
HAL Id: hal-01958328
https://hal.science/hal-01958328v2

Preprint submitted on 1 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stationary shock-like transition fronts in dispersive
systems

Sergey Gavrilyuk, Boniface Nkonga, Keh-Ming Shyue, Lev Truskinovsky

To cite this version:
Sergey Gavrilyuk, Boniface Nkonga, Keh-Ming Shyue, Lev Truskinovsky. Stationary shock-like tran-
sition fronts in dispersive systems. 2020. �hal-01958328v2�

https://hal.science/hal-01958328v2
https://hal.archives-ouvertes.fr


Stationary shock-like transition fronts in dispersive systems

Sergey Gavrilyuk∗, Boniface Nkonga †, Keh-Ming Shyue ‡, Lev Truskinovsky §

July 24, 2020

Abstract

We show that, contrary to popular belief, lower order dispersive regularization of hyperbolic
systems does not exclude the development of the localized shock-like transition fronts. To guide
the numerical search of such solutions, we generalize Rankine-Hugoniot relations to cover the
case of higher order dispersive discontinuities and study their properties in an idealized case
of a transition between two periodic wave trains with different wave lengths. We present
evidence that smoothed stationary fronts of this type are numerically stable in the case when
regularization is temporal and one of the adjacent states is homogeneous. In the zero dispersion
limit such shock-like transition fronts, that are not traveling waves and apparently require for
their description more complex anzats, evolve into traveling wave type jump discontinuities.

1 Introduction

Hyperbolic systems, representing conservation laws and describing non-dissipative wave-like pro-
cesses, are known to generate discontinuities even under smooth initial data [6, 7]. Dissipative reg-
ularization can resolve such singularities replacing them with smooth transition fronts [66, 55, 52].
The situation is more complex in the case of dispersive regularization which leaves the system
dissipation-free remaining faithful to the conservative nature of the original problem [66, 32, 33].

Dispersive regularization is usually either spatial or temporal. Spatial regularization brings
finite length scales and is usually accomplished through higher space derivatives or by space dis-
cretization [65, 62, 14]. Steady discontinuities are then replaced by non-steady modulated wave
trains [26, 30]. Instead, temporal regularization, bringing finite time scales, either through memory
kernels or through higher order time derivatives [49, 45, 18, 20, 8, 4], was shown to support at
least stationary localized shocks which survive as smoothed transients in a class of shallow water
models, including unidirectional (Benjamin-Bona-Mahony) [15] and bidirectional (Boussinesq) [16]
equations. Localized traveling wave (TW) solutions were also found in models with high-order
dispersion where they correspond to heteroclinics connecting periodic orbits [1, 5, 13, 56, 31].

In this paper we provide the first evidence that even the low-order dispersive temporal reg-
ularization can support stationary shock-like transition fronts that are not dispersive TW. As a
prototypical example we use the simplest strictly hyperbolic p-system [6, 52] which is regularized
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by the lowest time derivatives as it is done, for instance, in the theory of bubbly fluids [3]. To guide
the numerical search for localized transition fronts, we first use the Hamilton principle to derive a
set of higher order Rankine-Hugoniot (RH) jump conditions for a general dispersively regularized
model. We use the ensuing kinematic and dynamic compatibility conditions to identify admissible
dispersive discontinuities in the general case and then work out in full detail the case when the
transition is between two periodic TWs with different wave lengths. While such composite waves,
even if they are RH admissible, are not smooth TW solutions by themselves, they play an important
role as building blocks for the construction of the desired shock-like transition fronts.

We ultimately limit our construction to the special case when the transition fronts are stationary
and one of the coexisting states is homogeneous. We show that if our generalized RH conditions
are satisfied, the obtained composite solutions can withstand the spreading effect of dispersion. In
such solutions the ’destabilizing’ activity of the internal time scale is effectively disabled by the
stationarity of the front, which is similar to what observed in [15, 16].

To illustrate the numerical stability of the constructed transition fronts, we conduct numerical
experiments using as a convenient example a fully nonlinear Serre-Green-Naghdi (SGN) system
designed to describe long gravity waves [51, 59, 23, 24]. Our tests cover a broad class of Riemann-
type initial value problems involving ‘cold’ (homogeneous) states arbitrarily narrowly linked to
‘hot’ (oscillatory) states. We show that in a certain parameter range, numerical evolution of such
’composite’ initial data leads to the formation of an apparently stationary, shock-like transition
fronts which satisfy our generalized RH jump conditions.

In a first approximation, the emerging transition fronts can be described as truncated solitary
waves smoothly joining the matching cnoidal-type waves. More precisely, one far field state is a
degenerate periodic solution with zero wave number and another one is a co-propagating wave with
a finite wave number. The two waves are connected by a non-analytic transition region occurring
over the length scale of a single oscillation of a periodic wave. At the time scale of numerical
simulations the size of the transition region remained unchanged, which clearly distinguishes the
obtained solutions from conventional dispersive shocks and transient dispersive discontinuities. We
also stress that such shock-like fronts emerge robustly from a whole class of initial data.

The fact that numerically resolved transition fronts sharpen as the dispersive time scale tends
to zero while the limiting periodic patterns maintain their amplitude suggest weak convergence.
However, similar to the examples presented in [15, 16], the formal weak limits of the obtained
fronts are unstable (entropically non-admissible) in the framework of the original p-system. They
owe their stability exclusively to dispersive regularization and therefore, instead of the p-system,
the limiting measure valued profiles [37, 38, 9] can be expected to serve as admissible weak solutions
of the Whitham-type higher order hyperbolic system [66, 12, 14, 57]. It can be either a system
of conservation laws for the parameters of modulated periodic traveling waves or a higher order
system of multiphase modulation equations.

The rest of the paper is organized as follows. In Section 2 we use the action principle to derive
the generalized jump conditions for a regularized model with spatial and temporal dispersion. In
Section 3 we focus on the case of temporal dispersion, introduce periodic TW solutions and study
the possibility of discontinuous and smoothed connections between them. A specific example (SGN
model) is considered in Section 4. Numerical evidence of dynamical stability for the constructed
stationary shocks-like transformation fronts is presented in Section 5. To show robustness of the
obtained picture we reproduce it for a simplified Boussinesq-type model with linearized dispersion.
The final Section 6 contains our conclusions. The numerical algorithm and some other technical
issues are discussed in four Appendices.
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2 Regularized model

Variational formalism. Conservative models in continuum mechanics can be obtained from the
Hamilton principle which requires that the action functional is stationary on the trajectories of the
system [22]. For our purposes it will be sufficient to consider the functionals of the form

L =

∫
Ω

L(x,a , x,ab) dq
1dq2, (1)

where L is a Lagrangian density. The deformation is defined by the function x(qa), a = 1, 2,
representing trajectories of material particles, where q1 = q is the spatial Lagrangian coordinate
and q2 = t denotes time. The subscript after a comma in (1) indicates partial derivative. The
integration in (1) is over the two-dimensional space-time domain Ω representing the evolving body
between the time instants t = t0 and t = t1. In such representation of dynamics the trivial identities
x,ab = x,ba can be viewed as describing mass balance.

We first obtain the Euler-Lagrange equations(
δL

δx,a

)
,a

= 0, (2)

where
δL

δx,a
=

∂L

∂x,a
−
(

∂L

∂x,ad

)
,d

is the variational derivative and the summation over repeated

indexes is implied. Due to the symmetry of the second derivatives one has to count the mixed
derivatives in (2) only once, so the summation is over a and d ≥ a. The equilibrium condition (2)
usually represent the linear momentum balance.

In view of (2), and the translational invariance of the Lagrangian density, one can also obtain
from (1) two conservation laws (Noether identities)(

x,b
δL

δx,a
+ x,cb

∂L

∂x,ca
− Lδab

)
,a

= 0, (3)

where δab is the Kronecker symbol. The relations (3) must be satisfied along the actual trajectory of
the system. The temporal component of (3) is the energy balance equation; the spatial component
is known in fluid mechanics as the Bernoulli equation [2] and in solid mechanics as the Eshelby
equation [44].

Suppose now that the domain Ω contains a propagating interface Σ. Suppose also that the
particle trajectories are continuous on Σ so [x] = 0 but their derivatives experience discontinuities;
here [f ] = f+ − f− with the superscripts ± denoting the limiting values of f . On such interfaces
(if they exist) the action principle imposes the constraints which can be viewed as the generalized
RH jump conditions [

δL

δx,a

]
na = 0, (4)[

∂L

∂x,ab

]
nanb = 0. (5)

Here na is the unit vector normal to Σ and facing the + direction. The first equation (4) is standard
representing the balance of linear momentum. The second equation (5) is specific for high gradient
theories ensuring the balance of hyper-momentum [47].
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The Hadamard geometric and kinematic compatibility conditions on Σ ensuring the continuity
of particle trajectories can be written in the form [x,a] = µna, where µ is a scalar. Note that
the spatial n1 and the temporal n2 components of the normal vector to Σ are related through
n2 = −n1V where V is the Lagrangian velocity of the discontinuity. Eliminating µ we obtain the
relation V [x,1] + [x,2] = 0 representing the balance of mass balance across the discontinuity.

Finally, the Noether identities (3) on Σ reduce to[
x,b

δL

δx,a
+ x,cb

∂L

∂x,ca
− Lδab

]
na = 0. (6)

These two equations represent the energy balance and the Bernoulli-Eshelby configurational force
balance on the discontinuity. In contrast to (4), (5), none of the relations (6) can be expected to
satisfy on the discontinuities bin view of their inherently dissipative nature [7, 52].

Unregularized system. To recover the underlying hyperbolic system, we now drop the depen-
dence of L on second derivatives and additively decompose the Lagrangian density into the kinetic
and internal energy related parts:

L =
u2

2
− e(w). (7)

Here we introduced special notations for the derivatives w(q, t) = xq (strain) and u(q, t) = xt
(velocity) implying that the deformation is now written as x = x(q, t) where q is the (mass)
Lagrangian coordinate; from now on a subscript without a comma will indicate derivative. The
relation between the Eulerian and Lagrangian descriptions is detailed in Appendix A.

In the case when the Lagrangian density is given by (7) the main system, which includes the
linear momentum balance equation and the mass balance equation, is known as the p-system. It
can be written in the form

wt − uq = 0, ut + pq = 0, (8)

where p(w) = −ew. For instance, in 1D compressible hydrodynamics w is the specific volume, u is
the fluid velocity, e(w) is the energy density and p(w) is the fluid pressure [6, 52]. From now on we
assume that eww > 0 which makes the system (8) strictly hyperbolic with the characteristic speeds
c± = ±√eww.

Choosing b = 2 in (3) we obtain the energy conservation law(
u2

2
+ e

)
t

+ (pu)q = 0, (9)

while the component b = 1 of (3) gives the Bernoulli-Eshelby conservation law

(wu)t +

(
e+ wp− u2

2

)
q

= 0. (10)

Both equations (9) and (10) are satisfied identically for smooth solutions of the system (8).
Discontinuous solutions of (8) must satisfy the mass conservation and the linear momentum

conservation conditions:
V [w] + [u] = 0, (11)

−V [u] + [p] = 0, (12)
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where again V is the Lagrangian shock velocity. The Noether jump identities (9) and (10) are
equivalent and can be written as a single condition[

V 2w2

2
+ e+ pw

]
= 0. (13)

Note again that for classical shocks in hyperbolic systems the variational condition (13) is not
satisfied.

Regularized system. When both space and time micro-scales are taken into account in a con-
servative setting we obtain a more general Lagrangian:

L̃ =
u2

2
− ẽ(w,wt, wq), (14)

where ẽ(w, 0, 0) = e(w). In such model the mass and linear momentum balance equations remain
the same as in the associated p-system, however the local constitutive relation for the ‘pressure’ is
replaced by

p = −
(
∂ẽ

∂w
− ∂

∂t

(
∂ẽ

∂wt

)
− ∂

∂q

(
∂ẽ

∂wq

))
. (15)

The energy balance takes the form(
ε+

u2

2

)
t

+

(
pu− wt

∂ẽ

∂wq

)
q

= 0, (16)

where we introduced a new energy density ε = ẽ − wt
∂ẽ

∂wt
. The corresponding Bernoulli-Eshelby

conservation law reads (
wu− wq

∂ẽ

∂wt

)
t

−
(
u2

2
− wp+ wq

∂ẽ

∂wq
− ẽ
)
q

= 0, (17)

with (16) and (17) remaining equivalent for smooth motions.
Jump discontinuities in the regularized model must respect the generalized RH relations (11)

and (12) which remain the same. The two Noether jump conditions again reduce to a single equality
which also maintains its form. The only new condition is (5) which we can write in the form

V

[
∂ẽ

∂wt

]
=

[
∂ẽ

∂wq

]
. (18)

In the case of purely spatial regularization, when ẽ = ẽ(w,wq), an analog of this condition was
obtained in [64], while in the case of purely temporal regularization, when ẽ = ẽ(w,wt), a special
form of (18) was found in [21]. In the latter case, which is of main interest to us here, the condition
(18) simplifies to

V

[
∂ẽ

∂wt

]
= 0. (19)
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Zero dispersion limit. While we now have all the necessary conditions on dispersive disconti-
nuities, their relevance remains to be demonstrated. Below we use these conditions to construct
’composite’ TW solutions. We first constrain them to satisfy only classical RH balances. We then
replace the discontinuities by smoothed transition layers involving half-solitons and satisfying higher
order RH conditions. The ensuing smooth solutions are then shown to serve as close approximations
of the outcomes of numerical tests showing the emergence of stationary transition fronts. As we
conjecture, the actual discontinuities satisfying all RH conditions arise only in the zero-dispersion
limit.

3 Composite traveling waves

Periodic microstructures. An important class of microscopically inhomogeneous and macro-
scopically homogeneous solutions of the regularized p-system (8), (15) is comprised of periodic,
cnoidal-type TWs of the type (w(θ), u(θ)), where θ = q − D̃t and D̃ is the (phase) velocity of
the wave in Lagrangian coordinates. Using this ansatz we obtain a system of ordinary differential
equations with two integrals

D̃w + u = D̃w + u, −D̃u+ p = −D̃u+ p, (20)

where the pressure is p = −ẽw +
d

dθ

(
ẽwq − D̃ẽwt

)
. Note also that here wq = dw/dθ and wt =

−D̃dw/dθ. The ‘overbars,’ representing constant values, will be later associated with period aver-
aging. The three constants w, u, p, instead of two, were introduced for later convenience.

We can similarly integrate the energy balance equation (16) to obtain

−D̃
(
ε? +

u2

2

)
+ pu = −D̃

(
ε? +

u2

2

)
+ pu, (21)

where we denoted ε? = ẽ − wtẽwt −
dw

dθ
ẽwq = ε − dw

dθ
ẽwq and introduced additional constants

ε?, u2, pu. Using the conservation laws (20), we can re-write (21) in the equivalent form

ε? + (p+ D̃2w)w − D̃2

2
w2 = ε? − D̃2

2
w2 + (p+ D̃2w)w, (22)

featuring yet another integration constant w2. The following identities linking all these constants
can be obtained directly from (20)

u2 − (u)2 = D̃2(w2 − (w)2), (23)

pu− p u = D̃3(w2 − (w)2). (24)

Specializing energy density. To find explicit relations between the integration constants we
need to specify the energy density and in what follows we limit our attention to the case of temporal
regularization with quadratic dependence of the energy density ẽ(w,wt) on wt. More specifically,
we assume that

ẽ(w,wt) = e(w) + a(w)w2
t .
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Note that in this case ε? = ε. We also assume that the regularization is perturbative in the sense
that there is a small parameter ε in front of the w2

t term.
To illustrate this choice, consider a rod with circular cross-section of radius l undergoing small

longitudinal deformations. Given that q is the mass coordinate (see Appendix A), the linearized
energy density of such rod, accounting for transverse inertia [49, 46], can be written in the form

ẽ(w,wt) =
c2

2

(
w2 − ν2

(
l

c

)2

w2
t

)
,

where w is the longitudinal strain, c =
√
E/ρ0 is the characteristic velocity, ρ0 is the material

density, E is Young’s modulus and ν is Poisson’s ratio. The time scale l/c is responsible for the
dispersive effects and its perturbative character becomes apparent in the long wave limit when the
characteristic wave length L � l is used to non-dimensionalize space. In the normalized variables
the regularizing term in the energy appears with the small multiplier ε = (l/L)2 � 1.

Another example can be taken from the theory of bubbly fluids [3]. Suppose that the bubbles
are spherical with radius R(t, q) and their number per unit mass n is fixed. Assuming that the fluid
component is incompressible with the fixed density ρf , and that the compressible gas is polytropic
with exponent γ > 1, we can write the specific energy of the mixture in the form [18, 20]

ẽ(R,Rt) =
4

3
πR3n

(
p0

γ − 1

(
R0

R

)3γ

− 3ρf
2
R2
t

)
,

where p0 is the equilibrium pressure and R0 is the equilibrium bubble radius. Note that the
coefficient in front of the regularizing term R2

t contains a time scale R0/
√
p0/ρf which is inversely

proportional to the Minnaert frequency ω2 = 3γp0/(ρfR
2
0). This time scale characterizes small

oscillations of a single bubble in a fluid and is ultimately responsible for dispersive effects. Once
again, if the non-dimensionalization of space involves the macroscopic characteristic length L� R0,
we are left with the small parameter ε = (R0/L)2 � 1 which characterizes the volume fraction of
gas bubbles.

Our third example, describing propagation of long surface gravity waves, will be discussed in
full detail in Section 4.

Four parametric family of TW solutions. In the case of TWs, the role of the perturbative
parameter ε in front of the regularizing term in the energy density reduces to re-scaling of the co-
moving spatial coordinate θ. Therefore, unless we deal with dimensional quantities, we can assume
without loss of generality that ε = 1.

In the case of quadratic temporal regularization and, independently of the structure of the
hyperbolic part of the model, the dimensionless equation (22) reduces to

w2
θ = F (w;A,B,C), (25)

where

A =
D̃2

2
, B = p+ D̃2w, C = ε− D̃2

2
w2 + (p+ D̃2w)w.

The function F (w) depends on the structure of the dispersive model.
Suppose that there is a domain of parameters A,B,C where F (w) has two simple zeros 0 <

w1 < w2 while remaining positive in the interval between these two roots. Then (25) has periodic
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solutions and the constants w, w2, p, ε can be interpreted as the corresponding period averaged
quantities. These parameters can be then expressed as functions of the three constants A,B,C, see
for instance [18, 19]. Given that the constant u does not enter (25), we conclude that the whole
family of TW solutions is determined by four independent parameters.

Dynamic coexistence of wave trains. Consider now the case when a dispersive discontinuity
moving in Lagrangian coordinates with a constant velocity V separates two different wave trains.
The integration constants, defining each of these wave trains, have to be appropriately matched on
the discontinuity surface.

Note first that for the composite wave train to be a TW, the velocity V must coincide with the
(phase) velocities of both coexisting TW solutions:

V = D̃− = D̃+. (26)

In other words both microstructures must be ‘frozen’ inside the structure of the macroscopic shock.
The mass and linear momentum conservation on the shock can be written in terms of the period

averaged quantities:
[V w + u] = 0, [−V u+ p] = 0. (27)

The energy balance equation (16) reads[
−V

(
ε+

u2

2

)
+ p u+

V 3

2

(
w2 − (w)2

)]
= 0.

While neither the energy balance, nor the Bernoulli-Eshelby conservation law (17) have to be
satisfied on the discontinuity, they remain equivalent for the shocks which satisfy condition (26).

If we now group the two conditions (26) with the two RH conditions (27), we obtain four
equations for the four unknowns defining the state after the shock (given that the state ahead of
the shock is known). The still missing constraint on the shock velocity V is delivered by the higher
order RH condition (19) [

∂ẽ

∂wt

]
= 0. (28)

It is appropriate to mention here that while the nonlinear RH conditions associated with the energy
balance and the equivalent Bernoulli- Eshelby condition cannot be warranted due to the inevitable
dissipation on singularities (due to macro-micro channeling), the linear higher-order RH condition
(28), being a direct analog of the momentum balance, should necessarily hold.

Cold-hot discontinuity. Consider now a special case of a dispersive discontinuity between a
degenerate state ‘−’, with an infinite wave length (‘cold’ state), and a non-degenerate periodic
wave train representing state ‘+’ with finite wave length (‘hot’ state). While in the ’hot’ state we
must require that V = D̃+, where D̃+ is the phase velocity of the wave train, in the ’cold’ state,
the parameter D̃− should be understood as the velocity of the solitary wave V −s = V with the
homogeneous configuration ‘−’ as a background. Solitary waves can be viewed as infinite wavelength
limits of the wave trains and therefore an appropriate ’half soliton’ would naturally interpolate a
homogeneous ’cold’ state and a periodic ’hot’ state. At finite ε the resulting composite construction
can be, of course, viewed only as an approximation with the real ’cold-hot’ discontinuity emerging
in the limit ε→ 0.
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Generalized Riemann problem. The classical Riemann problem for a hyperbolic p–system
allows only for ‘cold’ states in the initial conditions [6, 52]. Here we extend this definition for the
case of a regularized system. The corresponding generalized Riemann problem can have initial
conditions with two bordering macroscopically homogeneous but microscopically inhomogeneous
states. This allows, in particular, for the initial coexistence of two ’hot’ states. In Section 5 we
study such a generalized Riemann problem numerically in the special case when the initial data
contain an isolated ’cold-hot’ discontinuity. In the whole generality such Riemann problems can be
studied in the framework of the averaged Whitham model [26, 27, 11, 12, 14].

4 Serre–Green–Naghdi model

Due to its many applications, we have chosen the Serre-Green-Naghdi (SGN) model of dispersive
gravity waves as an illustrative example for our general theory. The SGN model can be obtained by
averaging the free-surface incompressible Euler equations over the depth while keeping only the first
order terms in ε = (d/L)2 � 0, where d is the mean depth and L is a characteristic wave length.
The rigorous derivation of the SGN model can be found in [43, 36, 50]; the numerical approaches
are discussed in [42, 39, 17, 10].

The main system. As it is usual in fluid mechanics, we use Eulerian spatial coordinate x instead
of the mass Lagrangian coordinate q, see Appendix A for the detailed mapping. The two main
unknown functions are the fluid level h(x, t) (replacing the strain w) and the fluid velocity averaged
over the depth u(x, t). Adding to the list of dimensional constants the acceleration of gravity g
we can introduce non-dimensional independent variables t̃ = (

√
gd/L)t, x̃ = x/L, and dependent

variables h(t, x) = d h̃(t̃, x̃), u(t, x) =
√
g d ũ(t̃, x̃). The SGN system takes the form

h̃t̃ + (h̃ũ)x̃ = 0, (h̃ũ)t̃ +

(
h̃ũ2 +

h̃2

2
+
ε

3
h̃2 d

2h̃

dt̃2

)
x̃

= 0, (29)

where
d2h̃

dt̃2
=

d

dt̃

(
dh̃

dt̃

)
and dh̃

dt̃
= h̃t̃+ ũ h̃x̃. Note that the small parameter ε in (29) is proportional

to the fourth power of the ratio of the two characteristic time scales
√
L/g and L/

√
gd. When

ε is sufficiently small the dispersive term can be neglected and the SGN system (29) reduces to
the classical Saint-Venant system; the latter is a hyperbolic and genuinely nonlinear p-system with

characteristics propagating with velocities ũ±
√
h̃ [52, 7].

Going back to dimensional variables and assuming that ε = 1 we obtain the system of equations
[51, 59, 23, 24]

ht + (hu)x = 0, (hu)t + (hu2 + p)x = 0, (30)

where we introduced the pressure integrated over the fluid depth p =
gh2

2
+

1

3
h2 d

2h

dt2
. The energy

conservation law takes the form(
h

(
u2

2
+ ε

))
t

+

(
hu

(
u2

2
+ ε

)
+ pu

)
x

= 0, (31)
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where ε =
1

6

(
dh

dt

)2

+
gh

2
. The associated Lagrangian is [45, 20]

L = h

(
u2

2
+

1

6

(
dh

dt

)2

− gh

2

)
.

In terms of the variable w(q, t) = h−1, used in (14), the internal energy density is

ẽ(w,wt) =
g

2w
− w2

t

6w4
.

Note that in this case the regularizing term depends not only on wt but also on w.

Periodic TWs. A detailed description of the TW solutions to SGN equations (30) can be found
in [12]. We summarize it here in the form suitable for further analysis.

Suppose that h = h(ξ), u = u(ξ), where ξ = x − Dt and D is a constant wave velocity. From
(30) we obtain

h(u−D) = m, (32)

p+
m2

h
= ι, (33)

where we introduced the constants m and ι. Equation (33) can be rewritten as

1

2
gh2 +

1

3
m2h

(
h′

h

)′
+
m2

h
= ι.

It has a first integral

1

6

(
h′

h

)2

+
gh

2m2
− 1

2h2
+

ι

m2h
= e, (34)

where e is another integration constant. The equation (34) can be recast in the form

(h′)2 = F (h), (35)

with F (h) = − 3g

m2
h3 + 6eh2 − 6ι

m2
h + 3 =

3g

m2
P (h). In terms of the roots of the polynomial

P (h) = (h − h0)(h − h1)(h2 − h), where 0 < h0 ≤ h1 < h2 < ∞, the integration constants m2, ι
and e can be expressed explicitly

m2 = gh0h1h2, ι =
g

2
(h0h1 + h0h2 + h1h2), e =

h0 + h1 + h2

2h0h1h2
. (36)

The periodic (cnoidal) solutions exist in the domain h0 < h1 < h2 with oscillations between the
values h1 and h2. It can be written explicitly in the form:

h(ξ) = h1 + (h2 − h1)cn2(κ ξ; s), u(ξ) = D +
m

h(ξ)
, (37)

where κ2 =
3

4

(h2 − h0)

h0h1h2
, s2 =

h2 − h1

h2 − h0
. Note that the sign of the mass flux m = ±

√
g h0 h1 h2 is

chosen to be negative (positive) for right (left)–facing waves. The Jacobi elliptic function cn(u; s) is
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defined by the equality cn(v; s) = cos(ϕ(v, s)), where the function ϕ(v, s) can be obtained implicitly

from the relation

∫ ϕ

0

(1− s2 sin2(θ))−1/2dθ = v. The wave length can be found from the constraint

λ = 2

∫ h2

h1

dh√
F (h;h0, h1, h2)

. (38)

The relation between the special set of parameters h0, h1 and h2, used here, and the set A, B,
C, used in the general theory, can expressed explicitly in terms of complete elliptic integrals [12].
As we have already mentioned, the whole family of such solutions is four-parametric and is fully
defined, for instance, by the constants h0, h1, h2 and D.

Solitary waves. In the infinite wavelength limit the above construction produces isolated solitary
waves. The solution of (35) corresponding to λ =∞ is selected by the condition h0 = h1 and can
be written explicitly

h(ξ) = h1 + (h2 − h1) sech2

(
ξ

2

√
3(h2 − h1)

h2h2
1

)
, u(ξ) = D +

m

h(ξ)
, m = h1(u1 −D). (39)

Here h1, h2 are the fluid levels at infinity and under the soliton’s crest, while u1 is the velocity at
infinity. Under the assumption that the solitary wave moves to the right we obtain m = −h1

√
g h2

and therefore
D = u1 +

√
gh2. (40)

The whole family of such solutions is three-parameteric and is fully defined by the constants h1, h2

and D.

Admissible ‘hot-to-cold’ transitions. From now on we use the notation ? to indicate the
‘cold’ state. Assuming first that it is homogeneous with h ≡ h?, u ≡ u? we can write the Rankine–
Hugoniot relations for the mass and linear momentum in the form

hu = h?u? = m, (41)

m2

h
+
gh2

2
+
m2

3

d2h

dx2
− m2

3h

(
dh

dx

)2

=
m2

h?
+
gh2

?

2
= ι. (42)

Here we have already used the assumption V E = D = 0, where V E stands for the Eulerian shock
velocity. Under this assumption, the additional condition (19) reduces in the Eulerian coordinates
to

m2

[
dh

dx

]
= 0. (43)

Since in the homogeneous state
dh

dx
≡ 0 the condition (43) suggests that a ‘hot-to-cold’ discontinuity

must necessarily involve the extremas h1, h2 of the ’hot’ state.
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Figure 1: Schematic representation of a discontinuity connecting a homogeneous state h ≡ h? to a
periodic wave train at its maximum point h = h2.

We now show that there are only two homogeneous states h±? which can be connected to a
stationary wave train through its extremal points h1 and h2. Indeed, from the RH conditions (41)
- (42) and the relations (36) we obtain that h? must be a root of the third order polynomial:

Q(h?) = h3
? − (h0h1 + h0h2 + h1h2)h? + 2h0h1h2. (44)

Since h0 < h1 < h2, the polynomial (44) always has three real roots h? : one is negative, and two
others h−? < h+

? are positive, moreover,

h0 < h−? < h1 < h+
? < h2, (45)

see Appendix B for details. The shock connecting the states h−? and h2 is schematically shown in
Fig. 1.

It can be also shown by direct computation that for the right facing stationary wave with m < 0
and D = 0 the inequalities

u−? +

√
gh−? < 0, u−? −

√
gh−? < 0, (46)

and

u+
? +

√
gh+

? > 0, u+
? −

√
gh+

? < 0, (47)

are necessarily satisfied, see Appendix B. These inequalities, specifying the slopes of the shocks
in relation to the slopes of the incoming and outcoming of characteristics of the non-regularized
system, will be interpreted later.

Figure 2: Qualitative behavior of the functions H(h, h±? ).
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To distinguish between the four eligible connections h1,2 → h±? consider the function

H(h, h?) =
h0h1h2

2h2
?

+ h? −
h0h1h2

2h2
− h. (48)

The equation H(hi, h?) = 0 is equivalent to the condition of energy conservation on the discontinuity

u2

2
+ gh+

m2

3h

d2h

dx2
− m2

6h2

(
dh

dx

)2

=
m2

2h2
?

+ gh?. (49)

The qualitative behavior of the function H(h, h±? ) is illustrated in Fig. 2. One can see that the
energy is lost at the discontinuities h2 → h±? and is acquired at the discontinuities h1 → h±? which
makes the latter energetically inadmissible.

Figure 3: Schematic diagram showing the non-admissible expansion shock connecting the averaged
state h = hs with the homogeneous state h = h−? and the admissible compression shock connecting
the homogeneous state h = hs with the homogeneous state h = h+

? .

To separate the two remaining options h2 → h±? it is instructive to look at these shocks from the
perspective of the hyperbolic theory (St-Venant equations). The latter deals with period averaged
configurations. While for the ’cold’ state it is the actual configuration, for the ’hot’ state we need
to define the virtual homogeneous state

h ≡ hs(h0, h1, h2) = h0 + (h2 − h0)
E(s)

K(s)
,

where K(s) =

∫ π
2

0

(1−s2 sin2 θ)−1/2 dθ and E(s) =

∫ π
2

0

(1−s2 sin2 θ)1/2 dθ are the complete elliptic

integrals of the first and second type with the modulus s2 =
h2 − h1

h2 − h0
. In terms of such averaged

quantities and the corresponding hyperbolic theory, the transition hs → h−? is an inadmissible
(expansion shock) while the transition hs → h+

? is admissible (compression shock), see Fig. 3.
Indeed, consider the structure of characteristics around each of these shocks. In the case of the

transition hs → h−? we have u−? +
√
gh−? < 0 and u−? −

√
gh−? < 0. Therefore both characteristics

in the state with h ≡ h−? have negative slopes, see Fig. 4 (left figure). The characteristics in

the state with h ≡ hs are presented in this figure under the special assumption that us = −
√
ghs
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which will be justified below. With only two characteristics ’coming’ to the front it becomes ’under-
compressive’ and therefore unstable [63]. For the transition hs → h+

? the pattern of characteristics
is different, see Fig. 4 (right figure). In this case the characteristics in the state h ≡ h−? have

velocities of opposite signs : u+
? +

√
gh+

? > 0 and u+
? −

√
gh+

? < 0, while the configuration of the
characteristics in the state h ≡ hs remains the same. We see that now three characteristics are
coming and one is leaving, which is the classical configuration for a stable shock wave [63].

In the regularized problem the above stability assessment must be reversed because of the
presence of an additional RH condition. In particular, the under-compressive shocks hs → h−?
become stabilized while the stability of the classical shocks hs → h+

? can no longer be guaranteed.
Our numerical experiments, reported in Section 5, support this theoretical prediction.

Figure 4: Schematic structure of characteristics in the hyperbolic problem for the stationary ex-
pansion shock connecting the homogeneous state h ≡ hs on the right with the homogeneous state
h ≡ h−? on the left (left figure), and for the stationary compressive shock connecting the homoge-
neous state h ≡ hs on the right with the homogeneous state h ≡ h+

? on the left (right figure).

Interpolation. At finite ε the admissible discontinuous transitions hs → h−? do not formally
belong to the family of composite periodic TWs because the constant state h ≡ h−? is different from
the periodic TW with λ = ∞ which must be a solitary wave. The solitary wave, compatible with
the transition hs → h−? , must have the background h−? and the maximum h = h2. A half-soliton
with these parameters will smoothly interpolate between the homogeneous state h ≡ h−? and an
infinite wave train with the average hs, see Fig. 5 (left figure). The background velocity in such
solitary wave is u1 = −

√
gh2.

Figure 5: Left figure: half-soliton interpolating between a constant state h−? and a periodic wave
train with the maximum at h2 at ε = 1(shown in red). Right figure: sharpening of such interpolation
as the scaling parameter ε tends to zero.
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The obtained composite configuration, however, is not a TW solution of the system (30), because
the equation, describing the TW solutions, is of the second order, and it does not have heteroclinic
orbits connecting periodic and homogeneous states. Thus, our composite wave train can be con-
sidered only as an approximation to the actual solution which requires for its construction a more
complex anzatz containing non-TW elements.

Even though at finite values of ε the described composite TW is only an approximation of the
actual solution, its ε → 0 limit (Fig. 5 (right figure)) can be expected to approach the exact
discontinuous solution, see Fig. 1. To the best of our knowledge, the emergence in the zero
dispersion limit of such generalized shocks, linking homogeneous configurations with measure-valued
infinitely fine dynamic mixtures, has not been reported before. To understand stability of such
shocks it is necessary to study the associated higher order hyperbolic (Whitham) system [60].

Generalized Riemann problem. To illustrate these ideas consider the simplest initial value
problem when a non-trivial periodic TW solution is placed in contact with a constant state char-
acterized by the same averaged parameters. Suppose that the real axis is partitioned into the
following three domains:

(
h(0, x)
u(0, x)

)
=



(
hR = hs
uR = 0

)
, if x > L,

(
hs(x)
us(x)

)
, if − L < x < L,

(
hL = hs
uL = 0

)
, if x < −L.

(50)

Here (hs(x), us(x)) is a periodic solution of the SGN system, with the average values hs(x) and
us(x) = 0. In the non-regularized (Saint-Venant) setting such initial value problem would have had
only a trivial solution.

To specify parameters, we need to choose the values h0, h1, h2 and select the wave velocity D.
We first recall that hs(us − D) = m, and m = −

√
gh0h1h2 where the choice of the sign reflects

the fact that the TW moves in Lagrangian coordinates to the right (D > 0). We can then write

D = us − mh−1
s . Since we can always choose us = 0 we write D = −m

(
h−1
s

)
. Also, using the

Galilean invariance we can choose the coordinate system moving with velocity D, which will make
the shock stationary in Eulerian coordinates. This will lead to the appearance of a nonzero flow at
infinity with uR,L = −D.

Under the transformation x→ x+Dt, u→ u+D the initial data (50) transform into

(
h(0, x)
u(0, x)

)
=



(
hR = hs

uR = m
(
h−1
s

) ) , if x > L,

(
hs(x)

us(x) +m
(
h−1
s

) )
, if − L < x < L,

(
hL = hs

uL = m
(
h−1
s

) ) , if x < −L.

(51)
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Choosing m and hs we fix two of the three parameters h0, h1, h2. The choice of the third parameter
remains unconstrained.

Sonic Riemann data. Our numerical experiments show that a generic ’cold-hot’ stationary
shock splits into a special stationary ’cold-hot’ shock and a spreading dispersive shock wave. Since
in the configuration of interest the trailing edge of such dispersive shock would move with the sonic
velocity of the homogeneous state hs, the influence of the boundary of the computational domain at
x = −L can be eliminated if the initial shock also moves with the same sonic velocity (in Lagrangian
coordinates). It is then natural to select the initial conditions respecting the condition D = cs,

where cs =
√
ghs is the sonic velocity in the state h ≡ hs. The ratio D/cs is known as the Mach

number M (Froude number in hydraulics). In the SGN context we can write (given that m < 0)

M = −mh
−1
s√
ghs

. (52)

Accordingly, our numerical experiments discussed in the next Section were conducted under the
assumption that Fr = 1. The ensuing constraint on the parameters h0, h1, h2 is illustrated in Fig.
6.

Figure 6: The critical line M = 1 in the plane (H1, H2) with Hi = hi/h0.

5 Numerical solution of a generalized Riemann problem

To solve such a generalized Riemann problem, we used the numerical method developed for the
SGN system in [39]. Its adaptation to our problem is described in detail in Appendix C; the version
we actually used is illustrated there for the benchmark test known as the ’dam break problem’.

Test 1. In Figure 7, we show the initial fluid level configuration setting up the generalized Riemann
problem (51). The parameters are chosen to satisfy approximately the relation Fr = 1. For
computational convenience we connected the initial homogeneous state to the adjacent periodic
solution smoothly; the smoothing procedure is discussed in Appendix D.

A snapshot of the numerical solution at t = 1000 s is shown in Figure 8. Observe the formation
of a new homogeneous state (the ? state) between the dispersive shock wave moving to the right in
Lagrangian coordinates and the stationary discontinuity which also moves to the right in Lagrangian
coordinates effectively consuming the periodic wave train. The distribution of wave lengths (shown
in the lower portion of the figure) suggests that the initial wave train remains unperturbed by the
breakdown of the original shock.
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Figure 7: The initial fluid level distribution h(x, 0) described by (51). The periodic wave train
parameters are : h0 ≈ 1.0962 m, h1 = 1.1 m, and h2 = 1.2 m, λ ≈ 26.3767 m. The corresponding
period average value of h is hs ≈ 1.13173 m. The ’cnoidal-type’ wave train in the middle can
be closely approximated by an assembly of 180 single solitary waves (37). Inset: a zoom into the
transition region on the left. In the actual numerical experiments the initial discontinuity between
hs and h1 was smoothed using the hyperbolic tangent interpolation (63).

The analysis of subsequent snapshots shows that the front separating the emerging ? state and
the initial periodic wave train is stationary in Eulerian coordinates. Our insets show that the
diffused interpolating layer starts at h−? and ends exactly at the maximum point h = h2 of the
periodic solution, see Figure 8. The value of velocity u−? is in agreement with the value calculated
from the mass conservation law : u−? h

−
? = −

√
gh0h1h2. For the parameters h0 ≈ 1.0962 m, h1 = 1.1

m, and h2 = 1.2 m chosen in Figure 7, we obtained the values h−? ≈ 1.09808 and u−? ≈ −3.46416.
As we have already explained, the spreading of the transition layer between the fluid levels

h = h−? and h2 is due to the presence of a finite scale ε = 1 in our problem. With this scale fixed
the numerical convergence of the numerical method as the mesh size goes to zero is illustrated
in the upper right inset in Figure 8; note in particular the convergence of the limiting values h−?
and h = h2 to the analytically predicted values. It can be also seen that the interpolating layer
is numerically close to the half of a stationary solitary wave (39), characterized by the conditions
D = 0 and h1 = h−? ; the velocity of such soliton at infinity is necessarily equal to u−? .
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Figure 8: Numerical solution of the generalized Riemann problem (51) at t = 1000 s; the initial
conditions are shown in Fig. 7. The spatial distribution of wavelengths (distances between the
closest local maxima) is shown in the bottom. The insets show two progressive zooms around the
emerging stationary shock.

Test 2. Next, consider the initial data where the homogeneous state on the left is chosen to
coincide exactly with the ? configuration so that the value h = h? appears in (44) as the minimal
positive root, see Fig. 9 (the left upper figure). More precisely we choose h = h−? ≈ 1.09808m
and u = u−? ≈ −3.46416m/s while the parameters of the periodic wave train remain as before :
h0 ≈ 1.0962m, h1 = 1.1m, h2 = 1.2m and g = 10m/s2. The goal of this numerical experiment
is to test the stability of the stationary shock emerging in Test 1 and now incorporated directly
into the initial data. Once again, we connected the initial state ? to the adjacent periodic solution
smoothly as discussed in Appendix D.

The evolution of the solution is illustrated in Fig. 9 at times t = 1000 s (the right upper figure),
t = 2000 s (the bottom left figure) and t = 6000 s (the bottom right figure). A quantitative
comparison of these snapshots shows that neither the width nor the amplitude of the stationary
shock on the left changes with time at the scale of our numerical experiment.

The snapshots at times t = 2000 s, and t = 6000 s show the sign of small non-stationary fluctu-
ations propagating along the constant state ‘?’. These small-amplitude waves moving to the left are
generated on the right extremity of the periodic wave train due a non-stationary process over there
(see more about this below). They have already passed the stationary shock-like transition front
and will be eventually absorbed by the computational boundary on the left. Despite these external
perturbations, the stationary pattern shows remarkable resilience by maintaining its structure and
showing only minimal modulation of the states on both sides of the front.

To make sure that the modulation is indeed due exclusively to the waves arriving from the right,
and is not revealing the non-stationary nature of the shock-like transition front itself, we performed
a series of special numerical experiments. In particular, in an attempt to completely suppress waves
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coming from the right, we initially imposed the state h = h−? both on the left and on the right,
see the left upper figure in Figure 10.

In the right upper figure in Figure 10 we show the corresponding solution at time 2000 s. While
the global structure of the emerging wave pattern is rather different from the case when the initial
constant state on the right was h, the structure of the stationary shock-like front (solitary wave
merging with the ‘cnoidal’ type wave train) remains exactly the same and we only see a small
horizontal shift. The detailed comparison at time 2000 s is illustrated in the two bottom figures
in Figure 10. In particular, one can see that the superimposed fluctuations of the constant state,
consciously present in the test with the state h imposed on the right, completely disappear in the
test when the state on the right is h−? . All this suggests that the obtained shock-like transition has
at least a finite range of stability.
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Figure 9: Upper left figure: the initial condition for the generalized Riemann problem with state
h = h−? on the left and the same wave train as in Fig. 7 on the right. The numerically obtained
snapshots of the solution are shown at three time instants : t = 1000 s (upper right figure), t = 2000 s
(bottom left figure), and t = 6000 s (bottom right figure).
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Figure 10: Upper figures : initial conditions showing the state h−? imposed both on the left and
on the right (left); the ensuing solution at time 2000 s (right). Bottom figures: comparison of
the transition front structures generated by the initial conditions with either h = hs (red line) or
h = h−? (blue line) imposed on the right side of the computational domain.

In Fig. 10 we used the notation h
L/2
? to indicate that in the initial conditions the state h−?

was matched to the periodic wave train using an interpolation over the length L?/2 (see Appendix
D for details of this interpolation). In the test reported in Fig. 10 we used as L? the length of
the periodic wave with parameters h0, h? and h2 which allowed us to relate smoothly the periodic
wave train and the state ‘star’ ( with both the solution and its first derivative continuous). Smaller
smoothing scales have been tried as well but they have all lead finally to the creation of the same
transition layer with the scale of a half of the solitary wave. To show that the formation of shock-
like stationary front does not depend on the interpolation length at all, we present in Fig. 11 the
results of the simulations without any interpolation at all, when the initial data were discontinuous.
Note the transient adjustment of the solution through the formation of large-amplitude solitonic
perturbation with oscillatory tail ahead (moving to the left). However, it clearly leaves behind (on
the right) exactly the stationary structure which we discussed above (a one half of a solitary waves
connecting smoothly the wave train with the ? state). This is yet another evidence of the numerical
stability for the stationary fronts constructed in this paper.

Finally observe that when the boundary condition on the right is h = hs, the initial periodic
wave train (‘hot’ configuration) progressively transforms on the right extremity into another ‘hot’
configuration with a larger wave length, see Fig. 9. We can interpret this transition as an expanding
dispersive wave which effectively bridges ‘more hot’ and ’less hot’ states. Note that the average
value of the variable h in the newly formed wave train is larger than in the original state h = hs. The
ensuing complex breakdown pattern can be potentially explained using the Whitham’s averaged
equations, for instance, in the zero dispersion limit the observed ’hot-hot’ transition is suggestive
of a higher dimensional hyperbolic rarefaction wave.
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Figure 11: The same initial configuration as in Fig. 10 but without the initial smoothing of the
transition between the periodic wave train and the state ?. The initial data are shown by the solid
black line.

Test 3. Consider next a similar initial configuration where instead of the state h−? we choose
the state h+

? on the left. In terms of the underlying hyperbolic system we now have initially a
compression shock connecting the homogeneous state h = hs with the homogeneous state h = h+

? ,
see Fig. 4 (right figure).

As we have already seen, the corresponding pattern of characteristics in the non-regularized
hyperbolic problem suggests instability, see Fig. 4 (right figure). In agreement with this predic-
tion, in our numerical experiment the stationary transition front is not forming, see Fig. 12. We
observe instead a complex breakdown pattern which requires for its understanding a study of the
corresponding Whitham’s higher order system.
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Figure 12: The decomposition of the initial state with h = h+
? ≈ 1.16471 on the left and the same

wave train as in Fig. 7 on the right. The shown snapshot corresponds to t = 300 s and shows the
formation of an expanding dispersive shock.

Linearized dispersion. Since the SGN regularizing term in the energy is nonlinear in h, it is
of interest to check whether the emergence of the shock-like stationary front is conditioned by this
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Figure 13: Numerical solution of the generalized Riemann problem for the Boussinesq system; the
corresponding pressure is given by (53). The snapshot at t = 1000 s (left figure) shows the formation
of a stationary shock which is similar to the one obtained for the SGN model in Figure 8. A zoom
in on the transition front is shown on the right figure.

.

(non-fundamental) nonlinearity. To this end, we now consider the Boussinesq type approximation
of the SGN system where the dispersive term in the energy is linearized. We obtain the same system
of equations (30) where now

p =
gh2

2
+
h̄2

0

3
htt. (53)

In contrast to the original problem, the coefficient h̄0 in (53) is constant. The corresponding TW
solutions satisfy the equations:

h(u−D) = m,
m2

h
+
g

2
h2 +

D2h̄2
0

3
h′′ = ι.

where, again, m and ι are integration constants. Multiplying the second equation by h′ and inte-
grating once we obtain:

D2h̄2
0

6
(h′)2 = ιh− gh3

6
−m2ln

(
h

H

)
. (54)

Here H is a new positive integration constant. The three real positive roots 0 < h0 < h1 < h2

of the right-hand side of (54) exist if the equation m2

h + g
2h

2 = ι has two positive roots; then the
solution oscillates between the values h1 and h2.

If we choose ι ≈ 19.22372308, m2 ≈ 14.4889747, H ≈ 0.297886, we obtain the same roots as in
the case of the periodic solution considered in the SGN setting: h0 ≈ 1.0962, h1 ≈ 1.1 and h2 ≈ 1.2.
The corresponding wave length is :

λ =
2Dh̄0√

6

∫ h2

h1

(
ιh− gh3

6
−m2ln

(
h

H

))−1/2

dh. (55)

We can now prescribe the same value of D as in the generalized Riemann problem for the SGN
system, and take h̄0 = h0. The main difference between SGN and Boussinesq models is that the
latter is not invariant under the Galilean transformation which implies that the wave length in the
Boussinesq model depends on the phase velocity D.
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The numerical solution of the Boussinesq model with the same initial data as in the SGN model
(Test 1) is illustrated in Fig. 13. Once again we see the formation of a stationary transition front
separating ‘cold’ and ‘hot’ states which points to the robustness of our results.

6 Conclusions

Hyperbolic conservation laws are ubiquitous in continuum physics. They describe adequately the
dynamics of dissipation-free systems at large scales where the fields of interest are sufficiently
smooth. The associated models, however, fail to adequately represent the underlying physics at
small scales which emerges inevitably due to the inherent nonlinearity.

The localization trend in hyperbolic systems leads to the formation of concentrations and/or
oscillations. To describe the underlying microscale phenomena in some detail, the hyperbolic system
needs to be regularized dispersively which leads to the appearance in the model of the characteristic
length and time scales.

In this paper we studied a class of temporarily regularized dispersive models which we showed
to generate highly localized and apparently stationary transition fronts. The existence of such kink-
type solutions in a model with convex energy is rather remarkable. More interestingly, if formally
averaged, such macroscopic discontinuities become unstable hyperbolic shocks. The evidence of
stability for these solutions in the dispersive setting was obtained so far only numerically: our
simulations strongly suggest that they have at least a finite reserve of stability and that they are
long-living. More analytical work is needed to see if these shock-like fronts are indeed stable, at
least in the zero dispersion limit when they degenerate into jump discontinuities. The adequate
averaging of such solutions must necessarily involve the account of degrees of freedom associated
with micro-oscillations as in Whitham’s averaging method.

In the case of SGN system, the Whitham’s approach can be shown to produce a hyperbolic
problem [60]. The corresponding higher dimensional system generates singularities and we con-
jecture that at least some of these singularities can be interpreted as the limits of the dispersive
shock-like fronts studied in this paper. An important step along these lines was made in [57] where
the discontinuities emerging in the zero dispersion limit of the fifth order KdV were shown to be
stable shock solutions of the corresponding Whitham equations. In [57] the shocks in Whitham’s
equations were shown to emerge as pointwise limits of the smooth TW solutions of dispersive equa-
tions representing heteroclinic connections between two periodic orbits of an ODE. The dispersion
considered in this paper is too ‘poor’ to support such smooth ‘homogeneous-to-periodic’ hetero-
clinic TW solutions. In this situation we expect the limiting Whitham shocks to result from the
non-smooth solutions of the corresponding ODEs.
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A Lagrangian and Eulerian descriptions

Since our general theory is formulated in Lagrangian coordinates, which are usually used in solid
mechanics, while the analysis of the SGN model, which originates in fluid mechanics, is performed
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in Eulerian description, we briefly recall here the connection between the two ways of describing
the motion of a 1D continuum [52, 55].

If t is time, and q is the (mass) Lagrangian coordinate, the spatial Eulerian coordinate is
defined through the motion of the continuum x = x(t, q). The mass conservation equation in the
Lagrangian coordinates can be written as ρ(t, q)xq = ρ0(q), where ρ(t, q) and ρ0(q) are the actual
and the reference mass densities, so that dm = ρ0(q)dq = ρ(t, q)dx. One can see that if we choose
ρ0(q) ≡ 1, the Lagrangian variable q will effectively coincides with the mass m; in this case the
mass balance equation will take a particularly simple form xq ≡ w = ρ−1 [52], [55]. Making this
the definition for the specific volume (the strain) w and defining the fluid velocity u as u ≡ xt
we obtain dx = udt + wdq. Note that the partial derivative with respect to t in such Lagrangian
coordinates (t, q) becomes the material derivative in the Eulerian coordinates (t, x) and we can

write ft(t, q) =
df(t, x)

dt
= ft(t, x) + u(t, x)fx(t, x). A general conservation law in the Lagrangian

coordinates at + bq = 0, can be rewritten in the Eulerian coordinates as (ρa)t + (ρua+ b)x = 0.
Indeed, consider a closed contour C0 in (t, q) space. Then, the conservation law can be written

in the integral form as

∮
C0

−a dq + b dt = 0. In Eulerian coordinates this integral transforms into∮
Ct

− a
w
dx+

(au
w

+ b
)
dt = 0, where Ct is the image of C0 in (t, x) space. These integral relations

can be also used to relate jump conditions in the two spaces. Consider a shock having the velocity
V in Lagrangian coordinates. The corresponding Rankine - Hugoniot relation reads −V [a]+[b] = 0.
The same shock will have the velocity V E in Eulerian coordinates and −V = ρ(u− V E). In terms
of V E the above Rankine - Hugoniot relation takes the form [ρ(u− V E)a] + [b] = 0.

B Sonic wave speeds

Here we show the inequalities (45), (46) and (47) are always satisfied for the jumps moving to the
right (m < 0). If m > 0, some obvious changes in the signs of the inequalities should be done.
Suppose that m < 0 and consider the polynomial (44) :

Q(h?) = h3
? − (h0h1 + h0h2 + h1h2)h? + 2h0h1h2 = (h? − h0

?)(h? − h−? )(h? − h+
? ).

Since Q(0) > 0, there exists a negative root h0
?. Since Q(h0) > 0 and Q(h1) < 0, there exists a

positive root h−? between h0 and h1. Since Q(h1) < 0 and Q(h2) > 0, there exists a positive root
h+
? between h1 and h2. Hence,

h0
? < 0 < h0 < h−? < h1 < h+

? < h2,

and the inequalities (45) are established. Vieta’s formulas for Q(h?) are :

2h0h1h2 = −h0
?h
−
? h

+
? , h0h1 + h0h2 + h1h2 = h−? h

+
? + h0

?h
−
? + h0

?h
+
? ,

h0
? + h−? + h+

? = 0

Using the expression for m2 = gh0h1h2, the mass conservation law and Vieta’s formulas written
above, one obtains

u−? +

√
gh−? =

m

h−?
+

√
gh−? =

−
√
gh0h1h2

h−?
+

√
gh−?
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=
−
√
−gh0

?h
−
? h

+
?

2

h−?
+

√
gh−?

= −

√
g(h−? + h+

? )h+
?

2h−?
+

√
gh−?

< −

√
g(h−? + h+

? )

2
+

√
gh−? < 0

because h+
? > h−? . The inequality u+

? +
√
gh+

? > 0 can be proven in the same way. The inequalities

u+
? −

√
gh+

? < 0 and u+
? −

√
gh+

? < 0 are trivial because for the right facing stationary waves the
velocities u±? are negative.

C Numerical method

Overview. To find approximate solutions to SGN equations, we used the hyperbolic-elliptic split-
ting approach developed previously in [39]. Our modified version of this algorithm will be presented
in the form of two steps:

Hyperbolic step. At each time step ∆t we solve the hyperbolic part of the system (30) written
in the form :

qqqt + fff(qqq, u)x = ψψψ(qqq, u) (56a)

where qqq = (h, hK)
T

, fff =
(
hu, hKu+ 1

2gh
2
)T

, K = u− 1

3h

(
h3ux

)
x
, and ψψψ =

(
0,
(

2
3h

3 (ux)
2
)
x

)T
.

Elliptic step. Using the approximate solutions h and K computed during the hyperbolic step,
we invert numerically the elliptic operator:

u− 1

3h

(
h3ux

)
x

= K (56b)

with the prescribed boundary conditions.
Note that on the hyperbolic step, rather than writing (56a) in the conservation form as in [39]

with fff =
(
hu, hKu+ 1

2gh
2 − 2

3h
3 (ux)

2
)T

and ψψψ = 000 (which is ideal in the conservative first-order

setting [40], but is difficult to make higher than first order accurate), we write it in the form of a
balance law. We then obtain a standard elliptic problem which any state-of-the-art method can
resolve [41, 58].

Detailed numerical method for the hyperbolic step. To compute solutions to SGN equa-
tions in the hyperbolic step, we use the semi-discrete finite volume method written in a wave-
propagation form (cf. [34, 35]). This method belongs to the class of flux-vector splitting methods
for hyperbolic conservation laws [25, 40, 61], and has been applied to compressible multiphase flows
(cf. [54]), and in other instances of practical importance. For simplicity, we describe the method
on a uniform grid of N cells with fixed mesh spacing ∆x. The method is based on a staggered grid
formulation in which the value QQQj(t) approximates the cell average of the solutions qqq over the grid
cell Cj :
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QQQj(t) ≈
1

∆x

∫ xj+1/2

xj−1/2

qqq(t, x) dx,

while Uj(t) ≈ u(t, xj) gives the pointwise approximation of the velocity u at xj at time t.
The semi-discrete version of the wave-propagation method is a method-of-lines discretization

of (56a) that can be written as a system of ordinary differential equations (ODEs) in the form :

dQQQj
dt

= Lj
(
QQQ,U

)
, (57a)

with

Lj
(
QQQ,U

)
= − 1

∆x

(
A+∆QQQj−1/2 +A−∆QQQj+1/2 +A∆QQQj

)
+ ΨΨΨj

(
QQQ,U

)
, (57b)

for j = 1, 2, . . . , N . Here, QQQ and U are the vectors with components QQQj and Uj respectively,
A+∆QQQj−1/2 and A−∆QQQj+1/2, are the right- and left-moving fluctuations, respectively, that are
entering into the grid cell Cj , and A∆QQQj is the total fluctuation within the cell. To determine these

fluctuations, we need to solve Riemann problems (see below). Note that the term ΨΨΨj

(
QQQ,U

)
in (57b)

represents a discrete version of ψψψ over the grid cell Cj which can be evaluated straightforwardly
by numerical differentiation techniques such as the finite-difference approximation of derivatives
(cf. [41]).

Consider now the fluctuations A±∆QQQj−1/2 arising from the edge (j − 1/2) between cells Cj−1

and Cj , for example. This amounts to solving the Cauchy problem for the homogeneous part
of (56a) in the form :  qqqt + fff

(
qqq, uLj−1/2

)
x

= 0 if x < xj−1/2,

qqqt + fff
(
qqq, uRj−1/2

)
x

= 0 if x > xj−1/2,
(58a)

with the piecewise constant initial data at a given time t0 :

qqq
(
t0, x

)
=

{
qqqLj−1/2 if x < xj−1/2,

qqqRj−1/2 if x > xj−1/2.
(58b)

Here qqqLj−1/2 = limx→x(j−1/2)−
q̃qqj−1(x) and qqqRj−1/2 = limx→x(j−1/2)+

q̃qqj(x) are the interpolated states

obtained by taking limits of the reconstructed piecewise-continuous function q̃qqj−1(x) or q̃qqj(x) (each
of them can be determined by applying a standard interpolation scheme to the set of discrete data
{QQQj(t0)}, see [25, 40, 53] for more details) to the left and right of the cell edge at xj−1/2, respectively.
To find the set of interpolate states of {uLj−1/2} and {uRj−1/2}, the approach we propose here is to

solve the elliptic equation (56b) based on the the sets of data {qqqLj−1/2} and {qqqRj−1/2}, respectively,
which is a consistent approximation of u in the SGN model at the cell edges.

Note that if the conservative version of the flux fff is being used in the problem formulation [39],
the governing equation in the Riemann problem would be qqqt + fff

(
qqq, uLj−1/2, (ux)Lj−1/2

)
x

= 0 if x < xj−1/2,

qqqt + fff
(
qqq, uRj−1/2, (ux)Rj−1/2

)
x

= 0 if x > xj−1/2.
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Then it should be clear that the need to interpolate the set of states {(ux)Lj−1/2} and {(ux)Rj−1/2}
consistently and to be more than first-order accurate would complicate the matter further, and so
it is preferable to use (56a) as the basis in the hyperbolic part of the method.

Here we are interested in the HLL (Harten, Lax, and van Leer) approximate solver [29] for
the numerical resolution of the Riemann problem (58) where the basic structure of the solution is
assumed to be composed of two discontinuities propagating at constant speeds sLj−1/2 and sRj−1/2

to the left and right, sLj−1/2 < sRj−1/2, separating three constant states in the space-time domain.

We assume that sLj−1/2 and sRj−1/2 are known a priori by some simple estimates based on the local

information of the wave speeds (cf. [61, 39]). Then it is easy to find the constant state in the middle
region, denoted by qqq∗j−1/2, as

qqq∗j−1/2 =
sRj−1/2qqq

R
j−1/2 − s

L
j−1/2qqq

L
j−1/2 − fff(qqqRj−1/2, u

R
j−1/2) + fff(qqqLj−1/2, u

R
j−1/2)

sRj−1/2 − s
L
j−1/2

,

see [61] for more details. We then find the expression for the fluctuations in terms of jumps across
each discontinuity :

A±∆QQQj−1/2 =
(
sLj−1/2

)± (
qqq∗j−1/2 − qqq

L
j−1/2

)
+
(
sRj−1/2

)± (
qqqRj−1/2 − qqq

∗
j−1/2

)
, (59)

where s+ = max (s, 0) and s− = min (s, 0).
Similarly, we can define fluctuation A∆QQQj within cell Cj based on the solution of the following

Riemann problem at the cell center xj : qqqt + fff
(
qqq, uRj−1/2

)
x

= 0 if x < xj ,

qqqt + fff
(
qqq, uLj+1/2

)
x

= 0 if x > xj ,

with the initial condition

qqq
(
t0, x

)
=

{
qqqRj−1/2 if x < xj ,

qqqLj+1/2 if x > xj .

To integrate the system of ODEs (57a) in time, we employ the strong stability-preserving (SSP)
multistage Runge-Kutta scheme [28]. That is, in the first-order case we use the Euler forward time
discretization as

QQQn+1
j = QQQnj + ∆tLj

(
QQQn, Un

)
, (60a)

where we start with the cell average QQQnj ≈QQQj(tn) and Un ≈ U(tn) at time tn, yielding the solution

at the next time step QQQn+1
j over ∆t = tn+1 − tn. In the second-order case, however, we use the

classical two-stage Heun method (also called the modified Euler method) as :

QQQ∗j = QQQnj + ∆tLj
(
QQQn, Un

)
,

QQQn+1
j =

1

2
QQQnj +

1

2
QQQ∗j +

1

2
∆tLj

(
QQQ∗, U∗

)
.

(60b)
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It is common that the three-stage third-order scheme of the form

QQQ∗j = QQQnj + ∆tLj
(
QQQn, Un

)
,

QQQ∗∗j =
3

4
QQQnj +

1

4
QQQ∗j +

1

4
∆tLj

(
QQQ∗, U∗

)
,

QQQn+1
j =

1

3
QQQnj +

2

3
QQQ∗j +

2

3
∆tLj

(
QQQ∗∗, U∗∗

)
.

(60c)

is a preferred one to be used in conjunction with the third- or fifth-order WENO (weighted essen-
tially non-oscillatory) scheme that is employed for the reconstruction of q̃j(x) during the spatial
discretization (cf. [53]).

Detailed numerical method for the elliptic step. To find the flow velocity u in SGN model
at a given time t, the elliptic equation (56b) is solved with h and K known a priori, and subject
to the prescribed boundary conditions (such as the Neumann and periodic boundaries considered
here) at both ends. For simplicity, we use a three-point finite difference method on a uniform
grid with mesh spacing ∆x by first taking a backward difference for the outer derivative and then a
forward difference for the inner derivative; collecting terms, we get the following constant coefficient
difference formula for node j :

αjUj−1 + βjUj + γjUj−1 = Kj , (61)

with αj , βj , and γj defined by

αj = − 1

3Hj

(H3)j−1/2

(∆x)2
,

βj =
1

3Hj

(
(H3)j−1/2

(∆x)2
+

(H3)j+1/2

(∆x)2

)
+ 1,

γj = − 1

3Hj

(H3)j+1/2

(∆x)2
,

respectively, where (H3)j±1/2 = ((Hj)
3 + (Hj±1)3)/2 ≈ (h(xj±1/2, t))

3 (cf. [41]). Going through all
the nodal points for j = 1, 2, · · · , N , and using the boundary conditions, we obtain a nonsingular
linear system for the unknown velocity U(t).

Let τj be the local truncation error of (61) to the elliptic equation (56b), i.e.,

τj = α̃ju(t, xj−1) + β̃ju(t, xj) + γ̃ju(t, xj−1)−K(t, xj),

where

α̃j = − 1

3h(t, xj)

h3(t, xj−1/2)

(∆x)2
,

β̃j =
1

3h(t, xj)

(
h3(t, xj−1/2)

(∆x)2
+
h3(t, xj+1/2)

(∆x)2

)
+ 1,

γ̃j = − 1

3h(t, xj)

h3(t, xj+1/2)

(∆x)2
.
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Then it is easy to show that τj is on the order of (∆x)2, i.e.,

τj = − (∆x)2

12h(t, xj)

(
1

3
h3(t, xj)uxxxx(t, xj) +

2

3
h3
x(t, xj)uxxx(t, xj)

)
+O((∆x)4), (62)

and hence (61) is a second-order approximation to (56b) locally; the second-order global error of
the method can be ensured, when the method remains stable, i.e., the inverse of the matrix of the
resulting linear system from the finite-difference approximation can be bounded by some constant
independent of ∆x, as ∆x→ 0 (cf. [41]).

Validation tests. To access the numerical accuracy of our method, we performed convergence
studies for the two benchmark tests where the exact solutions are readily available for comparison.
In all the tests, the gravitational constant was chosen to be g = 10 m/s2, and the Courant number
was set to 0.5 to ensure the stability of the hyperbolic solver.

Our first test is the propagation of a single solitary wave in a fluid which is at rest at infinity,
see (39). We set h1 = 10 m and h2 = 22.5 m, yielding D = 15 m/s; the computational domain was
of size 300 m with periodic boundary conditions at both ends.

Our Table 1 shows 1-norm errors of the height at time t = 40 s (time it takes the solitary wave
crest to travel one period) for a convergence study of the solutions obtained using our numerical
strategy with four different mesh sizes N = 1200, 2400, 4800, and 9600, and three different hyper-
bolic integration schemes. The underlying elliptic solver for (61) is the second-order finite difference
scheme.

Let E1(h) = {E1
j (h)} for j = 1, 2, 3, 4 be the sequence of the 1-norm error of the computed

height h to its true solution on an N = {1200, 2400, 4800, 9600} grid. With that, it is a common
practice to estimate the rate of convergence using the errors on two consecutive grids based on the
formula

convergence order =
ln
(
E1
j−1(h)/E1

j (h)
)

ln (Nj−1/Nj)
.

From Table 1, we observe that when Godunov method is employed in the hyperbolic step,
(i.e., the method uses zeroth-order piecewise constant reconstruction scheme for the Riemann data
at the cell edges, and the forward Euler method (60a) for the time discretization), the order of
accuracy of algorithm approaches to first-order accurate as the mesh is refined, and it is second-
order accurate, when MUSCL (monotonic upstream-centered scheme for conservation laws) is em-
ployed alternatively (i.e., both the first-order piecewise linear reconstruction scheme and the Heun
method (60b) are in use). In the WENO 3 case, however, (i.e., the method uses the third-order
WENO (weighted essentially non-oscillatory) scheme for Riemann data reconstruction, and the
third-order method (60c) for the time discretization), the order of accuracy in average is 2.1 ap-
proximately which is less than 3 (the formal order of accuracy of the hyperbolic solver WENO 3);
this result may not come as a surprise because our underlying elliptic solver is only of O((∆x)2).
Nevertheless, among all the three methods, WENO 3 gives the smallest error in magnitude for each
mesh size.

Our second example concerns the propagation of a TW in a periodic domain of one wave length,
see (37).

The periodic wave parameters were chosen to be h0 ≈ 1.0962m, h1 = 1.1m, and h2 = 1.2m.
This yields the wave speed D ≈ 3.36413 m/s and wave length λ ≈ 26.3767 m. The computational
domain was taken of the size of one wave length with periodic boundary conditions at both ends.
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Table 1: Numerical results for the solitary wave problem obtained using our algorithm with four
different mesh sizes and three different hyperbolic integration schemes; 1-norm errors in the height
are shown at time t = 40s. The elliptic equation (61) is solved using second-order finite difference
scheme in all cases.

Hyperbolic step Godunov MUSCL WENO 3
N E1(h) order E1(h) order E1(h) order

1200 2.595e+02 4.894e+00 2.622e−01
2400 1.470e+02 0.82 1.210e+00 2.02 4.410e−02 2.57
4800 7.834e+01 0.91 3.005e−01 2.01 1.178e−02 1.90
9600 4.044e+01 0.95 7.487e−02 2.01 3.060e−03 1.94

Table 2: Numerical results for the periodic TW problem; 1-norm errors in the height are shown at
the time where the wave travelled over four periodic distance of the domain.

Hyperbolic step Godunov MUSCL WENO 3
N E1(h) order E1(h) order E1(h) order

300 1.346e−01 5.250e−03 3.521e−03
600 7.749e−02 0.83 1.094e−03 2.37 4.563e−04 3.09
1200 4.100e−02 0.92 2.482e−04 2.15 5.927e−05 2.96
2400 2.112e−02 0.96 6.072e−05 2.03 7.923e−06 2.90

The results of the convergence study in this case are shown in Table 2. From the table, we
observe similar rate of convergence as in Table 1, when the Godunov and the MUSCL methods
are in used in the hyperbolic step of the algorithm, and a slightly better behavior of error when
WENO 3 is employed.

Finally, we present numerical results for the simulation of a dam break problem studied, for
instance, in [12, 39, 48]. Since there is no analytical solution to this problem, such a study is
rather qualitative, but it allows us to recover some qualitative characteristics of the solution (the
amplitude of the leading wave and its velocity, for example). We take the velocity vanishing in the
entire computational domain of size x ∈ [−300, 300] m, u(0, x) = 0 m/s, while the water depth is
piece-wise constant :

h(0, x) =

{
hL, if x < 0,
hR, if x ≥ 0,

where hL and hR are chosen to be 1.8 m and 1 m, respectively. The discontinuous initial data for
the water depth will be replaced by a smooth function :

h(0, x) = hR +
hL − hR

2

(
1− tanh

(x
α

))
, (63)

where α = 2 m or α = 0.4 m. The structure of the solution (but not the velocity of the leading
solitary wave and its velocity) depends on the value of α. According to the terminology given
in [48], the case α = 2 m produces S2 configuration (flat structure of the fluid depth behind the
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Figure 14: Left figure : Numerical result for the dam break problem for the initial data (63) with
α = 2m (S2 case in the terminology of [48]). The solid line is the water depth at time t = 47.434 s,
and the dashed line is the initial condition. The lines for h∗ and hm are the depths of the post right-
going undular bore and the leading solitary wave (cf. [12]), respectively. Right figure : Numerical
result for the dam break problem for the initial data (63) with α = 0.4 m (S3 case in the terminology
of [48]). The solid line is the water depth at time t = 47.434 s, and the dashed line is the initial
condition. The lines for h∗ and hm are the depths of the post right-going undular bore and the
leading solitary wave (cf. [12]), respectively.

dispersive shock, Figure 14, (left), while α = 0.4 m produces S3 configuration (existence of a node
type point in the fluid depth profile, Figure 14, (right). The node point moves with the velocity
which can be estimated by using the continuity through dispersive shock of the Riemann invariant
of the corresponding Saint-Venant equations describing the waves advancing to the right.

The comparison of the analytical and numerical results for the amplitude of the leading solitary
wave is shown in Fig. 14 at time t = 47.434 s with the mesh size ∆x = 0.025m (i.e., N = 24000
meshes). As far as the global wave structure is concerned, our results are in good agreement
with the ones shown in [12] at time t = 150 s, where a different value of the gravitational con-
stant, g = 1m/s2, was employed. The computation was carried out using our algorithm with the
WENO 3 scheme in the hyperbolic part, and the second-order finite difference method in the ellip-
tic part. Non-reflecting boundary condition was used on the left and right boundaries during the
computations.
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Figure 15: (a) One period of the function h(x) is shown for the parameter choices h0, h1, h2 (con-
tinuous line) and h0, h?, h2 (dashed line). (b) The initial smooth data for h(x) joining the constant
state ‘star’ (red line) and the initial wave train at the state h2 shown by dashed line.

D Smoothing procedure

Here we explain how we interpolated the initial discontinuity connecting the constant state h ≡ h?
with the periodic wave train (with the period L). While the interpolation scale responsible for the
smoothing out of the jump was a crucial parameter in [15], in our case this parameter was found to
be irrelevant because independently of the initial conditions, the transition zone quickly acquires
the ’half-solitary-wave-type’ structure discussed in the main text.

Below, we present two types of interpolations which we used. The first type relies on the
smoothing over the length scale L?/2 where L? is the length of the periodic wave with parameters
h0, h? and h2. More precisely, let the initial discontinuity be at x = 0. We replace h at the interval
[−L?/2, 0] by the explicit solution of (35) with h1 = h? = h−? :

h(x) = h? + (h2 − h?) cn2(κ?x, s?), x ∈ [−L?/2, 0],

where κ2
? =

3

4

h2 − h0

h0h?h2
, and s2

? =
h2 − h?
h2 − h0

. Such initially regularized curve (dashed curve in Figure

15 (left graph )) joins smoothly the constant solution h = h−? at the point x = −L?/2 with the
periodic wave train at maximum h = h2 (right graph in Figure 15). The expression for the velocity
u is obtained from the mass conservation condition u(x) = m/h(x).

The second type of interpolation is optimal in the sense that it bridges the states h−? and h2 by
a half of the solitary wave (see Figure 5) :

h(x) = h−? +
(
h2 − h−?

)
sech2

(
x

2

√
3(h2 − h−? )

h2(h−? )2

)
, u(x) =

m

h(x)
.

Both types of interpolation give the same final structure : the state ‘star’ is related with the wave
train by a half of the solitary wave. In the main text we also show that even a drastic departure
from the smooth interpolation approach, where we start with discontinuous initial data, still brings
us to the same stationary profile of the shock-like transition front.
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