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Abstract

The role of the initial concentration of anaerobic growth factors (AGF) on interactions between Torulaspora delbrueckii 
and Saccharomyces cerevisiae was investigated in strict anaerobiosis. Experiments were performed in a synthetic grape 
must medium in a membrane bioreactor, a special tool designed for studying direct and indirect interactions between 
microor-ganisms. In pure culture fermentations, increased AGF concentration had no impact on S. cerevisiae behaviour, 
whereas it induced an extension of T. delbrueckii latency. Surprisingly, T. delbrueckii used only 75 to 80% of the 
consumed sugar to produce biomass, glycerol and ethanol. Physical separation influenced the population dynamics of co-
fermentations. S.cerevisiae dominated the co-cultures having a single dose of AGF as its presence indirectly induced a 
decrease in numbers of living T. delbrueckii cells and physical contact with T. delbrueckii stimulated S.cerevisiae growth. 
Increasing the AGF initial concentration completely upset this domination: S. cerevisiae growth was not stimulated and T. 

delbrueckii living cells did not decrease. Yeasts incorporate exogenous AGFs, which probably impact their response to 
competing yeasts. The increase in AGF might have induced changes in the lipid composition of the T. delbrueckii 
membrane, which would hinder its interaction with S. cerevisiae antimicrobial peptides. The initial concentration of 
anaerobic growth factors influenced co-culture fermentation population dynamics tremendously, thus highlighting a new 
way to monitor population evolution and eventually wine organoleptic properties.

Keywords S. cerevisiae · T. delbrueckii · Mixed-culture fermentation · Interactions · Growth anaerobic factors increase

Introduction

Wine fermentation is a widely studied process, which can 
involve pure or mixed yeast cultures. Usually, the yeasts 
are classified in two groups: Saccharomyces and non-
Saccharomyces species. Saccharomyces species are the 
yeasts most commonly used in winemaking, since they are 

tolerant of high ethanol levels [1]. The use of non-Saccha-

romyces yeasts has been re-assessed, especially in mixed 
culture, because of their ability to enhance the analytical 
and aromatic profile of the wine and to reduce the alcohol 
content [2–5]. Among the non-Saccharomyces yeast spe-
cies, attention has focused on Torulaspora delbrueckii, as 
this yeast has shown a positive impact on the organoleptic 
quality of wines and a low production of undesirable com-
pounds, such as acetic acid, ethyl acetate, acetaldehyde, 
acetoin, hydrogen sulphide and volatile phenols that lessen 
off-flavours [6–8]. T. delbrueckii performs slow and some-
times incomplete alcoholic fermentation under winemak-
ing conditions [4, 9, 10]. Co-fermentation alongside S. cer-

evisiae has been proposed to modulate wine flavour and to 
ensure complete alcoholic fermentation. Generally, death 
of T. delbrueckii occurs in co-cultures with S. cerevisiae 
[4, 11, 12]. However, the particular T. delbrueckii strain 
Kbarr-1 has been reported to dominate must fermentation 
in the presence of S. cerevisiae [13, 14]. In winemaking 
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co-fermentation, population dynamics is influenced by 
yeast interactions. Three types of interactions have been 
described: indirect interactions, cell-to-cell contact and 
competition for space.

There are two sorts of indirect interactions: competi-
tion for a substrate and interaction mediated by a secreted 
component. In co-culture, yeasts spontaneously consume 
oxygen, sugar, nitrogen, vitamins and lipids, inducing a 
competition for these substrates. Antimicrobial peptides 
(AMPs) are secreted to kill a competitor microorgan-
ism. S. cerevisiae produces killer toxins that are active 
against other S. cerevisiae strains and occasionally non-
Saccharomyces yeasts but not against T. delbrueckii [8, 
15]. Some S. cerevisiae strains secrete another biocide, 
called saccharomycin, derived from the glycolytic enzyme 
GAPDH [16, 17]. This toxin is active against several wine-
related non-Saccharomyces yeasts such as T. delbrueckii, 

H. guilliermondii, K. marxianus and K. thermotolerans 
GAPDH [16–18]. T. delbrueckii Kbarr strains produce a 
killer toxin (Kbarr-1) that is lethal to S. cerevisiae strains 
and some non-Saccharomyces yeasts [22]. In winemaking 
co-fermentation, non-Saccharomyces death is due to yeast 
interactions rather than nutrient depletion or the presence 
of toxic compounds [12, 19].

Alcoholic fermentation involves complex mechanisms, 
which can be affected by several elements of the must, 
including lipids. The bulk of the lipid in yeast membranes 
is in the form of fatty acids, phospholipids, sterols and sphin-
golipids [20]. Sterols and unsaturated fatty acids contribute 
to plasma membrane integrity, resistance to ethanol and 
the maintenance of a high ethanol production rate [21, 22]. 
Tween 80 is frequently used as a source of oleic acid in 
synthetic media. Under anaerobic conditions, yeasts can-
not synthesise sterols or long-chain unsaturated fatty acids. 
The addition of lipid nutrients containing unsaturated fatty 
acids and sterols during alcoholic fermentation promotes cell 
growth in anaerobic conditions [23, 24]. By influencing the 
lipid composition of yeast cells [25], exogenous lipids affect 
membrane fluidity, membrane permeability and the activity 
of membrane-bound proteins [25–28].

Mixed culture fermentation of S. cerevisiae alongside T. 

delbrueckii has been the subject of considerable study [4, 11, 
19, 29–32]. However, the effects of lipid concentration on 
interactions occurring between these yeasts have not been 
investigated. The aim of the present work was to acquire 
better knowledge about the influence of lipids (anaerobic 
growth factors) on the behaviour of S. cerevisiae and T. 

delbrueckii in mixed culture wine fermentation. Anaero-
bic co-cultures were undertaken in a double compartment 
reactor frequently used to study mixed culture fermentation 
[4, 33–35]. Co-cultures were performed with and without 
physical separation of the yeasts to evaluate the impact of 
anaerobic growth factors on indirect and direct interactions.

Materials and methods

Microorganisms and inoculum cultures

Two commercial oenological yeasts were used in this 
study. Torulaspora delbrueckii Zymaflore alpha was sup-
plied by Laffort S.A.S., France, and Saccharomyces cerevi-

siae QA23 was supplied by Lallemand S.A.S., France. The 
yeasts were maintained on sterile YPD agar slant [yeast 
extract 1% (w/v), peptone 1% (w/v), glucose 2% (w/v) 
and agar 2% (w/v)] at 4 °C. When the inoculation cultures 
were prepared, each yeast was transferred from the agar 
slant to a flask containing 50 mL of YPD [yeast extract 1% 
(w/v), peptone 1% (w/v), glucose 2% (w/v)]. The yeasts 
were incubated at 25 °C with agitation (130 rpm) for 11 h. 
Subsequently, they were transferred to an Erlenmeyer flask 
containing 300 mL of YPD to give an initial concentration 
of 5.106 cells/mL and incubated with agitation (130 rpm) 
at 25 °C for 16 h.

Medium

Two synthetic media, MS300 and MS300M were used in 
this study. This type of medium is regularly used in oeno-
logical studies [4, 36]. Their composition was designed to 
be close to that of white grape must and to avoid limita-
tions of carbon, nitrogen, vitamins and mineral elements 
during the yeast growth (the number 300 represents the 
approximated concentration in mg/L of assimilable nitro-
gen). They contained (per litre): glucose, 110 g; fruc-
tose, 110 g; L-malic acid, 6 g; citric acid, 6 g; mineral 
salts  (KH2PO4, 750 mg;  K2SO4, 500 mg;  MgSO4·7H2O, 
250 mg; CaCl·2H2O, 155 mg; NaCl, 200 mg;  MnSO4·H2O, 
4 mg;  ZnSO4·7H2O 4 mg;  CuSO4·5H2O, 1 mg; KI, 1 mg; 
 CoCl2·6H2O, 0.4 mg;  H3BO3, 1 mg; and  (NH4)6Mo7O24, 
1 mg); vitamins (myo-inositol, 20 mg; nicotinic acid, 
2  mg; calcium pantothenate, 1.5  mg; thiamin-HCl, 
0.25 mg; pyridoxine–HCl, 0.25 mg; and biotin, 0.003 mg). 
The nitrogen was brought by ammonium ions,  NH4Cl, and 
a concentrated solution of 19 α-amino acids. The composi-
tion of the concentrated amino acid solution was (per litre 
of solution): tyrosine 1.4 g, tryptophan 13.7 g, isoleucine 
2.5 g, aspartic acid 3.4 g, glutamic acid 9.2 g, arginine 
28.6 g, leucine 3.7 g, threonine 5.8 g, glycine 1.4 g, glu-
tamine 38.6 g, alanine 11.1 g, valine 3.4 g, methionine 
2.4 g, phenylalanine 2.9 g, serine 6.0 g, histidine 2.5 g, 
lysine 1.3 g, cysteine 1.0 g, and proline 46.8 g. The ammo-
nium salts and α-amino acids (all amino acids except 
proline) in the medium were considered as assimilable 
nitrogen [36]. Both media contained the equivalent of 
324 mg N/L that was assimilable by yeasts (204 mg N/L 



from the amino acid solution corresponding to 13.09 mL/L 
of amino acid solution, and 120 mg N/L from  NH4Cl, 
corresponding to 0.46 g/L). Medium MS300 contained 
anaerobic growth factors [ergosterol (15  mg/L), oleic 
acid (0.5 µL/L) and 1 mL/L of a Tween80/ethanol solu-
tion (1:1, v/v)]. The concentration of anaerobic growth 
factors (AGF) was twice as high in MS300M. The pH of 
each medium was adjusted to 3.3 before autoclaving for 
15 min at 121 °C. Vitamins were filtered and added after 
the thermal treatment.

Fermentation

Single-culture fermentation (SCF), mixed-culture fermen-
tation (MCF) and compartmented-culture fermentation 
(CCF) were performed in a two-compartment membrane 
bioreactor (MBR) with S. cerevisiae and T. delbrueckii. 
The system was composed of two jars interconnected by 
a hollow fibre membrane module immersed in one of the 
jars. The membrane fibre diameter of 0.1 µm allowed the 
medium, but not the microorganisms, to pass through the 
fibres. By applying pressure in the headspace of each of 
the vessels alternately, the medium was made to flow and 
mix. Compressed, filter-sterilized nitrogen was used to apply
the pressure and a system of valves controlled its admission
and expulsion according to the liquid levels. The time and
quantity of liquid inversion were calculated to ensure perfect
homogenization between the two jars. The complete MBR
system is described in detail in [34, 37]. The inoculation vol-
ume was calculated to initially reach 5 × 105 and  107 cells/
mL, respectively, for S. cerevisiae and T. delbrueckii in the
MBR. In CCF, the membrane was used and each strain was
inoculated into only one compartment. In SCF and MCF,
the membrane was removed, allowing microorganisms to
pass into the two compartments, and the inoculated volume
was equitably distributed between the two jars. All fermen-
tations were carried out at 20 °C under magnetic agitation
(250 rpm). The nitrogen pressure was applied alternately
16 h before the inoculation, ensuring that all the dissolved
oxygen was removed from the medium and thus providing
strict anaerobic conditions. All fermentations were per-
formed in duplicate. The time of fermentation corresponded
to the time needed to consume 97% of the sugar initially
present.

Analytical methods

Analysis of growth

Growth of the yeasts was determined by cell counting, 
using a Thoma haemocytometer. Samples were withdrawn 
throughout the fermentations and diluted appropriately in 
NaCl solution 0.9% (w/v). The percentage of living cells 

was observed by means of methylene blue staining. Growth 
of the yeasts was also determined by plate counting. Waller-
stein laboratory nutrient agar (WLN from Sigma–Aldrich) 
was used for global counting. WLD (WLN + cycloheximide 
2 mg.L− 1) was used to count only T. delbrueckii. S. cerevi-

siae colony-forming units (CFUs) were obtained by subtract-
ing T. delbrueckii CFUs from global CFUs. The plates were 
incubated at 27 °C and CFU were counted after 2 and 4 days 
for WLN and WLD, respectively. A correlation between 
cells and CFUs was established for each yeast in SCFs and 
CCFs, and was used to estimate the cell counts in MCFs. 
Cell dry weight was determined by filtering 10 mL culture 
samples through pre-weighed 0.45 µm cellulose acetate fil-
ters. After being washed with 0.9% NaCl, the filters were 
dried to constant weight at 105 °C under vacuum.

Metabolites analysis

Samples were filtrated (0.45 µm), diluted ten times and kept 
at − 20 °C until analysis. Metabolite concentrations were 
determined using high-performance liquid chromatography 
(Thermo Scientific, France) with a Rezex ROA-Organic acid 
H+ (8%), 250 × 4.6 mm phase-reverse column (Phenome-
nex, France). The column was eluted with a degassed mobile 
phase containing 10 mM sulfuric acid, at 30 °C and at a flow 
rate of 0.170 mL/min. The injection loop volume was 25 µL. 
Two detectors were connected in series. Malic, citric, suc-
cinic and acetic acid peaks were detected by an ultraviolet 
detector (Accela PDA detector, Thermo Scientific, France) 
located after the column. Glucose, fructose, ethanol and 
glycerol peaks were detected by a refractive index detec-
tor (Finnigan Surveyor RI Plus detector, Thermo Scientific, 
France) located at the end of the loop. Ethanol yield was 
defined as the quotient of the mass of ethanol formed divided 
by the mass of glucose consumed.

Yeast available nitrogen

Amino acid and ammonium chloride were the two sources of 
yeast assimilable nitrogen (YAN). Amino acid nitrogen was 
measured using an o-Phthaldialdehyde/N-Acetyl-L-Cysteine 
assay (K-PANOPA; Megazyme International Ireland Ltd). 
Free ammonium salts were measured by an enzymatic assay 
(K-AMIAR; Megazyme International Ireland Ltd).

Carbon fraction in biomass

Samples were centrifuged for 5 min at 10,000 rpm. The 
supernatant was thrown away and the precipitate was kept, 
washed with ultrapure water, mixed and centrifuged. These 
operations were performed three times and the final precipi-
tate was dried under vacuum in an oven at 100 °C for 2 days. 
The carbon fraction in the biomass was determined through 



dry combustion, using a PERKIN ELMER 2400 element 
analyser [38].

Carbon balance calculation

The carbon balance was calculated considering carbon in 
biomass, sugars, ethanol, glycerol and  CO2.  CO2 concen-
tration was estimated by considering that it was produced 
with the same stoichiometry as ethanol during fermentation. 
At some stages of some fermentations, the carbon was pre-
sent in components not detectable by our analytical system, 
resulting in an undetermined carbon fraction.

Statistical analysis

The data are presented as mean values with their standard 
deviation. Statistical analyses were performed using the 
RStudio program [39]. After the verification of variance 
homogeneity (Fisher test, p > 0.05), one-way analysis of 
variance (ANOVA) (p < 0.05) was used to determine statis-
tically significant differences between modalities. In the text, 
it appears as no significant differences between the mean 
values compared (if p value is upper than 0.05) or significant 
differences (if p value is lower than 0.05).

Results

Effect of anaerobic growth factors on single-culture 
fermentation (SCF)

SCFs were performed in MS300 and MS300M. AGF aug-
mentation did not modify S. cerevisiae growth, sugar uptake 
or ethanol production profiles (Fig. 1a, b). Moreover, the 
final glycerol concentrations were similar (≈ 8 g/L). In the 
range tested, an increase of AGF had no significant impact 
on S. cerevisiae behaviour in anaerobic fermentation.

Unexpectedly, an AGF increase induced an extension of 
the T. delbrueckii latency phase up to 50 h (Fig. 2a). The 
resulting sugar consumption and ethanol production were 
slower than those observed in SCF with AGF single dose 
(Fig. 2b). In MS300, T. delbrueckii did not completely con-
sume the YAN. After AGF increase, despite the slow YAN 
assimilation, no residual nitrogen compound was observed 
(Fig. 2a). In T. delbrueckii SCF, such AGF augmentation 
induced a significant increase (p < 0.05) in the final glyc-
erol concentration from 9.4 to 15.5 g/L.In both media, S. 

cerevisiae fermentation time was shorter than that of T. del-

brueckii, in accordance with several studies on this specific 
pair of yeasts [4, 11].

Fig. 1  Effect of increase in 
anaerobic growth factors on S. 

cerevisiae SCF: a Living cells 
and YAN profiles, b sugar and 
ethanol profiles. Vertical bars 
represent the standard devia-
tions
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Fig. 2  Effect of growth 
anaerobic factors increase on 
T. delbrueckii SCF: a Living 
cells and YAN profiles, b sugar 
and ethanol profiles. Vertical 
bars represent the standard 
deviations
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Co-cultures with a single dose of anaerobic growth 
factors

SCFs, MCFs and CCFs were performed in MS300. In all 
conditions, the maximum concentration of living S. cerevi-

siae cells was close to 280 × 106 cells/mL (Fig. 3a). The 
presence of T. delbrueckii did not impact the maximum pop-
ulation reached by S. cerevisiae. Regarding the first 50 h in 

SCF and CCF, S. cerevisiae growth rates were similar to and 
lower than those in MCF (Fig. 3a). Consequently, direct con-
tact stimulated S. cerevisiae growth whereas indirect contact 
did not. Compared to SCF, the maximum population and 
the final viability of T. delbrueckii were lower in CCF. In 
CCF, between 50 and 100 h, the number of T. delbrueckii 
living cells decreased by 48% (Fig. 3a). S. cerevisiae, there-
fore, had an indirect toxic action on T. delbrueckii. Such a 
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significant decrease (p < 0.05) was associated with a stable 
viability (Fig. 3e).

The maximum number of living T. delbrueckii cells 
reached 510, 133 and 106 × 106 cells/mL in SCF, CCF 
and MCF, respectively (Table 1). S. cerevisiae’s presence, 
therefore, induced a drastic reduction of the T. delbrueckii 
maximum population. Nevertheless, no significant differ-
ences were observed between direct and indirect contact 
(p > 0.05). Consequently, S. cerevisiae did not perform 
any cell-to-cell contact. Despite the initial T. delbrueckii 
population being 20 times higher, S. cerevisiae living cells 
became predominant after 55 and 21 h in CCF and MCF, 
respectively. Physical contact thus promoted S. cerevisiae 
domination in MS300.

At the very end of the fermentation, with high ethanol 
level and sugar impoverishment, in CCF, T. delbrueckii 
viability fell sharply to 70% (Fig. 3e), that of S. cerevisiae 
remained high (95%), and only in MCF were aggregated 
stained cells observed. The aggregated stained cells were 
smaller than the scattered, unstained cells.

Compared to SCFs, sugar was consumed faster in co-cul-
ture (Fig. 3b; Table 1). Fermentation time observed in CCF 
and MCF were not significantly different (p > 0.05). Except 
in T. delbrueckii SCF, YAN was completely consumed in 
less than 60 h (Fig. 3c). Ethanol concentrations reached in 
CCF, MCF and S. cerevisiae SCF were similar (≈ 100 g/L) 
and significantly higher (p < 0.05) than that in T. delbrueckii 
SCF (80 g/L) (Fig. 3d). The characteristics of all fermenta-
tions performed in MS300 are summed up in Table 1.

Co-cultures with a double dose of anaerobic growth 
factors

In MS300M, the maximum number of living S. cerevisiae 
cells reached 286, 129 and 61 × 106 cells/mL for SCF, CCF 

and MCF, respectively (Fig. 4a). T. delbrueckii’s presence 
thus considerably reduced the S. cerevisiae maximum popu-
lation. S. cerevisiae growth was more impacted when both 
yeasts where in direct contact. Unlike in SCF, T. delbrueckii 
did not present any extended latency phase in co-cultures 
with a double dose of AGF. Compared to SCF, the maxi-
mum concentration of T. delbrueckii living cells was lower 
in co-cultures. It can thus be concluded that the presence 
of S. cerevisiae hindered T. delbrueckii growth. Regard-
ing co-cultures, when the two yeasts were not separated, T. 

delbrueckii reached a higher maximum population and, in 
parallel, S. cerevisiae reached a lower maximum population 
(Fig. 4a). Moreover, for both yeasts, before 50 h of fermenta-
tion, the growth rate observed in CCF was not significantly 
different from that observed in MCF. Each yeast had a dif-
ferent maximum population, although YAN profiles in CCF 
and MCF were similar (Fig. 4c).

S. cerevisiae completed SCF faster than T. delbrueckii. 
Paradoxically, MCF, in which T. delbrueckii was preponder-
ant, presented a higher mean sugar consumption rate than 
CCF (Fig. 4b). Direct contact thus enhanced the ability of 
the pair of yeasts to consume sugar. At the end of the CCF, 
T. delbrueckii viability suddenly fell and S. cerevisiae via-
bility remained high—in the same way for CCF in MS300 
(Figs. 3e, 4e). Nevertheless, no aggregation was observed 
in MCF in MS300M, unlike in MS300. The characteristics 
of all fermentations performed in MS300M are summed up 
in Table 2.

Carbon balance

It should be stressed that  CO2 was not measured but its 
production was estimated by assuming the same stoi-
chiometry as that of ethanol during fermentation. This 
assumption was adequate to describe co-cultures and 

Table 1  Final parameters of 
fermentations performed in 
membrane bioreactor for single-
culture fermentation (SCF) of 
S. cerevisiae and T. delbrueckii, 
mixed-culture fermentation 
(MCF) and compartmented-
culture fermentation (CCF)

Cultures were performed at 20 °C, 250 rpm with nitrogen flux in headspace of vessels, in MS300 medium

SCF CCF MCF

S. cerevisiae T. delbrueckii

Maximum living cells of T. delbrueckii

(106 cells/mL)
– 510 ± 9 133 ± 11 106 ± 1

Maximum living cells of S. cerevisiae

(106 cells/mL)
262 ± 27 – 302 ± 20 271 ± 40

Time of fermentation (h) 142 ± 7 197 ± 10 121 ± 7 118 ± 8

Initial sugar (g/L) 225 ± 4 222 ± 4 217 ± 3 226 ± 3

Mean sugar consumption rate (g/L/h) 1.58 ± 0.03 1.12 ± 0.02 1.79 ± 0.02 1.89 ± 0.03

Final ethanol (g/L) 107.7 ± 1.3 80.2 ± 1.2 97.1 ± 5.9 102.7 ± 0.8

Ethanol yield (g/g) 0.48 ± 0.01 0.35 ± 0.02 0.45 ± 0.02 0.46 ± 0.01

Glycerol (g/L) 7.9 ± 0.3 9.4 ± 0.2 7.9 ± 0.7 7.9 ± 0.5

Final undetermined carbon fraction 1% 20% 5% 4%

Residual nitrogen (mg N/L) 0 22.3 ± 10 0 0



S. cerevisiae SCFs (Fig. 5a, b). In T. delbrueckii SCFs, 
no unbalance was observed during a long fermentation 
period (≈ 100 h), then the carbon unbalance increased 

progressively until the end of the fermentation (Fig. 5c, d). 
Final carbon unbalances higher than 20% were observed 
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Table 2  Final parameters of 
fermentations performed in 
membrane bioreactor for single-
culture fermentation (SCF) of 
S. cerevisiae and T. delbrueckii, 
mixed-culture fermentation 
(MCF) and compartmented-
culture fermentation (CCF)

Cultures were performed at 20  °C, 250  rpm with nitrogen flux in headspace of vessels, in MS300M 
medium

SCF CCF MCF

S. cerevisiae T. delbrueckii

Maximum living cells of T. delbrueckii

(106 cells/mL)
– 554 ± 20 181 ± 17 374 ± 16

Maximum living cells of S. cerevisiae

(106 cells/mL)
286 ± 19 – 129 ± 2 61 ± 15

Time of fermentation (h) 149 ± 8 263 ± 8 148 ± 1 119 ± 7

Initial sugar (g/L) 223 ± 3 221 ± 1 218 ± 3 224 ± 1

Mean sugar consumption rate (g/L/h) 1.50 ± 0.02 0.84 ± 0.01 1.47 ± 0.02 1.88 ± 0.01

Final ethanol (g/L) 98.6 ± 2.1 72.6 ± 3.4 95.1 ± 3.5 99.0 ± 0.4

Ethanol yield (g/g) 0.44 ± 0.01 0.32 ± 0.02 0.44 ± 0.02 0.44 ± 0.01

Glycerol (g/L) 8.2 ± 0.3 15.5 ± 0.4 10.0 ± 0.6 11.6 ± 0.5

Final undetermined carbon fraction 7% 25% 8% 6%

Residual nitrogen (mg N/L) 0 0 4.7 ± 4.5 0
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in T. delbrueckii SCFs, with no significant differences 
observed between AGF doses (p > 0.05).

Discussion

In this work, SCF, CCF and MCF of S. cerevisiae and 
T. delbrueckii were undertaken with different concentra-
tions of anaerobic growth factors to evaluate their effect 
on interactions between yeasts. By doubling the AGF dose, 
ergosterol, oleic acid and Tween 80 concentrations rose 
from 15 to 30 mg/L, from 0.5 to 1 µL/L and from 0.5 to 
1 mL/L, respectively.

T. delbrueckii latency phase extension induced
by AGF

A residual YAN concentration subsisted in T. delbrueckii 
SCF with a single dose of AGF. Since we suspected that a 
component in the medium was limiting, the dose of AGF 
was doubled to see whether T. delbrueckii could consume 
all the YAN available. After the increase of AGF initial 
concentration, T. delbrueckii could consume all the YAN 
available. However, T. delbrueckii displayed an extended 
latency phase after the AGF increase, suggesting that the 
raised AGF concentration was toxic for T. delbrueckii 
growth. The 65% increase in the final glycerol concentra-
tion confirms that T. delbrueckii cells were more stressed 
after the AGF concentration was doubled. Unlike SCF, T. 

delbrueckii did not display any extended latency phase 
in co-cultures with a double dose of AGF. This result 
strongly suggests that T. delbrueckii absorbed a lower 
amount of AGF than the toxic dose when competing with 
S. cerevisiae present in the medium. By competing with 
S. cerevisiae for AGF, T. delbrueckii incorporates less 
AGF and the AGF concentration did not reach a level that 
was toxic for T. delbrueckii. Ergosterol is the predomi-
nant sterol in yeast cell membranes [40]. It is implicated 
in endocytosis and membrane curvature formation [41, 
42]. Ergosterol influences the diffusion of proteins through 
the yeast plasma membrane [43]. Incorporation of exog-
enous lipids inside the membranes is expected to modify 
the hydrophobic lipid–lipid and lipid–protein interactions. 
Therefore, the spatial organization of membranes and the 
biological function of membrane-bound enzymes, such as 
those involved in the transport systems, could be indirectly 
affected [44]. An upset of the transport systems is con-
sistent with the low YAN uptakes observed during the T. 

delbrueckii extended latency phase (Fig. 4c in comparison 
with Fig. 3c).

T. delbrueckii sugar metabolism in strict
anaerobiosis

In all fermentations, nitrogen pressure was applied alter-
nately starting 16 h before the inoculation and continuing 
throughout the fermentation, to ensure that no dissolved oxy-
gen remained in the medium and thus that conditions were 
strictly anaerobic. In T. delbrueckii SCFs, the carbon balance 
showed that between 75 and 80% of the sugar consumed was 
used for biomass, glycerol and ethanol production. In con-
ditions that were not strictly anaerobic, with a single dose 
of AGF, T. delbrueckii rapidly consumed the available dis-
solved oxygen; sugar was completely consumed and entirely 
used for biomass, glycerol and ethanol production (data not 
shown). The same T. delbrueckii strain growing, in non-strict 
anaerobiosis, in Sauvignon Blanc grape must, did not show 
any carbon unbalance [45]. Consequently, carbon unbalance 
occurs only in strict anaerobiosis. It indicates the existence 
of a biochemical reaction using sugar as the substrate and 
producing  CO2 or a metabolite different from ethanol or 
glycerol. This reaction is triggered after a long fermenta-
tion period and does not depend on the initial concentration 
of AGF. Must needs to be investigated to identify this bio-
chemical reaction. However, such a reaction does not lead 
to malic, citric, acetic or succinic acid production and is 
absent in co-culture.

Effects of lipids on yeast behaviour

In this study, S. cerevisiae and T. delbrueckii showed differ-
ent behaviour regarding AGF increase in the medium. AGF 
augmentation had no impact on S. cerevisiae SCF, whereas 
it induced an extended latency phase during T. delbrueckii 
SCF. Mauricio et al., observed that the supplementation of 
grape must with 25 mg/L of ergosterol and 31 mg/L of oleic 
acid enhanced the fermentation rate of S. cerevisiae E-1 and 
T. delbrueckii M1-20-4 [46]. In the same study, the supple-
mentation of grape must with only 25 mg/L of ergosterol 
enhanced the fermentation rate of S. cerevisiae, whereas it 
reduced that of T. delbrueckii. In our case, 30 mg/L of ergos-
terol, 1 µl/L of oleic acid and 1 mL/L of tween were added 
(double dose). Since the initial lipids concentration in the 
grape must was not mentioned, it is not possible to compare 
with the lipid concentrations used in the present work. How-
ever, it appears that the effects of lipid increase on growth 
and fermentation performance depends on the nature of the 
lipid mixture, the yeast genus and the medium composition.

Physical contact and competition

S. cerevisiae dominated all co-cultures with a single dose of 
AGF. In presence of T. delbrueckii, S. cerevisiae reached a 
maximum population comparable to that observed in SCF. 



However, when both yeasts were in direct contact (MCF), S. 

cerevisiae presented an increase of growth rate at the begin-
ning of the fermentation. Recently, Tronchoni et al. analysed 
the transcriptional response to direct contact co-cultivation 
of S. cerevisiae and T. delbrueckii [47]. Early changes in 
the transcription pattern suggested a stimulation the growth 
and glycolytic activity of both yeasts as a consequence of 
the presence of competition in the same medium, with a 
delayed response of T. delbrueckii. Secreted Hsp12, which 
is involved in the coordinated response of cells in multi-
strain cultures of S. cerevisiae, was suspected be related to 
this early response [48]. Since S. cerevisiae growth was not 
stimulated when the yeasts were separated by a membrane in 
the present study, physical contact is believed to play a role 
in S. cerevisiae response to T. delbrueckii presence. Unlike 
in the last cited work, T. delbrueckii early growth was not 
stimulated by the presence of S. cerevisiae in our study. It 
should be stressed that the inoculation ratio of T. delbrueckii/ 
S. cerevisiae was 20/1 in the present work, while it was 1/1 
in the cited work. The strain used was also different.

S. cerevisiae completed SCF faster than T. delbrueckii. In 
MS300M, paradoxically, MCF, in which T. delbrueckii was 
preponderant, presented a mean sugar consumption rate that 
was higher than that of CCF. This observation is reminiscent 
of a stimulation of glycolytic activity observed by Tronchoni 
et al. when the two yeasts were in physical contact [47].

In a study involving S. cerevisiae and H. guilliermondii 
focusing on yeast interactions at molecular level in natu-
ral grape must, it was found that GAP1, AGP1, MEP1 and 
MEP2, encoding amino acid transporters for the first two 
and ammonium permease for the last two, were more highly 
expressed in S. cerevisiae in the single culture, than in the 
mixed culture [50]. Yeasts were not separated by a mem-
brane. The reduction of the expression of such genes respon-
sible for YAN assimilation could explain the suspected 
reduction of YAN assimilation by S. cerevisiae in MS300M. 
This phenomenon appears to be induced by physical contact 
with a non-saccharomyces yeast.

AGF influence on S. cerevisiae amensalism

In MS300, S. cerevisiae induced death of T. delbrueckii 
by indirect interaction and so dominated co-cultures. The 
decrease of T. delbrueckii concentration while the viability 
values remained stable led us to suspect that T. delbrueckii 
cells undergoing S. cerevisiae amensalism were lysed too rap-
idly to be coloured by methylene blue. Moreover, at the end 
of fermentation in MCF, aggregated cells were observed and 
the aggregated stained cells were smaller than the scattered 
unstained cells. Since T. delbrueckii has a smaller cell size 
than S. cerevisiae [50], we suppose that T. delbrueckii dead 
cells were aggregated and living S. cerevisiae were scattered. 
In consequence, direct contact with S. cerevisiae would 
cause 

aggregation of dead T. delbrueckii cells. Such aggregation was 
not observed in MS300M.

AGF augmentation completely upset S. cerevisiae domina-
tion. Several authors have shown that S. cerevisiae amensalism 
against non-Saccharomyces yeasts is mediated by AMPs [16, 
17, 51]. The toxicity of AMPs depends on their concentration 
[52]. Albergaria et al. observed that S. cerevisiae continuously 
secretes AMPs from the second day to end of the fermentation 
[16]. Consequently, we supposed that the AMP concentration 
was sufficient to induce T. delbrueckii death in co-cultures with 
the double dose of AGF. However, after the AGF increase, 
T. delbrueckii growth was not impeded, pointing out that S. 

cerevisiae AMPs were less efficient.
The death mechanisms induced by these AMPs on sensi-

tive yeasts involve cell membrane permeabilization [51]. Most 
AMPs induce death of sensitive cells by interacting with cell 
membranes and permeabilizing them [53, 54]. Interaction 
between sensitive cell membrane and AMPs is the first step of 
the toxic activity [55]. The lipid composition of the sensitive 
cell membrane plays a primordial role in this interaction [56]. 
Cells that are resistant to permeabilization induced by AMPs 
have a membrane lipid composition different from that of sen-
sitive cells [57]. Since incorporated exogenous lipids modify 
membrane lipid composition, we assumed that T. delbrueckii 
growing in MS300 and MS300M had a different membrane 
lipid composition. We hypothesize that T. delbrueckii mem-
brane lipid composition did not allow an efficient interaction 
with AMPs, thus avoiding their toxic activity during co-cul-
tures in MS300M.

To the best of our knowledge, this is the first time that a 
modification of a nutrient concentration completely reverses 
the domination. The initial concentration of anaerobic growth 
factors greatly influences co-culture fermentation population 
dynamics, thus highlighting a new means for monitoring popu-
lation evolution and eventually wine organoleptic properties.
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