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1 Introduction

Portfolio optimization is an important area of finance, and the most significant
advance in this field during the last century is due to the Nobel price laureate
Harry Markowitz. In his seminal work [34], which outlines the basics of mod-
ern portfolio theory (MPT), Markowitz has modeled the portfolio selection
problem as a problem of mean-variance optimization with two criteria: maxi-
mize return (estimated by the mean), and minimize portfolio risk (measured
by variance). These criteria must be optimized simultaneously, that is why in
this work we use a bi-objective model.

Markowitz’ mean-variance theory (MV) provides a classic solution to the
portfolio selection problem. The risk of a portfolio can be reduced by combining
assets with imperfectly correlated returns [21]. After the work of Markowitz [34],
several studies tried to improve and extend the standard MV model in three
directions: simplification of the type and the quantity of input data [6,18],
implementation of other risk measures [2,41] and integration of real-world
constraints. Our work deals with this latter direction and will be detailed in
the next paragraph.

However, to have a portfolio in real-world conditions, we must consider
many constraints, such as segmentation [15], cardinality [11,19,27,32,38,42,
46], quantity [32,33,35], pre-assignment [22,32], round lot [31], logical and
budget [45], etc. In this work, we consider the cardinality and the quantity
constraints.

The original Markowitz problem is NP-hard [7,37,44]. It becomes even
more difficult by adding cardinality constraints since it can be formulated as
a mixed integer quadratic optimization problem which can be solved by exact
methods only for small instances. That is why most of the suggested solution
methodologies in the literature that tackle discrete features in portfolio selec-
tion use approximative algorithms, like for example: Genetic algorithms [3,
11,46], Ant Colony [26] and Particle Swarm [13]. A comprehensive review of
heuristic methods for solving portfolio selection problems can be found in [1,
13,29,47].

Several methods are based on scalarization of the multiobjective opti-
mization problem. These methods consist in transforming the initial problem
with several objective functions into a singleobjective optimization problem,
which requires adding parameters and constraints. The well-known scalariza-
tion methods are the weighted sum method [23], the ε-constraint method [36],
the Pascoletti-Serafini method [40], etc. In this work, we propose a new scalar-
ization technique for a portfolio optimization problem in its bi-objective form,
which consists of supporting only the linear function (return) in the optimiza-
tion process and adding a constraint to support the other function. Unlike the
ε-constraint method, in this technique, we do not find the second function in
the constraints explicitly, but we use its direction of improvement.

In the literature, only a few number of exact methods is dealing with
the problem considered in this paper. Borchers and Mitchel [8] propose an
improved branch-and-bound algorithm for solving a mixed integer 0-1 pro-
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gramming problem with convex objective functions and constraints. Bienstock
presents a computational experience with a branch-and-cut algorithm to solve
a quadratic programming problem [7], in [28], Lee and Mitchell introduce an
interior-point algorithm within a parallel branch-and-bound framework for
solving mixed integer nonlinear programs. A convergent Lagrangian and a
contour-domain cut method are proposed by Li et al. [30] for solving con-
strained portfolio selection problems by exploiting some prominent features of
the mean-variance formulation and the portfolio model under consideration.
Frangioni and Gentile proposed an improved branch-and-cut method based on
the perspective cut technique [20].

In [44], Shaw et al. developed a Lagrangian relaxation method dedicated to
solve cardinality-constrained quadratic programming problems. In [48], Vielma
et al. propose a branch-and-bound procedure based on a lifted polyhedral re-
laxation of conic quadratic constraints. In [5], Bertsimas and Shioda intro-
duced a branch-and-bound procedure in which the continuous relaxation of
subproblems is solved using Lemke’s pivoting technique. In [24], Gulpinar et
al. proposed an exact solution method based on the difference of convex func-
tions to solve cardinality constrained portfolio optimization problems.

To our knowledge, all existing exact methods are gourmand in memory
space, and they are not useful for solving large-scale problem instances. Ac-
cording to [16], no efficient algorithmic solution to this issue has been proposed.
In this work, we propose an iterative method, which can find the frontier of
efficient solutions for large-scale constrained portfolio problems in a reasonable
time.

After this introduction, we present the model considered in this work. In
Section 3, we give some definitions and a theoretical basis for the proposed
method. In Section 4, we present the method and in Section 5, its validation
by theoretical and numerical results. Section 6 contains our conclusions and
proposes future work.

2 Model formulation

This paper is focused on a model that more accurately reflects the real setting,
and which is, of course, harder to solve than the standard Markowitz model. We
include the cardinality restriction, which limits a portfolio to hold a designated
number of assets:

min xTσx minimize risk
max rTx maximize return

s.t. eTx = 1 budget constraint
0 ≤ xi ≤ 1 ∀i ∈ {1, .., n},

yi =

{
1 if xi > 0
0 if xi = 0

∀i ∈ {1, .., n},

eT y = K cardinality contraint,

(1)

where
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xi is the decision variable representing the proportion held of asset i,
n is the number of available assets,
σ called “risk of portfolio”, is a symmetric n× n-matrix, each component σij

representing the covariance between assets i and j,
r , called expected “return of portfolio”, is an n-vector, each component ri of

which represents the expected return of asset i,
e is an n-vector of 1’s.
K is the number of selected assets in a portfolio.

Let a and b be two n-vectors of, respectively, floor and ceiling limits to
invest in each asset i, if it is selected. Then we can formulate our problem as
follows: 

min xTσx
max rTx

s.t. eTx = 1
aiyi ≤ xi ≤ biyi ∀i ∈ {1, .., n}, quantity constraint
eT y = K
yi ∈ {0, 1} ∀i ∈ {1, .., n},

(2)

where 0 < ai < bi < 1,∀i ∈ {1, .., n}.
Problem (2) is called the cardinality and quantity constrained portfolio op-

timization problem, which is a bi-objective mixed integer quadratic program-
ming problem, shown in [7] to be NP-hard.

3 Preliminaries

3.1 Multiobjective optimization

Multiobjective optimization is the search for compromise solutions to simulta-
neously optimize more than one objective function. It is clear that this problem
is mathematically harder to solve than singleobjective optimization problems,
but it is important to express the real problems as faithful as possible. In this
work, we consider the multiobjective portfolio selection model. Before we start
to present our method, we give some definitions and notations.

Let us consider the following multiobjective optimization problem:{
” max ” F (x) = (f1(x), f2(x), .., fm(x))
s.t. x ∈ X (3)

where:

X ⊂ Rn is the set of feasible points, such that X 6= ∅,
fj : X 7−→ R, j = 1,m, are m objective functions.

For any two vectors u and v ∈ Rm we say that:

u dominates v, denoted as “u � v”, if and only if uj ≥ vj ,∀j ∈ {1, 2, ..,m}
such that ∃j0 ∈ {1, 2, ..,m}, uj0 > vj0 ,
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u strictly dominates v, denoted as “u � v”, if and only if uj > vj ,∀j ∈
{1, 2, ..,m}.

The concept of efficiency is very important in multiobjective optimization.
The most preferred solution with respect to different objectives is said “Pareto
optimal” or “efficient”. A vector x ∈ X is efficient, if there exists no vector
y ∈ X, such that F (y) � F (x). A vector x ∈ X is weakly efficient, if there
exists no vector y ∈ X, such that F (y) � F (x).

Practitioners do not prefer weakly efficient solutions, because the image
of such solutions in the criteria space may be dominated by other feasible
solutions, which is not desirable in the real world.

3.2 Epsilon-Constraint Methods

One of the well-known methods for solving multiobjective optimization prob-
lems is the ε-constraint method, which was introduced by Haimes [25] and
extended by Chankong [12]. The principle of this approach is to optimize only
one objective function; the other objective functions will be considered as new
constraints.

Let us consider Problem (3). Then the corresponding ε-constraint problem
is the following: max fi(x)

s.t. x ∈ X Original constraints
fj(x) ≥ εj , ∀j = 1,m & j 6= i

(4)

where

εj represent lower limits that are often designated by the decision maker
and which represent thresholds from which he accepts the solution.

By parametrical variation of the right-hand side (RHS) ε in Problem (4)
corresponding to the new constraints, we obtain the front of efficient solutions.

Theorem 1 The solution of the ε-constraint problem (4) is weakly efficient [36].

Theorem 2 A point x∗ is efficient if it is the unique solution of the ε-constraint
problem (4) for some i ∈ 1, .., k with εj = fj(x

∗) for j = 1, .., k, j 6= i [36].

4 An iterative method to generate non-dominated solutions

4.1 General description of the proposed algorithm

The method presented in this work can be seen as a variant of the ε-constraint
method. Indeed, throughout the resolution process, we consider exclusively
the linear function (Problem 5) and we add a constraint that serves as an
upper bound to the second function (Elastic constraint). As this bound evolves
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according to the solution found in step t, this allows us to minimize the risk
according to the same principle as the ε-constraint method.

At each iteration, we solve the mixed integer linear programming problem
MILPt, presented as follows:

(MILPt) :



max rTx

s.t. eTx = 1
aiyi ≤ xi ≤ biyi, ∀i ∈ {1, .., n}
eT y = K
yi ∈ {0, 1} ∀i ∈ {1, .., n}
x ≤ εt−1 Elastic constraint

(5)

where:

εt represents the upper bound of the selected assets (how to determine this
upper bound (elastic constraint) will be explained in the following section).

The optimization process stops as soon as a solution step xt satisfies one
of the following conditions:

1. ‖σ.xt‖2 ≤ ξ.
2. ‖xt+1 − xt‖2 ≤ ξ.

where ξ is a tolerance chosen close to 0; in our case, we put ξ = 10−3.

4.2 Construction of an efficiency cut

At each iteration, we solve the problem to maximize the expected return, under
the constraints described in Section 2. The second objective function intervenes
in the form of an elastic constraint that follows the direction of improvement
of the risk. It is calculated by applying the steepest descent method.

Our goal is to form a constraint to achieve the following inequality:

f(xt+1) ≤ f(xt). (6)

Let us consider the quadratic programming problem:

min
x∈Rn

f(x) = xTσx (7)

where

σ is a positive and symmetric n× n-matrix.

Now, let xt+1 = xt + αtdt.

The direction d: We use the direction of the steepest descent method dt =
−∇f(x) 6= 0, which is a descent direction because:

(∇f(x))T (−∇f(x)) = −‖∇f(x)‖2 < 0.

In our case, we find
dt = −2σxt (8)
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The steplength α∗: We use the exact line search method to calculate the de-
scent step as follows:

α∗t = arg min
α≥0

f(xt + αtdt),

with

f(xt + αtdt) = (xt + αtd)Tσ(xt + αtdt),

= xTt σxt + xTt σαtdt + αtd
T
t σxt + α2

td
T
t σdt,

= xTt σxt + 2xTt σdtαt + dTt σdtα
2
t ,

∂f(xt + αtdt)

∂αt
= 2xTt σdt + 2dTt σdtαt,

= 0,

and so we find

α∗t =
xTt σdt
dTt σdt

.

The elastic constraint (xt+1 ≤ εt): can then be adjusted as follows:

xt+1 ≤ xt +
xTt σdt
dTt σdt

dt (9)

where dt is defined in Equation (8).

Despite the fact that the steepest descent method is known for the zigzag
behavior of its iterates which makes its convergence slow [14], its use is carried
out to find a direction to improve the second objective and a step-size to go
in the direction of this improvement.

4.3 The proposed algorithm

The main steps of our proposed method are presented in Algorithm 1.
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Algorithm 1: Algorithm for bi-objective constrained portfolio selection
problems.

Data: A Constrained Portfolio Selection Problem (CPSP)
Result: ES: the set of weakly efficient solutions of (CPSP)
Step 0: Initialization;

t = 0; // the first iteration;
ES = ∅;
εt = (1, 1, ..., 1)T ∈ Rn; // the upper bound of xt;
ξ = 10−3; // the tolerance;

Step 1: General step;
Solve MILPt defined by (11) using a Branch-and-Bound method;
if MILPt doesn’t admit any solution then

Stop;
else

Let (x, y)t be the solution of MILPt;
ES = ES ∪ {xt};
Go to step 2;

end
Step 2: Efficiency cut construction;

dt = −2σxt;

α∗t =
xT
t σdt
dTt σdt

;

εt+1 = xt + αtdt;
Step 3: Checking the stop conditions;

if ‖σxt‖2 ≤ ξ or ‖xt+1 − xt‖2 ≤ ξ then
Stop;

else
Set t = t+ 1;
Go to Step 1;

end

Observation 1 In the case where K = n, i.e., all assets must be selected, the
problem becomes a classical Markowitz problem with one budget constraint and
more restricted bounds on the variables, i.e., a ≤ x ≤ b instead of 0 ≤ x ≤ 1,
with 0 < a < b < 1. The problem is then transformed into a bi-objective
quadratic programming problem. For this purpose, we use the simplex method
to solve MILPt in Step 1.

Example 1 In Figure 1, we illustrate the behavior of the proposed method, by
showing the most important steps: General step (Step 1 in Algorithm 1) and
Efficiency cut construction (Step 2 in Algorithm 1). The points in Figure 1
represent the different images of the proposed portfolios. In Step 1 (Figure 1-
(a), 1-(c), 1-(e),..., 1-(k)), we find the best portfolios having maximum return,
after this, we add an efficiency cut to improve the risk of the next solution,
which is Step 2 (Figure 1-(b), 1-(d), 1-(f),..., 1-(l)).
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In Figure 1-(l), the results of applying our algorithm represent the front of the
efficient solutions that will be selected, which is also called the Pareto front.

(a)- Iteration 1 (b)- Iteration 1 (c)- Iteration 2

(d)- Iteration 2 (e)- Iteration 3 (f)- Iteration 3

(g)- Iteration 4 (h)- Iteration 4 (i)- Iteration 5

(j)- Iteration 5... (k)- Iteration 15 (l)- Iteration 15

Fig. 1 An example of executing the proposed algorithm.
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5 Algorithm validation and computational results

In this section, we present the theoretical validation of our method and give
some results using real data from seven markets. At the end of this section,
we present a comparison of our method with two exact methods and a meta-
heuristic.

5.1 Theoretical validation

Theorem 3 All solutions generated by this method are weakly efficient.

Proof Consider the following bi-objective mixed integer quadratic optimiza-
tion problem: max f1(x) = rTx

min f2(x) = xTσx
s.t. x ∈ Dt

(10)

where

Dt = {(x, y) ∈ Rn×{0, 1}n|eTx = 1, eT y = K, aiyi ≤ xi ≤ biyi,∀i = 1, n, xt ≤ εt−1}.

Let D = D0 be the initial set of feasible solutions of Problem (10). Then
suppose that a particular solution x∗t is not weakly efficient, i.e., there exists
another feasible point z ∈ D that is “better” than x∗t ,
i.e. , f1(z) > f1(x∗t ) and f2(z) < f2(x∗t ).

a. if f1(z) > f1(x∗t ) and z ∈ Dt:
As x∗t is an optimal solution of Problem (5) at iteration t, then:

f1(x∗t ) = max
x∈Dt

f1(x)

=⇒ f1(x∗t ) ≥ f1(x),∀x ∈ Dt

and especially f1(x∗t ) ≥ f1(z) because z ∈ Dt . Therefore, f1(z) 6> f1(x∗t ).
b. if f1(z) > f1(x∗t ) and z /∈ Dt:

Then z ∈ D\Dt, which means that the solution z is in a region removed
by a cutting step added at iteration j, with j ∈ {1, .., t− 1}, which means
that f2(z) ≥ f2(x∗t ) because of the decay of the efficiency cut defined by
Equation (9), which guarantees Inequality (6). Therefore, f2(z) 6< f2(x∗t ).
Consequently, all solutions generated by this method are weakly efficient.

�

Theorem 4 If x∗t is a unique solution of Problem (5) and Inequality (6) is
strictly satisfied at step t then x∗t is an efficient solution to Problem (2).

Proof Consider Problem (10).
Let D = D0 be the initial set of feasible solutions of Problem (10) and suppose
that a particular solution x∗t generated at iteration t is a unique solution to
Problem (10) but not efficient, i.e., there exists another feasible point z ∈ D
which verifies f1(z) ≥ f1(x∗t ), and f2(z) 6= f2(x∗t ).
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a. if f1(z) ≥ f1(x∗t ) and z ∈ Dt:
Since x∗t is a unique solution to Problem (10) and the inclusion Dt ⊂ D
holds, x∗t is also a unique solution to Problem (5) at iteration t. But then
f1(x∗t ) > f1(x),∀x ∈ Dt and especially f1(x∗t ) > f1(z) because z ∈ Dt.
Therefore, f1(z) � f1(x∗t ).

b. if f1(z) ≥ f1(x∗t ), f2(z) ≤ f2(x∗t ) and z /∈ Dt:
Then z ∈ D\Dt, which means that the solution z is in a region removed
by a cutting step added at iteration j, with j ∈ {1, .., t− 1}, which means
that f2(x∗t ) ≤ f2(z) because of the decay of the efficiency cut defined by
Equation (9). This means that f2(x∗t ) = f2(z) but since Inequality (6) is
strict at step t, f2(z) � f2(x∗t ).

�

This approach finds weakly efficient solutions to a bi-objective quadratic
optimization problem under cardinality constraints. The solutions are efficient
if the auxiliary problem solutions are unique. Note that this method does
not necessarily find all the efficient solutions of the problem. In the following
proposition, we present a case in which efficient solutions are not removed by
the constraints which we add at each step.

Proposition 1 Let MILPt be the problem solved by our method at step t and
let x∗t , x

∗
t+1 be the solutions of MILPt and MILPt+1, respectively. Consider

Problem (11) formulated as follows:
max f1(x) = rTx
s.t. x ∈ Dt

f1(x) ≥ f1(x∗t+1) + ξ (C1)
f1(x) ≤ f1(x∗t )− ξ (C2)

(11)

where

ξ is a small real number close to zero,
Dt is the set of feasible solutions at step t.

If Problem (11) has no solution, then there is no efficient solution removed by
the constraint xt+1 ≤ εt+1.

Proof If at step t such a solution exists, its return is between xt and xt+1,
which is expressed by the constraints (C1) and (C2). If Problem (11) does
not admit a solution, this means that no efficient solution is removed by the
constraint added at step t.

�

As a consequence of the previous proposition, we conclude that this al-
gorithm does not find all the efficient solutions of Problem (3) unless the
condition of Proposition 1 is verified for all generated constraints added at
each step of our algorithm.
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5.2 Computational results

In this section, we present the computational results obtained by performing
experiments on a publicly available dataset. The presented study was per-
formed on seven reference datasets, five of them being derived from [39], avail-
able in Beasley’s OR Library [4]. These data provide the necessary input data
for various assets in different stock indices: Hong Kong Hang Seng with 31
assets, German Dax 100 with 85 assets, British FTSE 100 with 89 assets,
American S&P 100 with 98 assets, Japanese Nikkei 225 with 225 assets, and
two additional datasets being described by Cesarane et al. in 2014 [10], avail-
able from [9]. These authors reported 263 weekly prices from March 2003 to
March 2008 of American S&P 500 which contains 476 assets and European-
American NASDAQ which includes 2196 assets.

Figures 2 and 3 show the results of the execution of our method. Each
figure represents the graph of the Pareto front containing the values of the
returns of the compromise solutions according to the risk based on different
cardinality values (K). We observe that the larger the value of K, the worse
the obtained Pareto border. This can be explained by the reduced space of
feasible solutions since more assets are forced to be strictly positive.

We also observe that this difference between the curves is not always sig-
nificant; for example in the DAX market, the border is almost the same for
different values of K. This is due to the fact that in the coefficients of the re-
turn function r1 is equal to 1970 and all the other coefficients are smaller than
1. In this case, the solution consists of investing the maximum into the first
asset to maximize the return and selecting the K − 1 assets at the minimum
limit to satisfy the constraints of budget, cardinality, and quantity. Therefore,
as shown by Figure 2, the obtained difference between investing 20 or 30 is
not very significant with respect to the variation between the return on the
first asset and the remaining 19 or 29 returns, respectively.

The difference between the curves representing the Pareto boundaries cor-
responding to the different values of K are very visible in the case of the
Nikkei market, which can be explained by the fact that the spreads between
the returns of the market’s assets are not large. In general, we note that the
smaller the number of assets selected (securities), the better the portfolios
(better profits for the same level of risk). This can be explained by the fact
that if the decision-maker is forced to choose exactly K assets, he is forced to
include the worst income portfolios to satisfy the cardinality constraint.
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Application to Hang Seng Index (China). Application to DAX Stock Market (Germany).

Application to the FTSE 100 Index (London). Application to the S&P 100 Index (U.S.A).

Application to the Nikkei index (Japan).

Fig. 2 Application of our method to different markets, with the database downloaded
from [39] for various values of cardinality.

We can see that the curves obtained in the S&P500 and Nasdaq markets
increase more slowly as the risk increases, which is very visible in the Nasdaq
market. After verifying the used dataset, we can explain this behavior by the
fact that the values of the variance matrix representing the risk are very small.
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The maximum value of the S&P500 market risk matrix, for example, is 0.0067
whereas it is 1 in the DAX market.

Application to S&P500 (U.S.A). Application to Nasdaq Stock Market (U.S.A).

Fig. 3 Application of our method to different markets, with the database downloaded
from [9] for various values of cardinality.

5.3 Discussion and comparison

The proposed method has been programmed in Matlab, on a machine with an
Intel R© Core

TM

i7-2500 Processor (8GB RAM). The results of the execution of
our proposed method are listed in Table 1. We additionally implemented the
Pascoletti-Serafini approach and the ε-constraint method in their bi-objective
form [17] using Matlab and IBM-Cplex 12. These methods find weakly efficient
solutions to multiobjective programming problems. We use them to evaluate
the quality of the proven solutions of the method we propose. Unfortunately,
these two methods did not find a solution to large-scale programming problems
as in our case: we had to wait more than 7 hours for the S&P 500 market
without having any output. In the case of Nasdaq, the program stopped after
26 minutes with an error message indicating that the computer memory was
full.

In order to test the effectiveness of our proposed method for large-scale
programming problems, we have implemented the memetic method presented
in [43]. For this experience, we used the same machine and the same test prob-
lem. We varied each time the number of authorized assets in a portfolio and
compared the methods based on two parameters: the quality of the solutions
provided and the execution time. For quantity constraints, we have set the
lower bound to a = 0.001 and the upper bound to b = 1, i.e., an asset cannot
have a part of less than 0.1% or more than 100%. Before starting the tests, we
designed an instance generator and compared the results obtained with those
obtained by the other two methods in terms of execution time. We ran our
programs 10 times for each instance and averaged the results for each case.
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These results are summarized in the Table 1, where “Iterative”, “P-S”, “ε-
constraint” and “Memetic” refers to, respectively, the proposed method, the
Pascoletti-Serafini method, ε-constraint method and memetic method. “Time”
is the execution time (in seconds), “ES” is the number of solutions found.

Pascoletti-Serafini’s method contains some parameters to initiate the algo-
rithm. These parameters are chosen randomly. We tried our program several
times and on several parameters before the experiments were performed. For
each problem, the proposed method allowed to find the efficient set of weakly
efficient solutions in a reasonable time.

Table 1 Comparison between the proposed method and three other methods.

Iterative P-S ε-constraint Memetic
Markets K Time ES Time ES Time ES Time ES
Hang Seng

with
31 assets

10 10.08 119 8.39 24 5.22 26 28.01 33
20 15.64 119 8.92 27 5.28 29 29.71 15
31 7.32 105 3.23 19 4.28 21 27.19 15

DAX
with

85 assets

10 10.15 108 182.27 17 152.28 21 43.46 31
30 17.97 111 83.36 20 82.19 28 45.27 23
85 9.73 100 31.28 21 27.84 19 59.37 16

FTSE
with

89 assets

10 4.28 181 329.63 38 268.98 34 93.27 26
30 5.74 175 293.19 41 208.72 58 92.43 18
89 3.29 130 73.92 46 63.15 49 102.38 18

S&P100
with

98 assets

10 3.06 111 548.81 14 527.91 12 113.50 23
30 5.35 109 293.01 23 231.04 37 132.93 14
98 4.83 57 83.92 42 68.39 40 139.20 15

Nikkei
with

225 assets

10 35.56 973 231.93 91 189.36 78 219.54 14
30 143.33 943 178.92 74 152.51 83 227.91 17
225 24.39 221 127.30 32 93.28 64 282.12 18

S&P500
with

476 assets

10 26.17 95 - - - - 394.19 61
100 28.56 89 - - - - 383.81 62
476 17.28 22 - - - - 362.34 57

Nasdaq
with

2196 assets

10 1544.21 194 - - - - 474.10 24
30 511.74 265 - - - - 418.02 22
300 316.18 162 - - - - 582.64 14

We observe that the Pascoletti-Serafini method and ε-constraint behave
almost the same way. In fact, when K is small, the execution time for these
two methods is very large. The number of solutions of the ε-constraint method
is always higher than that obtained by the Pascoletti-Serafini method for the
same execution time period. As we have already mentioned, these two methods
have failed to produce solutions for the SP500 and Nasdaq markets due to their
large dimensions. The memetic method is a metaheuristic adapted according
to the algorithm proposed by [43]. The execution times and the number of
solutions, corresponding to the memetic method, shown in Table 1 are the
average of 10 executions.

The method proposed in this work finds a larger number of solutions in
a shorter time than each of the other methods for small instances. For larger
instances, this method finds a fairly large number of solutions compared to the
memetic method, but the execution time increases considerably. However, the
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solutions found by our method are better than those of the memetic method,
as we can see in Figure 4. A more detailed study on the major problems is
presented in Table 2.

Hang Seng market with K=10. Hang Seng market with K=30.

FTSE market with K=10. Hang Seng market with K=30.

Nikkei market with K=30. Nasdaq market with K=10.

Fig. 4 Comparison of the 4 methods according to the markets and the considered cardi-
nality.
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In Figure 4, a comparison of the four implemented methods is described.
We can remark that the quality of the solutions found by our method and that
of the Pascoletti-Serafini and ε-constraint methods are similar. We notice that
the solutions found by the memetic method are not as good as those found by
the other methods.

Table 2 Result of the execution according to generated problems.

Iterative P-S ε-constraint Memetic
n K Time ES Time ES Time ES Time ES

100
10 13.20 89.3 182.92 23.3 146.73 27.3 238.62 26.9
20 14.74 92.1 92.32 27.8 39.36 30.2 277.46 18
100 5.19 75.7 47.29 21 32.54 17 289.73 15.8

300
10 73.38 98.3 364.73 32.4 283.94 42.3 328.91 37.4
30 74.92 63.5 288.92 14.9 237.1 16.2 364.28 46.2
100 93.67 71.8 173.93 23.4 182.67 31.1 372.93 28

1000
10 638.66

82
.3

- - - - 538.92 26.6

30 783.91 63.2 - - - - 554.3 38.4
100 281.04 58.3 - - - - 583.02 27.3

3000
10 1638.92 78.4 - - - - 673.91

17
.9

30 1780.36 58.3 - - - - 648.01 15.3
100 682.93 37 - - - - 839.72 12.3

5000
10 4838.64 137.92 - - - - 936.93 11.7
100 3977.05 143.06 - - - - 1037.61 14.93
500 2102.94 127.3 - - - - 893.60 19.47

Table 2 summarizes the results for randomly generated problems, all of
which have the same portfolio specifications. The results found are the average
of the 10 executions for each generated problem, where “n” is the dimension of
the generated problems, “ES” and “Time” are, respectively, the mean number
of found solutions and the mean execution time.

After having performed our tests presented in Figure 4 and Tables 1 and 2,
we are in a position to confirm that the method presented in this paper gives
results as good as the Pascoletti-Serafini method or the ε-constraint method
in terms of quality and better results in terms of execution time. In fact, our
method is capable of finding the solution even for large problems that reach
up to 5000 assets, unlike the two others that cannot propose a solution for
problems exceeding 500 assets.

We also notice that the memetic method finds points that are very far from
the solutions found by our method. The execution time of this technique is
very large compared to our method for small instances. For large instances,
we can see that the execution time of our method exceeds the execution time
of the memetic method, but this difference is not significant.

Finally, we can confirm that our proposed iterative method finds Pareto’s
efficient frontier more rapidly than exact methods with respect to the execution
time. Our methods are also able to find the Pareto front for large instances in
an acceptable time.
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6 Conclusion

In this problem, risk and return are two opposing objectives that must be op-
timized simultaneously. We have extended the standard optimization model to
include cardinality constraints that limit a portfolio to have a specified num-
ber of assets and quantity constraints that impose limits on the proportion of
the portfolio to be held in a given asset. The obtained model is a bi-objective
mixed integer quadratic programming problem. A novel multiobjective opti-
mization algorithm is presented, which is based on a new efficient cut to find
the cardinality constrained efficient frontier.

The experimental results reveal that the proposed algorithm can manage
the budget, minimum purchase threshold, maximum limit and cardinality con-
straints simultaneously. In order to test the efficiency of the presented method,
we compare it with the Pascoletti-Serafini method, ε-constraint and a memetic
method. We find that our method produces a high quality of portfolio in rea-
sonable time compared to these methods. The portfolio manager can compro-
mise between return, risk, quantity, and a number of assets to determine the
portfolio according to his needs. As to future work, we are working on includ-
ing the time factor in the model and to study this problem over multiple time
periods.
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