, z) dθ at r = rB or rC .

Since such advanced post-processing could not yet be performed under Moldflow, the simulation results are
exported via an in-house software (Promold Moldflow Results Exporter) to a format readable by ParaView
[49], a powerful open-source visualization application. The obtained averaged typical vr as a function of
the normalized thickness z/H is presented in Fig. 9 (a). The angular variability can be quantified using
respectively the 10% quantile as the lower bound and the 90% quantile as the upper bound, both indicated
by shaded regions in the figure. It can be seen that a maximum angular variability of about 30% can produce
on the core layer.
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Figure 9: Angular averaged (a) gapwise velocity vr and (b) fiber orientation arr along the radius direction, with angular variability
indicated by shaded regions.

A similar expression is used to compute an angular averaged result along the radial direction on one of
the three height levels in Fig. 7 (b). For example, the radial variation of the radial fiber orientation arr on
the shell, transition and core layers is shown in Fig. 9 (b). The angular variability is maximum in the core,
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but also at the end of fill on the shell / transition layers. In the subsequent presentation, only the angular
averaged result will be presented for readability concerns.

3.3. Preliminary verification analyses of numerical parameters
Before any confrontationwith experimental results, we propose to verify the sensibilities of the simulation

results with respect to various numerical parameters. We will be mainly interested in two parameters: (a)
the initial inlet fiber orientation condition and (b) the maximum time-step increment ∆t. Only results will
be reported here. Interested readers can refer to the supplementary material for the simulation data.

Three inlet conditions are considered: the default option where the “fibers aligned at skin / random at
the core” orientation is prescribed at the junction between the sprue and the disk, the condition where the
previous orientation is imposed at the injection point and finally the case where the “fibers aligned at skin /
transverse at core” orientation is assumed at the gate. Based on the simulation results, it can be concluded
that different inlet conditions will indeed induce differences in fiber orientation especially near the gate.
However as have been also observed by [17, 50], this effect will be rapidly washed out as the flow advances.
A correct prediction of fiber orientation in the entry region may strongly depend on the exact runner system
design and the pre-processing of the fiber-reinforced melt. This is the reason why in this paper the other
fiber orientation measurement radius rA = 7.8 mm just after the gate reported in [24] is not considered. In
the subsequent simulations, only results obtained with the default inlet option will be reported.

A weakly-coupling approach is adopted in our simulation framework, hence it is essential to guarantee
a converging behavior when reducing the maximum time-step increment parameter ∆t with flow-fiber
coupling. Our simulation data show little sensitivities as also observed in our previous work [18]. The
default value of ∆t = 4% may be sufficient to obtain a converged solution.

3.4. Effects of flow-fiber coupling and non-uniform concentration
In Fig. 10 (a), the simulations produce a correct skin-shell-core structure in fiber orientation at the

measurement radius B, and a good agreement with experiment apart from two extremely aligned values
measured on the shell layer.
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Figure 10: (a) Radial fiber orientation arr at B; (b) viscosity scaling factor at B.

The use of flow-flow coupling further decreases orientation kinetics especially in the core, similar to
what have been observed in [10]. The coupling effect is more obvious when non-uniform fiber concentration
is considered (labeled “coupled w/ φ”). This is confirmed in Fig. 10 (b), where the viscosity scaling factor
presents a higher value in the core than the case when the nominal fiber concentration value is used (labeled
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“coupled w/o φ”). A slight drop of η̂ is also observed on the shell layer. The reason for all these differences
in fiber orientation and viscosity when coupling is considered comes from a non-uniform fiber concentration
in the thickness direction, illustrated in Fig. 11 (a) for the flow length center radius. The experimental data
are indicated by a shaded region corresponding to different methods deployed in [24].
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Figure 11: (a) Mass fraction at the flow length center with or without flow-fiber coupling; (b) corresponding Np parameter with
coupling and non-uniform fiber concentration effects.

It can be seen that both the uncoupled and coupled simulations deliver a quantitatively satisfying fiber
concentration distribution. Due to the newly introduced flow – fiber orientation / concentration two-way
coupling (see Fig. 1), the exact concentration distribution can be altered by the coupling and vice versa. In
this particular case, coupling seems to slightly further improve agreement with the experimental result. Due
to shear-induced migrations, there are indeed more fibers present in the core than on the shell layer, where
the shear rate is higher. This particular concentration profile contributes hence to a non-uniform flow-fiber
coupling effect via the Np parameter according to (3), see Fig. 11 (b). For comparison the nominal value of
Np is also indicated. On the one hand, the coupling effect is thus higher in the core, due to a higher fiber
concentration compared to the nominal case. On the other hand, due to a lower mass fraction on the shell
layer, the coupling effect is over-estimated with the nominal concentration value.

The radial fiber orientation arr along the radius direction is analyzed in Fig. 12 for the transition and the
core layers. Contrary to [10], a short decrease of arr is not observed near the gate for the transition layer.
This should probably due to a different runner system and inlet conditions, which should be washed out
afterwards. The subsequent agreement with experimental results is excellent on the transition layer. Similar
satisfying predictions can also be found on the shell layer. Our 3-dimensional analysis also predicts a correct
gradually decreasing radial fiber orientation as the flow advances for the three height levels. This illustrates
again the importance of fountain flows in an injection molding simulation, cf. [10, 11].

On the one hand, the flow-fiber coupling does not lead to much variations of fiber orientation on
the shear and transition layers governed by dominant shear components, see similar results reported in
[10, 18]. On the other hand, contrary to [10], we do observe a noticeable decrease of arr on the core layer
when non-uniform concentration effects are also included during coupling, leading to a better agreement
with experiments. However, when the nominal concentration value is used, the improvement is modest
conforming to the gapwise representation seen in Fig. 10 (a). This illustrates the importance of considering
such spatially-varying fiber concentration.

Finally, to better explore the global coupling effect, the radial velocity vr and the viscosity scaling
factor η̂ on the core layer are presented in Fig. 13. The steady-state analytical radial velocity solution for
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Figure 12: Radial fiber orientation arr in the (a) transition and (b) core layers, with or without flow-fiber coupling.

an isothermal Newtonian fluid indicated in [28] is also shown. The theoretical curve matches well with
the uncoupled simulation especially in the lubrication region, indicating a quasi-Newtonian behavior. The
curves then diverge near the end of the flow path due to boundary effects and fountain flows [11]. Similar
to [10], when the nominal concentration value is used, the velocity in the core is even slightly larger in the
coupled simulation compared to the uncoupled case. A visible slowed-down velocity can only be observed
when non-uniform concentration effects are considered. The effect of coupling is also more obvious near
the gate due to stronger extensional flows. As can be seen from Fig. 13 (b), the scaling factor is higher
throughout the radial direction when such effects are taken into account, contributing to a more important
flow-fiber coupling.
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Figure 13: Radial velocity (a) and viscosity scaling factor (b) on the core layer, with or without flow-fiber coupling.

3.5. Effect of the A parameter on coupling
Recall that a decrease of the A parameter that is both present in the SBM and in the Np parameter will

increase the coupling effect. As can be seen from Figs. 2 and 6, the increase in Np and η̂ is modest when
the nominal fiber concentration is considered. Hence, we do not observe any visible differences in fiber
orientation predictions in such case.
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However, when non-uniform fiber concentration effects are taken into account during flow-fiber coupling,
the effect of A parameter is more important. This can be expected from Fig. 2 since with a smaller A the Np
parameter predicts a much higher value especially at large mass fractions, i.e. in the core. In Fig. 14 (a), the
radial fiber orientation arr on the core layer is presented for two values of A. For A = 35%, the prediction
is further improved and can even match the experimental data when angular variabilities are accounted for.
In comparison with uncoupled or “coupled w/o φ” simulations in Fig. 12 (b), the effect of non-uniform
concentration becomes more obvious. Note that the fiber evolution on the transitions layer (but also for the
shell layer) is not impacted compared to Fig. 12 (a).
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Figure 14: Flow-fiber coupling with non-uniform concentration effects for two values of A: (a) radial fiber orientation arr on the
core layer; (b) mass fraction on the transition layer.

Since this parameter also conditions fiber concentration prediction, the mass fraction distribution along
the radius direction on the transition layer is also shown in Fig. 14 (b). The simulation result is improved
using A = 35% compared with the experimental measurements, and showcases a non-monotonic migration
behavior along the flow path, probably due to the competition between shear and elongational flows during
convection.

Finally, the effect of the A parameter can also be perceived by the gapwise radial velocity distribution, see
Fig. 15 at the measurement radius C. As can be expected from Fig. 13 (a), when non-uniform concentration
effects are introduced, the velocity profile is blunted in the core compared with the uncoupled Newtonian-like
parabolic profile. Similar phenomenon has already been reported recently for the optimal scalar viscosity
model in [13, 18]. As above, the use of a smaller A value enhances the coupling effect and further slows
down flow kinematics in the center.

4. Conclusions and future work

A novel flow-fiber coupled injection molding simulation framework, with the consideration of non-
uniform fiber concentration effects, has been proposed in Section 2. As suggested by [18], further theoretical
analyses are carried out to better understand the optimal scalar viscosity model (6) previously developed by
the authors. Some useful properties of the scalar model can be obtained through spectral decomposition of
the (deviatoric) 4th-order viscosity tensor. From the point of view of rheological modeling, the fiber-induced
anisotropy is correctly captured by the scalar variational (minimization) principle. The approximation error
induced in such process is shown to be bounded and can also be quantified for arbitrary orientation states.
The proposed optimal scalar viscosity model can thus be used with confidence from a theoretical point of
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Figure 15: Gapwise radial velocity vr at the measurement radius C with coupling and non-uniform concentration effects for two
values of A.

view. The scalar nature further facilitates its implementation in commercial or academic flow simulation
software.

The well-documented center-gated disk problem [10, 24, 28] is revisited with a focus on fiber-flow
coupling and shear-induced non-uniform fiber concentration effects. On the one hand, probably due to
the slenderness of the disk (here the thickness equals 1.38 mm, while in our previous work the thickness
was larger than 3 mm) and a relatively moderate fiber content (30 wt%, whereas before we considered 50
wt%), the standard flow-fiber coupling with the nominal fiber concentration value does not bring noticeable
improvements to fiber orientation predictions. This observation agrees with some previous attempts [10, 11],
conforming to the dimensional analysis [15]. On the other hand, our new numerical simulations indicate that
the consideration of a non-uniform fiber concentration may further enhance the previously underestimated
flow-fiber coupling effect and eventually improve fiber orientation predictions. With well-chosen modeling
parameters of the orientation, concentration and coupling parameters, our model is capable of predicting
qualitatively correct radial fiber orientation evolution that also match the experimental measurements on
different height levels.

Along with [27], this work has introduced a new paradigm for injection molding simulations, where two
previously independent fiber evolution models (orientation via the RSC model and concentration via the
SBM) are two-way coupled with the flow equations during the filling stage via the proposed fiber-dependent
optimal scalar viscosity model. From a simulation point of view, this multiphysics coupling guarantees a
more accurate rheological modeling of fiber suspensions, which in return leads to a better characterization
of the complex non-Newtonian flows and fiber microstructural properties induced by the process. It brings
out some additional interesting future research directions besides those raised previously in our previous
work:

• Analytical or semi-analytical investigation of flow-fiber multiphysics coupling for some academic
example problems. Under some simplifying hypotheses, these mathematical studies could for instance
provide a better theoretical understanding of the coupling effect on orientation and concentration.

• Indirect coupling between fiber concentration and fiber orientation. Their individual and explicit
coupling with the flow should automatically induce an implicit coupling relation between themselves,
see Fig. 1. For instance, an increase of the volume concentration leads to an increased viscosity
which may reduce the shear rate. Consequently it could further slow down fiber orientation kinetics.
This scenario qualitatively matches some previous experimental [21] and analytical [51] results, while
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contradicts other findings such as [16]. This concentration-dependence of orientation could be taken
into account without flow-fiber coupling, for instance via an empirical relation Ci = Ci(φ). It may
be interesting from a theoretical point of view to investigate such dependence within the proposed
flow-fiber coupling framework.

Supplementary material

Some results of the preliminary numerical sensitivity analyses can be found at https://bitbucket.
org/litianyi/center_gated_disk.
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