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In the field of room acoustics, it is well known that reverberation can be character-1

ized statistically in a particular region of the time-frequency domain (after the tran-2

sition time and above Schroeder’s frequency). Since the 1950s, various formulas have3

been established, focusing on particular aspects of reverberation: exponential decay4

over time, correlations between frequencies, correlations between sensors at each fre-5

quency, and time-frequency distribution. In this paper, we introduce a stochastic6

reverberation model, that permits us to retrieve all these well-known results within7

a common mathematical framework. To the best of our knowledge, this is the first8

time that such a unification work is presented. The benefits are multiple: several9

formulas generalizing the classical results are established, that jointly characterize10

the spatial, temporal and spectral properties of late reverberation.11
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I. INTRODUCTION12

13

When a microphone records a sound produced by an audio source in a room, the received14

signal is made of several contributions (Kuttruff, 2014): firstly, the direct sound, that cor-15

responds to the direct propagation of the sound wave from the source to the microphone,16

then a few early reflections, that are due to the sound wave reflections on the various room17

surfaces (walls, floor, ceiling. . . ), and finally the late reverberation: after a time called tran-18

sition time (Polack, 1992, 1993), reflections are so frequent that they form a continuum and,19

because the sound is partially absorbed by the room surfaces at every reflection, the sound20

level decays exponentially over time. This phenomenon is called reverberation, and it can be21

modeled as the convolution between the source signal and a causal room impulse response22

(RIR), made of a few isolated impulses before the transition time, and of a continuous,23

exponentially decaying, random process in late reverberation. The Fourier transform of the24

RIR is called room frequency response (RFR), and the modal theory (Balian and Bloch,25

1970; Maa, 1939; Polack, 2007) shows that its profile is qualitatively similar to that of the26

RIR: below a frequency called Schroeder’s frequency, the RFR is made of a few isolated27

modes, and above this frequency the modes become so dense that they can be represented28

as a continuous random process (Schroeder, 1962, 1987; Schroeder and Kuttruff, 1962).29

To sum up, reverberation can be modeled as a stochastic process in a rectangular region30

of the time-frequency domain (Jot et al., 1997), as depicted in Fig. 1. If in addition the31

source and the microphones are located at least a half-wavelength away from the walls,32
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then in this time-frequency region, the sound field can generally be approximated as diffuse33

(Cremer et al., 1982; Joyce, 1975; Schultz, 1971). Diffusion is a consequence of the reflections34

on the room surfaces not being specular (i.e. mirror-like), but rather scattered in various35

directions, as represented in Fig. 2. After many reflections, the sound field can be considered36

as isotropic: the sound waves come uniformly from all directions.37
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FIG. 1. Time-frequency profile of reverberation (adapted from (Jot et al., 1997, p. 30) and (Baskind,

2003, p. 20)).

Historically, the first stochastic reverberation model is due to Schroeder (1962) and Moorer38

(1979): the RIR at microphone i is39

hi(t) = bi(t)e
−αt1t≥0 (1)

where α > 0 and bi(t) is a centered white Gaussian process. Parameter α is related to the40

reverberation time Tr in seconds by the equation Tr = 3 ln(10)
α

. The Gaussian distribution of41
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bi(t) arises from the central limit theorem: in late reverberation, hi(t) is the sum of many42

independent contributions.43

Schroeder (1962, 1987); Schroeder and Kuttruff (1962) also noticed that the independency44

of the samples hi(t) implies that the RFR, defined as their Fourier transform1 Fhi(f), is a45

stationary random process. From (1), he derived several formulas that can be summarized46

by expressing the complex autocorrelation function2 of Fhi(f):47

corr [Fhi(f1), Fhi(f2)] =
1

1 + ıπ f1−f2
α

. (2)

Following a similar approach in the spectral domain, under the diffuse field assumption, Cook48

et al. (1955) computed the correlation at frequency f between two sensors at distance D49

(with c > 0 the speed of sound in the air):50

corr [Fh1(f), Fh2(f)] = sinc
(

2πfD
c

)
. (3)

Equation (3) was later generalized to combinations of pressure and velocity sensors (Jacobsen51

and Roisin, 2000) and to differential microphones (Elko, 2001).52

Finally, Polack (1988) generalized model (1) by assuming that bi(t) is a centered station-53

ary Gaussian process, whose power spectral density (PSD) B(f) has slow variations3. Then54

he showed that the Wigner distribution4 (Cohen, 1989) of the RIR is55

Whi,hi(t, f) = B(f)e−2αt1t≥0. (4)

In order to account for the fact that the attenuation coefficient α actually depends on56

the frequency f , he also proposed an empirical generalization of (4):57

Whi,hi(t, f) = B(f)e−2α(f)t1t≥0. (5)
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In other respects, based on the billiard theory, Polack (1992, 1993) also showed that58

the durations of the various trajectories in a room, from a given source position to the59

microphone, are distributed according to a Poisson process (Chiu et al., 2013).60
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FIG. 2. Specular vs. diffuse reflection.

In this paper, we propose a unified stochastic model of reverberation, that will permit61

us to retrieve all formulas (1) to (4) in a common mathematical framework5, to establish62

a link with the Poisson distribution proposed by Polack, and to show how the probability63

distribution of the RIR, which is impulsive in early reverberation, converges to the Gaussian64

distribution in late reverberation. In addition, this model will also permit us to go deeper65

into the description of the statistical properties of the RIR over the space, time and frequency66

domains, and to prove several new results.67

This paper is structured as follows: Section II presents important mathematical defini-68

tions and notation that will be used throughout the paper. Then our general stochastic69

reverberation model is introduced in Section III. The statistical properties of this model at70

one sensor are investigated in Section IV. The statistical relationships between two sensors71

are then analyzed in Section V. The new model is validated experimentally in Section VI,72
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by comparing the predicted second order statistics with their estimates from a database of73

synthetic RIRs. Finally, some conclusions and perspectives are presented in Section VII. In74

order to make the main discussion as clear as possible, all mathematical proofs were moved75

to Appendices A to G.76

II. MATHEMATICAL DEFINITIONS77

• N: set of whole numbers78

• R, C: sets of real and complex numbers, respectively79

• R+: set of nonnegative real numbers80

• ı =
√
−1: imaginary unit81

• x (bold font), z (regular): vector and scalar, respectively82

• [a, b]: closed interval, including a and b ∈ R83

• ]a, b[: open interval, excluding a and b ∈ R84

• Lp(V ), where V is a Borel set and p ∈ N\{0}: Lebesgue space of measurable functions85

f of support V , such that ‖f‖p = (
∫
V
|f(x)|pdx)

1
p < +∞86

• L∞(V ), where V is a Borel set: Lebesgue space of essentially bounded functions f of87

support V (i.e. such that ‖f‖∞ = ess supV |f | < +∞)88

• δ: Dirac delta function89

• ‖.‖2: Euclidean/Hermitian norm of a vector or a function90
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• z: complex conjugate of z ∈ C91

• x>: transpose of vector x92

• S2: unit sphere in R3 (S2 = {x ∈ R3; ‖x‖2 = 1})93

• E[X]: expected value of a random variable X94

• φX(θ) = E[eıθX ]: characteristic function of a real random variable X95

• Covariance of two complex random variables X and Y :96

cov[X, Y ] = E[(X − E[X])(Y − E[Y ])] (6)

• var[X] = cov[X,X]: variance of a random variable X97

• Correlation of two complex random variables X and Y :98

corr[X, Y ] =
cov[X, Y ]√

var[X] var[Y ]
(7)

• P(λ): Poisson distribution of parameter λ > 0:99

N ∼ P(λ)⇔ P (N = n) = e−λ λ
n

n!
⇔ φN(θ) = eλ(eıθ−1) (8)

• sinc(x) = sin(x)
x

: cardinal sine function100

• 1A: indicator function of a set A (1A(x) is 1 if x ∈ A or 0 if x /∈ A)101

• ψ̃(t) = ψ(−t): conjugate and time-reverse of ψ : R→ C102

• Convolution of two functions ψ1 and ψ2 : R→ C:

(ψ1 ∗ ψ2)(t) =
∫
u∈R ψ1(u)ψ2(t− u)du
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• Fourier transform of a function ψ : R→ C:103

Fψ(f) =
∫
t∈R ψ(t)e−2ıπftdt (f ∈ R) (9)

• Two-sided Laplace transform of a function ψ : R→ C:104

Lψ(s) =
∫
t∈R ψ(t)e−stdt (s ∈ C) (10)

• Wigner distribution (a.k.a. Wigner-Ville distribution) of two second-order random105

processes ψ1(t) and ψ2(t):106

Wψ1,ψ2(t, f) =
∫
R cov[ψ1(t+ u

2
), ψ2(t− u

2
)]e−2ıπfudu. (11)

III. DEFINITION OF THE STOCHASTIC MODEL107

The model that we present in this section is based on the source image principle (Allen108

and Berkley, 1979; Kuttruff, 2014). As illustrated in Fig. 3 in the case of specular reflections109

in a rectangular room6, the trajectory inside the room from the real source to the microphone110

is equivalent to a virtual straight trajectory from a so-called source image which is outside111

the room. A remarkable property of this principle is that, regardless of the room dimen-112

sions, the density of the source images is uniform in the whole space: the number of source113

images contained in a given disk, of radius sufficiently larger than the room dimensions, is114

approximately invariant under any translation of this disk.115116

Since we aim to define a general stochastic reverberation model that holds for any room117

geometry, based on the billiard theory (Polack, 1992, 1993), we will consider that the posi-118

tions of the source images are random and uniformly distributed (note that this assumption119
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FIG. 3. Positions of microphone (plus sign), source (thick point) and source images (other points).

The original room walls are drawn with thick lines. A virtual straight trajectory from one source

image to the microphone is drawn, along with the real trajectory in the original room.

is a fortiori valid in the case of a diffuse sound field, which is uniform). More precisely, given120

a Borel set V ⊂ R3 of finite volume |V |, we will assume that the number N(V ) of source121

images contained in V follows a Poisson distribution of parameter λ|V |: N(V ) ∼ P(λ|V |).122

Mathematically, this is formalized through the concept of Poisson random measures with123

independent increments: given a non-negative, locally integrable function Λ(x) on Rp, the124

Poisson random increment dN(x) ∼ P(Λ(x)dx) corresponds to an infinitesimal volume125

|V | = dx. Then for any Borel set V ⊂ Rp of finite Lebesgue measure, the number126

N(V ) =
∫
V
dN(x) of points contained in V follows a Poisson distribution of parameter127 ∫

V
Λ(x)dx: N(V ) ∼ P(

∫
V

Λ(x)dx). In the proposed stochastic reverberation model, we128

will consider a spatially uniform distribution of the source images in the 3D-space, so that129

p = 3 and Λ(x) = λ > 0 is constant.130

In other respects, we will assume that the sound waves undergo an exponential attenu-131

ation along their trajectories, that is due to the multiple reflections on the room surfaces132
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and to the propagation in the air. In this paper we focus on the case of omnidirectional133

microphones, so we will further assume that this attenuation is isotropic (in accordance with134

the diffuse field approximation) and independent of the frequency. It will thus only depend135

on the length of the trajectory, as in (Polack, 1988).136

Finally, we suppose that several microphones7 indexed by an integer i are placed at137

arbitrary positions xi in the room.138

We end up with the following model:139

hi(t) =
∫
x∈R3 hi(t,x) e−

α
c
‖x−xi‖2 dN(x), (12)

where hi(t) is the RIR at microphone i, α > 0 is the attenuation coefficient (in Hz), and140

c > 0 is the speed of sound in the air (approximately 340 m/s in usual conditions). The141

impulse hi(t,x), propagated from the source image at position x, is modeled as a coherent142

sum of monochromatic spherical waves:143

hi(t,x) =

∫
f∈R

A(f)
e

2ıπf
(
t− ‖x−xi‖2

c

)
‖x− xi‖2

df, (13)

where A(f) is a linear-phase frequency response (in order to ensure coherence). In Ap-144

pendix A, we show that (12) and (13) are equivalent to the following model:145

Definition 1 (Unified stochastic reverberation model).146

Let λ > 0, T > 0, α > 0, and c > 0. Let dN(x) be a uniform Poisson random measure on147

R3 with independent increments:148

dN(x) ∼ P(λdx). (14)
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Let g(t) ∈ L∞([−T, T ]), such that149

Fg(0) =
dFg
df

(0) = 0, (15)

∀f ∈ R, Lg(α + 2ıπf) ≥ 0. (16)

At any sensor position xi ∈ R3, hi(t) is defined as150

∀t ∈ R, hi(t) = e−α(t−T ) bi(t), (17)

where151

bi(t) =

∫
x∈R3

g

(
t− T − ‖x− xi‖2

c

)
dN(x)

‖x− xi‖2

. (18)

Equivalently, the Fourier transform of hi(t) is152

Fhi(f) = Lg(α + 2ıπf)e−2ıπfT

∫
R3

e−
α+2ıπf

c
‖x−xi‖2

‖x− xi‖2

dN(x). (19)

This definition calls for comments. Firstly, the linear-phase frequency response A(f)153

in (13) was parameterized as154

A(f) = Lg(α + 2ıπf)e−2ıπfT . (20)

This technical definition aims to simplify the mathematical developments in the next sec-155

tions. Secondly, any function g ∈ L∞([−T, T ]) is such that Fg(f) and f 7→ Lg(α+ 2ıπf) are156

smooth, so Fg(0), dFg
df

(0) and Lg(α + 2ıπf) are well-defined. The constraints (15) and (16)157

imposed to g are required to prove Lemma 1 and Proposition 2 in Section IV 8. Moreover, the158

support of g is chosen so that hi(t) in (17) and bi(t) in (18) are causal. Thirdly, the existence159

of functions g that satisfy these constraints is guaranteed by Lemma 3 in Appendix A.160
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Now it is time to investigate the properties of this model. In Section IV, we will focus on161

one sensor at spatial position xi. Then in Section V, we will analyze the spatial relationships162

between two sensors at different positions xi and xj.163

IV. STATISTICAL PROPERTIES AT ONE SENSOR164

Let us first introduce an equivalent model definition:165

Proposition 1 (Equivalent model definition at one sensor). With the same notation as in166

Definition 1, we have:167

bi(t) =

∫
r∈R+

g
(
t− T − r

c

) dN(r)

r
, (21)

Fhi(f) = Lg(α + 2ıπf)e−2ıπfT

∫
r∈R+

e−
α+2ıπf

c rdN(r)
r

(22)

where dN(r) are independent Poisson increments on R+:168

dN(r) ∼ P(4πλr2dr). (23)

Proposition 1 is proved in Appendix A. Let us now investigate the statistical properties169

of this model:170

Lemma 1. The random process bi(t) introduced in Definition 1 is such that ∀t≥ 2T ,171

1. bi(t) is a centered wide sense stationary (WSS) process 9, of autocovariance function172

∀τ ∈ R,Γ(τ) = cov[bi(t+ τ), bi(t)] = 4πλc (g̃ ∗ g)(τ), (24)

autocorrelation function173

∀τ ∈ R, γ(τ) = corr[bi(t+ τ), bi(t)] =
(g̃ ∗ g)(τ)

‖g‖2
2

, (25)
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and power spectral density174

∀f ∈ R, B(f) = FΓ(f) = 4πλc |Fg(f)|2. (26)

2. When t→ +∞ (i.e. t� T ), bi(t) converges in law to a stationary Gaussian process.175

Lemma 1 is proved in Appendix C.176

Proposition 2 (Statistical properties at one sensor position). With the notation introduced177

in Lemma 1, the reverberation model in Definition 1 has the following properties:178

1. First order moments:179

• in the spectral domain:180

∀f ∈ R, E[Fhi(f)] =
4πλc2Lg(α + 2ıπf) e−2ıπfT

(α + 2ıπf)2 (27)

• in the time domain:181

∀t ≥ 2T, E[hi(t)] = 0. (28)

2. Second order moments:182

• in the spectral domain:183

∀f ∈ R, var[Fhi(f)] = 2πλcLg(α + 2ıπf)2/α (29)

∀f1, f2 ∈ R, corr[Fhi(f1),Fhi(f2]) =
e−2ıπ(f1−f2)T

1 + ıπ f1−f2
α

(30)

• in time domain:184

∀t ≥ 2T, var[hi(t)] = 4πλc‖g‖2
2 e
−2α(t−T ) (31)

∀t1, t2 ≥ 2T, corr[hi(t1), hi(t2)] = γ(t1 − t2) (32)

13
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• in the time-frequency domain:185

∀f ∈ R,∀t ≥ 2T, Whi,hi(t, f) = B(f) e−2α(t−T ). (33)

3. Asymptotic normality: when t→ +∞, hi(t) converges in law to a Gaussian process.186

Proposition 2 is proved in Appendix D. Note that (26) and (15) show that B(f) is very187

flat at f = 0: B(0) = dB
df

(0) = d2B
df2

(0) = d3B
df3

(0) = 0. The asymptotic normality is related to188

the central limit theorem: when r becomes large, the volume contained between the spheres189

of radius r and r + dr increases as r2dr, and so does the number of source images included190

in this volume as shown in (23), which leads to the addition of an increasing number of191

independent and identically distributed (i.i.d.) random increments dN(x).192

This proposition permits us to retrieve most of the classical results listed in the intro-193

duction. Firstly, hi(t) is centered for t ≥ 2T (the fact that it is not centered for t ∈ [0, 2T ]194

explains why the expected value of the frequency response E[Fhi(f)] in (27) is not zero).195

Secondly, (17) corresponds to Schroeder and Moorer’s model defined in (1) when T → 0 (in196

this case the process bi(t) becomes white, and it is Gaussian when t� T ), and in the general197

case it is equivalent to Polack’s model (Polack, 1988, chap. 1) (bi(t) is a centered stationary198

Gaussian process when t � T ). When T → 0, (30) reduces to Schroeder’s formula (2),199

which was indeed established by assuming that bi(t) is white. Finally, (33) is equivalent200

to Polack’s time-frequency model defined in (4). To the best of our knowledge, the other201

formulas in Proposition 2 are novel.202
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V. STATISTICAL PROPERTIES BETWEEN TWO SENSORS203

Let us now focus on the relationships between two sensors:204

Lemma 2. Let us consider the model in Definition 1 at two positions xi and xj ∈ R3. Let205

us define the rectangular window206

∀t ∈ R, w(t) =
c

2D
1[−D

c
,D
c

](t), (34)

where D = ‖xi − xj‖2. Then, in addition to the properties listed in Lemma 1, the random207

process b(t) = [bi(t), bj(t)]
> is also such that208

• ∀t ≥ 2T + D
c

, b(t) is a centered WSS process 9, of cross-autocovariance function209

∀τ ∈ R,Γi,j(τ) = cov[bi(t+ τ), bj(t)] = w ∗ Γ(τ), (35)

cross-autocorrelation function210

∀τ ∈ R, γi,j(τ) = corr[bi(t+ τ), bj(t)] = w ∗ γ(τ), (36)

and cross-power spectral density211

∀f ∈ R, Bi,j(f) = FΓi,j(f) = B(f) sinc(2πfD
c

). (37)

• When t→ +∞ (i.e. t� T ), b(t) converges in law to a stationary Gaussian process.212

Lemma 2 is proved in Appendix F.213

Proposition 3 (Statistical properties between two sensors).214

Let us consider the reverberation model in Definition 1 at two positions xi and xj ∈ R3, and215

the rectangular window w(t) defined in (34) with D = ‖xi − xj‖2. Then, with the notation216

15
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introduced in Lemma 1 and in addition to the properties listed in Proposition 2, we also217

have:218

• in the spectral domain:219

∀f1, f2 ∈ R, corr[Fhi(f1),Fhj(f2)] =
e−

αD
c
−2ıπ(f1−f2)(T+

D
2c

)sinc(π(f1+f2)D
c

)

1 + ıπ f1−f2
α

(38)

• in the time domain:220

∀t1, t2 ≥ 2T + D
c
, corr[hi(t1), hj(t2)] = w ∗ γ (t1 − t2) (39)

• in the time-frequency domain:221

∀f ∈ R,∀t ≥ 2T + D
2c
,Whi,hj(t, f) = B(f)e−2α(t−T ) sinc(2πfD

c
). (40)

• Asymptotic normality: when t→ +∞, h(t) converges in law to a Gaussian process.222

Proposition 3 is proved in Appendix G. Applying equation (38) to f1 = f2 = f , we get223

Cook’s formula (3) when α→ 0 (no exponential decay). This formula was indeed originally224

proved by considering plane waves under a far-field assumption (Cook et al., 1955). Besides,225

equation (39) shows that hi(t) and hj(t) are correlated on a time interval that corresponds226

to the wave propagation from one sensor to the other. To the best of our knowledge, all227

formulas in Proposition 3 are novel.228

VI. SIMULATION RESULTS229

In Propositions 2 and 3, we have listed several statistical properties of the reverberation230

model introduced in Definition 1. Some of these properties are already-known experimental231
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facts, such as the zero mean and asymptotic Gaussianity of late reverberation. In this232

section, we aim to experimentally validate the second-order statistics specific to this new233

stochastic reverberation model, that were not predicted by the existing models listed in234

Section I. Firstly, we note that at the second order, the spectral domain, time domain, and235

time-frequency domain formulas in both Propositions 2 and 3 are mutually equivalent; we236

can thus focus on the time-frequency domain only. Secondly, from (33) and (40), we get the237

closed-form expression of the time-frequency correlation: ∀f ∈ R, ∀t ≥ 2T + D
2c

,238

Whi,hj(t, f)

Whi,hi(t, f)
= sinc(2πfD

c
). (41)

Since (33) was already known (Polack, 1988) and since (40) can actually be deduced from (33)239

and (41), the novelty regarding the second order statistics of late reverberation in Propo-240

sitions 2 and 3 lies in the single equation (41). Therefore we just need to experimentally241

validate (41).242

For this purpose, we need an experimental setup with the greatest spatial diversity possi-243

ble: a high number (typically a thousand) of RIRs, with random source position x, random244

middle position of the sensors
xi+xj

2
, random orientation of the sensor axis

xj−xi
D

, for a fixed245

distance ‖xj − xi‖2 = D. Because we do not have access to a suitable database of mea-246

sured RIRs, we used synthetic RIRs instead. These synthetic RIRs were generated with247

the Roomsimove toolbox (Vincent and Campbell, 2008), which is a state-of-the-art RIR248

generator based on the source image principle. Roomsimove is dedicated to parallelepipedic249

(”shoebox”) rooms and applies high-pass filtering above 20 Hz. We used it with the default250

physical parameters (humidity: 40%, temperature: 20 ◦C, speed of sound: c =343 m/s), to251

simulate a shoebox room matching the two properties of the classroom described in (Kut-252

17
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truff, 2014, p. 84): a volume of 200 m3 (the room dimensions are 7.4 m × 9 m × 3 m), and253

a reverberation time of 1 s (the absorption coefficient is set to 0.13 for all room surfaces).254

For this setup, Schroeder’s frequency is about 140 Hz. In accordance with our stochastic255

model, we considered omnidirectional sources and omnidirectional microphones. We thus256

generated M = 1000 RIRs sampled at 16 kHz, with random source positions and random257

middle positions of the sensors (both uniformly distributed inside the room volume), ran-258

dom orientation of the sensor axis (uniformly distributed on the unit sphere), for a fixed259

microphone distance D = 20 cm.260

FIG. 4. Time-frequency correlation between sensors of the late RIR

Fig. 4 represents the estimate of the time-frequency correlation (41) that we obtained with261

this experimental setup. The Wigner distributions Whi,hi(t, f) and Whi,hj(t, f) were esti-262

mated as Ŵhi,hi(t, f) = 1
M

∑M
m=1 |S

(m)
hi

(t, f)|2 and Ŵhi,hj(t, f) = 1
M

∑M
m=1 S

(m)
hi

(t, f)S
(m)
hj

(t, f),263

where S
(m)
hi

(t, f) (resp. S
(m)
hj

(t, f)) is the short time Fourier transform (STFT) of the mth
264

generated RIR h
(m)
i (t) (resp. h

(m)
j (t)), computed with a 128-sample long Hann window and265
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FIG. 5. Correlation between sensors of the late RFR over frequency (a) and over time (b)

an overlap of 64 samples in the time domain. The distributions Ŵhi,hi(t, f) and Ŵhi,hj(t, f)266

obtained in this way are smoothed estimates of Whi,hi(t, f) and Whi,hj(t, f) in the time-267

frequency domain (Cohen, 1989). We observe in Fig. 4 that the estimated time-frequency268

correlation is noisy but, as expected, it seems approximately constant as a function of time,269

and looks like a cardinal sine function as a function of frequency.270

In order to accurately compare the frequency variation with Cook’s formula (3), we271

computed the ratio ρ̂i,j(f) of the projections of the estimated distributions onto the frequency272

axis, i.e.273

ρ̂i,j(f) =

∫
R Ŵhi,hj(t, f)dt∫
R Ŵhi,hi(t, f)dt

(42)

(represented by the dashed curve in Fig. 5-(a)), which is an estimate of (3) (the cardinal274

sine function is represented by the solid curve in Fig. 5-(a)). We can observe a good match275

between the two curves10. Finally, the dash-dotted curve in Fig. 5-(b) represents, as a276

function of time, the same noisy estimate of the time-frequency correlation as in Fig. 4, at277
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a fixed frequency f = 3860 Hz (which corresponds to a local maximum of the cardinal sine278

function in Fig. 5-(a)), and the solid curve represents a smoothed (i.e. low-pass filtered)279

version of this noisy signal. We can observe that the average time-frequency correlation is280

indeed approximately independent of time.281

VII. CONCLUSION AND PERSPECTIVES282

In this paper, we proposed a new stochastic model of reverberation, that permitted us283

to retrieve various well-known results within a common framework. This unification work284

resulted in several new results, that jointly characterize the properties of late reverberation in285

the space, time, and frequency domains. The most noticeable result in our opinion is (40),286

which very simply makes the connection between Polack’s time-frequency model (4) and287

Cook’s formula (3).288

Although this model was motivated by physical assumptions that only hold in a partic-289

ular region of the time-frequency domain (after the transition time and above Schroeder’s290

frequency), from a signal processing perspective however, one of its most interesting features291

is that it is also applicable before the transition time and below Schroeder’s frequency. In-292

deed, since the parameter of the Poisson distribution dN(r) in (23) increases quadratically293

with the distance r, the model permits us to describe both the impulsiveness of the RIR294

before the transition time, and its asymptotic normality in late reverberation. However, be-295

cause it does not take the exact geometry of the acoustic scene into account (i.e. the room296

geometry and the source and sensors positions), it is able to capture neither the accurate297

temporal localization in the RIR of the isolated peaks related to early reflections before the298
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transition time, nor the spectral localization of the isolated room modes below Schroeder’s299

frequency. In practice, this blindness to such fine details does not prevent us to estimate300

the model parameters from the full RIRs, in the whole time-frequency domain. The missing301

geometrical information can still be recovered afterwards in an ad-hoc manner, for instance302

by estimating the Poisson random measure dN(x) given the observed RIRs. Indeed, the303

knowledge of dN(x) permits us to identify the spatial positions of the source images, which304

carry the geometrical information related to both the early reflections and the room modes.305

Finally, we end up with a stochastic model involving very few parameters (α, λ, filter g,306

and the distances between microphones), that is able to describe reverberation in the whole307

time-frequency domain. We thus believe that this model has an interesting potential in a308

variety of signal processing applications.309

However this reverberation model, as it is presented in this paper, is not yet suitable for310

modeling real RIRs. Indeed, one assumption has to be relaxed: the attenuation coefficient311

α is not constant but rather depends on frequency in practice, as in Polack’s generalized312

time-frequency model (5). In a future paper, we will thus present a generalization of the313

proposed model where we will introduce a frequency-varying attenuation coefficient. A314

second generalization of this model would be to represent acoustic fields that are not perfectly315

diffuse. Finally, the generalization to directional microphones is straightforward, by using316

the same approach as presented in (Elko, 2001).317

Our future contributions will also focus on the signal processing aspects of this work: we318

will propose a fast algorithm for estimating the parameters of the model in discrete time.319
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Finally, our ultimate goal is to investigate the potential of this model in applications such320

as source separation, dereverberation, and synthetic reverberation.321
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APPENDIX A: PROOFS FOR THE DEFINITION OF THE STOCHASTIC MODEL327

The following lemma aims to prove the existence of functions g that satisfy conditions (15)328

and (16) in Definition 1.329

Lemma 3. Let ψ(t) ∈ L2([0, T ]) with T > 0, such that
∫ T
t=0

ψ(t)eαtdt =
∫ T
t=0

ψ(t)e−αtdt = 0,330

where α ∈ R 11. Let g(t) = (ψ̃ ∗ ψ)(t) eα(t−T ). Then function g satisfies conditions (15)331

and (16) in Definition 1.332

Proof of Lemma 3. Since ψ(t) ∈ L2([0, T ]), function g is continuous and bounded. Firstly,333

Fg(f) = e−αTLψ(α + 2ıπf)Lψ(−α + 2ıπf). Moreover, since ψ(t) has finite support, both334

functions f 7→ Lψ(−α+2ıπf) and f 7→ Lψ(α+2ıπf) are infinitely differentiable. In addition,335

Lψ(−α) = Lψ(α) = 0, which finally proves (15). Secondly, Lg(α + 2ıπf) = e−αT |Fψ(f)|2,336

which proves (16).337
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We can now derive equations (17), (18) and (19) in Definition 1. By substituting (13)

and (20) into (12), we get

hi(t) =

∫
f∈R
Lg(α + 2ıπf)e2ıπf(t−T )

∫
x∈R3

e−
α+2ıπf

c
‖x−xi‖2

‖x− xi‖2

dN(x) df

which shows that hi(t) as defined in (12) is the inverse Fourier transform of (19) and therefore338

proves (19). Besides, applying the Fourier transform (9) to (17) also leads to (19), which339

proves the equivalence between (17)-(18), and (12)-(13)-(20).340

Finally, let us prove Proposition 1.341

Proof of Proposition 1. Let dN(r) =
∫
u∈S2 dN(ru). Then (14) implies (23). The change of342

variables x = xi + ru with r ∈ R+ and u ∈ S2 in (18) and (19) leads to (21) and (22).343

APPENDIX B: PROPERTIES OF THE POISSON RANDOM MEASURE344

The following Proposition 4 characterizes the distribution of the Poisson random mea-345

sure introduced in Section III, by providing the closed-form expression of the characteristic346

functional of this random measure:347

Proposition 4. Let dN(x) be a Poisson random measure on Rp with independent incre-348

ments: dN(x) ∼ P(Λ(x)dx), where Λ is a non-negative, locally integrable function. We349

consider the stochastic integral I =
∫
ψ(x)dN(x), where ψ is an essentially bounded real-350

valued function with compact support, and its characteristic function φI(θ) = E[eıθI ]. Then351

we have352

∀θ ∈ R, φI(θ) = exp

(∫
(eıθψ(x) − 1)Λ(x)dx

)
, (B1)
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which yields353

∀θ ∈ R, lnφI(θ) =
+∞∑
n=1

ın

n!
θnκn (B2)

where ∀n ∈ N\{0},354

κn =

∫
ψ(x)nΛ(x)dx (B3)

is the n-th order cumulant of I. In particular, we get355

E[I] =

∫
ψ(x)Λ(x)dx. (B4)

Proof. In the particular case where ψ is the indicator function of a Borel set V of finite356

Lebesgue measure, we have I = N(V ) ∼ P(
∫
V

Λ(x)dx). Therefore (8) yields (B1), because357

both members of (B1) are equal to exp((eıθ−1)
∫
V

Λ(x)dx). Consequently, since (B1) holds358

for any indicator function and since the increments dN(x) are assumed independent, it is359

easy to show that (B1) also holds for simple functions12. Following the construction of the360

Lebesgue integral, we conclude that (B1) also holds for any essentially bounded function ψ361

with compact support.362

Then the Taylor series expansion of the second exponential function in (B1) yields ∀θ ∈ R,363

364

lnφI(θ) =
+∞∑
n=1

ın

n!
θn
∫
ψ(x)nΛ(x)dx, (B5)

which proves (B2). Note that the permutation of the integral and the sum in (B5) is allowed365

thanks to Fubini’s theorem, because
∑+∞

n=1
1
n!
|θ|n

∫
|ψ(x)|nΛ(x)dx ≤ e|θ|‖ψ‖∞

∫
V

Λ(x)dx <366

+∞, since ψ is essentially bounded, V = support(ψ) is compact, and Λ is locally integrable.367

In particular, for n = 1, we get E[I] = κ1 thus (B3) yields (B4).368
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The following Proposition 5 provides the closed-form expression of the joint cumulants369

of two stochastic integrals involving the Poisson random measure:370

Proposition 5. Let dN(x) be a Poisson random measure on Rp with independent incre-371

ments: dN(x) ∼ P(Λ(x)dx), where Λ is a non-negative, locally integrable function. We372

consider two stochastic integrals I1 =
∫
ψ1(x)dN(x) and I2 =

∫
ψ2(x)dN(x), where ψ1373

and ψ2 are essentially bounded real-valued functions with compact support, and their joint374

characteristic function φI1,I2(θ1, θ2) = E[eı(θ1I1+θ2I2 ]. Then we have375

∀θ1, θ2 ∈ R, ln(φI1,I2(θ1, θ2)) =
+∞∑
n=1

ın

n!

n∑
k=0

(
n

k

)
θk1θ

n−k
2 κk,n−k, (B6)

where ∀n1, n2 ∈ N such that n1 + n2 ≥ 1,376

κn1,n2 =

∫
ψ1(x)n1ψ2(x)n2Λ(x)dx (B7)

is the (n1, n2)-th order joint cumulant of (I1, I2). In particular, we get377

cov[I1, I2] =

∫
ψ1(x)ψ2(x)Λ(x)dx. (B8)

Proof. By applying (B1) to θ = 1 and to ψ(x) = θ1ψ1(x) + θ2ψ2(x), we get ∀θ1, θ2 ∈ R,378

lnφI1,I2(θ1, θ2) =
∫

(eı(θ1ψ1(x)+θ2ψ2(x)) − 1)Λ(x)dx

=
∑+∞

n=1
ın

n!

∫
(θ1ψ1(x) + θ2ψ2(x))nΛ(x)dx

=
∑+∞

n=1
ın

n!

∑n
k=0

(
n
k

)
θk1θ

n−k
2

∫
ψ1(x)kψ2(x)n−kΛ(x)dx,

(B9)

which proves (B6). Note that the permutation of the integral and the two sums in (B9) is

allowed thanks to Fubini’s theorem, because

+∞∑
n=1

1

n!

n∑
k=0

(
n

k

)
|θ1|k|θ2|n−k

∫
|ψ1(x)|k|ψ2(x)|n−kΛ(x)dx ≤ e|θ1|‖ψ1‖∞+|θ2|‖ψ1‖∞

∫
V

Λ(x)dx < +∞
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since ψ1 and ψ2 are essentially bounded, V = support(ψ1) ∪ support(ψ2) is compact, and Λ379

is locally integrable. In particular, for n1 = 1 and n2 = 1, we get cov[I1, I2] = κ1,1, thus (B7)380

yields (B8).381

APPENDIX C: PROOF OF LEMMA 1382

1. Wide sense stationarity383

a. First order moments384

Considering the Poisson random measure dN(r) defined in (23), equation (B4) in Propo-385

sition 4, applied to p = 1 and to function Λ(r) = 4πλr2 defined on R+, shows that for386

any essentially bounded (possibly complex) function r 7→ ψ(r) with compact support in387

R+, E[
∫
r∈R+

ψ(r)dN(r)] = 4πλ
∫
r∈R+

ψ(r)r2dr, which we will rewrite in the symbolic, more388

compact form:389

E[dN(r)] = 4πλr2dr. (C1)

From (C1), since
∫ min(t−T,T )

u=−T |g(u)|(t − T − u)du < +∞ (with the change of variable390

r 7→ u = t − T − r
c
), Fubini’s theorem shows that we can permute the mathematical391

expectation with the integral over r in (21), leading to:392

E[bi(t)] = 4πλc2

(∫ min(t−T,T )

u=−T
(t− T − u)g(u)du

)
. (C2)

Finally, substituting (15) into (C2) shows that ∀t ≥ 2T , E[bi(t)] = 0.393
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b. Second order moments394

Considering the Poisson random measure dN(r) defined in (23), equation (B8) in Propo-395

sition 5, applied to p = 1 and to function Λ(r) = 4πλr2 defined on R+, shows that for any396

essentially bounded (possibly complex) functions r 7→ ψ1(r) and r 7→ ψ2(r) with compact397

supports in R+, cov
[∫

r1∈R+
ψ1(r1)dN(r1),

∫
r2∈R+

ψ2(r2)dN(r2)
]

= 4πλ
∫
r∈R+

ψ1(r)ψ2(r)r2dr,398

which we will rewrite in the symbolic, more compact form:399

cov[dN(r1), dN(r2)] = 4πλ δ(r2 − r1)r1r2dr1dr2. (C3)

From (C3), since
∫
u∈R |g(u + τ) g(u)|du < +∞ (with the change of variable r 7→ u =400

t−T − r
c
), Fubini’s theorem shows that we can permute the mathematical expectation with401

the integral over r in (21), leading to (24), which jointly proves both (25) and (26).402

2. Asymptotic normality403

From (21), bi(t) can be written as the stochastic integral I in Proposition 4, applied to404

p = 1, to function Λ(r) = 4πλr2 defined on R+, and to ψ(r) =
g(t−T− r

c
)

r
. Then (B2) yields405

∀θ ∈ R, ln(φbi(t)(θ)) =
+∞∑
n=1

(ıθ)n

n!
κn(t) (C4)

where κn(t) is the n-th order cumulant of bi(t), whose expression is given by (B3):406

κn(t) = 4πλ

∫
r∈R+

g
(
t− T − r

c

)n
r2−ndr. (C5)

The change of variables r = c(t− T − u) in (C5) implies

∀t ≥ 2T, κn(t) = 4πλc3−n
∫ T

u=−T
g(u)n (t− T − u)2−ndu.
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Therefore, ∀n ≥ 2, ∀t > 2T ,407

|κn(t)| ≤
4πλc3−n ∫ T

u=−T |g(u)|ndu
(t− 2T )n−2

. (C6)

Let ε > 0. Substituting (C6) into (C4), we get: ∀t ≥ (2 + ε)T ,

∣∣∣∣ln(φbi(t)(θ))−
(
ıθκ1(t)− θ2

2
κ2(t)

)∣∣∣∣ ≤ ψ(θ)

t− 2T
−→
t→+∞

0,

where ψ(θ) = 4πλ(εcT )3
∫ T
u=−T

(
e|

θg(u)
εcT | −

2∑
n=0

| θg(u)εcT |n
n!

)
du.408

Therefore the characteristic function of bi(t) converges pointwise to that of the normal409

distribution when t→ +∞, which proves that bi(t) is asymptotically normally distributed.410

In the same way, it can be proved13 that the random variables bi(t+ t1) . . . bi(t+ tK) for all411

K ∈ N and t, t1 . . . tK ∈ R are jointly normally distributed when t → +∞ and t1 . . . tK are412

fixed, which shows that bi(t) converges in law to a stationary Gaussian process.413

APPENDIX D: PROOF OF PROPOSITION 2414

1. First order moments415

From (C1), since
∫

r∈R+

e−
α
c
rrdr < +∞, Fubini’s theorem shows that we can permute the416

mathematical expectation with the integral over r in (22), leading to (27). Besides, since417

E[bi(t)] = 0 as shown in Lemma 1, equation (17) implies (28).418
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2. Second order moments419

a. In the spectral domain420

From (C3), since
∫

r∈R+

e−
2α
c
rdr < +∞, Fubini’s theorem shows that we can permute the421

mathematical expectation with the integral over r in (22), leading to:422

cov[Fhi(f1),Fhi(f2)] = 2πλcLg(α + 2ıπf1)Lg(α + 2ıπf2) e
−2ıπ(f1−f2)T

α+ıπ(f1−f2)
. (D1)

Equation (D1) implies both (29) and (30).423

b. In the time domain424

Equations (24) and (17) imply both (31) and (32).425

c. In the time-frequency domain426

Finally, from (C3) and (17), since

∫
u∈R

∫
r∈R+

∣∣∣g (t+ u
2
− T − r

c

)
g
(
t− u

2
− T − r

c

)∣∣∣ drdu < +∞,

Fubini’s theorem shows that we can permute the mathematical expectation with the integrals427

over r in (21) and over u in (11) (with ψ1 = ψ2 = hi), leading to:428

Whi,hi(t, f) = 4πλe−2α(t−T )

∫
r∈R+

I(t− T − r

c
, f)dr (D2)

where429

I(t, f) =

∫
u∈R

g
(
t+

u

2

)
g
(
t− u

2

)
e−2ıπfudu =Wg,g(t, f). (D3)
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In order to conclude, we will use two properties of the Wigner distribution. Firstly, the430

time support of Wg,g is the same as that of g. Secondly, the projection property shows431

that
∫
t∈RWg,g(t, f)dt = |Fg(f)|2. Therefore substituting (D3) and (26) into (D2) finally432

implies (33).433

3. Asymptotic normality434

Since bi(t) converges in law to a stationary Gaussian process as shown in Lemma 1,435

equation (17) shows that hi(t) converges in law to a Gaussian process.436

APPENDIX E: GEOMETRY WITH TWO MICROPHONES437

Let xi, xj ∈ R3. Let ξ1, ξ2 : R+ → C. In the next sections, we will have to compute438

several integrals of the form:439

Jξ1,ξ2 =

∫
x∈R3

ξ1(‖x− xi‖2)

‖x− xi‖2

ξ2(‖x− xj‖2)

‖x− xj‖2

dx. (E1)

xjxi

x

θ

r

0 D
2

ρ+ v
2

ρ− v
2

D
2

FIG. 6. Geometry with two microphones at xi, xj and a source image at x.

To compute such an integral, we will use the spherical coordinates (r, θ, ϕ), as illustrated440

in Fig. 6, where θ = 0 corresponds to the direction of vector xj − xi, and the origin of the441
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coordinates is the middle of the line segment [xi, xj] (so that
xi+xj

2
= 0 as represented in442

Fig. 6). We thus get x = [r sin(θ) cos(ϕ), r sin(θ) sin(ϕ), r cos(θ)]> and dx = r2dr sin(θ)dθdϕ,443

with r ∈ R+, θ ∈ [0, π] and ϕ ∈ [0, 2π]. Moreover, as can be seen in Fig. 6, we have444

• ‖x− xi‖2 =
√
r2 + D2

4
+ rD cos(θ),445

• ‖x− xj‖2 =
√
r2 + D2

4
− rD cos(θ).446

By substitution into (E1), we get447

Jξ1,ξ2 = 2π

∫ +∞

r=0

∫ π

θ=0

ξ1

(√
r2+

D2

4
+rD cos(θ)

)
√
r2+

D2

4
+rD cos(θ)

ξ2

(√
r2+

D2

4
−rD cos(θ)

)
√
r2+

D2

4
−rD cos(θ)

r2dr sin(θ)dθ. (E2)

Finally, we make a last change of variables, that is also illustrated in Fig. 6:

ρ =
‖x−xi‖2+‖x−xj‖2

2
=

√
r2+D2

4
+rD cos(θ)+

√
r2+D2

4
−rD cos(θ)

2
,

v = ‖x− xi‖2 − ‖x− xj‖2 =
√
r2 + D2

4
+ rD cos(θ)−

√
r2 + D2

4
− rD cos(θ),

which is such that ρ ∈
[
D
2
,+∞

[
, v ∈ [−D,D], and

r2dr sin(θ)dθ√
r2 + D2

4
+ rD cos(θ)

√
r2 + D2

4
− rD cos(θ)

=
dρdv

D
.

Equation (E2) thus becomes448

Jξ1,ξ2 =
2π

D

∫ +∞

ρ=D
2

∫ D

v=−D
ξ1

(
ρ+

v

2

)
ξ2

(
ρ− v

2

)
dρdv. (E3)

APPENDIX F: PROOF OF LEMMA 2449

1. Wide sense stationarity450

Considering the Poisson random measure dN(x) defined in (14), equation (B8) in Propo-451

sition 5, applied to p = 3 and to the constant function Λ(x) = λ, shows that for any452
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essentially bounded (possibly complex) functions x 7→ ψ1(x) and x 7→ ψ2(x) with compact453

supports in R3, cov
[∫

x1∈R3 ψ1(x1)dN(x1),
∫
x2∈R3 ψ2(x2)dN(x2)

]
= λ

∫
x∈R3 ψ1(x)ψ2(x)dx,454

which we will rewrite in the symbolic, more compact form:455

cov[dN(x1), dN(x2)] = λ δ(x2 − x1)dx1dx2. (F1)

From (F1), since

∫
x∈R3

∣∣∣g (t1 − T − ‖x−xi‖2c

)
g
(
t2 − T − ‖x−xj‖2c

)∣∣∣
‖x− xi‖2‖x− xj‖2

dx < +∞,

Fubini’s theorem shows that we can permute the mathematical expectation with the integral456

over x in (18), leading to:457

cov[bi(t1), bj(t2)] = λJξ1,ξ2 (F2)

where ξ1(r) = g
(
t1 − T − r

c

)
, ξ2(r) = g

(
t2 − T − r

c

)
, and Jξ1,ξ2 was defined in (E1). Then458

substituting (E3) into (F2) shows that459

cov[bi(t1), bj(t2)] = 4πλ

+∞∫
ρ=D

2

I(t1 − T − ρ
c
, t2 − T − ρ

c
)dρ (F3)

where460

I(t1, t2) =
1

2D

∫ D

v=−D
g
(
t1 − v

2c

)
g
(
t2 + v

2c

)
dv. (F4)

With v = cu, substituting (34) into (F4) proves that461

I(t1, t2) =

∫
u∈R

g
(
t1 −

u

2

)
g
(
t2 +

u

2

)
w(u)du. (F5)

Substituting (F5) into (F3) proves (35), which with (25) implies (36). Moreover, applying462

the Fourier transform (9) to (35) and substituting (26) leads to (37).463
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2. Asymptotic normality464

Let b(t) = [bi(t), bj(t)]
>. From (18), bi(t) (resp. bj(t)) can be written as the stochastic465

integral I1 (resp. I2) in Proposition 5, applied to p = 3, to the constant function Λ(x) = λ,466

and to ψ1(x) =
g(t−T− ‖x−xi‖2

c
)

‖x−xi‖2 and ψ2(x) =
g(t−T−

‖x−xj‖2
c

)

‖x−xj‖2 . Then (B6) yields467

∀θ1, θ2 ∈ R, ln(φb(t)(θ1, θ2)) =
+∞∑
n=1

ın

n!

n∑
k=0

(
n

k

)
θk1θ

n−k
2 κk,n−k(t) (F6)

where κn1,n2(t) is the (n1, n2)-th order cumulant of b(t), whose expression is given by (B7):468

469

κn1,n2(t) = λJξ1,ξ2 , (F7)

where ξ1(r) =
(g(t−T− rc))

n1

rn1−1 , ξ2(r) =
(g(t−T− rc))

n2

rn2−1 , and Jξ1,ξ2 was defined in (E1).470

Then substituting (E3) into (F7) shows that471

κn1,n2(t) =
2πλ

D

∫ +∞

ρ=D
2

∫ D

v=−D

(
g
(
t− T − ρ+ v

2

c

))n1

(ρ+ v
2
)n1−1

(
g
(
t− T − ρ− v

2

c

))n2

(ρ− v
2
)n2−1

dρdv. (F8)

The change of variables ρ = c(t− T − u) and v = cw in (F8) implies that ∀t ≥ 2T + D
c

,

κn1,n2(t) =
2πλc4−n1−n2

D

∫ T+D
2c

u=−T−D
2c

∫ D
c

w=−D
c

(
g
(
u− w

2

))n1

(t− T − u+ w
2
)n1−1

(
g
(
u+ w

2

))n2

(t− T − u− w
2
)n2−1

dudw.

Therefore ∀n1 + n2 ≥ 2, ∀t ≥ 2T + D
c

,472

|κn1,n2(t)| ≤
2πλc4−n1−n2

D

∫ T+D
2c

u=−T−D
2c

∫ D
c

w=−D
c

∣∣g (u− w
2

)∣∣n1
∣∣g (u+ w

2

)∣∣n2 dudw

(t− 2T )n1+n2−2
. (F9)

Substituting (F9) into (F6), we get ∀t ≥ 2T + D
c

,473

∣∣∣∣∣ln(φb(t)(θ))−
2∑

n=1

ın

n!

n∑
k=0

(
n

k

)
θk1θ

n−k
2 κk,n−k(t)

∣∣∣∣∣ ≤ 1

(t− 2T )
ψ(θ1, θ2) −→

t→+∞
0,
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where474

ψ(θ1, θ2) = 2πλcD2
∫ T+D

2c

u=−T−D
2c

∫ D
c

w=−D
c

e
|θ1g(u−w2 )|+|θ2g(u+w2 )|

D −∑2
n=0

1
n!

(
|θ1g(u−w2 )|+|θ2g(u+w

2 )|
D

)n
dudw.475

Therefore the characteristic function of b(t) converges pointwise to that of the normal476

distribution when t → +∞, which proves that b(t) is asymptotically normally distributed.477

In the same way, it can be proved13 that the random variables b(t + t1) . . . b(t + tK) for all478

K ∈ N and t, t1 . . . tK ∈ R are jointly normally distributed when t → +∞ and t1 . . . tK are479

fixed, which proves that b(t) converges in law to a stationary Gaussian process.480

APPENDIX G: PROOF OF PROPOSITION 3481

1. In the spectral domain482

From (F1), since ∫
R3

e−
α
c
‖x−xi‖2

‖x− xi‖2

e−
α
c
‖x−xj‖2

‖x− xj‖2

dx < +∞,

Fubini’s theorem shows that we can permute the mathematical expectation with the integral483

over x in (19), leading to:484

cov[Fhi(f1),Fhj(f2)] = λLg(α + 2ıπf1)Lg(α + 2ıπf2)e−2ıπ(f1−f2)TJξ1,ξ2 , (G1)

where ξ1(r) = e−
α+2ıπf1

c
r, ξ2(r) = e−

α+2ıπf2
c

r, and Jξ1,ξ2 was defined in (E1). Then equa-485

tion (E3) shows that486

Jξ1,ξ2 = 2π
D

+∞∫
ρ=

D
2

e−2
α+ıπ(f1−f2)

c
ρdρ

D∫
v=−D

e−2ıπ
f1+f2

2c
vdv = 2πc

e−
α+ıπ(f1−f2)

c
D

α + ıπ(f1 − f2)
sinc

(
2π f1+f2

2c
D
)
.

(G2)

By substituting (G2) and (29) into (G1), we finally get (38).487
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2. In the time domain488

Equations (17) and (35) prove that489

cov[hi(t1), hj(t2)] = 4πλce−2α(
t1+t2

2
−T )w ∗ g̃ ∗ g (t1 − t2) . (G3)

Finally, substituting (31) and (25) into (G3) implies (39).490

3. In the time-frequency domain491

Finally, from (F1) and (17), since

∫
u∈R

∫
x∈R3

∣∣∣g (t+ u
2
− T − ‖x−xi‖2

c

)
g
(
t− u

2
− T − ‖x−xj‖2

c

)∣∣∣
‖x− xi‖2‖x− xj‖2

dxdu < +∞,

Fubini’s theorem shows that we can permute the mathematical expectation with the integrals492

over x in (18) and over u in (11) (with ψ1 = hi and ψ2 = hj), leading to:493

Whi,hj(t, f) = λe−2α(t−T )

∫
R
Jξ1,ξ2e

−2ıπfudu. (G4)

where ξ1(r) = g
(
t+ u

2
− T − r

c

)
, ξ2(r) = g

(
t− u

2
− T − r

c

)
, and Jξ1,ξ2 was defined in (E1).494

Then substituting (E3) into (G4) shows that495

Whi,hj(t, f) = 4πλe−2α(t−T )

2D

+∞∫
ρ=D

2

D∫
v=−D

I(t− T − ρ
c
, f, v)dρdv (G5)

with496

I(t, f, v) =

∫
u∈R

g
(
t+ u

2
− v

2c

)
g
(
t− u

2
+ v

2c

)
e−2ıπfudu = e−2ıπf

v
cWg,g (t, f) , (G6)

whereWg,g(t, f) was expressed in (D3), and we have used the change of variable u′ = u− v
c
.497
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In order to conclude, we will use the two properties of the Wigner distribution that498

we already used in Appendix D 2 c. Firstly, the time support of Wg,g is the same as that499

of g. Secondly,
∫
t∈RWg,g(t, f)dt = |Fg(f)|2. Substituting (G6) and (26) into (G5) finally500

implies (40).501

4. Asymptotic normality502

Since b(t) converges in law to a stationary Gaussian process as shown in Lemma 2,503

equation (17) shows that h(t) converges in law to a Gaussian process.504

1The Fourier transform is defined in equation (9).505

2The correlation of two complex random variables is defined in equation (7).506

3Note that in this case, Fhi
(f) is no longer a stationary process.507

4The Wigner distribution is defined in equation (11).508

5A straightforward generalization of this model will also permit us to prove (5), that will be presented in a509

future paper .510

6Fig. 3 illustrates the source image principle in 2D-space for convenience, but of course our model will be511

defined in the 3D-space.512

7For the sake of simplicity, we will focus on the case of two microphones; the generalization to an arbitrary513

number of microphones is straightforward.514

8More precisely, (15) is required to prove that the random processes bi(t) and hi(t) are centered after a515

given time (cf. Appendix C 1 a), and (16) enforces the nonnegativity of Lg(α+ 2ıπf) in (20), which makes516
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the filter A(f) linear-phase, and which is required to get an expression (30) of corr[Fhi(f1),Fhi(f2]) in517

Proposition 2 that simplifies to Schroeder’s equation (2) when T → 0.518

9A WSS process is a random process with finite second order moments, whose mean and covariances are519

invariant with respect to any translation of time.520

10Actually, the reader may notice that the magnitudes of the extrema of the dashed curve provided by (42)521

are slightly lower than those of the solid curve given by Cook’s formula (3). This difference is due to the way522

Wigner distributions are estimated: the STFT produces estimated time-frequency distributions Ŵhi,hi
(t, f)523

and Ŵhi,hj
(t, f) that are smoothed both in time and frequency. Therefore the estimate (42) is the ratio524

between two spectra that are both smoothed in frequency, which explains the deviations between the two525

curves in Fig. 5-(a).526

11An example of function ψ(t) satisfying the conditions in Lemma 3 is

ψ(t) =

((
α2 +

4π2

T 2

)
cos

(
2πt

T

)
− α2

)
1[0,T ](t).

12A simple function is defined as a linear combination of indicator functions of measurable sets.527

13The proof is the same and it is omitted here for the sake of conciseness.528
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