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ABSTRACT
This paper presents a complete solution to the measurement output feedback H∞
control problem subject to asymptotic tracking of an infinite energy reference and
the presence of nonproper output weights. Relying on generalized Sylvester-type
equations, a set of all stabilizing controllers is characterized, explicitly exhibiting
the impacts of the reference signal and the output weight on the resulting con-
trollers. Based on this specific parameterization, additional disturbance attenuation
is tackled, and both full-order and reduced-order controller synthese are discussed. It
is observed that the multiobjective problem is equivalent to a standard problem for
an axillary system constructed from the original weighted system with the control
input matrix and measurement output matrix being augmented by solutions to gen-
eralized Sylvester-type equations. An example is included to show the effectiveness
of the present results.

KEYWORDS
Asymptotic tracking; controller parameterization; H∞ performance; nonproper
weights; reduced-order controller; robust control

1. Introduction

One of the fundamental issues in systems and control theory is to track (reject) infinite
energy references (disturbances) asymptotically, which is also referred to as the reg-
ulation problem Stoorvogel, Saberi, and Sannuti (2000). Such a problem commonly
appears in practical engineering systems, such as helicopters Cai, Chen, Peng, Lee,
and Dong (2008), disk drive servo system Lan, Thum, and Chen (2010), lateral ve-
hicle control Fauvel, Claveau, and Chevrel (2013), spacecraft Fadakar, Fidan, and
Huissoon (2017), robotic manipulator Andreev and Peregudova (2017), etc. Various
solutions have been provided to guarantee tracking performance ; for example, repeti-
tive control Pipeleers, Demeulenaere, Schutter, and Swevers (2008); Tomizuka (2008),
adaptive control Zhang and Xie (2014), and nonlinear control Chen, Lee, Peng, and
Venkataramanan (2003); Feng and Ho (2014). Among these different techniques, one
seminal result, known as the internal model principle Francis (1977); Wonham (1985),
achieves exact asymptotic tracking by a structured controller containing a copy of
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the dynamics of the so-called exo-system. Extensions of this scheme have been widely
developed by considering other performance objectives and such multiobjective prob-
lems have been extensively investigated in the literature; e.g., see Köroğlu and Scherer
(2011); Meng, Yang, and Dimarogonas (2015); Su and Huang (2014); Wieland, Sepul-
chre, and Allgöwer (2011); Yu, Zhao, and Wu (2014) and the references therein.

An alternative approach to tackling the aforementioned problems is the use of
weighting filters Feng and Yagoubi (2016); Meinsma (1995); Mita, Xin, and Anderson
(2000). It is well known that, in many problems, weights are often required for the
definition of a standard model consisting of a physical plant, disturbances and refer-
ence signals, and control objectives. A well recognized example of adopting weights is
the H∞ control in which it is often desirable to choose a weight with a pole at the
origin since the closed-loop system is finite only if the sensitivity has a zero at the
origin. This choice indicates that the underlying stabilizing controller achieves either
the perfect rejection of constant disturbances or the tracking of constant references.
Moreover, in order to avoid undesirable high-frequency noise sensitivity and limited
robustness, it is also often advisable to select a nonproper weight, whose H∞ norm is
generally outside the desirable closed-loop bandwidth Meinsma (1995). However, the
use of weights potentially introduces some unstabilizable or undetectable finite dy-
namics, even uncontrollable or unobservable impulsive elements, if nonproper weights
are involved, into the standard model. Under these circumstances, the stabilization
issue yields a nonstandard problem which traditional methods fail to solve, since the
conventional internal stability can not usually be achieved. These undesirable elements
can be treated approximately ; for example, by slight perturbation to render the prob-
lem standard Chiang and Safonov (1992). However, this approach is vulnerable to the
issues related to lightly-damped poles and may lead to higher order and not strictly
proper controllers. To solve such problems, Kwakernaak Kwakernaak (1993) uses the
so-called polynomial method, which copes naturally with nonproper weights, but can
not be applied to the case in which weights have imaginary poles. Plant augmentation
is rather similar to the “plant state tapping” technique which is also used to address
unstable and nonproper weights Meinsma (1995). Recently, through the framework of
descriptor systems Dai (1989); Feng and Yagoubi (2017); Xu and Lam (2006), which
can easily model nonproper elements, the concept of comprehensive admissibility Feng,
Yagoubi, and Chevrel (2012a, 2012b), which expands the results in Liu, Zhang, and
Mita (1997); Mita et al. (2000) into the nonproper case, has been introduced to handle
such nonstandard problems, and H2 and H∞ performance control are also solved via
Riccati-type solutions.

In this paper, we consider the measurement output feedback H∞ control with exact
asymptotic tracking constraint and nonproper output weighting filter, and we present a
complete solution to such a multiobjective problem. The infinite energy reference to be
tracked is described as an autonomous weight in order to address the problem within
a uniform framework. A set of all stabilizing controllers is first explicitly characterized
in terms of weights’ dynamics and solutions to generalized Sylvester-type equations.
Based on the structured controller, the nonstandard problem is transformed into a
standard control problem with respect to an auxiliary system, which is constructed
from the original weighted system with the control input matrix and measurement out-
put matrix being augmented by solutions to generalized Sylvester-type equations, and
additional H∞ performance is further tackled through LMI-based solutions. Moreover,
for the sake of easy implementation, reduced-orderH∞ controller synthesis is included.
Unlike the Riccati-type solution reported in Feng et al. (2012a, 2012b), the current
results do not require assumptions of invariant zeros, and the H∞ performance design

2



is independent of solutions to generalized Sylvester-type equations, which implies a
convex optimization. The remainder of this paper is organized as follows. The multi-
objective problem under consideration is defined in Section 2. Section 3 presents the
parameterization of all stabilizing controllers under asymptotic tracking and poten-
tially nonproper output weights. Based on this specific structure, both full-order and
reduced-order H∞ controller design are further discussed in Section 4. An example is
included to illustrate the effectiveness of the present results in Section 5, and conclud-
ing remarks are given in Section 6. Some fundamental concepts of descriptor systems
are recalled in Appendix A.

Notation: The notation used in this paper is fairly standard. For a real square
matrix X the notation X ≥ 0 (respectively X > 0) means that the matrix X is
symmetric and positive-semi-definite (respectively positive definite). The superscripts
‘T ’and ‘−1’ represent the transpose and inverse, respectively. Tr(·) and λ(·) are the
trace and eigenvalues of the matrix, while the notation He{P} stands for P>+P . For
a symmetric matrix represented blockwise, off-diagonal blocks are abbreviated by ‘•’.
Fl(·, ·) stands for the lower linear fractional transformation. Moreover, for a matrix
Λ ∈ Rm×n with m > n, let Λ⊥ ∈ R(m−n)×m be any matrix satisfying Λ⊥Λ = 0 and
Λ⊥(Λ⊥)> > 0. Note that Λ⊥ exists if and only if Λ has linearly dependent rows. For

m < n, let Λ⊥ ,
(
(Λ>)⊥

)>
. For simplicity, the arguments of a function will sometimes

be omitted when no confusion can arise. Besides, unless stated otherwise, all matrices
used in this paper are assumed to have appropriate dimensions.

2. Problem formulation

The problem setup is depicted in Fig. 1, where G̃ stands for the physical plant described
by the following continuous-time linear time-invariant (LTI) system

G̃ :


ẋ = Agx+Brr +Bww +Buu,
v = Cvx+Dvrr +Dvww +Dvuu,
y = Cgx+Drr +Dww,
e = Cex+Derr +Deww +Deuu,

(1)

where x ∈ Rn, y ∈ Rp, v ∈ Rl, e ∈ Rq, r ∈ Rpi , w ∈ Rw, z ∈ Rpo and u ∈ Rm
are the plant state, measurement output, controlled output, tracking error, exogenous
reference, external disturbance, weighted output and control input, respectively. The
matrices Ag ∈ Rn×n, Br ∈ Rn×pi , Bw ∈ Rn×w, Bu ∈ Rn×m, Cv ∈ Rl×n, Cg ∈ Rp×n,
Ce ∈ Rq×n, Dvr ∈ Rl×pi , Dvw ∈ Rl×w, Dvu ∈ Rl×m, Dr ∈ Rp×pi , Dw ∈ Rp×w,
Der ∈ Rq×pi , Dew ∈ Rq×w, and Deu ∈ Rq×m are known constant matrices. The direct
feedthrough matrix from u to y is left out to make the arguments simpler and can be
handled via standard methods.

The exogenous reference r to follow is assumed to be generated by the linear au-
tonomous system Wi, known as the exo-system,

Wi :

{
ẋi = Aixi,
r = Cixi,

(2)

with Ai ∈ Rni×ni and Ci ∈ Rpi×ni . The weighted output z is related to the controlled
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Figure 1. Problem setup

output v by the filter Wo of the form

Wo :

{
Eoẋo = Aoxo +Bov,

z = Coxo +Dov,
(3)

where Eo ∈ Rno×no , Ao ∈ Rno×no , Bo ∈ Rno×l, Co ∈ Rpo×no , and Do ∈ Rpo×l are known
real constant matrices. The matrix Eo may be singular, i.e. rank(Eo) = ro ≤ no. Note
that systems of the form (3) are called descriptor (singular) systems and are known
for their capacity to preserve the structure of physical systems and to describe non-
dynamic constraints and impulsive behaviors Dai (1989); Feng and Yagoubi (2017); Xu
and Lam (2006). The purpose of using descriptor representation here is to introduce
nonproper output weights. Since the descriptor system itself is not the main focus of
this paper, we do not give too much detail here, but include some basic notations in
Appendix A to be self-contained.

The generalized system, incorporating the exo-system Wi, output weight Wo and
physical plant G̃, is thus written by

G :


Eζ̇ = Aζ +B1w +B2u,
z = C1ζ +D11w +D12u,
y = C2ζ +D21w,
e = C3ζ +D31w +D22u,

:=


A− sE B1 B2

C1 D11 D12

C2 D21 0
C3 D31 D32

 , (4)

where

ζ =

xox
xi

 , E =

Eo 0 0
0 In 0
0 0 Ini

 , A =

Ao BoCv BoDvrCi
0 Ag BrCi
0 0 Ai

 ,
B1 =

BoDvw

Bw
0

 , B2 =

BoDvu

Bu
0

 , C1 =
[
Co DoCv DoDvrCi

]
,

C2 =
[
0 Cg DrCi

]
, C3 =

[
0 Ce DerCi

]
, D11 = DoDvw,

D12 = DoDvu, D21 = Dw, D31 = Dew, D32 = Deu.
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The measurement feedback controller K is assumed to be

K :=

[
AK − sEK BK

CK DK

]
, (5)

where EK ∈ Rnk×nk , AK ∈ Rnk×nk , BK ∈ Rnk×p, CK ∈ Rm×nk and DK ∈ Rm×p. The
matrix EK may be singular, i.e. rank(EK) = rk ≤ nk.

The closed-loop system formed by G and K is denoted by Fl(G,K), and the trans-
form function from the external disturbance w to weighted output z of Fl(G,K) is
denoted by Tzw(s).

Problem 2.1 (Asymptotic Tracking with Weighted H∞ Performance). The prob-
lem under consideration is to find a measurement feedback controller such that the
following conditions are satisfied

(C1) (Asymptotic tracking) The tracking error e(t) satisfies lim
t→∞

e(t) = 0 for any

w(t) ∈ L2, and for all x(0) ∈ Rn, and xi(0) ∈ Rni ;
(C2) (H∞ performance) The H∞ norm of Tzw(s) is bounded by γ for some γ > 0.

In order to solve this problem, we introduce here two partitions of G with regard
to Wi and Wo, denoted as GWi and GWo , respectively,

GWi :=


[
Ā11 Ā12

0 Ai

]
− s

[
Ē 0
0 Ini

]
B̄11 B̄12

0 0
C̄11 C̄12

C̄21 C̄22

C̄31 C̄32

D11 D12

D21 0
D31 D32

 , (6)

where

Ē =

[
Eo 0
0 In

]
, Ā11 =

[
Ao BoCv
0 Ag

]
, Ā12 =

[
BoDvrCi
BrCi

]
,

B̄11 =

[
BoDvr

Bw

]
, B̄12 =

[
BoDvu

Bu

]
, C̄11 =

[
Co DoCv

]
,

C̄12 = DoDvrCi, C̄21 =
[
0 Cg

]
, C̄22 = DrCi, C̄31 =

[
0 Ce

]
,

C̄32 = DerCi, D11 = DoDvw, D12 = DoDvu, D21 = Dw,

D31 = Dew, D32 = Deu;

GWo :=


[
Ao Â12

0 Â22

]
− s

[
Eo 0
0 In+ni

]
B̂11 B̂12

B̂21 B̂22

Co Ĉ12

0 Ĉ22

0 Ĉ32

D11 D12

D21 0
D31 D32

 , (7)
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where

Â12 =
[
BoCv BoDvrCi

]
, Â22 =

[
Ag BrCi
0 Ai

]
, B̂11 = BoDvw,

B̂12 = BoDvu, B̂21 =

[
Bw
0

]
, B̂22 =

[
Bu
0

]
, Ĉ12 =

[
DoCv DoDvrCi

]
,

Ĉ22 =
[
Cg DrCi

]
, Ĉ32 =

[
Ce DerCi

]
.

Before ending this section, the following assumptions are made.

(A1) Wi and Wo only possess unstable and impulsive modes;
(A2) (Ē, Ā11, B̄12) is finite dynamics stabilizable and impulse controllable;

(A3) (Â22, Ĉ22) is detectable.

Assumption (A1) is made without loss of generality to simplify the argument, since
stable modes, if they exist, of Wi and Wo do not affect the internal stability of the
underlying closed-loop system and can always be incorporated into the physical plant
G̃. Assumptions (A2) and (A3) are necessary for the existence of a stabilizing mea-
surement feedback controller to the weighted system G. Moreover, it is worth noting
that due to the use of unstable and nonproper weights, the multiobjective problem
under consideration results in a design problem with unstabilizable and undetectable
dynamics, which standard methods cannot solve. In this paper, we present a complete
solution to this nonstandard multiobjective problem through a structured controller
together with LMI-based conditions to both full-order and reduced-order controller
synthesis.

3. Controller paramaterization

In this section, we show a specific parameterization for stabilizing controller design
to fulfil the asymptotic tracking and stability of the transfer function Tzw(s). To this
end, we mildly modify Condition (C2) in Problem 2.1 to

(C’2) The transfer function Tzw(s) is stable.

The following theorem gives the necessary and sufficient solution to Conditions
(C1) and (C’2).

Theorem 3.1. Consider the partitions (6) and (7). Conditions (C1) and (C’2)
are satisfied, if and only if there exist matrices Xi ∈ R(n+no)×ni, Yi ∈ R(n+no)×ni,
Πi ∈ Rm×ni, Xo ∈ Rno×(n+ni), Yo ∈ Rno×(n+ni) and Πo ∈ Rno×p such that the following
generalized Sylvester-type equations hold. Ā12 = Ā11Yi + B̄12Πi +XiAi,

C̄32 = C̄31Yi +D32Πi,
0 = ĒYi +Xi.

(8)

 Â12 = ΠoĈ22 −XoÂ22 +AoYo,

B̂11 = ΠoD21 −XoB̂21,
0 = EoYo −Xo.

(9)

Moreover, the measurement feedback controller K is illustrated in Fig. 2 and
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Ai � sIni
I

I 0

Ak � sEk Bk1 Bk2

C1
k D1

k1 D1
k2

C2
k D2

k1 D2
k2

Ao � sEo I
I 0

⇧i

⇧o

uy

C̄21

C̄22

Yi

� +
+

+

+

++
+

Xo

��B̃12

B̃22

K� �

Figure 2. Structured controller

parametrized by

K :=

[
AK − sEK BK

CK D1
k1

]
, (10)

where

EK =

Ini
0 0

0 Ek 0
0 0 Eo

 , AK =

Ai +D2
k1Γi C2

k D2
k2

Bk1Γi Ak Bk2

ΩoΓi −ΓoCk Ao − ΓoDk2

 ,
BK =

D2
k1

Bk1

Ωo

 , CK =
[
Ωi C1

k D1
k2

]
, Γi = C̄22 − C̄21Yi,

Γo = −XoB̃22 − B̃12, B̃12 =
[
B̂12 X1

i

]
, B̃22 =

[
B̂22

X2
i

Ini

]
,

Ωi = D1
k1Γi + Πi, Ωo = Πo − ΓoDk1, X1

i =
[
Ino

0
]
Xi,

X2
i =

[
0 In

]
Xi, Ck =

[
C1
k

C2
k

]
, Dk1 =

[
D1
k1

D2
k1

]
, Dk2 =

[
D1
k2

D2
k2

]
,

and the matrices Ek, Ak, Bk1, Bk2, C1
k , C2

k , D1
k1, D2

k1, D1
k2 and D2

k2 are parameters
of the controller K given by

K :=

 Ak − sEk Bk1 Bk2

C1
k D1

k1 D1
k2

C2
k D2

k1 D2
k2

 , (11)

which internally stabilizes the auxiliary system Σ of the form

Σ :=

 A− sE
[
B2

Xi

Ini

]
[

C2

Ino
Yo

] [
0 0
0 0

]
 . (12)
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Proof. We show that the two generalized Sylvester-type equations (8) and (9) are
necessary for the existence of a solution to Conditions (C1) and (C’2). For the par-
tition (6), by Lemma 5.3 (page 71) of Feng and Yagoubi (2017), there exist matrices
Xi ∈ R(n+no)×ni , Yi ∈ R(n+no)×ni and Υ ∈ Rnk×ni such that

0 = D32

(
DkC̄22 −DkC̄21Yi − CkΥ

)
− C̄31Yi + C̄32,

−XiAi = Ā11Yi + B̄12

(
DkC̄21Yi + CkΥ−DkC̄22

)
− Ā12,

−Xi = ĒYi.

Defining Πi = DkC̄21Yi + CkΥ − DkC̄22, the generalized Sylvester-type equation (8)
holds. (9) can be proven by the same token for the partition (7).

Sufficiency is achieved in such a way: through the two generalized Sylvester-type
equations (8) and (9), together with certain transformation matrices, we show that
the structured controller (10) eliminates the unstabilizable and undetectable dynamics
introduced by the exo-system Wi and output weight Wo in the closed-loop system. The
multiobjective problem is equivalent to a standard problem for an auxiliary system
constructed from the data of the weighted system.

To this end, we first reform the controller (10) as

K :=

 Ai +D2
k1Γi − sIni

C̄k2 D2
k1

B̄kΓi Āk − sĒk B̄k
Ωi C̄k1 D1

k1

 ,
where

Ēk =

[
Ek 0
0 Eo

]
, Āk =

[
Ak Bk2

−ΓoCk Ao − ΓoDk2

]
, B̄k =

[
Bk1,
Ωo

]
,

C̄k1 =
[
C1
k D1

k2

]
, C̄k2 =

[
C2
k D2

k2

]
.

The closed-loop system GCL formed by G and K is thus given as follows

GCL :=

 AC − sEC BC
CC1 DC1

CC3 DC3

 ,
where

AC =


Ā11 + B̄12D

1
k1C̄21 Ā12 + B̄12D

1
k1C̄22 B̄12Ωi B̄12C̄k1

0 Ai 0 0
D2
k1C̄21 D2

k1C̄22 Ai +D2
k1Γi C̄k2

B̄kC̄21 B̄kC̄22 B̄kΓi Āk

 ,

EC =


Ē 0 0 0
0 Ini

0 0
0 0 Ini

0
0 0 0 Ēk

 , BC =


B̄11 + B̄12D

1
k1D21

0
D2
k1D21

B̄kD21

 ,
CC1 =

[
C̄11 +D12D

1
k1C̄21 C̄12 +D12D

1
k1C̄22 D12Ωi D12C̄k1

]
,

CC3 =
[
C̄31 +D32D

1
k1C̄21 C̄32 +D32D

1
k1C̄22 D32Ωi D32C̄k1

]
,

DC1 = D11 +D12D
1
k1D21, DC3 = D31 +D32D

1
k1D21.
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With the solution to (8), we define the following transformation matrices

M1 =


In+no

−Xi 0 0
0 Ini

0 0
0 Ini

Ini
0

0 0 0 Ink

 , N1 =


In+no

−Yi 0 0
0 Ini

0 0
0 −Ini

Ini
0

0 0 0 Ink

 .
Hence, we have

M1ACN1 =


Ā11 + B̄12D

1
k1C̄21 φ1 B̄12Ωi B̄12C̄k1

0 Ai 0 0
D2
k1C̄21 φ2 Ai +D2

k1Γi C̄k2

B̄kC̄21 φ3 B̄kΓi Āk

 ,

M1ECN1 = EC , M1BC =


B̄11 + B̄12D

1
k1D21

0
D2
k1D21

B̄kD21

 ,
CC3N1 =

[
C̄31 +D32D

1
k1C̄21 φ4 D32Ωi D32C̄k1

]
,

CC1N1 =
[
C̄11 +D12D

1
k1C̄21 φ5 D12Ωi D12C̄k1

]
,

where

φ1 = −Ā11Yi + Ā12 −XiAi + B̄12

(
D1
k1C̄22 −D1

k1C̄21Yi − Ωi

)
= 0,

φ2 = D2
k1

(
C̄22 − C̄21Yi − Γi

)
= 0, φ3 = B̄k

(
C̄22 − C̄21Yi − Γi

)
= 0,

φ4 = −C̄31Yi + C̄32 +D32

(
D1
k1C̄22 −D1

k1C̄21Yi − Ωi

)
= 0,

φ5 = −C̄11Yi + C̄12 −D12Πi,

in the light of (8). Therefore, the closed-loop system GCL is restricted system equiva-
lent to ḠCL of the form

ḠCL :=

 ĀC − sĒC B̄C
C̄C1 DC1

C̄C3 DC3

 ,
where

ĀC =


Ā11 + B̄12D

1
k1C̄21 B̄12Ωi B̄12C̄k1 0

D2
k1C̄21 Ai +D2

k1Γi C̄k2 0
B̄kC̄21 B̄kΓi Āk 0

0 0 0 Ai

 ,

ĒC =


Ē 0 0 0
0 Ini

0 0
0 0 Ēk 0
0 0 0 Ini

 , B̄C =


B̄11 + B̄12D

1
k1D21

D2
k1D21

B̄kD21

0

 ,
C̄C1 =

[
C̄11 +D12D

1
k1C̄21 D12Ωi D12C̄k1 φ5

]
,

C̄C3 =
[
C̄31 +D32D

1
k1C̄21 D32Ωi D32C̄k1 0

]
.
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It is observed that this system can be rewritten by Fl(Ḡ, K̄), where

Ḡ :=


Ā11 − sĒ

0
0

B̄12Πi

Ai − sIni

0

0
0

Ai − sIni

B̄11

0
0

B̄12 0
0 Ini

0 0


C̄11 D12Πi φ5 D11

[
D12 0

]
C̄21 Γi 0 D21

[
0 0

]
C̄31 D32Πi 0 D31

[
D32 0

]

 ,

K̄ :=

 Āk − sĒk B̄k
C̄k1 D1

k1
C̄k2 D2

k1

 ,
and the second output of Ḡ is the measurement. Then, using the two transformation
matrices as follows

M2 =

In+no
Xi 0

0 Ini
0

0 0 Ini

 , N2 =

In+no
Yi 0

0 Ini
0

0 0 Ini

 ,
the system Ḡ is restricted system equivalent to Ĝ of the form

Ĝ : =


Ā11 − sĒ

0
0

Ā12

Ai − sIni

0

0
0

Ai − sIni

B̄11

0
0

B̄12 Xi

0 Ini

0 0


C̄11 φ6 φ5 D11

[
D12 0

]
C̄21 C̄22 0 D21

[
0 0

]
C̄31 D̄32 0 D31

[
D32 0

]

 ,

=



Ao − sEo Â12 0 B̂11 B̃12

0 Â22 − sIn+ni
0 B̂21 B̃22

0 0 Ai − sIni
0 0

Co C̃12 φ5 D11 D̃12

0 Ĉ22 0 D21 0

0 Ĉ32 0 D31 D̃32


,

where C̃12 =
[
DoCv φ6

]
, φ6 = C̄11Yi + D12Πi, D̃12 =

[
D12 0

]
, D̃32 =

[
D32 0

]
,

and other data are given in (7) and (10). Then, the closed-loop system ḠCL is further

restricted system equivalent to ĜCL = Fl(Ĝ, K̄) given by

ĜCL :=

 ÂC − sÊC B̂C
ĈC1 D̂C1

ĈC3 D̂C3

 ,
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where

ÂC =


Ao Â12 + B̃12Dk1Ĉ22 B̃12Ck B̃12Dk2 0

0 Â22 + B̃22Dk1Ĉ22 B̃22Ck B̃22Dk2 0

0 Bk1Ĉ22 Ak Bk2 0

0 ΩoĈ22 −ΓoCk Ao − ΓoDk2 0
0 0 0 0 Ai

 ,

ÊC =


Eo 0 0 0 0
0 In+no

0 0 0
0 0 Ek 0 0
0 0 0 Eo 0
0 0 0 0 Ini

 , B̂C =


B̂11 + B̃12Dk1D21

B̂21 + B̃22Dk1D21

Bk1D21

ΩoD21

0

 ,
ĈC1 =

[
Co C̃12 + D̃12Dk1Ĉ22 D̃12Ck D̃12Dk2 φ5

]
,

ĈC3 =
[
0 Ĉ32 + D̃32Dk1Ĉ22 D̃32Ck D̃32Dk2 0

]
,

D̂C1 = D11 + D̃12Dk1D21, D̂C3 = D31 + D̃32Dk1D21.

Similarly, with the solution to (9), we define the following transformation matrices

M3 =


Ino

Xo 0 −Ino
0

0 In+ni
0 0 0

0 0 Ink
0 0

0 0 0 Ino
0

0 0 0 0 Ini

 , N3 =


Ino

−Yo 0 Ino
0

0 In+ni
0 0 0

0 0 Ink
0 0

0 0 0 Ino
0

0 0 0 0 Ini

 .

Hence, there holds

M3ÂCN3 =


Ao ψ1 ψ2 ψ3 0

0 Â22 + B̃22Dk1Ĉ22 B̃22Ck B̃22Dk2 0

0 Bk1Ĉ22 Ak Bk2 0

0 ΩoĈ22 −ΓoCk Ao − ΓoDk2 0
0 0 0 0 Ai

 ,

M3ÊCN3 = ÊC , M3B̂C =


ψ4

B̂21 + B̃22Dk1D21

Bk1D21

ΩoD21

0

 ,
ĈC1N3 =

[
Co C̃12 + D̃12Dk1Ĉ22 − CoYo D̃12Ck D̃12Dk2 − Co φ5

]
,

ĈC3N3 =
[
0 Ĉ32 + D̃32Dk1Ĉ22 D̃32Ck D̃32Dk2 0

]
.
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where

ψ1 = Â12 + B̃12Dk1Ĉ22 −AoYo +Xo

(
Â22 + B̃22Dk1Ĉ22

)
− ΩoĈ22 = 0,

ψ2 =
(
B̃12 +XoB̃22 + Γo

)
Ck = 0,

ψ3 = −Ao +
(
B̃12 +XoB̃22 + Γo

)
Ck +Ao = 0,

ψ4 = B̂11 +XoB̂21 +
(
B̃12Dk1 +XoB̃22Dk1 − Ωo

)
D21 = 0,

in the light of (9). Hence, the closed-loop system can be written as

I 0 0
0 Ek 0
0 0 Eo

 ẋcl =

Â22 + B̃22Dk1Ĉ22 B̃22Ck B̃22Dk2

Bk1Ĉ22 Ak Bk2

ΩoĈ22 −ΓoCk Ao − ΓoDk2

xcl
+

B̂21 + B̃22Dk1D21

Bk1D21

ΩoD21

w,
ẋi = Aixi,

z =
[
C̃12 + D̃12Dk1Ĉ22 − CoYo D̃12Ck D̃12Dk2 + Co

]
xcl + φ5xi + D̂11w,

e =
[
Ĉ32 + D̃32Dk1Ĉ22 D̃32Ck D̃32Dk2

]
xcl + D̂31w.

It is observed that the exo-system Wi neither affects the state xcl and the tracking
error e, nor appears in the the transfer function Tzw. Hence, we can simply consider
the following system instead

I 0 0
0 Ek 0
0 0 Eo

 ẋcl =

Â22 + B̃22Dk1Ĉ22 B̃22Ck B̃22Dk2

Bk1Ĉ22 Ak Bk2

ΩoĈ22 −ΓoCk Ao − ΓoDk2

xcl
+

B̂21 + B̃22Dk1D21

Bk1D21

ΩoD21

w,
z =

[
C̃12 + D̃12Dk1Ĉ22 − CoYo D̃12Ck D̃12Dk2 + Co

]
xcl + D̂11w,

e =
[
Ĉ32 + D̃32Dk1Ĉ22 D̃32Ck D̃32Dk2

]
xcl + D̂31w,

which can be further written by Fl(Ξ̄,K), where K is given in (11) and

Ξ̄ :=



Â22 − sIn+ni
0

ΠoĈ22 Ao − sEo
B̂21 B̃22

ΠoD21 −Γo
C̃12 − CoYo Co D11 D̃12[
Ĉ22 0

0 Ino

] [
D21

0

] [
0
0

]
Ĉ32 0 D31 D̃32


.

Using the two transformation matrices

M4 =

[
In+ni

0
−Xo Ino

]
, N4 =

[
In+ni

0
Yo Ino

]
,
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one can show that Ξ̄ is restricted system equivalent to Ξ given by

Ξ :=



A− sE B1

[
B2

Xi

Ini

]
C1

[
I Yi
0 0

]
+
[
0 D12Πi

]
D11

[
D12 0

][
C2

Ino
Yo

] [
D21

0

] [
0 0
0 0

]
C3 D31

[
D32 0

]


,

where the second output is the measurement. It has been seen that Tzw = Fl(Ξ̄,K) =
Fl(Ξ,K) with the third output being removed. Note that K internally stabilizes the
system Σ in (12), which is indeed the system Ξ22 induced from Ξ. Therefore, Tzw is
stable. Moreover, the tracking error e is a linear combination of the state xcl and the
external disturbance w(t) ∈ L2, hence, there holds lim

t→∞
e(t) = 0.

In order to tackle the asymptotic tracking and nonproper output weighting filter, a
structured measurement feedback controller is conducted and Fig. 2 exhibits explicitly
the impact of the exo-system and output weight on this controller. An extra degree
of freedom is also fully shown for the performance objective control, which will be
discussed in the next section. Hence, Theorem 3.1 characterizes the set of all stabilizing
controllers addressing asymptotic tracking and nonproper weights. The nonstandard
problem is thus equivalent to a conventional control problem for the auxiliary system
Ξ, which is constructed from the weighted system G with the control input matrix
and measurement output matrix being augmented by solutions to the two generalized
Sylvester-type equations.

4. Constrained H∞ control

In this section, relying on the paramererization of all stabilizing controllers given
previously, the H∞ performance control is tackled, and both full-order and reduced-
order H∞ controller synthese are studied in terms of LMI-based conditions. It has
been shown that the structured controller (10) ensures asymptotic tracking and leads
to a stable transfer function Tzw. Hence, the additional performance objective, i.e.
Condition (C2) can be further approached with the benefit of the free controller
K in (11). We assume that the two generalized Sylvester-type equations (8) and (9)
admit solutions. As stated previously, Problem 2.1 is equivalent to an H∞ control
problem with respect to the axillary system Ξ specified as follows

Ξ : =


A− sE B1

[
B2

Xi

Ini

]
C1

[
I Yi
0 0

]
+
[
0 D12Πi

]
D11

[
D12 0

][
C2

Ino
Yo

] [
D21

0

] [
0 0
0 0

]


=

 A− sE B1 B2(Xi)
C1(Yi,Πi) D11 D12

C2(Yo) D21 0

 , (13)
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with the third output being removed, since the tracking issue is guaranteed through
the structured controller. Note that this system has invariant zeros at infinity, which
is why the Riccati-based solution Wang, Yung, and Chang (2006) fails. Hence, we
adopt the LMI-based approach to solve the underlying descriptor H∞ control problem.
Moreover, it is observed that the auxiliary system depends on the generalized Sylvester-
type equations solutions, which are generally not unique. This fact indicates that the
underlying controller design may result in a nonlinear matrix inequality problem, and
proceeding with certain specific solution by directly applying existing methods may
lead to a conservative synthesis. In this section, we fully explore the structure of the
auxiliary system and present a design route independent of the solutions to generalized
Sylvester-type equations.

Before presenting the controller synthesis, we assume without loss of generality that
the matrix E is of the form E = diag

(
In+ni+ro , 0(no−ro)×(no−ro)

)
. Note that if E is not

of this form, then a pair of transformation matrices can easily be obtained due to a
singular value decomposition (SVD) to make E satisfy this condition.

4.1. Full-Order H∞ Controller

Theorem 4.1. Recall the partitions GWi and GWo in (6) and (7). Given γ > 0, there
exists a measurement output controller (11) with rank(Ek) = n+ni + ro such that the
H∞ norm of the closed-loop system formed by Ξ in (13) and K in (11) is bounded by
γ, if and only if there exist matrices Xi ∈ R(n+no)×ni, Yi ∈ R(n+no)×ni, Πi ∈ Rm×ni,
Xo ∈ Rno×(n+ni), Yo ∈ Rno×(n+ni), Πo ∈ Rno×p, X ∈ R(n+ni+no)×(n+ni+no), Y ∈
R(n+ni+no)×(n+ni+no), W ∈ R(n+ni+no)×m, and Z ∈ Rm×(n+ni+no) satisfying (8), (9),
and [

ETX •
E EYT

]
=

[
X TE •
E YET

]
≥ 0, (14)

ETW = 0, EZT = 0, (15)

Lc
(
Ȳ , Z̄

)
< 0, (16)

Lo
(
X̄, W̄

)
< 0, (17)

where

Lc
(
Ȳ , Z̄

)
=

[
Nc 0
0 I

]T He{Ā11Ȳ
T } • •

C̄11Ȳ
T −γI •

Z̄ĀT11 + B̄T
11 DT

11 + Z̄C̄T11 −γI

[Nc 0
0 I

]
,

Lo
(
X̄, W̄

)
=

[
No 0
0 I

]T  He{ÂT22X̄} • •
W̄ T Â22 + B̂T

21X̄ He{B̂T
21W̄} − γI •

C̃12 − CoYo D11 −γI

[No 0
0 I

]
,

Nc =

[
B̄12

D12

]⊥
, No =

[
B̂22 D21

]⊥
, X̄ =

[
0 In+ni

]
X
[

0
In+ni

]
,

Ȳ =
[
In+no

0
]
Y
[
In+no

0

]
, W̄ =

[
0 In+ni

]
W, Z̄ = Z

[
In+no

0

]
,

C̃12 =
[
DoCv C̄11Yi +D12Πi

]
.
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Proof. By Theorem 1 in Masubuchi (2007), the H∞ controller exists if and only if
there exist matrices X , Y,W and Z with appropriate dimensions satisfying (14), (15),
and [

Nc 0
0 I

]T
Θc

[
Nc 0
0 I

]
< 0, (18)[

No 0
0 I

]T
Θo

[
No 0
0 I

]
< 0, (19)

where

Nc =

[
B2(Xi)
D12

]⊥
, Θc =

 He{AYT } • •
C1(Yi,Πi)YT −γI •
BT

1 + ZAT DT
11 + ZC1(Yi,Πi) −γI

 ,
No =

[
C2(Yo) D21

]⊥
, Θo =

 He{ATX} • •
BT

1 X +WTA He{BT
1W}− γI •

C1(Yi,Πi) D11 −γI

 .
Note that Θc contains a multiplication between the decision variable Y and the aux-
iliary system data C1(Yi,Πi) depending on both Yi and Πi. Hence, this condition is
obviously not an LMI. Same observations hold for Nc and No. In order to obtain linear
conditions, let us set

Mi =

[
In+no

Xi

0 Ini

]
, Ni =

[
In+no

Yi
0 Ini

]
.

Note that

[
B2(Xi)
D12

]
=

[
Mi 0
0 Ipo

]B̄12 0
0 Ini

D12 0

 ,
which implies

Nc =

[
M−Ti 0

0 Ipo

]B̄12 0
0 Ini

D12 0

⊥ =

[
M−Ti 0

0 Ipo

]Nc1

0
Nc2

 ,
where

[
Nc1

Nc2

]
=

[
B̄12

D12

]⊥
. Then, the condition (18) is equivalent to


Nc1 0
0 0
Nc2 0
0 I


T [
M−1
i 0
0 Ipo

]
Θc

[
M−Ti 0

0 Ipo

]
Nc1 0
0 0
Nc2 0
0 I

 < 0.
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Set Y = M−1
i YNT

i and Z = ZNT
i . Denote the partitions as follows

Y =

[
Ȳ Y12

Y21 Y22

]
, Z =

[
Z̄ Z2

]
.

Then, the condition (18) can be further rewritten by
Nc1 0
0 0
Nc2 0
0 I


T 

He{Ā11Ȳ + B̄12ΠiY
T

12} • • •
∗ ∗ • •

D12ΠiY
T

12 + C̄11Ȳ
T ∗ −γI •

Z̄ĀT11 + Z2ΠT B̄T
12 + B̄T

11 ∗ DT
11 + Z̄C̄T11 + Z2ΠT

i D
T
12 −γI



Nc1 0
0 0
Nc2 0
0 I


=

Nc1 0
Nc2 0
0 I

T He{Ā11Ȳ + B̄12ΠiY
T

12} • •
D12ΠiY

T
12 + C̄11Ȳ

T −γI •
Z̄ĀT11 + Z2ΠT B̄T

12 − B̄T
11 DT

11 + Z̄C̄T11 + Z2ΠT
i D

T
12 −γI

Nc1 0
Nc2 0
0 I


=Lc

(
Ȳ , Z̄

)
+

Nc1 0
Nc2 0
0 I

T He{B̄12ΠiY
T

12} • •
D12ΠiY

T
12 0 •

Z2ΠT B̄T
12 Z2ΠT

i D
T
12 0

Nc1 0
Nc2 0
0 I

 < 0,

where ‘∗’ stands for the elements irrelevant to the discussion. Since NT
c1B̄12+NT

c2D12 =
0, the second term of the last inequality is zero. Hence, the condition (16) holds.
Similarly, let us set

Mo =

[
Ino

−Xo

0 In+ni

]
, No =

[
Ino

Yo
0 In+ni

]
.

Note that

[
C2(Yo) D21

]
=

[
0 Ĉ22 D21

Ino
0 0

] [
No 0
0 Ip

]
,

which implies

No =

[
N−1
o 0
0 Ip

] 0 Ino

ĈT22 0
DT

21 0

⊥ =

[
N−1
o 0
0 Ip

] 0
No1

No2

 ,
where

[
No1

No2

]
=

[
ĈT22

DT
21

]⊥
. Then, the condition (19) is equivalent to


0 0
No1 0
No2 0

0 I


T [
N−To 0

0 Ip

]
Θo

[
N−1
o 0
0 Ip

]
0 0
No1 0
No2 0

0 I

 < 0.

Set X = MT
o XN−1

o and W = MT
o W. Denote the partitions as follows

X =

[
X11 X12

X21 X̄

]
, W =

[
W1

W̄

]
.
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Then, the condition (19) can be further rewritten by
0 0
No1 0
No2 0

0 I


T 
∗ • • •
∗ He{Â22X̄ +XT

12ΠoĈ22} • •
∗ B̂T

21X̄ +DT
21ΠT

oX12 +W T
1 ΠoĈ22 He{W T

1 ΠoD21 + B̂21W̄} − γI •
∗ C̃12 − CoYo D11 −γI




0 0
No1 0
No2 0

0 I


No1 0
No2 0

0 I

T  He{Â22X̄ +XT
12ΠoĈ22} • •

B̂T
21X̄ +DT

21ΠT
oX12 +W T

1 ΠoĈ22 He{W T
1 ΠoD21 + B̂21W̄} − γI •

C̃12 − CoYo D11 −γI

No1 0
No2 0

0 I


=Lo

(
X̄, W̄

)
+

No1 0
No2 0

0 I

T  He{XT
12ΠoĈ22} • •

DT
21ΠT

oX12 +W T
1 ΠoĈ22 He{W T

1 ΠoD21} •
0 0 0

No1 0
No2 0

0 I

 < 0.

Since NT
o1Ĉ22 +NT

o2D
T
21 = 0, the second term is zero. Hence, the condition (17) holds.

The LMI (14) implies that solutions X and Y are in the form of

X =

[
Xp11 0
Xp21 Xp22

]
, Y =

[
Yp11 Yp12

0 Yp22

]
.

Furthermore, we define the following two matrices

X11 =

[
Xp11 Xpc11

Xcp11 Xc11

]
, X−1

11 = Y11 =

[
Yp11 Ypc11

Ycp11 Yc11

]
.

By the standard way for state-space H∞ control Gahinet and Apkarian (1994), we
have Xpc11X−1

c11Xcp11 = Xp11 − Y−1
p11. Then, we can obtain the closed-loop Lyapunov

matrix as

XCL =


Xp11 0 Xpc11 0
Xp21 Xp22 0 Ino−ro
Xcp11 0 Xc11 0
Xcp21 Xcp22 Xc21 −YTp22

 , (20)

where Xcp21 = −
(
YTp22Xp21 + Yp12∆−T

)
, Xcp22 = I − YTp22Xp22, Xc21 =

YTp12∆−TYTcp11Y−Tc11 , ∆ = Yp11 − Ypc11Y−1
c11Ycp11.

Once the closed-loop Lyapunov matrix is done, we form the following matrices

A0 =

[
A 0
0 0

]
, B01 =

[
B1

0

]
, B02 =

[
0 B2(Xi)
I 0

]
, C01 =

[
C1(Yi,Πi) 0

]
,

C02 =

[
0 I

C2(Yo) 0

]
, D012 =

[
0 D12

]
, D021 =

[
0
D21

]
.

Then, the resulting H∞ controller K can be obtained through solving the following
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LMI AT0 XCL • •
BT

0 XCL −γI •
C01 D11 −γI

+ He

PT
 Ak Bk1 Bk2

C1
k D1

k1 D1
k2

C2
k D2

k1 D2
k2

Q
 < 0, (21)

where P =
[
BT

02XCL 0 DT
012

]
and Q =

[
C02 D021 0

]
. Moreover, Ek is set by

Ek = E = diag
(
In+ni+ro , 0(no−ro)×(no−ro)

)
.

Now, we are in a position to give a complete procedure to form a full-order controller
solving Problem 2.1.

Algorithm 4.2 (Full-order Solution).

(1) Simultaneously solve the generalized Sylvester-type equations (8) and (9),
and LMI conditions (14)-(17). Get solutions (Xi, Yi,Πi, Xo, Yo,Πo) and
(X ,Y,W,Z).

(2) Based on X and Y, form the Lyapunov matrix XCL (20), and obtain the H∞
controller K (11) by solving (21).

(3) Construct the controller K by (10) with (Xi, Yi,Πi, Xo, Yo,Πo) and K.

4.2. Reduced-Order H∞ Controller

It is worthy of noting that the auxiliary system Ξ given in (13) contains n + ni + ro
finite dynamic modes and no − ro infinite modes. In the parts to follow, for the sake
of simplicity, let us abuse a bit the use of notation by calling the sum of finite and
infinite modes as the order of system. Since the H∞ controller obtained previously has
the same order of the the auxiliary system Ξ, the overall controller K given in (10) has
the order n+ 2ni + 2no, which exceeds the order of the original generalized system G,
and is obviously not desirable, especially for the case where higher order exo-systems
or output weighting filters are involved. In order to conduct a solution that is easy to
implement, we explore the issue of reduced-order controller synthesis in this subsection.

Consider the two systems, denoted respectively as Ξ12 and Ξ21, induced from the
auxiliary system Ξ as below

Ξ12 =

[
A− sE B2(Xi)
C1(Yi,Πi)

[
D12 0

] ] , Ξ21 =

 A− sE B1

C2(Yo)

[
D21

0

]  .
It is observed that both of them contain zeros at infinity, since the D-matrix of Ξ12 is
not full row rank, and the D-matrix of Ξ21 is not full column rank. According to Xin,
Hara, and Kaneda (2008), there exists a reduced-order H∞ controller, with which the
overall controller in (10) has an order less than n + ni + no. The following theorem
states a way to reduced-order controller synthesis.

Theorem 4.3. Given γ > 0, there exists a measurement output feedback controller
with an order less than n, such that the H∞ norm of the closed-loop system formed
by Ξ and the controller is bounded by γ, if there exist matrices Xi ∈ R(n+no)×ni,
Yi ∈ R(n+no)×ni, Πi ∈ Rm×ni, Xo ∈ Rno×(n+ni), Yo ∈ Rno×(n+ni), Πo ∈ Rno×p,
X ∈ R(n+ni+no)×(n+ni+no), Y ∈ R(n+ni+no)×(n+ni+no), W ∈ R(n+ni+no)×m, Z ∈
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Rm×(n+ni+no), and two positive scalars ε1, ε2 satisfying (8), (9), and[
ETX •
E EYT

]
=

[
X TE •
E YET

]
≥ 0, (22)

ETW = 0, EZT = 0, (23)

Lc
(
Ȳ , Z̄

)
+ ε1I < 0, (24)

Lc
(
X̄, W̄

)
+ ε2I < 0, (25)

where

Lc
(
Ȳ , Z̄

)
=

[
Nc 0
0 I

]T He{Ā11Ȳ
T } • •

C̄11Ȳ
T −γI •

Z̄ĀT11 + B̄T
11 DT

11 + Z̄C̄T11 −γI

[Nc 0
0 I

]
,

Lo
(
X̄, W̄

)
=

[
No 0
0 I

]T  He{ÂT22X̄} • •
W̄ T Â22 + B̂T

21X̄ He{B̂T
21W̄} − γI •

C̃12 − CoYo D11 −γI

[No 0
0 I

]
,

Nc =

[
B̄12

D12

]⊥
, No =

[
B̂22 D21

]⊥
, X̄ =

[
0 In+ni

]
X
[

0
In+ni

]
,

Ȳ =
[
In+no

0
]
Y
[
In+no

0

]
, W̄ =

[
0 In+ni

]
W, Z̄ = Z

[
In+no

0

]
,

C̃12 =
[
DoCv C̄11Yi +D12Πi

]
.

Proof. Since the D-matrices of systems Ξ12 and Ξ21 are not full row rank and not
full column rank, respectively, a reduced-order H∞ controller exists. Then, the proof
is achieved by applying the results of Xin et al. (2008) to Theorem 4.1.

To construct the reduced-order control, let (Xm,Ym,Wm,Zm) be solutions to
min

X ,Y,W,Z
Tr
(
ETX + EYT

)
, subject to the conditions (8), (9), and (22)-(25). Then, there

holds

Xm =

[
Xm11 0
Xp21 Xp22

]
, Ym =

[
Ym11 Yp12

0 Yp22

]
.

Let an SVD of Ym11 −X−1
m11 be

Ym11 −X−1
m11 = UDiag (λ1, λ2, · · · , λµ)V,

where U , V are unitary matrices, and λi, i = 1, 2, · · · , µ are singular values of
Ym11−X−1

m11 listed in a descending manner. Assume that there exist ν singular values
negligible with respect to others. Then, we set

Ŷm11 = X−1
m11 + UDiag (λ1, · · · , λµ−ν , 0 · · · , 0)V.

Similarly, we define matrices X11 and Y11 as

X11 =

[
Xm11 Xpc11

Xcp11 Xc11

]
, X−1

11 = Y11 =

[
Ŷm11 Ypc11

Ycp11 Yc11

]
.
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Figure 3. Example

with Xpc11X−1
c11Xcp11 = Xm11 − Ŷ−1

m11. Then, the underlying closed-loop Lyapunov ma-
trix is constructed by (20). The reduced-order H∞ controller K can be also obtained
by solving the LMI condition (21). The following algorithm gives a way to form a
reduced-order controller for solving Problem 2.1.

Algorithm 4.4 (Reduced-order Solution).

(1) Simultaneously solve the generalized Sylvester-type equations (8) and (9),
and LMI conditions (14)-(17). Get solutions (Xi, Yi,Πi, Xo, Yo,Πo) and
(X ,Y,W,Z).

(2) Choose ε1 and ε2 such that 0 < ε1 < λmin

(
−Lc

(
Ȳ , Z̄

))
and 0 < ε2 <

λmin

(
−Lo

(
X̄, W̄

))
.

(3) Solve min
X ,Y,W,Z

Tr
(
ETX + EYT

)
, subject to the conditions (22)-(25). Get solu-

tions (Xm,Ym,Wm,Zm).
(4) Based on Xm and Ym, form the Lyapunov matrix XCL (20), and obtain a reduced-

order H∞ controller K by solving (21).
(5) Obtain the controller K by (10) with (Xi, Yi,Πi, Xo, Yo,Πo) and K.

5. Simulation illustration

In this section, we use an unstable first order system to demonstrate the effectiveness
of previous results. Consider the system depicted in Fig. 3. Here, we attempt to make
the state x(t) follow a unit step r(t) = 1, t ≥ 0. Hence, the tracking error is defined as
e(t) = x(t)− r(t). Meanwhile, it is assume that y(t) = e(t), that is an error feedback
controller is appealed. Moreover, we penalize the control law u(t) with a nonproper
weight specified by αs+ β, where α = 0.5 and β = 1. Therefore, the system data are
as follows

Ag = 1, Bw = Bu = 1, Br = 0, Cg = 1, Dr = −1, Dw = 0, Cv = 0,

Dvr = Dvw = 0, Dvu = 1, Ce = 1, Der = −1, Deu = Dew = 0, Ai = 0,

Ci = 1, Eo =

[
1 0
0 0

]
, Ao =

[
0 1
1 0

]
, Bo =

[
0
−1

]
, Co =

[
0 0.5

]
, Do = 1.

First we design a full-order H∞ controller with γ = 1.5. Simultaneously solving
generalized Sylvester-type equations (8), (9) and the LMIs (14)-(17) yields
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Xi =

−1
0
1

 , Yi =

 1
0
−1

 , Πi = 1, Xo =

[
0 0
0 0

]
, Yo =

[
0 0
−1 1

]
Πo =

[
1
0

]
,

X =


4.6340 −6.0760 0.4202 0
−6.0760 14.6977 −0.4036 0
0.4202 −0.4036 6.1263 0
0.4016 −0.4023 0.4201 0

 , WT =
[
0 0 0 0

]
,

Y =


4.0267 4.2060 −0.3858 2.4954
4.2060 6.6941 2.1276 0
−0.3858 2.1276 6.0479 −2.8476

0 0 0 −6.5825

 , Z =
[
0 0 0 −0.8696

]
.

Then, by Algorithm 4.2, the following controller, denoted as K1, is obtained

K1 =
1.9556(s− 135.1)(s+ 27.64)(s+ 2.502)(s+ 0.1712)

s(s+ 47.04)(s+ 15.19)(s+ 5.563)(s+ 2.437)
.

Second, we use Algorithm 4.4 to construct a reduced-order H∞ controller with the
same level of disturbance attenuation. With ε1 = ε2 = 0.0008, we obtain

Xm =


2.2907 −2.4659 0.7677 0
−2.4659 4.2337 −0.9921 0
0.7677 −0.9921 1.1222 0
0.7316 −0.8123 0.9301 0

 , WT =
[
0 0 0 0

]
,

Ym =


1.3078 0.9072 −0.0319 1.9593
0.9072 1.4542 0.8591 −0.1130
−0.0319 0.8591 1.8491 −3.8675

0 0 0 −3.3741

 , Z =
[
0 0 0 −0.8810

]
.

Hence, there holds

Ym11 −X−1
m11 = Udiag(1.5564, 8.9535× 10−9, 3.4332× 10−9)V,

which indicates that the last two singular values are negligible. Hence

Ŷm11 =X−1
m11 + Udiag(1.5564, 0, 0)V =

 1.3078 0.9071 −0.0319
0.9072 1.4542 0.8591
−0.0319 0.8591 1.8491

 .
Therefore, the reduced-order H∞ controller denoted as K2 is given as follows

K2 =
−6.1685(s+ 0.8958)(s+ 0.226)

s(s+ 1.001)(s+ 3.005)

Finally, based on the same solutions to the generalized Sylvester-type equations, a
stabilizing controller denoted as K3 is also designed by making (11) merely stabilize
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Figure 4. Asymptotic tracking with different controllers

the auxiliary system (13), and is given by

K3 =
9.3669(s− 3332)(s+ 1.726)(s+ 0.4105)(s+ 0.1903)

s(s+ 370.7)(s+ 66.19)(s+ 1.256)(s+ 0.4684)
.

Fig. 4 exhibits the tracking performance obtained by using these three controllers.
The purple curve (x1), the red curve (x2), and the blue curve (x3) present the state
trajectories by using the full-order H∞ controller, reduced-order H∞ controller, and
stabilizing controller, respectively. Note that all controllers contain an integrator for
achieving asymptotic tracking. This specific structure is also explicitly shown in (10).
Moreover, when t = 25s, a disturbance signal w(t) = 0.3te−2t is further added. The
curve obtained with the stabilizing controller K3 is affected much more significantly
compared with the two H∞ controllers. From this example, it is observed that the full-
order H∞ controller leads no surprise to the best transient performance, the stabilizing
controller gives relatively bad transient performance, and a tradeoff between transient
performance and design complexity is reached by the reduced-order H∞ controller.

Note that the semidefinite programming solver SeDuMi Sturm (1999) in MATLABr

is used to construct controllers, and the running times are 0.718s, 0.863s, and 0.689s for
the full-order H∞ controller, reduced-order H∞ controller, and stabilizing controller,
respectively.

6. Conclusion

A multiobjective control problem is addressed in this paper, where the worst-case en-
ergy gain from a finite energy disturbance to a certain performance output weighted
by a nonproper filter is assumed to be bounded, together with an exact asymptotic
tracking requirement. A structured controller, simultaneously achieving asymptotic
tracking and stabilization under nonproper weights, is conducted by solving two gen-
eralized Sylvester-type equations. Using this parameterization, the defined multiobjec-
tive problem is transformed into a standard robust disturbance attenuation problem
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for an auxiliary system, and non conservative LMI-based solutions, for both full-order
and reduced-order controllers synthesis problems, are given. One of our future research
topics is to expand the current results to the case in which both the plant and the
weights contain parametric dependence uncertainties.
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Appendix A. Ddescriptor systems

In this appendix, we recall some fundamental notations for continuous-time descriptor
systems. Consider the following LTI descriptor system{

Eẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t) +Du(t),

(A1)
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where x ∈ Rn, y ∈ Rp and u ∈ Rm are the descriptor variable, measurement and control
input vector, respectively. The matrix E ∈ Rn×n may be singular, i.e. rank(E) = r ≤
n; and A, B, C and D are known real constant matrices with appropriate dimensions.
The finite eigenvalues of sE − A are called the finite dynamic modes. The infinite
eigenvalues of sE − A with the eigenvector v satisfying Ev = 0 determine the static
modes; while the infinite eigenvalues with the generalized eigenvectors vk such that
Ev1 = 0 and Evk = Avk−1(k ≥ 2) are the impulsive modes.

Definition A.1. Dai (1989) The descriptor system (A1) is said to be

a) regular if det(sE −A) is not identically null;
b) impulse-free if deg(det(sE −A)) = rank(E);
c) stable if all the roots of det(sE −A) = 0 have negative real parts;
d) admissible if it is regular, impulse-free and stable;
e) finite dynamics stabilizable (respectively finite dynamics detectable) if there exists

F such that (E,A+BF ) is regular and stable (respectively if there exists L such
that (E,A+ LC) is regular and stable);

f) impulse controllable (respectively impulse observable) if there exists F such that
(E,A+BF ) is regular and impulse-free (respectively if there exists L such that
(E,A+ LC) is regular and impulse-free).

If the descriptor system is regular, then its transfer function can be defined as

T (s) = C(sE −A)−1B +D.

Definition A.2 (Restricted System Equivalence). Rosenbrock (1974) Consider the
descriptor system (A1) and T̄ given by

T̄ :

{
Ē ˙̄x(t) = Āx̄(t) + B̄ū(t),
ȳ(t) = C̄x̄(t) + D̄ū(t).

The two systems are termed restricted system equivalent, if there exist nonsingular
matrices M and N such that[

M 0
0 I

] [
A− sE B
C D

] [
N 0
0 I

]
=

[
Ā− sĒ B̄
C̄ D̄

]
.
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