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Abstract

We revisit the problems of state masking and state amplification through the lens of empirical

coordination by considering a state-dependent channel in which the encoder has causal and strictly causal

state knowledge. We show that the problem of empirical coordination provides a natural framework in

which to jointly study the problems of reliable communication, state masking, and state amplification.

We characterize the regions of rate-equivocation-coordination trade-offs for several channel models with

causal and strictly causal state knowledge. We introduce the notion of “core of the receiver’s knowledge”

to capture what the decoder can infer about all the signals involved in the model. We exploit this result

to solve a channel state estimation zero-sum game in which the encoder prevents the decoder to estimate

the channel state accurately.
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amplification, causal encoding, two-sided state information, noisy channel feedback.

I. INTRODUCTION

The study of state-dependent channels can be traced back to the early works of Shannon [2], Gelf’and

and Pinsker [3], which identified optimal coding strategies to transmit reliably in the presence of a state

known at the encoder causally or non-causally, respectively. The insights derived from the models have

since proved central to the study of diverse topics including wireless communications [4], information-

hiding and watermarking [5], and information transmission in repeated games [6]. The present work

relates to the latter application and studies state-dependent channels with causal state knowledge from

the perspective of empirical coordination [7].

Previous studies that have explored the problem of not only decoding messages at the receiver but also

estimating the channel state are particularly relevant to the present work. The state masking formulation

of the problem [8] aims at characterizing the trade-off between the rate of reliable communication and

the minimal leakage about the channel state. The rate-leakage capacity region of state masking has

been successfully characterized for both causal and non-causal state knowledge. The state amplification

formulation [9], in which the state is conveyed to the receiver instead of being masked, aims at

characterizing the trade-off between the rate of reliable communication and the reduction of uncertainty

about the state. The rate-uncertainty reduction capacity region of state amplification has also been

successfully characterized for causal and non-causal state knowledge. The state amplification formulation

was subsequently extended in the causal case by replacing the reduction of uncertainty about the state

by an average distortion function [10] (this model was dubbed causal state communication). The rate-

distortion capacity region of state communication has been successfully characterized for causal and

strictly causal state knowledge, and has been characterized for noiseless and noisy non-causal state

knowledge in the case of Gaussian channels with a quadratic distortion [11], [12]. Both formulations have

been combined in [13] to study the trade-off between amplification and leakage rates in a channel with

two receivers having opposite objectives. The amplification-leakage capacity region has been investigated

for non-causal state knowledge, via generally non-matching inner and outer bounds. As a perhaps more

concrete example, [14] has studied the trade-off between amplification and leakage in the context of an

energy harvesting scenario.

We revisit in this paper the problems of state masking and state amplification with causal and strictly

causal state knowledge through the lens of empirical coordination [7], [15]. Empirical coordination

refers to the control of the joint histograms of the various sequences such as states, codewords, that
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appear in channel models, and is related to the coordination of autonomous decision makers in game

theory [6]. Specifically, the study of empirical coordination over state-dependent channels is a proxy for

characterizing the utility of autonomous decision makers playing a repeated game in the presence of a

environment variable (the state), random [6], [16] or adversarial [17], [18], [19], and of an observation

structure (the channel) describing how agents observe each other’s actions. The characterization of

the empirical coordination capacity requires the design of coding schemes in which the actions of

the decision makers are sequences that embed coordination information. The empirical coordination

capacity has been studied for state-dependent channels under different constraints including strictly causal

and causal encoding [20], for perfect channel [21], for strictly causal and causal decoding [22], with

source feedforward [23], for lossless decoding [24], with secrecy constraint [25], with two-sided state

information [26] and with channel feedback [27]. Interestingly, empirical coordination is a powerful tool

also for controlling the posterior belief of the decoder, e.g. in the problems of “Bayesian persuasion” [28]

and “strategic communication” [29], [30].

The main contribution of the present work is to show that empirical coordination provides a natural

framework in which to jointly study the problems of reliable communication, state masking, and state

amplification. In particular, we obtain the following.

• We introduce and characterize the notion of core of the receiver’s knowledge, which captures

what the decoder can exactly know about the other variables in the system. For instance, this

allows us to characterize the rate-leakage-coordination region for the causal state-dependent channel

(Theorem II.3). Our definition of leakage refines previous work by exactly characterizing the leakage

rate instead of only providing a single-sided bound. When specialized, our result (Theorem II.6)

simultaneously recovers the constraints already established both in [8, Section V] and [9, Theorem

2].

• We revisit the problem of causal state communication and characterize the normalized Kullback-

Leibler (KL)-divergence between the decoder’s posterior beliefs and a target belief induced by

coordination (Theorem III.1). This allows us to characterize the rate-distortion trade-off for a zero-

sum game, in which the decoder attempts to estimate the state while the encoder tries to mask it

(Theorem III.3).

• We extend the results to other models, including two-sided state information (Theorem IV.3), noisy

feedback (Theorem IV.5), and strictly causal encoding (Theorem V.2).

The rest of the paper is organized as follows. In Section II, we formally introduce the model, along

with necessary definitions and notations, and we state our main results. In Section III, we investigate the
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channel state estimation problem by introducing the KL-divergence and the decoder’s posterior beliefs.

In Section IV and Section V, we present some extensions of our results to different scenarios. The proofs

are stated in Appendices A-J.

II. PROBLEM FORMULATION AND MAIN RESULT

A. Notation

Throughout the paper, capital letters, e.g., S, denote random variables while lowercase letters, e.g., s.

denote their realizations and calligraphic fonts, e.g., S , denote the alphabets in which the realizations take

values. All alphabets considered in the paper are assumed finite, i.e., |S| < ∞. Sequences of random

variables and realizations are denoted by Sn = (S1, . . . , Sn) and sn = (s1, . . . , sn), respectively. We

denote the set of probability distributions over S by ∆(S). For a probability distribution QS ∈ ∆(S),

we drop the subscript and simply write Q(s) in place of QS(s) for the probability mass assigned to

realization s ∈ S . For two distributions QX ,PX ∈ ∆(X ), ||QX −PX ||1 =
∑

x∈X |Q(x)−P(x)| stands

for the ℓ1-distance between the vectors of probability distributions, see also [31, pp. 370] and in [32, pp.

44]. The notation Y −
−X −
−W denotes the Markov chain property corresponding to PY |XW = PY |X .

The notation 1(v = s) denotes the indicator function, that is equal to 1 if v = s and 0 otherwise.

For a sequence sn ∈ Sn, N(s|sn) denotes the occurrence number of symbol s ∈ S in the sequence

sn. The empirical distribution Qn
S ∈ ∆(S) of sequence sn ∈ Sn is then defined as

∀s ∈ S Qn(s) =
N(s|sn)

n
. (1)

Given δ > 0 and a joint distribution QSX ∈ ∆(S×X ), Tδ(QSX) stands for the set of sequences (sn, xn)

that are jointly typical with tolerance δ > 0 with respect to the probability distribution QSX , i.e., such

that

∣∣∣
∣∣∣Qn

SX −QSX

∣∣∣
∣∣∣
1
=

∑

s,x

∣∣∣Qn(s, x)−Q(s, x)
∣∣∣ ≤ δ. (2)

B. System model

The problem under investigation is illustrated in Figure 1. A uniformly distributed message represented

by the random variable M ∈ M is to be transmitted over a state dependent memoryless channel

characterized by the conditional probability distribution TY |XS and a channel state Sn ∈ Sn drawn

according to the i.i.d. probability distribution PS . For n ∈ N∗, the message M and the state sequence

Sn are encoded into a codeword Xn ∈ X n using an encoder E , subject to constraints to be precised

later. Upon observing the output Y n ∈ Yn of the noisy channel, the receiver uses a decoder D to form

an estimate M̂ ∈ M of M and to generate actions V n ∈ Vn, whose exact role will be precised shortly.
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For now, V n can be thought of as an estimate of the state sequence Sn but more generally captures the

ability of the receiver to coordinate with the transmitter. Both TY |XS and PS are assumed known to all

parties.

M

Si

Xi Y n (M̂, V n)
PM

PS

E T D

Fig. 1. Memoryless channel TY |XS with i.i.d. state drawn according to PS . The encoding function is causal fi : M×Si → X ,

for all i ∈ {1, . . . , n} and the decoding functions g : Yn → M and h : Yn → ∆(Vn) are non-causal.

We are specifically interested in causal encoders formally defined as follows.

Definition II.1 A code with causal encoding c ∈ C(n,M) is a tuple of functions c = ({fi}i∈{1,...,n}, g, h)

defined by:

fi : M×Si −→ ∆(X ), ∀i ∈ {1, . . . , n}, (3)

g : Yn −→ M, (4)

h : Yn −→ ∆(Vn). (5)

The functions {fi}i∈{1,...,n} and h are stochastic and the function g is deterministic.

The code with causal encoder c ∈ C(n,M), the uniform probability distributions of the mes-

sages PM , the source PS and the channel TY |XS induce a general probability distribution on

(M,Sn,Xn, Y n, V n, M̂):

PM

n∏

i=1

[
PSi

fXi|SiMTYi|XiSi

]
hV n|Y n1

(
M̂ = g(Y n)

)
. (6)

Since the sequences (Sn,Xn, Y n, V n) are random, the empirical distribution Qn
SXY V is also a random

variable.

The performance of codes is measured as follows.

Definition II.2 Fix a target rate R ≥ 0, a target state leakage E ≥ 0 and a target probability distribution

QSXY V . The triple (R,E,Q) is achievable if for all ε > 0, there exists n̄ ∈ N such that for all n ≥ n̄,
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there exists a code with causal encoding c ∈ C(n,M) that satisfies:

log2 |M|

n
≥R − ε,

∣∣∣∣Le(c)− E

∣∣∣∣ ≤ε, with Le(c) =
1

n
· I(Sn;Y n),

Pe(c) =P

(
M 6= M̂

)
+ P

(∣∣∣
∣∣∣Qn

SXY V −QSXY V

∣∣∣
∣∣∣
1
≥ ε

)
≤ ε.

We denote by A the set of achievable triples (R,E,Q).

In layman’s term, performance is captured along three metrics: i) the rate at which the message M can

be reliably transmitted; ii) the information leakage rate about the state sequence Sn at the receiver; and

iii) the ability of the encoder to coordinate with the receiver, captured by the empirical coordination with

respect to QSXY V .

C. Main result

Theorem II.3 Consider a target joint probability distribution QSXY V that decomposes as QSXY V =

PSQX|STY |XSQV |SXY . The triple (R,E,Q) is achievable if and only if there exist two auxiliary random

variables (W1,W2) with probability distribution QSW1W2XY V ∈ Qe that satisfy:

I(S;W1,W2, Y ) ≤ E ≤ H(S), (7)

R + E ≤ I(W1, S;Y ), (8)

where Qe is the set of joint distributions QSW1W2XY V with marginal QSXY V that decompose as

PSQW1
QW2|SW1

QX|SW1
TY |XSQV |YW1W2

, (9)

and the supports satisfy max(|W1|, |W2|) ≤ |S × X × Y × V|+ 1.

Theorem II.3 characterizes the optimal trade-off between reliable transmission, state leakage and empirical

coordination. The achievability and converse proofs are provided in Appendices A and B, respectively,

while the cardinality bounds are established in Appendix F.

Remark II.4 Equation (8) and the first inequality of (7) imply the information constraints of [10,

Theorem 3] for causal state communication and of [20, Theorem 2] for empirical coordination.

R ≤ I(W1,W2;Y )− I(W2;S|W1). (10)

Indeed, both Markov chains X−
−(S,W1)−
−W2 and Y −
−(X,S)−
−(W1,W2) imply Y −
−(W1, S)−
−W2.
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b

b

bb

b
I(S,W1;Y )

H(S)

I(S;Y,W1,W2)

I(W1,W2;Y )− I(W2;S|W1) R

E

0

H(S) < I(S,W1;Y )

Fig. 2. Region of achievable (R,E) ∈ A for fixed probability distribution QSW1W2XY V , when H(S) < I(S,W1;Y ).

Theorem II.3 has several important consequences. First, the coordination of both encoder and decoder’s

actions according to PSQX|STY |XSQV |SXY is compatible with the reliable transmission of additional

information at rate R ≥ 0. Second, the case of equality in the right-hand-side inequality of (7) corresponds

to the full revelation of the channel state S to the decoder. Third, for any achievable pair of rate-distribution

(R,Q) ∈ A, the minimal state leakage E
⋆(R,Q) is given by the first inequality of (7):

E
⋆(R,Q) = min

QSW1W2XY V ∈Qe,

s.t. R≤I(W1 ,W2;Y )−I(W2;S|W1)

I(S;W1,W2, Y ). (11)

The reliable transmission of information requires the decoder to know the encoding function, from which

it can infer the channel’s state parameter S. Equation (11) shows that the minimal leakage of state

information I(Sn;Y n) is close to n · I(S;W1,W2, Y ), as if the sequences (Sn, Y n,W n
1 ,W

n
2 ) were

generated according to the i.i.d. probability distribution QSW1W2Y . In Section III, we investigate the

relationship between the state leakage Le(c) and the decoder’s posterior belief PSn|Y n induced by the

coding process.

D. Special case without receiver’s actions

We now assume that the decoder does not return an action V coordinated with the other symbols

(S,X, Y ) to compare our setting with the problems of “state masking” [8, Section V] and “state

amplification” [9, Section IV]. Note that these earlier works involve slightly different notions of achievable

leakage. In [8], the state leakage is upper bounded by Le(c) =
1
n
·I(Sn;Y n) ≤ E+ε. In [9], the decoder

forms a list Ln(Y
n) ⊆ Sn with cardinality log2 |Ln(Y

n)| = H(S)− E such that the list decoding error

is small P(Sn /∈ Ln(Y
n)) ≤ ε, so as to reduce the uncertainty about the state. Here, we require the

leakage Le(c) =
1
n
· I(Sn;Y n) induced by the code to be controlled more precisely as

∣∣Le(c)−E
∣∣ ≤ ε.

Nevertheless, we shall see that our definition allows us to obtain the results of [8], [9] as extreme cases.
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Definition II.5 A code without receiver’s actions c ∈ Cd(n,M) is a tuple of functions c =

({fi}i∈{1,...,n}, g) defined by:

fi : M×Si −→ ∆(X ), ∀i ∈ {1, . . . , n}, (12)

g : Yn −→ M. (13)

Compared to Definition II.1, the decoding function h : Yn −→ ∆(Vn) in (5) has been removed. The

target probability distribution is also restricted to Q ∈ ∆(S ×X ×Y), i.e. without receiver’s actions. We

denote by Ad the set of achievable triples (R,E,Q) defined similarly to Definition II.2.

Theorem II.6 Consider a target joint probability distribution QSXY that decomposes as QSXY =

PSQX|STY |XS . The triple (R,E,Q) ∈ Ad is achievable if and only if there exists an auxiliary random

variable W1 with probability distribution QSW1XY ∈ Qd that satisfies:

I(S;W1, Y ) ≤ E ≤ H(S), (14)

R + E ≤ I(W1, S;Y ), (15)

where Qd is the set of joint distributions QSW1XY with marginal QSXY , that decompose as

PSQW1
QX|SW1

TY |XS, (16)

and the support satisfies |W1| ≤ |S × Y|+ 1.

The achievability results comes from Theorem II.3 by removing auxiliary random variable W2 = ∅ and

considering a single block coding instead of block-Markov coding. The converse proof is provided in

Appendix G.

Remark II.7 The equation (15), the first inequality of (14) and the independence between S and W1

imply:

R ≤ I(W1, S;Y )− E ≤ I(W1, S;Y )− I(S;W1, Y ) = I(W1;Y ). (17)

Equation (17) and the first inequality in (14) corresponds to the information constraint stated in [8, pp.

2260], whereas equations (17), (15) and second inequality of (14) corresponds to the region R0 stated

in [9, Lemma 3]. Formally, the region characterized by Theorem II.6 is the intersection of the regions

identified in [8, pp. 2260] and [9, Lemma 3].

Remark II.8 A technical subtlety of the proof is that the requirement of exact leakage
∣∣Le(c)−E

∣∣ ≤ ε

prevents us from replacing the term I(W1, S;Y ) by I(X,S;Y ), as in [9, proof of Lemma 2].
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III. CHANNEL STATE ESTIMATION VIA DISTORTION FUNCTION

A. Decoder’s posterior belief

After observing the sequence Y n of channel outputs, the decoder has posterior belief

P(sn|yn) =

∑
m,xn P(m, sn, xn, yn)

∑
m,s′n,xn P(m, s′n, xn, yn)

, ∀(sn, yn). (18)

where PMSnXnY n is the probability distribution induced by the encoding function, defined in (6). The

following Theorem upper bounds the KL-divergence between the decoder’s posterior belief PSn|Y n and

the target conditional distribution QS|Y W1W2
for any encoding function, i.e. for any conditional probability

distribution PWn
1 Wn

2 Xn|Sn .

Theorem III.1 (Channel state estimation) Assume that the probability distribution QSW1W2XY has full

support. For any conditional probability distribution PWn
1 Wn

2 Xn|Sn , we have:

1

n
·D

(
PSn|Y n

∣∣∣∣
∣∣∣∣

n∏

i=1

QSi|YiW1,iW2,i

)

≤ I(S;W1,W2, Y )− Le(c) + α1δ + α2P

(
(Sn,W n

1 ,W
n
2 , Y

n) /∈ Tδ(Q)
)
. (19)

The parameter δ is the tolerance of the set of typical sequences Tδ(Q) and the constants α1 =
∑

s,w1,

w2,y

log2
1

Q(s|w1,w2,y)
and α2 = log2

1
mins,y,w1,w2 Q(s|y,w1,w2)

are strictly positive.

The proof of Theorem III.1 is given in Appendix C. Consider a target leakage E = I(S;W1,W2, Y )

and a pair (R,QSXY V ), and assume there exists a probability distribution QSW1W2XY V ∈ Qe with full

support, satisfying (7) and (8). By Theorem II.3, for all ε > 0 and all δ > 0, there exists a n̄ such that

for all n ≥ n̄ there exists a code c ∈ C(n,M) with two auxiliary sequences (W n
1 ,W

n
2 ), such that:

∣∣∣∣Le(c)− I(S;W1,W2, Y )

∣∣∣∣ ≤ ε and P

(
(sn, wn

1 , w
n
2 , y

n) /∈ Tδ(Q)
)
≤ ε. (20)

Hence, by Theorem III.1 we have

1

n
·D

(
PSn|Y n

∣∣∣∣
∣∣∣∣

n∏

i=1

QSi|YiW1,iW2,i

)
≤ε+ α1δ + α2ε, (21)

where ǫ and δ may go to zero when n goes to infinity. The control of the leakage Le(c) and the

joint typicality of the sequences (Sn,W n
1 ,W

n
2 , Y

n) ∈ Tδ(Q) implies that the decoder’s posterior belief

PSn|Y n is closely related to the single-letter distribution QS|YW1W2
. Based on the triple of symbols

(Y,W1,W2), the decoder generates action V using the conditional probability distribution QV |YW1W2

and infers the channel state S with the conditional probability distribution QS|YW1W2
. We claim that the

random variables (Y,W1,W2) capture the "core of the receiver’s knowledge," regarding other random

variables S and V .
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B. Channel state estimation zero-sum game

In this section, we introduce the channel state estimation zero-sum game in which the encoder and

decoder are opponent players choosing their own encoding and decoding strategies. The encoder seeks

to prevent the decoder to return a good estimate v ∈ V of the channel state s ∈ S , evaluated with respect

to a distortion function d(s, v). While both players cooperate in transmitting reliably at rate R, the goal

of the decoder is to minimize the expected long-run distortion whereas the goal of the encoder is to

maximize it.

Definition III.2 A target rate R ≥ 0 and a target distortion D ≥ 0 are achievable if for all ε >

0, there exists a n̄ ∈ N such that for all n ≥ n̄, there exists a code without receiver’s output c =

({fi}i∈{1,...,n}, g) ∈ Cd(n,M) that satisfies:

log2 |M|

n
≥R − ε, (22)

Pe(c) = P

(
M 6= M̂

)
≤ε, (23)

∣∣∣∣ min
hV n|Y n

1

n

n∑

i=1

E

[
d(Si, Vi)

]
− D

∣∣∣∣ ≤ε. (24)

We denote by Ag the set of achievable pairs (R,D) ∈ Ag.

In order to illustration the above definition, we discuss the special case of zero rate R = 0, in which

the encoding functions writes fXi|Si instead of fXi|SiM . The channel state estimation zero-sum game

reformulates as a maximin

max
{fXi|S

i}i∈{1,...,n}

min
hV n|Y n

E

[
1

n

n∑

i=1

d(Si, Vi)

]
, (25)

in which the encoder chooses {fXi|Si}i∈{1,...,n} and the decoder choose hV n|Y n . The following Theorem

claims that the single-letter solution is given by:

max
QW1 ,QX|SW1

min
PV |W1Y

E

[
d(S, V )

]
. (26)

This Theorem establishes a connexion between the notions of channel state leakage: 1
n
I(Sn;Y n),

control of the decoder’s posterior beliefs: 1
n
·D

(
PSn|Y n

∣∣∣
∣∣∣
∏n

i=1QSi|YiW1,i

)
, and channel state estimation:

minhV n|Y n E

[
1
n

∑n
i=1 d(Si, Vi)

]
.
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Theorem III.3 (Zero-sum game) A pair of rate and distortion (R,D) ∈ Ag is achievable if and only if

there exists an auxiliary random variable W1 with probability distribution QSW1XY ∈ Qd that satisfies:

R ≤ I(W1;Y ), (27)

D = min
PV |W1Y

E

[
d(S, V )

]
. (28)

The set Qd refers to the set of joint distributions PSQW1
QX|SW1

TY |XS defined in Theorem II.6.

The achievability proof of Theorem III.3 is stated in Appendix D and is a consequence of Theorems II.6

and III.1, and of [28, Corollary A.18, Lemma A.22]. The bound on the KL-divergence in equation (19)

relates to the notion of “strategic distance” [16, Section 5.2], later used in several articles on repeated

game [17], [18], [19], on “Bayesian persuasion” [28] and on “strategic communication” [30]. The converse

proof of Theorem is stated in Appendix E.

Remark III.4 (Maximin-minimax result) The optimal distortion-rate function D
⋆(R) reformulates as

a maximin problem:

D
⋆(R) = max

QW1
,QX|SW1

R≤I(W1;Y )

min
PV |W1Y

E

[
d(S, V )

]
= min

PV |W1Y

max
QW1

,QX|SW1
R≤I(W1;Y )

E

[
d(S, V )

]
. (29)

The maximum and the minimum are taken over compact and convex sets and the distortion function is

linear. Hence by Sion’s Theorem [33] the maximin equal the minimax and the value of this channel state

estimation zero-sum game is D
⋆(R).

Remark III.5 (One auxiliary random variable) The formulation of Theorem III.3 is based on the set

of distributions Qd with only one auxiliary random variable W1, instead of the two random variables

(W1,W2) of the set Qe. When the encoder tries to mask the channel state, it does not requires the

auxiliary random variable W2 anymore.

D
◦ = max

QW1
,QX|SW1

,QW2|SW1
R≤I(W1,W2;Y )−I(W2;S|W1)

min
PV |W1W2Y

E

[
d(S, V )

]
(30)

≤ max
QW1

,QX|SW1
,QW2|SW1

R≤I(W1,W2;Y )−I(W2;S|W1)

min
PV |W1Y

E

[
d(S, V )

]
(31)

≤ max
QW1

,QX|SW1
R≤I(W1;Y )

min
PV |W1Y

E

[
d(S, V )

]
= D

⋆, (32)

where (31) comes from taking the minimum over PV |W1Y instead of PV |W1W2Y ; (32) comes from the

Markov chain Y −
− (S,W1) −
− W2 stated in (9), that ensures: I(W1,W2;Y ) − I(W2;S|W1) ≤

I(W1;Y ). Hence, the information constraint R ≤ I(W1,W2;Y )− I(W2;S|W1) is more restrictive than

R ≤ I(W1;Y ).
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Remark III.6 (Causal state communication) In [10], the goal of the encoder is to convey the state

information to the receiver so as to minimize the long-run distortion function

min
{f

Xi|S
i}i∈{1,...,n},

hV n|Y n

E

[
1

n

n∑

i=1

d(Si, Vi)

]
, (33)

whereas in (25) the goal of the encoder is to mask the state information to the receiver. The authors of

[10] proved the convergence of equation (33) to the single-letter optimization problem:

D̂ = min
QW1

,QX|SW1
,QW2|SW1

,QV |W1W2Y

0≤I(W1 ,W2;Y )−I(W2;S|W1)

E

[
d(S, V )

]
, (34)

where the auxiliary random variable W2 is used to convey a quantized version of the channel state to

the decoder.

IV. EXTENSIONS TO MORE GENERAL SCENARIOS

A. Two-sided state information

The case of two-sided state information is represented by Fig. 3. The distribution PUSZ ∈ ∆(U×S×Z)

generates i.i.d. correlated channel state S, information source U and state information Z at the decoder.

Zn

U i

M

Si

Xi Y n (M̂ , V n)
PM

P

E T D

Fig. 3. Causal encoding function fi : M × U i × Si → X , for all i ∈ {1, . . . , n} and non-causal decoding functions

g : Yn × Zn → M and h : Yn ×Zn → ∆(Vn).

Definition IV.1 A code with two-sided state information c ∈ Cs(n,M) is a tuple of functions c =

({fi}i∈{1,...,n}, g, h) defined by:

fi : M×U i × Si −→ ∆(X ), ∀i ∈ {1, . . . , n}, (35)

g : Yn ×Zn −→ M, (36)

h : Yn ×Zn −→ ∆(Vn). (37)

The empirical distribution Qn
USZXY V of sequences (un, sn, zn, xn, yn, vn) is defined by:

Qn(u, s, z, x, y, v) =
N(u, s, z, x, y, v|un, sn, zn, xn, yn, vn)

n
,

∀(u, s, z, x, y, v) ∈U × S × Z × X × Y × V. (38)
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The code with two-sided state information c ∈ Cs(n,M), the uniform probability distributions of the

messages PM , the source PUSZ and the channel TY |XS induce a general probability distribution on

(M,Un, Sn, Zn,Xn, Y n, V n, M̂):

PM

n∏

i=1

[
PUiSiZi

fXi|U iSiMTYi|XiSi

]
hV n|Y nZn1

(
M̂ = g(Y n, Zn)

)
. (39)

Definition IV.2 Fix a target rate R, a target state leakage E and a target probability distribution

QUSZXY V . The triple (R,E,Q) is achievable if for all ε > 0, there exists a n̄ ∈ N such that for

all n ≥ n̄, there exists a code with two-sided state information c ∈ Cs(n,M) that satisfies:

log2 |M|

n
≥R − ε, (40)

∣∣∣∣Le(c)− E

∣∣∣∣ ≤ε, with Le(c) =
1

n
· I(Un, Sn;Y n, Zn), (41)

Pe(c) =P

(
M 6= M̂

)
+ P

(∣∣∣
∣∣∣Qn −Q

∣∣∣
∣∣∣
1
≥ ε

)
≤ ε. (42)

Theorem IV.3 (Two-sided state information) We consider a target joint probability distribution

QUSZXY V that decomposes as QUSZXY V = PUSZQX|USTY |XSQV |USZXY . The triple (R,E,Q)

is achievable if and only if there exists two auxiliary random variables (W1,W2) with probability

distribution QUSZW1W2XY V ∈ Qs that satisfy:

I(U,S;W1,W2, Y, Z) ≤ E ≤ H(U,S), (43)

R + E ≤ I(W1, U, S;Y,Z), (44)

where Qs is the set of joint probability distributions QUSZW1W2XY V that decompose as

PUSZQW1
QW2|USW1

QX|USW1
TY |XSQV |Y ZW1W2

, (45)

and the support of (W1,W2) are bounded by max(|W1|, |W2|) ≤ d+1 with d = |U×S×Z×X×Y×V|.

The achievability proof of Theorem IV.3 follows directly from the proof of Theorem II.3 stated in

Section A, by replacing the random variable of the channel state S by the pair (U,S) and the random

variable of the channel output Y by the pair (Y,Z). The converse proof of Theorem IV.3 is stated in

Appendix H.
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M

Si

Xi Y n
1

Y i−1
2

(M̂ , V n)
PM

P

E T D

Fig. 4. Noisy feedback Y i−1

2
from state-dependent TY1Y2|XS channel. Encoding writes fi : M × Si × Yi−1

2
→ X , ∀i ∈

{1, . . . , n}.

Remark IV.4 The Markov chains X −
− (U,S,W1) −
−W2 and Y −
− (X,S) −
− (U,Z,W1,W2) and

Z −
− (U,S) −
− (X,Y,W1,W2) imply another Markov chain property: (Y,Z) −
− (W1, U, S) −
−W2.

Indeed, for all (u, s, z, w1, w2, x, y) we have:

P(y, z|w1, w2, u, s) =
∑

x∈X

P(x|w1, w2, u, s) · P(y|x,w1, w2, u, s) · P(z|x,w1, w2, u, s, y)

=
∑

x∈X

Q(x|u, s, w1) · T (y|x, s) · Pz|us(z|u, s) = P(y, z|w1, u, s).

By combining equations (43), (44), with the Markov chain (Y,Z)−
− (W1, U, S)−
−W2, we recover the

information constraint of [26, Theorem V.1]:

R ≤ I(W1,W2;Y,Z)− I(W2;U,S|W1). (46)

B. Noisy channel feedback observed by the encoder

We characterize the set of achievable triples (R,E,Q) when the encoder has noisy feedback Y2 from the

state-dependent channel TY1Y2|XS depicted in Fig. 4. The encoding function writes fi : M×Si×Y i−1
2 →

X , ∀i ∈ {1, . . . , n} whereas the decoding functions and the state leakage remain unchanged.

Theorem IV.5 (Noisy channel feedback) We consider a target joint probability distribution QSXY1Y2V

that decomposes as QSXY1Y2V = PSQX|STY1Y2|XSQV |SXY1Y2
. The triple (R,E,Q) is achievable

if and only if there exists two auxiliary random variables (W1,W2) with probability distribution

QSW1W2XY1Y2V ∈ Qf that satisfy:

R ≤ I(W1,W2;Y1)− I(W2;S, Y2|W1), (47)

I(S;W1,W2, Y1) ≤ E ≤ H(S), (48)

R + E ≤ I(W1, S;Y1), (49)

where Qf is the set of distributions with marginal QSW1W2XY1Y2V that decompose as

PSQW1
QX|SW1

TY1Y2|XSQW2|SW1Y2
QV |Y1W1W2

,
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and the supports of (W1,W2) are bounded by max(|W1|, |W2|) ≤ d+1 with d = |S ×X ×Y1×Y2×V|.

The achievability proof of Theorem IV.5 follows directly from the proof of Theorem II.3, by replacing

the pair (Sn,W n
1 ) by the triple (Sn,W n

1 , Y
n
2 ) when the encoder generates W n

2 . The decoding functions

and the leakage analysis remain unchanged. The converse proof is stated in Appendix I.

Remark IV.6 (Noisy feedback improve coordination) The channel feedback increases the set of

achievable triples (R,E,Q), since the new conditional distribution QW2|SW1Y2
depends on channel

outputs Y2. The information constraints of Theorem IV.5 are reduced to that of Theorem II.3 as soon as

QW2|SW1Y2
= QW2|SW1

⇐⇒ W2−
− (S,W1)−
−Y2 ⇐⇒ I(W2;Y2|S,W1) = 0. The problem of empirical

coordination with channel feedback is investigated in [27].

V. STRICTLY CAUSAL ENCODING

Definition V.1 A code with strictly causal encoding c ∈ Cse(n,M) is a tuple of functions c =

({fi}i∈{1,...,n}, g, h) defined by:

fi : M×Si−1 −→ ∆(X ), ∀i ∈ {1, . . . , n}, (50)

g : Yn −→ M, (51)

h : Yn −→ ∆(Vn). (52)

M

Si−1

Xi Y n (M̂, V n)
PM

P

E T D

Fig. 5. Strictly causal encoding function fi : M×Si−1 → ∆(X ), for all i ∈ {1, . . . , n} and non-causal decoding functions

g : Yn → M and h : Yn → ∆(Vn).

Theorem V.2 (Strictly causal encoding) We consider a target joint probability distribution QSXY V that

decomposes as QSXY V = PSQXTY |XSQV |SXY . The triple (R,E,Q) is achievable if and only if there

exists an auxiliary random variable W2 with probability distribution QSW2XY V ∈ Qse that satisfy:

I(S;X,W2, Y ) ≤ E ≤ H(S), (53)
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R + E ≤ I(X,S;Y ), (54)

where Qse is the set of joint probability distributions QSW2XY V with marginal QSW2XY V that decompose

as

QSW2XY V = PSQXQW2|SXTY |XSQV |XYW2
(55)

and the support of the auxiliary random variable W2 is bounded by |W2| ≤ |S × X × Y|+ 1.

The achievability proof of Theorem V.2 follows directly from the proof of Theorem II.3 stated in Section

A, by replacing the auxiliary random variable W1 by the channel input X. The converse proof is stated

in Appendix J.

Remark V.3 Equation (54), the first inequality of (53), the Markov chain Y −
− (X,S)−
−W2 and the

independence between S and X imply:

R ≤ I(X,W2;Y )− I(W2;S|X). (56)

Corollary V.4 (Strictly causal encoding without receiver’s outputs) A pair of rate and state leakage

(R,E) is achievable if and only if there exists a probability distribution QX that satisfies:

I(S;Y |X) ≤ E ≤ H(S), (57)

R + E ≤ I(X,S;Y ). (58)

The achievability proof of Corollary V.4 comes from the achievability proof of Theorem V.2. The

converse proof is based on standard arguments. Equations (57) and (58) imply R ≤ I(X;Y ).

APPENDIX A

ACHIEVABILITY PROOF OF THEOREM II.3

A. Random coding

We fix a triple of rate, state leakage and joint probability distribution (R,E,Q) for which there exists

a probability distribution QSW1W2XY V ∈ Qe that satisfy the following equations:

I(S;W1,W2, Y ) ≤ E ≤ H(S), (59)

R + E ≤ I(W1, S;Y ). (60)

We show that (R,E,Q) is achievable by introducing the rate parameters RL, RJ, RK and by considering a

block-Markov random code c ∈ C(n ·B,M) defined over B ∈ N blocks of length n ∈ N. The codebook

is defined over one block of length n ∈ N and the total length of the code is denoted by N = n ·B ∈ N.
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Random Codebook.

1) We draw 2n(H(S)+ε) sequences Sn(l, j) according to i.i.d. probability distribution PS , with indexes

(l, j) ∈ ML ×MJ with cardinalities |ML| = 2nRL and |MJ| = 2nRJ .

2) We draw 2n(R+RL+RK) sequences W n
1 (m, l, k) according to the i.i.d. probability distribution QW1

, with

indexes (m, l, k) ∈ M×ML ×MK.

3) For each triple of indexes (m, l, k) ∈ M × ML × MK, we draw the same number 2n(R+RL+RK) of

sequences W n
2 (m, l, k, m̂, l̂, k̂) with indexes (m̂, l̂, k̂) ∈ M×ML×MK, according to the i.i.d. conditional

probability distribution Q(w2|w1) depending on the sequence W n
1 (m, l, k).

Encoding function at the beginning of block b ∈ {2, . . . B − 1}.

1) The encoder observes the sequence of channel states Sn
b−1 corresponding to the previous block b− 1

and finds the indexes (lb−1, jb−1) ∈ ML × MJ such that
(
Sn(lb−1, jb−1), S

n
b−1

)
∈ Tδ(Q) are jointly

typical for the probability distribution PS1{S=S}.

2) The encoder observes the message mb and the index lb−1 and recalls the sequence

W n
1 (mb−1, lb−2, kb−1) corresponding to the previous block b−1. It finds the index kb ∈ MK such that the

sequences
(
Sn
b−1,W

n
1 (mb−1, lb−2, kb−1),W

n
2 (mb−1, lb−2, kb−1,mb, lb−1, kb)

)
∈ Tδ(Q) are jointly typical.

3) The encoder sends the sequence Xn
b drawn from the i.i.d. conditional probability distribution

QX|SW1
depending on sequences W n

1 (mb, lb−1, kb) and Sn
b observed causally on the current block

b ∈ {2, . . . B − 1}.

Decoding function at the end of block b ∈ {2, . . . B − 1}.

1) The receiver recalls the sequence Y n
b−1 and the indexes (mb−1, lb−2, kb−1) corresponding to the

sequence W n
1 (mb−1, lb−2, kb−1) decoded at the end of the previous block b− 1.

2) The receiver observes the sequence Y n
b and finds the triple of indexes (mb, lb−1, kb) such that

(
Y n
b ,W n

1 (mb, lb−1, kb)
)
∈ Tδ(Q) and

(
Y n
b−1,W

n
1 (mb−1, lb−2, kb−1),W

n
2 (mb−1, lb−2, kb−1,mb, lb−1, kb)

)

∈ Tδ(Q) are jointly typical.

3) The receiver returns the message mb corresponding to block b.

4) The receiver returns the sequence V n
b−1 drawn from the conditional probability distribution QV |YW1W2

depending on sequences
(
Y n
b−1,W

n
1 (mb−1, lb−2, kb−1),W

n
2 (mb−1, lb−2, kb−1,mb, lb−1, kb)

)
.

5) The receiver knows that over block b−1, the sequences
(
Sn
b−1,W

n
1 (mb−1, lb−2, kb−1),W

n
2 (mb−1, lb−2, kb−1,

mb, lb−1, kb),X
n
b−1, Y

n
b−1, V

n
b−1

)
∈ Tδ(Q) are jointly typical and the sequence of states Sn

b−1 belongs to

the bin with index lb−1 ∈ ML.

Initialization of the encoder. Arbitrary indexes (m1, l0, k1) are given to both encoder and de-

coder. The encoder sends the sequence Xn
b1

drawn according to the conditional probability dis-

tribution QX|SW1
depending on sequences

(
Sn
b1
,W n

1 (m1, l0, k1)
)
. At the beginning of the second
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block b2, encoder recalls W n
1 (m1, l0, k1), observes message m2, finds the index l1 such that se-

quences
(
Sn
b1
, Sn(l1, j1)

)
∈ Tδ(Q) are jointly typical and finds the index k2 such that sequences

(
Sn
b1
,W n

1 (m1, l0, k1),W
n
2 (m1, l0, k1,m2, l1, k2)

)
∈ Tδ(Q) are jointly typical. The encoder sends the

sequence Xn
b2

drawn from the conditional probability distribution QX|SW1
depending on sequences

(
Sn
b2
,W n

1 (m2, l1, k2)
)
. The index m1 does not correspond to a message.

Initialization of the decoder. At the end of second block b2, the decoder finds the triple of indexes

(m2, l1, k2) such that
(
Y n
b2
,W n

1 (m2, l1, k2)
)
∈ Tδ(Q) and

(
Y n
b1
,W n

1 (m1, l0, k1),W
n
2 (m1, l0, k1,m2, l1, k2)

)

∈ Tδ(Q) are jointly typical. The decoder returns the message m2 corresponding to the block b2 and

the sequence V n
b1

∈ Vn drawn from the conditional probability QV |YW1W2
depending on sequences

(
Y n
b1
,W n

1 (m1, l0, k1),W
n
2 (m1, l0, k1,m2, l1, k2)

)
. The decoder knows that over the first block b1, the se-

quence Sn
b1

belongs to the bin l1. The sequences
(
Sn
b1
,W n

1 (m1, l0, k1),W
n
2 (m1, l0, k1,m2, l1, k2),X

n
b1
, Y n

b1
, V n

b1

)
∈

Tδ(Q) and
(
Sn
b2
,W n

1 (m2, l1, k2),W
n
2 (m2, l1, k2,m3, l2, k3),X

n
b2
, Y n

b2
, V n

b2

)
∈ Tδ(Q) are jointly typical.

Last block at the encoder. At the beginning of the last block B, the encoder recalls W n
1 (mB−1,

observes message mB, finds the index lB−1 such that sequences
(
Sn
B−1, S

n(lB−1, jB−1)
)
∈ Tδ(Q) are

jointly typical. It finds the index kB such that sequences
(
Sn
B−1,W

n
1 (mB−1, lB−2, kB−1),W

n
2 (mB−1, lB−2,

kB−1,mB , lB−1, kB)
)
∈ Tδ(Q) are jointly typical. The encoder sends the sequence Xn

B drawn from the

conditional probability distribution QX|SW1
depending on the sequences

(
Sn
B ,W

n
1 (mB , lB−1, kB)

)
.

Last block at the decoder. At the end of the last block B, the decoder finds

the triple of indexes (mB , lB−1, kB) such that
(
Y n
B ,W n

1 (mB , lB−1, kB)
)

∈ Tδ(Q) and
(
Y n
B−1,W

n
1 (mB−1, lB−2, kB−1),W

n
2 (mB−1, lB−2, kB−1,mB , lB−1, kB)

)
∈ Tδ(Q) are jointly typi-

cal. The decoder returns the message mB corresponding to the last block B and the se-

quence V n
B−1 ∈ Vn drawn from the conditional probability QV |YW1W2

depending on se-

quences
(
Y n
B−1,W

n
1 (mB−1, lB−2, kB−1),W

n
2 (mB−1, lB−2, kB−1,mB , lB−1, kB)

)
. The decoder knows

that over the block B − 1, the sequence Sn
B−1 belongs to the bin lB−1. The sequences

(
Sn
B−1,W

n
1 (mB−1, lB−2, kB−1),W

n
2 (mB−1, lB−2, kB−1,mB , lB−1, kB),X

n
B−1, Y

n
B−1, V

n
B−1

)
∈ Tδ(Q)

are jointly typical but the sequences (Sn
B ,W

n
1,B,W

n
2,B ,X

n
B , Y

n
B , V n

B ) /∈ Tδ(Q) are not jointly typical

on the last block B. The decoder does not know the index lB of the bin corresponding to sequence Sn
B.

In the following, we introduce the notation W n
1,b = W n

1 (mb, lb−1, kb) and W n
2,b =

W n
2 (mb, lb−1, kb,mb+1, lb, kb+1), with b ∈ {1, . . . , B − 1}. If there is no error in the coding scheme,

the messages (m2, . . . ,mB) are correctly decoded and the decoder knows the bin indexes (l1, . . . , lb−1)

of the sequences (Sn
1 , . . . , S

n
b−1). The sequences (Sn

b ,W
n
1,b,W

n
2,b,X

n
b , Y

n
b , V n

b ) ∈ Tδ(Q) are jointly typical

for each blocks b ∈ {1, . . . , B − 1}.
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B. Rate parameters R, RL and RK

1) At the end of block b ∈ {2, . . . B}, the decoder observes (Y n
b−1, Y

n
b ) and decodes the sequences

(W n
1,b−1,W

n
2,b−1) corresponding to the block b − 1. Intuitively, the observation of the sequences

(W n
1,b−1,W

n
2,b−1, Y

n
b−1) leaks n · I(S;W1,W2, Y ) = n · I(S;W2, Y |W1) bits of information regarding

sequence Sn
b−1. By fixing the rate parameter RL = E − I(S;W1,W2, Y ), the encoder will transmit

n · RL = n ·
(
E − I(S;W1,W2, Y )

)
additional bits of information corresponding to the state sequence

Sn
b−1. As it will be proven in the Section A-F, the leakage rate I(Sn

b−1;Y
n
b−1) over block b− 1 is close

to n ·
(
I(S;W1,W2, Y ) + E − I(S;W1,W2, Y )

)
= n · E. We fix the rate parameter RL equal to:

RL =E − I(S;W1,W2, Y )− 2ε ≥ 0. (61)

The first inequality I(S;W1,W2, Y ) ≤ E in (59) implies there exists a positive rate parameter RL. In

case of equality E = I(S;W1,W2, Y ), then the rate RL = 0 and no index l ∈ ML is transmitted to the

decoder.

2) The rates parameters RL, RJ corresponding to the indexes (lb−1, jb−1), guarantee that almost every

sequences Sn
b−1 appear in the codebook.

RL + RJ =H(S) + ε, (62)

=⇒ RJ =H(S)− E + I(S;W1,W2, Y ) + 3ε. (63)

The second inequality E ≤ H(S) in (59) implies there exists a positive rate parameter RJ.

3) The rates parameter RK corresponding to the index kb, is used by the encoder in order to correlate

the sequences
(
W n

1 (mb−1, lb−2, kb−1),W
n
2 (mb−1, lb−2, kb−1,mb, lb−1, kb)

)
with the sequence of states

Sn
b−1.

RK =I(W2;S|W1) + ε, (64)

Since the random variables W1 and S are independent, we have I(W1,W2;S) = I(W2;S|W1).

4) The rate parameters R , RL , RK are correctly decoded if:

R + RL + RK ≤ I(W1;Y ) + I(W2;Y |W1)− ε, (65)

⇐⇒R + E − I(S;W1,W2, Y )− 2ε+ I(W2;S|W1) + ε ≤ I(W1,W2;Y )− ε, (66)

⇐⇒R + E ≤ I(W1,W2, S;Y ) (67)

⇐⇒R + E ≤ I(W1, S;Y ), (68)

where (67) comes from the independence between X and S; (68) comes from the Markov chain Y −
−

(W1, S)−
−W2 stated in Remark II.4.

December 17, 2018 DRAFT



20

Equation (60) implies that for each block b ∈ {2, . . . B}, the indexes with rates R , RL , RK are

recovered by the decoder, with large probability. Hence the rate of the total code of length N = n ·B is

given by:

1

n ·B
·

B∑

b=2

log2 |M| =
B − 1

B
· R = R −

1

B
· R ≥ R −

1

B
· log2 |Y| ≥ R − ε. (69)

The last equation is satisfied when the number of blocks is sufficiently large: 1
B
· log2 |Y| ≤ ε.

C. Case of equality in the information constraints of Theorem II.3

The choice of rate parameters (R,RL,RK) is based on the implicit assumption that the information

constraint (10) of Theorem II.3 is strictly positive I(W1,W2;Y )− I(W2;S|W1) > 0. Hence, there exists

a rate RK > 0 such that I(W1,W2;Y ) − I(W2;S|W1) > RK > 0 the above coding scheme works

correctly.

Now assume that I(W1,W2;Y )−I(W2;S|W1) = 0, in that case no additional rates as R = 0, RL = 0

can be transmitted and we have to choose the coordination rate RK depending on whether the channel

capacity is zero or strictly positive.

1) First case, the channel capacity with causal state information is strictly positive:

maxPW1 ,PX|W1S
I(W1;Y ) > 0 (stated pp. 176 in [34]), hence the channel is not trivial, and it is

possible to send some reliable information RK > 0. We denote by P⋆
W1

, P⋆
X|W1S

the distributions

that achieves the maximum. We consider the product of probability distributions Q⋆
SW1W2XY V =

PSP
⋆
W1

PW2
P⋆
X|W1S

TY |XSQV , with V independent of random variables (S,W1,W2,X, Y ) and W2

independent of (S,W1), hence I(W2;S|W1) = 0. The corresponding information constraint is strictly

positive:

I(W1,W2;Y )− I(W2;S|W1) = I(W1,W2;Y ) ≥ I(W1;Y ) > 0. (70)

We define the convex combination Qn
SW1W2XY V between the target distribution QSW1W2XY V and the

distribution Q⋆
SW1W2XY V with:

Qn(s,w1, w2, x, y, v) =
1

n
·

(
(n− 1) · Q(s,w1, w2, x, y, v) +Q⋆(s,w1, w2, x, y, v)

)
,

∀ (s,w1, w2, x, y, v). (71)

The distribution Qn
SW1W2XY V converges to the target QSW1W2XY V as n goes to infinity. By concavity, the

information constraint IQn(W1,W2;Y )− IQn(W2;S|W1) > 0 corresponding to any convex combination

Qn
SW1W2XY V is strictly positive and we can construct a coding scheme as described in Section A with
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parameter RK such that I(W1,W2;Y )− ε > RK > I(W2;S|W1) + ε.

2) Second case, the channel capacity is equal to zero: maxPW1 ,PX|W1S
I(W1;Y ) = 0 and no information

RK = 0 can be transmitted to the decoder. Hence, the following mutual informations are all equal to

zero:

0 = max
PW1 ,PX|W1S

I(W1;Y ) (72)

≥I(W1;Y ) (73)

=I(W2;S|W1)− I(W2;Y |W1) (74)

=I(W2;S|W1, Y ) ≥ 0, (75)

where (72) comes from the hypothesis of zero channel capacity; (73) comes from the fact that the

decomposition of the target distribution QSW1W2XY V = PSQW1
QW2|SW1

QX|SW1
TY |XSQV |YW1W2

involves the probability distributions QW1
,QX|W1S ; (74) comes from the hypothesis: the information

constraint (10) is equal to zero: I(W1;Y ) + I(W2;Y |W1) − I(W2;S|W1) = 0; (75) comes from the

Markov chain W2 −
− (W1, S) −
− Y ⇐⇒ I(W2;Y |W1, S) = 0 that is due to the following equations

valid for all (s,w1, w2, x, y):

P(y|s,w1, w2) =
∑

x

P(x|s,w1, w2) · P(y|x, s, w1, w2) (76)

=
∑

x

P(x|s,w1) · P(y|x, s) = P(y|s,w1), (77)

=⇒ I(W2;S|W1)− I(W2;Y |W1) =I(W2;S|W1)− I(W2;Y |W1) + I(W2;Y |S,W1) (78)

=I(W2;S, Y |W1)− I(W2;Y |W1) = I(W2;S|W1, Y ). (79)

Equation (77) comes from the two Markov chains W2−
− (W1, S)−
−X and Y −
− (X,S)−
− (W1,W2).

Since by hypothesis the channel capacity is zero, we have: 0 = maxPW1 ,PX|W1S
≥ I(W2;S|W1, Y ) = 0.

Hence, we have the two following Markov chains:

W2 −
− (W1, S)−
− Y ⇐⇒I(W2;Y |W1, S) = 0, (80)

W2 −
− (W1, Y )−
− S ⇐⇒I(W2;S|W1, Y ) = 0. (81)

Definition A.1 (Connected components of the auxiliary graph) We define a graph G associated to

the joint probability distribution PXY Z ∈ ∆(X × Y × Z).

The vertices v ∈ V are the pairs of symbols v = (x, y) such that P(x, y) > 0.

There is an edge e = (v1, v2) ∈ E between two vertices v1 = (x1, y1) and v2 = (x2, y2) if the first
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component x1 = x2 or the second component y1 = y2 are equal.

Two vertices v1 = (x1, y1), v2 = (x2, y2) belong to the same connected component of the graph G if

there exists a path from v1 = (x1, y1) to v2 = (x2, y2).

We denote by W3 the set of connected components w3 ∈ W3 of the graph G.

For each symbol w1 ∈ W1, we define a graph Gw1
as in Definition A.1, where the vertices v are

the pairs of symbols v = (s, y) such that Q(s, y|w1) > 0. There is an edge e = (v1, v2) between two

vertices v1 = (s1, y1) and v2 = (s2, y2) if the first component s1 = s2 or the second component y1 = y2

are equal. Two vertices v1 = (s1, y1), v2 = (s2, y2) belong to the same connected component w3 ∈ W3

of the graph Gw1
if there exists a path from v1 = (s1, y1) to v2 = (s2, y2). Even the channel has zero

capacity, the decoder when receiving Y , can infer some information about the channel state S. The notion

of connected component captures the compatibility between the channel states S and the channel outputs

Y .

We consider any pair of symbols (s1, y1) ∈ w3 and (s2, y2) ∈ w3 that belong to the same connected

component w3 ∈ W3 of the associated graph Gw1
of definition A.1. By Lemma 1, the two Markov chains

(80) and (81) imply that the conditional probability distribution of w2 ∈ W2 are equal:

Q(w2|w1, s1, y1) =Q(w2|w1, s2, y2) = Q(w2|w1, w3), ∀ w2 ∈ W2. (82)

Hence the conditional probability Q(w2|w1, s, y) is constant for any pair of symbols (s, y) ∈ w3 that

belong to the same connected component w3 ∈ W3 of the graph Gw1
. This defines a conditional

probability distribution Q(w2|w1, w3) depending on the connected component w3 ∈ W3 of the graph

Gw1
instead of depending on the symbols (s, y). Assume that Q(w1, s, y) > 0 and (s, y) ∈ w3, then we

have:

Q(w2|w1, s, y) = Q(w2|w1, s) = Q(w2|w1, y) = Q(w2|w1, w3), ∀ w2 ∈ W2. (83)

Hence the conditional probability Q(w2|w1, s) of the target probability distribution (84) can be replaced

by Q(w2|w1, w3) where the connected component w3 depends on the pair of symbol (s, y).

PSQW1
QW2|SW1

QX|SW1
TY |XSQV |YW1W2

, (84)

PSQW1
QX|SW1

TY |XS1{W3 = h(Y )}QW2|W1W3
Q(w2|w3, w1)QV |Y W1W2

. (85)

The distribution stated in equation (85) is achievable using a trivial coding strategy that does not require

an exchange of information RK = 0:

Codebook. We generate a jointly typical sequence W n
1 ∈ Tδ(Q̃) that is known by both the encoder and

the decoder.
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Encoder. At stage i ∈ {1, . . . , n}, the encoder observes the symbol Si, recalls the sequence W n
1 and

generates a symbol Xi using the conditional distribution QX|SW1
.

Decoder. The decoder observes the sequence of channel output Y n, recalls the pre-defined sequence W n
1

and deduces the sequence of connected components W n
3 . Then, it generates the sequence W n

2 using the

distribution QW2|W1W3
and the sequence V n using the distribution QV |W1W2Y .

Without transmission of information, the target distribution

PSQW1
QX|SW1

TY |XS1{W3 = h(Y )}QW2|W1W3
QV |YW1W2

(86)

is achievable.

Lemma 1 (Two Markov chains) We consider a joint probability distribution P(x, y, z) ∈ ∆(X × Y ×

Z). Assume that the two following Markov chains are satisfied:

Z −
− Y −
−X, Z −
−X −
− Y. (87)

Then, for any pair of symbols (x1, y1) ∈ w3 and (x2, y2) ∈ w3 that belong to the same connected

component w3 ∈ W3 of the graph G of definition A.1, we have equal conditional probability distribution:

P(z|x1, y1) =P(z|x2, y2), ∀z ∈ Z. (88)

In particular, if there exists a unique connected component w3 = W3 in the graph G, i.e. the graph G

is connected, then the random variable Z is independent of (X,Y ) and we have I(Z;X,Y ) = 0.

Proof. [Lemma 1] Consider two pairs of symbols (x1, y1) and (x2, y2) with strictly positive probability

P(x1, y1) > 0 and P(x2, y2) > 0, that belong to the same connected component w3 ∈ W3 of the graph

G. For simplicity, we assume that the path connecting (x1, y1) and (x2, y2) passes through (x1, y2).

Hence, for any symbol z ∈ Z , we have the following equations:

P(z|x1, y1) =P(z|x1) = P(z|x1, y2) (89)

=P(z|y2) = P(z|x2, y2). (90)

Equation (89) comes from the Markov chain Z −
−X −
− Y and the hypothesis of connected graph that

insures P(x1, y2) > 0. Otherwise, the pair (x1, y2) is not associated with a vertex v ∈ V of the graph G.

Equation (90) comes from the Markov chain Z −
− Y −
−X and the hypothesis of positive probability

P(x2, y2) > 0.

If there is a unique connected component in the graph G, then for all pair of vertices v1 = (x1, y1)

and v2 = (x2, y2) with positive probability P(x1, y1) > 0 and P(x2, y2) > 0, the conditional probability

distribution P(z|x1, y1) = P(z|x2, y2) is equal. Hence, for any triple of symbols (x, y, z), the conditional
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distribution satisfies P(z|x, y) = P(z) and Z is independent of the pair (X,Y ), I(Z;X,Y ) = 0. This

concludes the proof of Lemma 1.

D. Expected error probability by block

For each block b ∈ {2, . . . , B}, we consider the expected probability of the following error events.

The properties of the typical sequences, stated pp. 27, in [34], implies that there exists n1 ∈ N such that

for all n ≥ n1, the expected probability of the error event is bounded by ε:

Ec

[
P

(
Sn
b−1 /∈ Tδ(Q)

)]
≤ ε. (91)

From the covering Lemma, stated pp. 208, in [34], equation (62),

RL + RJ ≥H(S) + ε,

implies that ∃n2 ∈ N such that ∀n ≥ n2, the expected probability of the error event is bounded by ε > 0:

Ec

[
P

(
∀(Lb−1, Jb−1) ∈ ML ×MJ, (Sn(Lb−1, Jb−1), S

n
b−1) /∈ Tδ

)]
≤ ε. (92)

From the covering Lemma, stated pp. 208, in [34], equation (64),

RK ≥I(W2;S|W1) + ε,

implies that ∃n3 ∈ N such that ∀n ≥ n3, the expected probability of the error event is bounded by ε > 0:

Ec

[
P

(
∀Kb ∈ MK, (S

n
b−1,W

n
1 (Mb−1, Lb−2,Kb−1),W

n
2 (Mb−1, Lb−2,Kb−1,Mb, Lb−1,Kb)) /∈ Tδ(Q)

)]
≤ ε.

(93)

From the packing Lemma, stated pp. 46, in [34], equation (65),

R + RL + RK ≤I(W1;Y ) + I(W2;Y |W1)− ε,

implies that ∃n4 ∈ N such that ∀n ≥ n4, the expected probability of the error event is bounded by ε > 0:

Ec

[
P

(
∃(Mb, Lb−1,Kb) 6= (M ′

b, L
′
b−1,K

′
b), s.t.

{
(Y n

b ,W n
1 (M

′
b, L

′
b−1,K

′
b)) ∈ Tδ(Q)

}
∩ (94)

{
(Y n

b−1,W
n
1 (Mb−1, Lb−2,Kb−1),W

n
2 (Mb−1, Lb−2,Kb−1,M

′
b, L

′
b−1,K

′
b)) ∈ Tδ(Q)

})]
≤ ε. (95)

For each block b ∈ {2, . . . , B} and for all n ≥ n̄ ≥ max(n1, n2, n3, n4), the expected probability of

non-decoding the indexes (Mb, Lb−1,Kb) is bounded by:

Ec

[
P

(
(Mb, Lb−1,Kb) 6= (M̂b, L̂b−1, M̂b)

)]
≤4ε. (96)
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E. Expected error probability of the block-Markov code

We evaluate the expected probability of error for the random indexes (Mb, Lb−1,Kb), for b ∈

{2, . . . , B} of the block-Markov random code:

Ec

[
P

((
M2, L1,K2 . . . ,MB , LB−1,KB

)
6=

(
M̂2, L̂1, K̂2, . . . , M̂B , L̂B−1, K̂B

))]
(97)

=1− Ec

[
P

(
(M2, L1,K2) = (M̂2, L̂1, K̂2)

)]
× . . .

×Ec

[
P

(
(MB , LB−1,KB) = (M̂B , L̂B−1, K̂B)

∣∣∣
{
(M2, L1,K2) = (M̂2, L̂1, K̂2)

}
(98)

∩ . . . ∩
{
(MB−1, LB−2,KB−1) = (M̂B−1, L̂B−2, K̂B−1)

})]
≤ 1−

(
1− 4ε

)B−1

. (99)

We denote by Q̃N ∈ ∆(S × X × Y × V), the empirical distribution of symbols over every blocs

b ∈ {1, . . . , B − 1} removing the last bloc. We show Q̃N is close to the empirical distribution QN over

all the B blocks, for a number of blocks B ∈ N sufficiently large, i.e. for which 2
B
· |S ×X ×Y×V| ≤ ε.

We denote by QB , the empirical distribution of symbols over the last bloc.
∣∣∣
∣∣∣QN − Q̃N

∣∣∣
∣∣∣
1
=
∣∣∣
∣∣∣ 1
B

·
(
(B − 1) · Q̃N +QB

)
− Q̃N

∣∣∣
∣∣∣
1

(100)

=
1

B
·
∣∣∣
∣∣∣QB − Q̃N

∣∣∣
∣∣∣
1
≤

2

B
·
∣∣∣S × X × Y × V

∣∣∣ ≤ ε. (101)

Then, the expected probability that the sequences (SN ,WN
1 ,WN

2 ,XN , Y N , V N ) /∈ Tδ(Q) are not jointly

typical, is upper bounded by:

Ec

[
P

(∣∣∣
∣∣∣QN −Q

∣∣∣
∣∣∣
1
≥ 2ε

)]
= Ec

[
P

(∣∣∣
∣∣∣QN − Q̃N + Q̃N −Q

∣∣∣
∣∣∣
1
≥ 2ε

)]

≤Ec

[
P

(∣∣∣
∣∣∣QN − Q̃N

∣∣∣
∣∣∣+

∣∣∣
∣∣∣Q̃N −Q

∣∣∣
∣∣∣
1
≥ 2ε

)]
≤ Ec

[
P

(∣∣∣
∣∣∣Q̃N −Q

∣∣∣
∣∣∣
1
≥ 2ε−

2

B
·
∣∣∣S × X × Y × V

∣∣∣
)]

≤Ec

[
P

(∣∣∣
∣∣∣Q̃N −Q

∣∣∣
∣∣∣
1
≥ ε

)]
≤ 1−

(
1− 4ε

)B−1

. (102)

Hence, we obtain the following bound on the expected error probability:

Ec

[
Pe(c)

]
=Ec

[
P

(
M 6= M̂

)
+ P

(∣∣∣
∣∣∣Qn −Q

∣∣∣
∣∣∣
1
≥ ε

)]
≤ 2− 2 ·

(
1− 4ε

)B−1

. (103)

This implies the existence of a code c⋆ ∈ C(N) with an error probability below 2− 2 ·

(
1− 4ε

)B−1

for

all N ≥ B · n̄.

F. Expected state leakage rate

In this section, we provide an upper and a lower bound on the expected state leakage rate, depending

on the parameters ε1 and ε2 given by equations (144) and (145).

E − ε1 − ε2 ≤ Ec

[
Le(c)

]
= Ec

[
1

n · B
· I(SnB;Y nB|C = c)

]
=

1

n ·B
· I(SnB;Y nB|C) ≤ E + ε1 + ε2. (104)
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Notation SnB denotes the sequence of random variables of channel states of length N = n ·B, whereas

Sn
b denotes the sub-sequence of length n ∈ N over the block b ∈ {1, . . . , B}.

Upper bound. We provide an upper bound on the expected state leakage rate by considering the chain

rule, from one block to another.

I(SnB ;Y nB|C) ≤
B−1∑

b=b1

I(Sn
b ;Y

nB |Sn
b+1, . . . , S

n
B , C) + n · log2 |S| (105)

≤
B−1∑

b=b1

I(Sn
b ;Y

nB ,W n
1,b,W

n
2,b, Lb,Mb+1, S

n
b+1, . . . , S

n
B |C) + n · log2 |S| (106)

=

B−1∑

b=b1

I(Sn
b ;W

n
1,b,W

n
2,b, Y

n
b , Lb,Mb+1|C) + n · log2 |S|

+

B−1∑

b=b1

I(Sn
b ;S

n
b+1, . . . , S

n
B |W

n
1,b,W

n
2,b, Y

n
b , Lb,Mb+1, C) (107)

+

B−1∑

b=b1

I(Sn
b ;Y

nB |W n
1,b,W

n
2,b, Y

n
b , Lb,Mb+1, S

n
b+1, . . . , S

n
B , C) (108)

=

B−1∑

b=b1

I(Sn
b ;W

n
1,b,W

n
2,b, Lb,Mb+1|C) +

B−1∑

b=b1

I(Sn
b ;Y

n
b |W n

1,b,W
n
2,b, Lb,Mb+1, C) + n · log2 |S|. (109)

The term at line (107) is equal to zero since the strictly causal encoding and the i.i.d. property of the

channel state, imply that the random variables (Sn
b+1, . . . , S

n
B) are independent of the message Mb+1

and of the random variables (Sn
b ,W

n
1,b,W

n
2,b, Y

n
b , Lb) of the previous block b, and the term at line (108)

is equal to zero since in the encoding process, the sequence Sn
b only affects the choice of the bin

index Lb and of the sequences (W n
1,b,W

n
2,b, Y

n
b ) of the current block b. This induces the following

Markov chain: Sn
b −
− (W n

1,b,W
n
2,b, Y

n
b , Lb, C)−
− (Y nB,Mb+1, S

n
b+1, . . . , S

n
B), that is valid for each block

b ∈ {1, . . . , B − 1}. The sequence Sn
b is correlated with the random variables of the other blocks b′ 6= b

only through (W n
1,b,W

n
2,b, Y

n
b , Lb, C).

For each block b ∈ {1, . . . , B − 1}, the first term in equation (109) satisfies:

I(Sn
b ;W

n
1,b,W

n
2,b, Lb,Mb+1|C) = I(Sn

b ;W
n
2,b, Lb|W

n
1,b,Mb+1, C) (110)

≤H(W n
2,b, Lb|W

n
1,b,Mb+1, C) ≤ log2 |ML|+H(W n

2,b|W
n
1,b, Lb,Mb+1, C) (111)

≤ log2 |ML|+ log2 |MK| = n

(
E − I(S;W1,W2, Y )− 2ε+ I(S;W2|W1) + ε

)
(112)

=n

(
E − I(S;Y |W1,W2)− ε

)
, (113)

where (110) comes from the strictly causal encoding that induces the independence between the sequence

auxiliary random variables W n
1,b and the sequence of channel states Sn

b , in block b ∈ {1, . . . , B − 1}.
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Hence Sn
b is independent of (W n

1,b,Mb+1, C); (111) comes from the cardinality of the set of indexes

ML; (112) comes from the coding scheme described in Section A. By considering a fixed sequence W n
1,b

and fixed indexes (Lb,Mb+1), the encoder chooses an index Kb+1 ∈ MK corresponding to the sequence

W n
2,b. Hence, the sequence W n

2,b belongs to the bin of cardinality |MK|. The rate parameters are given

by RL = E − I(S;W1,W2, Y ) − 2ε and RK = I(W2;S|W1) + ε; (113) comes from the independence

between W1 and S that induces I(S;W2|W1) = I(S;W1,W2).

For each block b ∈ {1, . . . , B − 1}, we introduce the random event of error Eb ∈ {0, 1} defined with

respect to the achievable joint probability distribution QSXW1W2Y V , as follows:

Eb =

{
0 if (Sn

b ,X
n
b ,W

n
1,b,W

n
2,b, Y

n
b , V n

b ) ∈ Tδ(Q) and (M̂b+1, L̂b, K̂b+1) = (Mb+1, Lb,Kb+1),

1 if (Sn
b ,X

n
b ,W

n
1,b,W

n
2,b, Y

n
b , V n

b ) /∈ Tδ(Q) or (M̂b+1, L̂b, K̂b+1) 6= (Mb+1, Lb,Kb+1).

(114)

The second term in equation (109) satisfies:

I(Sn
b ;Y

n
b |W n

1,b,W
n
2,b, Lb,Mb+1, C)

=H(Y n
b |W n

1,b,W
n
2,b, Lb,Mb+1, C)−H(Y n

b |Sn
b ,W

n
1,b,W

n
2,b, Lb,Mb+1, C) (115)

=H(Y n
b |W n

1,b,W
n
2,b, Lb,Mb+1, C)− n ·H(Y |W1,W2, S) (116)

≤H(Y n
b |W n

1,b,W
n
2,b, Lb,Mb+1, C,Eb = 0) + 1 + P(Eb = 1) · n · log2 |Y| − n ·H(Y |W1,W2, S) (117)

≤n

(
H(Y |W1,W2) + ε

)
+ 1 + P(Eb = 1) · n · log2 |Y| − n ·H(Y |W1,W2, S) (118)

=n

(
I(S;Y |W1,W2) + ε+

1

n
+ P(Eb = 1) · log2 |Y|

)
, (119)

where (115) comes from the properties of the mutual information; (116) comes from the cascade of

memoryless channels QX|W1STY |XS of the coding scheme C coding scheme described in Section A,

that implies H(Y n
b |Sn

b ,W
n
1,b,W

n
2,b, Lb,Mb+1, C) = n · H(Y |W1, S) = n · H(Y |W1,W2, S); (117) is

inspired by the proof of Fano’s inequality, stated pp. 19, in [34]; (118) comes from the bound on the

cardinality of the set of sequences yn ∈ Tδ(w
n
1 , w

n
2 ) that are jointly typical with sequences (wn

1 , w
n
2 ), as

mentioned pp. 26, in [34]. This is possible since no error occurs Eb = 0; (119) comes from the properties

of the mutual information.

Hence we have the following upper bound on the leakage rate:

n · B · Ec

[
Le(c)

]
≤

B−1∑

b=b1

I(Sn
b ;W

n
1,b,W

n
2,b, Lb,Mb+1|C) +

B−1∑

b=b1

I(Sn
b ;Y

n
b |W n

1,b,W
n
2,b, Lb,Mb+1, C) + n · log2 |S|

≤n · B ·

(
E − I(S;Y |W1,W2)− ε+ I(S;Y |W1,W2) + ε+

1

n
+ P(Eb = 1) · log2 |Y|+

1

B
· log2 |S|

)
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≤n · B ·

(
E +

1

n
+ P(Eb = 1) · log2 |Y|+

1

B
· log2 |S|

)
.

Lower bound. We provide a lower bound on the expected state leakage rate.

n · B · Ec

[
Le(c)

]
= I(SnB ;Y nB |C) = n ·B ·H(S)−H(SnB |Y nB, C) (120)

≥n · B ·H(S)− P(Eb = 1) · n ·B · log2 |S| − 1−H(SnB|Y nB, C,Eb = 0) (121)

≥n · B ·H(S)− P(Eb = 1) · n ·B · log2 |S| − 1−
B−1∑

b=b1

H(Sn
b |Y

nB, Sn
b+1, . . . , S

n
B, C,Eb = 0)− n · log2 |S|

(122)

=n · B ·H(S)−
(
P(Eb = 1) · B + 1

)
· n · log2 |S| − 1

−
B−1∑

b=b1

H(Sn
b |W

n
1,b,W

n
2,b, Lb, Y

nB, Sn
b+1, . . . , S

n
B, C,Eb = 0)

−
B−1∑

b=b1

I(Sn
b ;W

n
1,b,W

n
2,b, Lb|Y

nB, Sn
b+1, . . . , S

n
B, C,Eb = 0) (123)

=n · B ·H(S)−
(
P(Eb = 1) · B + 1

)
· n · log2 |S| − 1−

B−1∑

b=b1

H(Sn
b |W

n
1,b,W

n
2,b, Lb, Y

nB , Sn
b+1, . . . , S

n
B , C,Eb = 0)

(124)

≥n · B ·H(S)−
(
P(Eb = 1) · B + 1

)
· n · log2 |S| − 1−

B−1∑

b=b1

H(Sn
b |W

n
1,b,W

n
2,b, Lb, Y

n
b , Eb = 0),

(125)

where (120) comes from the i.i.d. property of the channel states S; (121) is inspired by the proof of

Fano’s inequality, stated pp. 19, in [34]; (124) comes from the non-error event Eb = 0, that implies for all

block b ∈ {1, . . . , B− 1}, the sequences (W n
1,b,W

n
2,b, Lb) are correctly decoded based on the observation

of Y nB . Hence we have I(Sn
b ;W

n
1,b,W

n
2,b, Lb|Y

nB , Sn
b+1, . . . , S

n
B , C,Eb = 0) = 0; (125) comes from

removing the conditioning over the sequences (Y n
b1
, . . . , Y n

b−1, Y
n
b+1, . . . , Y

n
B , Sn

b+1, . . . , S
n
B , C) and the

random code in the conditional entropy H(Sn
b |W

n
1,b,W

n
2,b, Lb, Y

n
b , Eb = 0).

In order to provide an upper bound on H(Sn
b |W

n
1,b,W

n
2,b, Lb, Y

n
b , Eb = 0), we fix an index l ∈ ML,

some typical sequences (wn
1 , w

n
2 , y

n) ∈ Tδ. We consider the set S⋆(wn
1 , w

n
2 , y

n, l) of sequences sn ∈ Sn

that are jointly typical with (wn
1 , w

n
2 , y

n) and that belong to the bin with index l ∈ ML, denoted by B(l).

S⋆(wn
1 , w

n
2 , y

n, l) =

{
sn ∈ Sn, s.t.

{
(sn, wn

1 , w
n
2 , y

n) ∈ Tδ

}
∩
{
sn ∈ B(l)

}}
(126)
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Since the code C is random, the above set S⋆(wn
1 , w

n
2 , y

n, l) is a random set and its expected cardinality

satisfies:

Ec

[∣∣∣S⋆(W n
1 ,W

n
2 , Y

n, L)
∣∣∣
]
= Ec

[∣∣∣∣
{
sn ∈ Sn, s.t.

{
(Sn,W n

1 ,W
n
2 , Y

n) ∈ Tδ

}
∩
{
Sn ∈ B(L)

}}∣∣∣∣

]

(127)

=
∑

Sn∈Tδ(Wn
1 ,Wn

2 ,Y n)

Ec

[
1

{
Sn ∈ B(L)

}]
(128)

≤
∑

Sn∈Tδ(Wn
1 ,Wn

2 ,Y n)

2−n·RL ≤ 2n·(H(S|W1,W2,Y )−RL+ε). (129)

Equation (129) comes from the definition of the random code that induces a uniform probability

distribution over the bins B(l) and the properties of the typical sequences stated pp. 27, in [34].

By Markov’s inequality, we have the following equation that is valid for all index l ∈ ML and for all

typical sequences (wn
1 , w

n
2 , y

n) ∈ Tδ:

P

[∣∣∣S⋆(W n
1 ,W

n
2 , Y

n, L)
∣∣∣ ≥ 2n·(H(S|W1,W2,Y )−RL+2ε)

]
≤

Ec

[∣∣∣S⋆(W n
1 ,W

n
2 , Y

n, L)
∣∣∣
]

2n·(H(S|W1,W2,Y )−RL+2ε)
(130)

≤
2n·(H(S|W1,W2,Y )−RL+ε)

2n·(H(S|W1,W2,Y )−RL+2ε)
≤ 2−nε ≤ ε. (131)

The last equation is valid for n ≥ n5. For each block b ∈ {1, . . . , B − 1} we introduce the following

random event:

Fb =





1 if
∣∣S⋆(W n

1,b,W
n
2,b, Y

n
b , Lb)

∣∣ ≥ 2n·(H(S|W1,W2,Y )−RL+2ε),

0 if
∣∣S⋆(W n

1,b,W
n
2,b, Y

n
b , Lb)

∣∣ < 2n·(H(S|W1,W2,Y )−RL+2ε).

(132)

For each block b ∈ {b1, . . . , B − 1} we have:

H(Sn
b |W

n
1,b,W

n
2,b, Y

n
b , Lb, Eb = 0)

≤1 + P(Fb = 1) · n · log2 |S|+H(Sn
b |W

n
1,b,W

n
2,b, Y

n
b , Lb, Eb = 0, Fb = 0) (133)

≤1 + ε · n · log2 |S|+H(Sn
b |W

n
1,b,W

n
2,b, Y

n
b , Lb, Eb = 0, Fb = 0) (134)

≤1 + ε · n · log2 |S|+ log2 2
n·(H(S|W1,W2,Y )−RL+2ε) (135)

=n ·

(
H(S|W1,W2, Y )− RL +

1

n
+ ε · log2 |S|+ 2ε

)
(136)

=n ·

(
H(S|W1,W2, Y )− E + I(S;W1,W2, Y ) + 2ε+

1

n
+ ε · log2 |S|+ 2ε

)
(137)

=n ·

(
H(S)− E +

1

n
+ ε · log2 |S|+ 4ε

)
, (138)
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where (133) is inspired by the proof of Fano’s inequality, stated pp. 19, in [34]; (134) comes from

equation (131), that corresponds to P(Fb = 1) ≤ ε; (135) comes from the definition of event Fb = 0,

that implies the set S⋆(wn
1 , w

n
2 , y

n, l) has cardinality bounded by 2n·(H(S|W1,W2,Y )−RL+2ε); (137) comes

from the definition of the rate RL = E − I(S;W1,W2, Y )− 2ε stated in equation (61).

This provides the following lower bound:

n · B · Ec

[
Le(c)

]

≥n · B ·H(S)−
(
P(Eb = 1) · B + 1

)
· n · log2 |S| − 1−

B−1∑

b=b1

H(Sn
b |W

n
1,b,W

n
2,b, Y

n
b , Eb = 0) (139)

≥n · B ·H(S)−
(
P(Eb = 1) · B + 1

)
· n · log2 |S| − 1− (B − 1) · n ·

(
H(S)− E +

1

n
+ ε · log2 |S|+ 4ε

)

(140)

≥n · B ·H(S)−
(
P(Eb = 1) · B + 1

)
· n · log2 |S| − 1−B · n ·

(
H(S)− E +

1

n
+ ε · log2 |S|+ 4ε

)
− n · log2 |S|

(141)

≥n · B ·

(
E −

(
P(Eb = 1) + ε+

2

B

)
· log2 |S| −

2

n · B
− 4ε

)
, (142)

where (139) comes from equation (125); (140) comes from equation (138); (141) comes the lower bound:

n ·
(
H(S)− E +

1

n
+ ε · log2 |S|+ 4ε

)
≥ −n · E ≥ −n · log2 |S|. (143)

Equation (142) provides the lower bound on the expected state leakage rate.

Conclusion for Exact state leakage Rate: We introduce the error parameters ε1 and ε2 defined by

equations (145) and (144). The upper and lower bound on the expected state leakage rate are given by:

Ec

[
Le(c)

]
≤E +

1

n
+max

b
P(Eb = 1) · log2 |Y|+

1

B
· log2 |S| = E + ε2, (144)

Ec

[
Le(c)

]
≥E −

(
max

b
P(Eb = 1) + ε+

2

B

)
· log2 |S| −

2

n · B
− 4ε = E − ε1. (145)

Hence, the expected state leakage rate satisfies:
∣∣∣∣∣Ec

[
Le(c)

]
− E

∣∣∣∣∣ ≤ε1 + ε2. (146)
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G. Conclusion of the achievability proof of Theorem II.3

From equations (69), (103) and (146), we obtain the following equations with ε1 and ε2 defined by

(144) and (145):

1

n · B
·

B∑

b=2

log2 |M| ≥R −
1

B
· log2 |Y|, (147)

Ec

[
Pe(c)

]
≤2− 2 ·

(
1− 4ε

)B−1

, (148)

∣∣∣∣∣Ec

[
Le(c)

]
− E

∣∣∣∣∣ ≤ε1 + ε2. (149)

By choosing the appropriate number of blocks B, error probability maxb P(Eb = 1), length of blocks n

and parameter for typical sequences ε, we prove that there exists a code c⋆ ∈ C(n · B,M) such that:

1

n ·B
·

B∑

b=2

log2 |M| ≥R − ε3, (150)

Pe(c
⋆) ≤ε3, (151)

∣∣∣∣∣Le(c
⋆)− E

∣∣∣∣∣ ≤ε3. (152)

with ε3 =
1
B
· log2 |Y|+2−2 ·

(
1−4ε

)B−1

+ε1+ε2. This concludes the achievability proof of Theorem

II.3.

APPENDIX B

CONVERSE PROOF OF THEOREM II.3

A. Information Constraints

Consider that the triple of rate, state leakage and probability distribution (R,E,Q) is achievable with

a causal code. We introduce the random event of error E ∈ {0, 1} defined with respect to the achievable

joint probability distribution QSXY V , as follows:

E =

{
0 if

∣∣∣∣Qn −Q
∣∣∣∣
1
≤ ε ⇐⇒ (Sn,Xn, Y n, V n) ∈ Tδ(Q),

1 if
∣∣∣∣Qn −Q

∣∣∣∣
1
> ε ⇐⇒ (Sn,Xn, Y n, V n) /∈ Tδ(Q).

(153)
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The event E = 1 occurs if the sequences (Sn,Xn, Y n, V n) /∈ Tδ(Q) are not jointly typical for the target

probability distribution Q. By definition II.1, for all ε > 0, there exists a n̄ such that for all n ≥ n̄, there

exists a code c⋆ ∈ C(n,M) that satisfies the three following equations:

log2 |M|

n
≥R − ε, (154)

∣∣∣∣Le(c
⋆)− E

∣∣∣∣ =
∣∣∣∣
1

n
· I(Sn;Y n)− E

∣∣∣∣ ≤ ε, (155)

Pe(c
⋆) =P

(
M 6= M̂

)
+ P

(∣∣∣
∣∣∣Qn −Q

∣∣∣
∣∣∣
1
≥ ε

)
≤ ε. (156)

We introduce the auxiliary random variables W1,i = (M,Si−1) and W2,i = Y n
i+1 that satisfy the Markov

chains of the set of probability distribution Qe for all i ∈ {1, . . . , n}:

Si independent of W1,i, (157)

Xi −
− (Si,W1,i)−
−W2,i, (158)

Yi −
− (Xi, Si)−
− (W1,i,W2,i), (159)

Vi −
− (Yi,W1,i,W2,i)−
− (Si,Xi), (160)

where (157) comes from the i.i.d. property of the source that induces the independence between Si

and (M,Si−1) = W1,i; (158) comes from Lemma 2. It is a direct consequence of the causal encoding

function and the memoryless property of the channel; (159) comes from the memoryless property of the

channel TY |XS ; (160) comes from Lemma 3. It is a direct consequence of the causal encoding function,

the non-causal decoding function and the memoryless property of the channel TY |XS .

We introduce the random variable T that is uniformly distributed over the indices {1, . . . , n} and the

corresponding mean random variables W1,T , W2,T , ST , XT , YT , VT . The auxiliary random variables

W1 = (W1,T , T ) and W2 = W2,T belong to the set of probability distributions Qe and satisfy the three

information constraints of Theorem II.3:

I(S;W1,W2, Y ) ≤ E ≤ H(S), (161)

R + E ≤ I(W1, S;Y ). (162)

First Constraint:

n · E ≥I(Sn;Y n)− n · ε ≥
n∑

i=1

I(Si;Y
n,M |Si−1)−H(M |Y n)− n · ε (163)

≥
n∑

i=1

I(Si;Y
n,M |Si−1)− n · 2ε (164)

=

n∑

i=1

I(Si;Y
n,M, Si−1)− n · 2ε ≥

n∑

i=1

I(Si;Y
n
i+1,M, Si−1, Yi)− n · 2ε (165)
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=

n∑

i=1

I(Si;W1,i,W2,i, Yi)− n · 2ε (166)

=n · I(ST ;W1,T ,W2,T , YT |T )− n · 2ε (167)

=n · I(ST ;W1,T ,W2,T , YT , T )− n · 2ε (168)

=n ·

(
I(ST ;W1,W2, YT )− 2ε

)
(169)

≥n ·

(
I(ST ;W1,W2, YT |E = 0)− 3ε

)
(170)

≥n ·

(
I(S;W1,W2, Y )− 4ε

)
, (171)

where (163) comes from the definition of achievable state leakage rate E, stated in equation (155); (164)

comes from equation (156) and Fano’s inequality, stated pp. 19, in [34]; (165) comes from the i.i.d.

property of the channel states that implies Si is independent of Si−1; (166) comes from the introduction

of the auxiliary random variables W1,i = (M,Si−1) and W2,i = Y n
i+1, for all i ∈ {1, . . . , n}; (167)

comes from the introduction of the uniform random variable T over {1, . . . , n} and the corresponding

mean random variables ST , W1,T , W2,T , YT ; (168) comes from the independence between T and ST ;

(169) comes from identifying the auxiliary random variablesW1 = (W1,T , T ) and W2 = W2,T ; (170)

comes from the empirical coordination requirement as stated in Lemma 6. The sequences of symbols

(Sn,Xn, Y n, V n) are not jointly typical with small error probability P(E = 1); (171) comes from Lemma

7 since the probability distribution PSTXTYTVT |E=0 is closed to the target probability distribution QSXY V .

The continuity of the entropy function stated pp. 33 in [32] concludes.

Second Constraint:

n · E ≤I(Sn;Y n) + n · ε ≤ H(Sn) + n · ε (172)

=n ·

(
H(S) + ε

)
, (173)

where (172) comes from the definition of the achievable state leakage rate E, stated in equation (155);

(173) comes from the i.i.d. property of the channel states S.

Third Constraint:

n ·

(
E + R

)
≤I(Sn;Y n) +H(M) + n · 2ε (174)

=I(Sn;Y n) + I(M ;Y n) +H(M |Y n) + n · 2ε (175)

≤I(Sn;Y n) + I(M ;Y n) + n · 3ε (176)

≤I(Sn;Y n) + I(M ;Y n|Sn) + n · 3ε (177)
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≤I(Sn,M ;Y n) + n · 3ε (178)

=

n∑

i=1

I(Sn,M ;Yi|Y
n
i+1) + n · 3ε (179)

≤
n∑

i=1

I(Sn,M, Y n
i+1;Yi) + n · 3ε (180)

=

n∑

i=1

I(Si,M, Si−1;Yi) +

n∑

i=1

I(Sn
i+1, Y

n
i+1;Yi|Si,M, Si−1) + n · 3ε (181)

=

n∑

i=1

I(Si,M, Si−1;Yi) + n · 3ε (182)

=

n∑

i=1

I(Si,W1,i;Yi) + n · 3ε (183)

=n · I(ST ,W1,T ;YT |T ) + n · 3ε (184)

≤n · I(ST ,W1,T , T ;YT ) + n · 3ε (185)

≤n ·

(
I(ST ,W1;YT ) + 3ε

)
(186)

≤n ·

(
I(ST ,W1;YT |E = 0) + 4ε

)
(187)

≤n ·

(
I(S,W1;Y ) + 5ε

)
, (188)

where (174) comes from the definition of achievable rate and information leakage (R,E), stated in

equations (154) and (155); (176) comes from equation (156) and Fano’s inequality, stated pp. 19, in

[34]; (177) comes from the independence between the message M and the channel states Sn, hence

I(M ;Y n) ≤ I(M ;Y n, Sn) = I(M ;Y n|Sn); (178), (179), (180), (181) comes from the properties of the

mutual information; (182) comes from the Markov chain Yi −
− (Si,M, Si−1)−
− (Sn
i+1, Y

n
i+1), stated in

Lemma 4. It is a direct consequence of the causal encoding function and the memoryless property of the

channel; (183) comes from the introduction of the auxiliary random variable W1,i = (M,Si−1), for all i ∈

{1, . . . , n}; (184) comes from the introduction of the uniform random variable T over {1, . . . , n} and the

corresponding mean random variables ST , W1,T , YT ; (186) comes from identifying the auxiliary random

variables W1 = (W1,T , T ) and W2 = W2,T ; (187) comes from the empirical coordination requirement as

stated in Lemma 5. The sequences of symbols (Sn,Xn, Y n, V n) are not jointly typical with small error

probability P(E = 1); (188) comes from Lemma 7. The sequences of symbols (Sn,Xn, Y n, V n) are

jointly typical, hence the distribution of the mean random variables PSTXTYTVT |E=0 is closed to the target

probability distribution QSXY V . The continuity of the entropy function stated pp. 33 in [32] concludes.

Conclusion: If the triple of rate, state leakage and probability distribution(R,E,Q) is achievable with
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causal encoding, then the following equations are satisfied for all ε > 0:

I(S;W1,W2, Y )− 4ε ≤ E ≤ H(S) + ε, (189)

R + E ≤ I(S,W1;Y ) + 5ε. (190)

This corresponds to equations (10), (7) and (8) and concludes the converse proof of Theorem II.3.

Remark B.1 For the converse proof of Theorem II.3, the causal encoding is not necessarily deterministic.

The same optimal performances can be obtained by considering stochastic causal encoding.

B. Lemmas for the converse proof with empirical coordination

Lemma 2 The causal encoding function and the memoryless property of the channel induce the Markov

chain property corresponding to equation (158):

Xi −
− (Si,W1,i)−
−W2,i. (191)

This Markov chain is satisfied with W1,i = (M,Si−1) and W2,i = Y n
i+1, for all i ∈ {1, . . . , n}.

Proof. [Lemma 2] The auxiliary random variables W1,i = (M,Si−1) and W2,i = Y n
i+1 satisfy the

following equations for all (sn, xn, wn
1 , w

n
2 , y

n,m):

P(w2,i|si, w1,i, xi)

=P(yni+1|si,m, si−1, xi) (192)

=
∑

sni+1,x
n
i+1

P(sni+1, x
n
i+1, y

n
i+1|si,m, si−1, xi) (193)

=
∑

sni+1,x
n
i+1

P(sni+1, x
n
i+1|si,m, si−1, xi) · P(yni+1|s

n
i+1, x

n
i+1, si,m, si−1, xi) (194)

=
∑

sni+1,x
n
i+1

P(sni+1, x
n
i+1|si,m, si−1) · P(yni+1|s

n
i+1, x

n
i+1, si,m, si−1, xi) (195)

=
∑

sni+1,x
n
i+1

P(sni+1, x
n
i+1|si,m, si−1) · P(yni+1|s

n
i+1, x

n
i+1) (196)

=
∑

sni+1,x
n
i+1

P(sni+1, x
n
i+1, y

n
i+1|si,m, si−1) = P(yni+1|si,m, si−1) = P(w2,i|si, w1,i), (197)

where (195) comes from the causal encoding function that induces the Markov chain Xi−
−(Si,M, Si−1)−


− (Sn
i+1,X

n
i+1); (196) comes from the memoryless property of the channel Y n

i+1 −
− (Sn
i+1,X

n
i+1) −
−

(Si,M, Si−1,Xi). This concludes the proof of Lemma 2.
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Lemma 3 The causal encoding function, the non-causal decoding function and the memoryless property

of the channel induce the Markov chain property corresponding to equation (160):

Vi −
− (Yi,W1,i,W2,i)−
− (Si,Xi). (198)

This Markov chain is satisfied with W1,i = (M,Si−1) and W2,i = Y n
i+1, for all i ∈ {1, . . . , n}.

Proof. [Lemma 3] The auxiliary random variables W1,i = (M,Si−1) and W2,i = Y n
i+1 satisfy the

following equations for all (sn, xn, wn
1 , w

n
2 , y

n, vn,m):

P(vi|yi, w1,i, w2,i, si, xi) = P(vi|yi,m, si−1, yni+1, si, xi)

=
∑

xi−1,yi−1

P(vi, x
i−1, yi−1|yi,m, si−1, yni+1, si, xi) (199)

=
∑

xi−1,yi−1

P(xi−1|yi,m, si−1, yni+1, si, xi) · P(yi−1|yi,m, si−1, yni+1, si, xi, x
i−1)

· P(vi|yi,m, si−1, yni+1, si, xi, x
i−1, yi−1). (200)

we can remove (si, xi), in the three conditional probability distributions:

P(xi−1|yi,m, si−1, yni+1, si, xi) = P(xi−1|m, si−1), (201)

P(yi−1|yi,m, si−1, yni+1, si, xi, x
i−1) = P(yi−1|si−1, xi−1), (202)

P(vi|yi,m, si−1, yni+1, si, xi, x
i−1, yi−1) = P(vi|yi, y

n
i+1, y

i−1), (203)

where (201) comes from the causal encoding that induces the following Markov chain Xi−1−
−(M,Si−1)−


− (Yi, Y
n
i+1,Xi, Si); (202) comes from the memoryless property of the channel: Y i−1 only depends

on (Xi−1, Si−1); (203) comes from the non-causal decoding that induces the following Markov chain

Vi −
− (Yi, Y
n
i+1, Y

i−1)−
− (M,Si−1, Si,Xi,X
i−1). Hence we have for all (sn, xn, wn

1 , w
n
2 , y

n, vn,m):

P(vi|yi, w1,i, w2,i, si, xi) =
∑

xi−1,yi−1

P(vi, x
i−1, yi−1|yi,m, si−1, yni+1) (204)

=P(vi|yi,m, si−1, yni+1) = P(vi|yi, w1,i, w2,i). (205)

The above equation corresponds to the Markov chain Vi −
− (Yi,W1,i,W2,i)−
− (Si,Xi) and it concludes

the proof of Lemma 3.

Lemma 4 The causal encoding function and the memoryless property of the channel induce the following

Markov chain property:

Yi −
− (Si,M, Si−1)−
− (Sn
i+1, Y

n
i+1). (206)
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This Markov chain is satisfied for all i ∈ {1, . . . , n}.

Proof. [Lemma 4] We have the following equations for all (sn, xn, yn,m):

P(yi|si,m, si−1, sni+1, y
n
i+1) =

∑

xi

P(xi, yi|si,m, si−1, sni+1, y
n
i+1) (207)

=
∑

xi

P(xi|si,m, si−1, sni+1, y
n
i+1) · P(yi|xi, si,m, si−1, sni+1, y

n
i+1) (208)

=
∑

xi

P(xi|si,m, si−1) · P(yi|xi, si,m, si−1, sni+1, y
n
i+1) (209)

=
∑

xi

P(xi|si,m, si−1) · P(yi|xi, si) =
∑

xi

P(xi, yi|si,m, si−1) = P(yi|si,m, si−1), (210)

where (209) comes from the causal encoding function that induces the Markov chain Xi−
−(Si,M, Si−1)−


−(Sn
i+1, Y

n
i+1); (210) comes from the memoryless property of the channel that induces the Markov chain:

Yi −
− (Xi, Si)−
− (M,Si−1, Sn
i+1, Y

n
i+1). This concludes the proof of Lemma 4.

The random event of error E ∈ {0, 1} of the following Lemmas is defined in equation (153). The

event E = 1 occurs if the sequences (Sn,Xn, Y n, V n) /∈ Tδ(Q) are not jointly typical for the target

probability distribution Q.

Lemma 5 Fix a probability distribution QSTW1W2XTYTVT
∈ Qe and suppose that the error probability

P(E = 1) is small enough such that P(E = 1) · log2 |Y|+ 2 · hb
(
P(E = 1)

)
≤ ε. Then we have:

I(W1,W2;YT )− I(ST ;W2|W1)

≤I(W1,W2;YT |E = 0)− I(ST ;W2|W1, E = 0) + ε. (211)

Proof. [Lemma 5]

I(W1,W2;YT )− I(ST ;W2|W1) (212)

=I(W1,W2;YT |E) − I(ST ;W2|W1, E) (213)

+I(E;YT )− I(E;YT |W1,W2) + I(ST ;E|W1,W2)− I(ST ;E|W1) (214)

≤I(W1,W2;YT |E) − I(ST ;W2|W1, E) + 2 ·H(E) (215)

=P(E = 0) ·
(
I(W1,W2;YT |E = 0)− I(ST ;W2|W1, E = 0)

)

+P(E = 1) ·
(
I(W1,W2;YT |E = 1)− I(ST ;W2|W1, E = 1)

)
+ 2 ·H(E) (216)

=I(W1,W2;YT |E = 0)− I(ST ;W2|W1, E = 0) + P(E = 1) · log2 |Y|+ 2 · hb
(
P(E = 1)

)
(217)

≤I(W1,W2;YT |E = 0)− I(ST ;W2|W1, E = 0) + ε. (218)
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The last equation holds since: P(E = 1) · log2 |Y|+ 2 · hb

(
P(E = 1)

)
≤ ε. This concludes the proof of

Lemma 5.

Lemma 6 Fix a probability distribution QSTW1W2XTYTVT
∈ Qe and suppose that the error probability

P(E = 1) is small enough such that P(E = 1) · log2 |S|+ hb

(
P(E = 1)

)
≤ ε. Then we have:

I(ST ;W1,W2, YT ) ≥I(ST ;W1,W2, YT |E = 0)− ε. (219)

Proof. [Lemma 6]

I(ST ;W1,W2, YT ) = I(ST ;W1,W2, YT |E) + I(ST ;E) − I(ST ;E|W1,W2, YT ) (220)

≥I(ST ;W1,W2, YT |E)−H(E) (221)

=P(E = 0) · I(ST ;W1,W2, YT |E = 0) + P(E = 1) · I(ST ;W1,W2, YT |E = 1)−H(E) (222)

=I(ST ;W1,W2, YT |E = 0)− P(E = 1) · I(ST ;W1,W2, YT |E = 0) (223)

+P(E = 1) · I(ST ;W1,W2, YT |E = 1)− hb

(
P(E = 1)

)
(224)

≥I(ST ;W1,W2, YT |E = 0)− P(E = 1) · log2 |S| − hb

(
P(E = 1)

)
(225)

≥I(ST ;W1,W2, YT |E = 0)− ε. (226)

The last equation holds since: P(E = 1) · log2 |S| + hb

(
P(E = 1)

)
≤ ε. This concludes the proof of

Lemma 6.

We denote by PSTXTYTVT |E=0 the probability distribution induced by the random variables

(ST ,XT , YT , VT ) knowing the event E = 0 is realized.

Lemma 7 Probability distribution defined by PSTXTYTVT |E=0 is closed to the target probability distri-

bution QSXY V :
∣∣∣∣PSTXTYTVT |E=0(s, x, y, v) −Q(s, x, y, v)

∣∣∣∣ ≤ ε, ∀(s, x, y, v). (227)

Proof. [Lemma 7] We evaluate the probability PST |E=0(s) and we show it is closed to the desired
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probability P(s) for all s ∈ S:

PST |E=0(s) =
∑

sn∈Tδ

n∑

i=1

P
(
Sn = sn, T = i, ST = s

∣∣E = 0
)

(228)

=
∑

sn∈Tδ

n∑

i=1

P
(
Sn = sn

∣∣E = 0
)
· P

(
T = i

∣∣Sn = sn, E = 0
)
· P

(
ST = s

∣∣Sn = sn, T = i, E = 0
)

(229)

=
∑

sn∈Tδ

n∑

i=1

P
(
Sn = sn

∣∣E = 0
)
· P

(
T = i

)
· P

(
ST = s

∣∣Sn = sn, T = i, E = 0
)

(230)

=
∑

sn∈Tδ

n∑

i=1

P
(
Sn = sn

∣∣E = 0
)
· P

(
T = i

)
· 1{sT=s} (231)

=
∑

sn∈Tδ

P
(
Sn = sn

∣∣E = 0
)
·

n∑

i=1

1

n
· 1{sT=s} =

∑

sn∈Tδ

P
(
Sn = sn

∣∣E = 0
)
·
N(s|sn)

n
, (232)

where (230) comes from the independence of event {T = i} with events {Sn = sn} and {E = 0}; (232)

comes from the definition of the number of occurrence N(s|sn) =
∑n

i=1 1{sT=s}.

Since the sequences sn ∈ Tδ are typical, we have for all s ∈ S:

P(s)− ε ≤
N(s|sn)

n
≤ P(s) + ε, (233)

which provides an upper bound and a lower bound on P(ST = s|E = 0) as

P(s)− ε =
∑

sn∈Tδ

P
(
Sn = sn

∣∣E = 0
)
·
(
P(s)− ε

)
≤ P(ST = s|E = 0) (234)

≤
∑

sn∈Tδ

P
(
Sn = sn

∣∣E = 0
)
·
(
P(s) + ε

)
= P(s) + ε. (235)

Using the same arguments, we prove that the probability distribution PSTXTYTVT |E=0(s, x, y, v) induced

by the code, is closed to the target probability distribution Q(s, x, y, v):
∣∣∣∣PSTXTYTVT |E=0(s, x, y, v) −Q(s, x, y, v)

∣∣∣∣ ≤ ε, ∀(s, x, y, v). (236)

This concludes the proof of Lemma 7.

APPENDIX C

PROOF OF THEOREM III.1

The conditional probability distribution PWn
1 Wn

2 Xn|Sn combined with PS and TY |XS define this joint

distribution:

PSnWn
1 Wn

2 XnY n =

n∏

i=1

PSi
PWn

1 Wn
2 Xn|Sn

n∏

i=1

TYi|XiSi
(237)
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We introduce the random event F ∈ {0, 1} depending on whether the random sequences

(Sn,W n
1 ,W

n
2 , Y

n) are jointly typical or not.

F =

{
0 if (Sn,W n

1 ,W
n
2 , Y

n) ∈ Tδ(Q),

1 if (Sn,W n
1 ,W

n
2 , Y

n) /∈ Tδ(Q).
(238)

Since the target probability distribution QSW1W2XY has full support, the probability distribution PSn|Y n

is absolutely continuous with respect to
∏n

i=1 QSi|YiW1,iW2,i
, and the conditional KL-divergence is well

defined:

1

n
·D

(
PSn|Y n

∣∣∣∣
∣∣∣∣

n∏

i=1

QSi|YiW1,iW2,i

)

=
1

n

∑

wn
1 ,w

n
2 ,y

n

P(wn
1 , w

n
2 , ·y

n) ·
∑

sn

P(sn|yn) · log2
1∏n

i=1Q(si|yi, w1,i, w2,i)

−
1

n

∑

wn
1 ,w

n
2 ,y

n

P(wn
1 , w

n
2 , y

n) ·
∑

sn

P(sn|yn) · log2
1

P(sn|yn)
(239)

=
1

n

∑

wn
1 ,w

n
2 ,y

n,sn,F

P(wn
1 , w

n
2 , y

n) · P(sn|yn) · P(F |sn, wn
1 , w

n
2 , y

n) · log2
1∏n

i=1Q(si|yi, w1,i, w2,i)
−

1

n
H(Sn|Y n)

(240)

=P(F = 0) ·
1

n

∑

(wn
1

,wn
2

,yn,sn)

∈Tδ(Q)

P(sn, wn
1 , w

n
2 , y

n|F = 0) · log2
1∏n

i=1Q(si|yi, w1,i, w2,i)

+P(F = 1) ·
1

n

∑

wn
1 ,w

n
2 ,y

n,sn

P(sn, wn
1 , w

n
2 , y

n|F = 1) · log2
1∏n

i=1Q(si|yi, w1,i, w2,i)
−

1

n
H(Sn|Y n)

(241)

≤
1

n

∑

(wn
1

,wn
2
,yn,sn)

∈Tδ(Q)

P(sn, wn
1 , w

n
2 , y

n|F = 0) · n ·

(
H(S|W1,W2, Y ) + δ ·

∑

s,w1,

w2,y

log2
1

Q(s|w1, w2, y)

)

+P(F = 1) · log2
1

mins,y,w1,w2
Q(s|y,w1, w2)

−
1

n
H(Sn|Y n) (242)

≤H(S|W1,W2, Y )−
1

n
H(Sn|Y n) + δ ·

∑

s,w1,

w2,y

log2
1

Q(s|w1, w2, y)
+ P(F = 1) · log2

1

mins,y,w1,w2
Q(s|y,w1, w2)

(243)

=I(S;W1,W2, Y )−
1

n
I(Sn;Y n) + δ ·

∑

s,w1,

w2,y

log2
1

Q(s|w1, w2, y)
+ P(F = 1) · log2

1

mins,y,w1,w2
Q(s|y,w1, w2)

(244)

≤I(S;W1,W2, Y )− Le(c) + δ ·
∑

s,w1,

w2,y

log2
1

Q(s|w1, w2, y)

+ P

(
(sn, wn

1 , w
n
2 , y

n) /∈ Tδ(Q)
)
· log2

1

mins,y,w1,w2
Q(s|y,w1, w2)

, (245)
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where (239) comes from the definition of the KL-divergence; (240) comes from the introduction of

the random event F ∈ {0, 1}; (241) is a reformulation of (240) where P(F ) · P(sn, wn
1 , w

n
2 , y

n|F ) =

P(wn
1 , w

n
2 , y

n) · P(sn|yn) · P(F |sn, wn
1 , w

n
2 , y

n) and where the event F = 0 implies that the

sequences (wn
1 , w

n
2 , y

n, sn) ∈ Tδ(Q) are jointly typical; (242) comes from two properties: 1)

the property 2
−n·

(
H(S|Y,W1,W2)+δ·

∑
s,w1,
w2,y

log2
1

Q(s|w1,w2,y)

)

≤
∏n

i=1QSi|YiW1,iW2,i
for typical sequences

(wn
1 , w

n
2 , y

n, sn) ∈ Tδ(Q), stated in [34, pp. 26]; 2) the hypothesis QSW1W2XY has full support, which

implies that mins,y,w1,w2
Q(s|y,w1, w2) > 0 is strictly positive; (244) comes from the i.i.d. property of S

that implies H(S) = 1
n
·H(Sn); (245) comes from the definition of the state leakage Le(c) =

1
n
I(Sn;Y n)

and the event F = 0.

APPENDIX D

ACHIEVABILITY PROOF OF THEOREM III.3

We consider a pair of rate and distortion (R,D) ∈ Ag that satisfy equations (27) and (28) with

probability distribution PSQW1
QX|SW1

TY |XS . We introduce the target leakage E = I(S;W1, Y ).

Theorem II.6 guarantees that the triple (R,E,Q) is achievable: for all ε > 0, there exists a n̄ ∈ N

such that for all n ≥ n̄, there exists a code with causal encoding c ∈ C(n,M) that satisfies:

log2 |M|

n
≥R − ε, (246)

∣∣∣∣Le(c)− E

∣∣∣∣ ≤ε, with Le(c) =
1

n
· I(Sn;Y n), (247)

Pe(c) =P

(
M 6= M̂

)
+ P

(∣∣∣
∣∣∣Qn −Q

∣∣∣
∣∣∣
1
≥ ε

)
≤ ε. (248)

Remark D.1 The achievability proof of Theorem II.6 guarantees that the sequences (Sn,W n
1 ,X

n, Y n) ∈

Aδ are jointly typical with large probability and that the decoding of W n
1 is correct with large probability:

P(Ŵ n
1 6= W n

1 ) ≤ ε.

We assume that probability distribution PSQW1
QX|SW1

TY |XS has full support. Otherwise, we would

consider a sequence of probability distributions of full support, that converges to the target distribution.

By replacing the pair (W1,W2) by W1 in Theorem III.1, we obtain:

1

n
·D

(
PSn|Y n

∣∣∣∣
∣∣∣∣

n∏

i=1

QSi|YiW1,i

)
≤I(S;W1, Y )− Le(c) + δ ·

∑

s,w1,y

log2
1

Q(s|w1, y)

+ P

(
(sn, wn

1 , y
n) /∈ Tδ(Q)

)
· log2

1

mins,y,w1
Q(s|y,w1)

. (249)
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By combining equations (246) - (248) with (249), we shows that, for any ε > 0, here exists a n̄ such

that for all n ≥ n̄ there exists a code with causal encoding c ∈ C(n,M) involving an auxiliary sequence

W n
1 , such that:

log2 |M|

n
≥R − ε, (250)

P

(
M 6= M̂

)
≤ε, (251)

1

n
·D

(
PSn|Y n

∣∣∣∣
∣∣∣∣

n∏

i=1

QSi|YiW1,i

)
≤ε. (252)

Following [28, Notations A.14 and A.16], we define the sets Jα(w
n
1 , y

n) and Bα,γ,δ depending on

small parameters α > 0, γ > 0 and δ > 0:

Jα(w
n
1 , y

n) =

{
i ∈ {1, . . . , n}, s.t. D

(
PSi|Y n(·|yn)

∣∣∣
∣∣∣QSi|YiW1,i

(·|yi, w1,i)
)
≤

α2

2 ln 2

}
, (253)

Bα,γ,δ =

{
(wn

1 , y
n) s.t.

|Jα(w
n
1 , y

n)|

n
≥ 1− γ and (wn

1 , y
n) ∈ Tδ(Q)

}
. (254)

The notation Bc
α,γ,δ stands for the complementary set of Bα,γ,δ ⊂ Wn

1 × Yn. The sequences (wn
1 , y

n)

belong to the set Bα,γ,δ if: 1) they are jointly typical and 2) if the decoder’s posterior belief PSi|Y n(·|yn)

is close in K-L divergence to the target belief QSi|YiW1,i
(·|yi, w1,i), for a large fraction of stages i ∈

{1, . . . , n}.

Then [28, Corollary A.18] ensures that for each code with causal encoding c ∈ C(n,M), we have:

∣∣∣∣ min
hV n|Y n

1

n

n∑

i=1

E

[
d(Si, Vi)

]
− min

PV |W1Y

E

[
d(S, V )

]∣∣∣∣

=

∣∣∣∣
1

n

n∑

i=1

∑

yn

P(yn) min
hVi|Y

n

∑

si

P(si|y
n) · d(si, vi)−

∑

w1,y

Q(w1, y) min
PV |W1Y

∑

s

Q(s|w1, y) · d(s, v)

∣∣∣∣ (255)

≤
(
α+ 2γ + δ + P(Bc

α,γ,δ)
)
· d̄, (256)

where d̄ = maxs,v d(s, v) is the maximal distortion value.

Lemma 8 (Reformulation of equations (37) - (43) in [28])

P(Bc
α,γ,δ) ≤

2 ln 2

α2γ
·
1

n
·D

(
PSn|Y n

∣∣∣
∣∣∣

n∏

i=1

QSi|YiW1,i

)
+ P((wn

1 , y
n) /∈ Tδ(Q)). (257)

We combine equations (252) and (256) with Lemma 8 and we choose the parameters α > 0, γ > 0,

δ > 0 small and then n large such as to obtain:

P(Bc
α,γ,δ) ≤ ε. (258)

This concludes the achievability proof of Theorem III.3.
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A. Proof of Lemma 8

The union bound implies

P(Bc
α,γ,δ) = P

(
(W n

1 , Y
n) s.t.

|Jα(W
n
1 , Y

n)|

n
< 1− γ or (W n

1 , Y
n) /∈ Tδ(Q)

)
(259)

≤ P

(
(W n

1 , Y
n) s.t.

|Jα(W
n
1 , Y

n)|

n
< 1− γ

)
+ P

(
(W n

1 , Y
n) /∈ Tδ(Q)

)
. (260)

Moreover,

P

(
(W n

1 , Y
n) s.t.

|Jα(W
n
1 , Y

n)|

n
< 1− γ

)

= P

(
1

n
·

∣∣∣∣
{
i ∈ {1, . . . , n}, s.t. D

(
PSi|Y n(·|Y n)

∣∣∣
∣∣∣QSi|YiW1,i

(·|Yi,W1,i)
)
≤

α2

2 ln 2

}∣∣∣∣ < 1− γ

)

(261)

= P

(
1

n
·

∣∣∣∣
{
i ∈ {1, . . . , n}, s.t. D

(
PSi|Y n(·|Y n)

∣∣∣
∣∣∣QSi|YiW1,i

(·|Yi,W1,i)
)
>

α2

2 ln 2

}∣∣∣∣ ≥ γ

)
(262)

≤
2 ln 2

α2γ
· E

[
1

n
·

n∑

i=1

D
(
PSi|Y n(·|Y n)

∣∣∣
∣∣∣QSi|YiW1,i

(·|Yi,W1,i)
)]

(263)

≤
2 ln 2

α2γ
·
1

n
·D

(
PSn|Y n

∣∣∣
∣∣∣

n∏

i=1

QSi|YiW1,i

)
, (264)

where (261)-(262) are reformulations; (263) comes from [28, Lemma A.22]; (264) comes from Lemma

9.

Lemma 9 We consider the probability distributions PA1A2B1B2
, QB1|A1

and QB2|A2
. We have:

D
(
PB1B2|A1A2

∣∣∣
∣∣∣QB1|A1

×QB2|A2

)

=D
(
PB1|A1A2

∣∣∣
∣∣∣QB1|A1

)
+D

(
PB2|A1A2

∣∣∣
∣∣∣QB2|A2

)
+ I(B1;B2|A1, A2), (265)

where the mutual information I(B1;B2|A1, A2) is evaluated with respect to PA1A2B1B2
. In particular,

this implies for all n ≥ 1:

D

(
PBn|An

∣∣∣∣
∣∣∣∣

n∏

i=1

QBi|Ai

)
≥

n∑

i=1

D
(
PBi|An

∣∣∣
∣∣∣QBi|Ai

)
. (266)
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Proof. [Lemma 9]

D
(
PB1B2|A1A2

∣∣∣
∣∣∣QB1|A1

×QB2|A2

)

=
∑

a1,a2

P(a1, a2)
∑

b1,b2

P(b1, b2|a1, a2) log2
P(b1, b2|a1, a2)

Q(b1|a1)×Q(b2|a2)
(267)

=
∑

a1,a2

P(a1, a2)
∑

b1

P(b1|a1, a2) log2
1

Q(b1|a1)
+

∑

a1,a2

P(a1, a2)
∑

b2

P(b2|a1, a2) log2
1

Q(b2|a2)
−H(B1, B2|A1, A2)

(268)

=
∑

a1,a2

P(a1, a2)
∑

b1

P(b1|a1, a2) log2
P(b1|a1, a2)

Q(b1|a1)
+

∑

a1,a2

P(a1, a2)
∑

b2

P(b2|a1, a2) log2
P(b2|a1, a2)

Q(b2|a2)

(269)

+H(B1|A1, A2) +H(B2|A1, A2)−H(B1, B2|A1, A2) (270)

=D
(
PB1|A1A2

∣∣∣
∣∣∣QB1|A1

)
+D

(
PB2|A1A2

∣∣∣
∣∣∣QB2|A2

)
+ I(B1;B2|A1, A2). (271)

APPENDIX E

CONVERSE PROOF OF THEOREM III.3

We introduce the random event F ∈ {0, 1} indicating whether M is correctly decoded or not:

F =

{
0 if M = M̂,

1 if M 6= M̂.
(272)

We assume that there exists a code with causal encoding c ∈ C(n,M) that satisfies:

log2 |M|

n
≥R − ε, (273)

Pe(c) = P

(
M 6= M̂

)
≤ε, (274)

∣∣∣∣ min
hV n|Y n

1

n

n∑

i=1

E

[
d(Si, Vi)

]
− D

∣∣∣∣ ≤ε. (275)

Then, note that

R ≤
log2 |M|

n
+ ε =

1

n
·H(M) + ε =

1

n
· I(M ;Y n) +

1

n
·H(M |Y n) + ε (276)

=
1

n
· I(M ;Y n) + 2ε =

1

n
·

n∑

i=1

I(M ;Yi|Y
i−1) + 2ε ≤

1

n
·

n∑

i=1

I(M,Y i−1, Y n
i+1;Yi) + 2ε (277)

=
1

n
·

n∑

i=1

I(W1,i;Yi) + 2ε = I(W1,T ;YT |T ) + 2ε ≤ I(W1,T , T ;YT ) + 2ε ≤ I(W1;Y ) + 2ε. (278)
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where (276) comes from assumption (273) and from uniform distribution of the random message M ;

(277) comes from Fano’s inequality [31, Theorem 2.10.1] and assumption (274) and adding the mutual

informations I(Y i−1;Yi) and I(Y n
i+1;Yi|M,Y i−1); (278) comes from the identification of the auxiliary

random variable W1,i = (M,Y i−1, Y n
i+1) and the introduction of the uniform random variable T over the

indices {1, . . . , n} and (W1,T , YT ) and by identifying W1 = (W1,T , T ) and YT = Y . This established (27)

in Theorem III.3.

The notation y−i = (yi−1, yni+1) stands for the subsequence of yn where yi has been removed. We

now assume that the event F = 0 is realized, hence the average distortion satisfies:

∑

yn,m

P(yn,m|F = 0) min
hV n|Y n

∑

sn

P(sn|yn, F = 0) ·

[
1

n

n∑

i=1

d(si, vi)

]
(279)

=
∑

yn,m

P(yn,m|F = 0)
1

n

n∑

i=1

min
h:Yn→Vi

∑

si

P(si|y
n, F = 0) · d(si, vi) (280)

=
∑

yi,y−i,m

P(yn,m|F = 0)
1

n

n∑

i=1

min
h:Yn×M→Vi

∑

si

P(si|yi, y
−i,m, F = 0) · d(si, vi) (281)

=
∑

yi,w1,i

P(yi, w1,i)
1

n

n∑

i=1

min
h:Yi×W1,i→Vi

∑

si

P(si|yi, w1,i) · d(si, vi) (282)

=
∑

yT ,w1,T ,T

P(yT , w1,T , T ) min
h:Y×W1→V

∑

sT

P(sT |yT , w1,T , T ) · d(sT , vT ) (283)

=
∑

y,w1

P(y,w1) min
h:Y×W1→V

∑

s

P(s|y,w1) · d(s, v) = min
PV |W1Y

E

[
d(S, V )

]
, (284)

where (280) is a reformulation; (281) comes from the hypothesis F = 0, since the decoder correctly

decodes the message m based on the observation of yn; (282) comes from the identification of the

auxiliary random variable w1,i = (m, y−i); (283) comes from the introduction of the uniform random

variable T over the indices {1, . . . , n} and the corresponding random variables (sT , w1,T , yT , vT ); (284)

comes from identifying the auxiliary random variables w1 = (w1,T , T ).

Hence we have:
∣∣∣∣ min
PV |W1Y

E

[
d(S, V )

]
− D

∣∣∣∣ (285)

≤

∣∣∣∣ min
PV |W1Y

E

[
d(S, V )

]
− min

hV n|Y n

1

n

n∑

i=1

E

[
d(Si, Vi)

]∣∣∣∣+
∣∣∣∣ min
hV n|Y n

1

n

n∑

i=1

E

[
d(Si, Vi)

]
− D

∣∣∣∣ (286)

≤

∣∣∣∣ min
PV |W1Y

E

[
d(S, V )

]
− min

hV n|Y n

1

n

n∑

i=1

E

[
d(Si, Vi)

]∣∣∣∣+ ε (287)

=

∣∣∣∣ min
PV |W1Y

E

[
d(S, V )

]
−

∑

yn,m,F

P(yn,m, F )× min
hV n|Y n

∑

sn

P(sn|yn, F ) ·

[
1

n

n∑

i=1

d(si, vi)

]∣∣∣∣+ ε (288)
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≤

∣∣∣∣ min
PV |W1Y

E

[
d(S, V )

]
−

∑

yn,m

P(yn,m|F = 0)× min
hV n|Y n

∑

sn

P(sn|yn, F = 0) ·

[
1

n

n∑

i=1

d(si, vi)

]∣∣∣∣

+ P(F = 1) · 2d̄+ ε (289)

=

∣∣∣∣ min
PV |W1Y

E

[
d(S, V )

]
− min

PV |W1Y

E

[
d(S, V )

]∣∣∣∣+ P(F = 1) · 2d̄+ ε (290)

=P(F = 1) · 2d̄+ ε ≤ ε · (2d̄+ 1), (291)

where (286) comes from the triangle inequality; (287) comes from assumption (275); (288) is a

reformulation that introduces the random event F ∈ {0, 1}; (289) comes from removing the event

P(F = 1) · d̄ from the the triangle inequality; (290) comes from (284); (291) comes from assumption

(274). This ensures that (28) of Theorem III.3 holds and concludes the converse proof.
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APPENDIX F

CARDINALITY BOUND FOR THEOREM II.3

Lemma 10 (Cardinality Bound for Theorem II.3) We consider the following information constraints

with two auxiliary random variables (W1,W2):

I(S;W1,W2, Y ) ≤ E ≤ H(S), (292)

R + E ≤ I(W1, S;Y ). (293)

The cardinality of the supports of the auxiliary random variables (W1,W2) are bounded by:

max(|W1|, |W2|) ≤ d+ 1, with d = |S × X × Y × V|.

This result is based on the Lemma of Fenchel-Eggleston-Carathéodory. More details are provided pp.

631 in [34]. Lemma 10 can be adapted for the cardinality bounds of Theorems IV.3 and IV.5.

Proof. [Lemma 10] We denote by d = |S ×X ×Y×V|, the cardinality of the product of the discrete sets.

We consider the family of continuous functions hi : ∆(S × X × Y × V) 7→ R, with i ∈ {1, . . . , d+ 1},

defined as follows:

hi

(
PSXY V |W1W2

)
=





PSXY V |W1W2
(i), for i ∈

{
1, . . . , d− 1

}
,

H(Y |S,W1 = w1), for i = d,

H(S|Y,W1 = w1,W2 = w2), for i = d+ 1.

Support Lemma stated pp. 631 in [34], implies that there exists a pair of auxiliary random variables

(W ′
1,W

′
2) ∼ PW ′

1W
′
2

defined on a set W ′
1 × W ′

2 with finite cardinality max(|W ′
1|, |W

′
2|) ≤ d + 1 such

that for all i ∈ {1, . . . , d+ 1} we have:

∫

W1×W2

hi

(
PSXY V |W1W2

)
dF (w1, w2) =

∑

(w′
1,w

′
2)∈W

′
1×W ′

2

hi

(
PSXY V |W ′

1W
′
2

)
P(w′

1w
′
2).
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This implies that the probability PSXY V is preserved and we have:

PSXY V (i) =

∫

W1×W2

PSXY V |W1W2
(i)dF (w1, w2)

=
∑

(w′
1,w

′
2)∈W

′
1×W ′

2

PSXY V |W ′
1W

′
2
(i) · P(w′

1, w
′
2), for i ∈

{
1, . . . , d− 1

}

H(Y |S,W1) =

∫

W1

H(Y |S,W1 = w1)dF (w1))

=
∑

(w′
1)∈W

′
1

H(Y |S,W ′
1 = w′

1) · P(w′
1) = H(Y |S,W ′

1),

H(S|Y,W1,W2) =

∫

W1×W2

H(S|Y,W1 = w1,W2 = w2)dF (w1, w2))

=
∑

(w′
1,w

′
2)∈W

′
1×W ′

2

H(S|Y,W ′
1 = w′

1,W
′
2 = w′

2) · P(w′
1, w

′
2) = H(S|Y,W ′

1,W
′
2).

Hence the three information constraints remain equal with max(|W ′
1|, |W

′
2|) ≤ d+ 1.

I(S;W1,W2, Y ) =H(S)−H(S|W ′
1,W

′
2, Y ) = I(S;W ′

1,W
′
2, Y ),

I(W1, S;Y ) =H(Y )−H(Y |W ′
1, S) = I(W ′

1, S;Y ).

This concludes the proof of Lemma 10.

APPENDIX G

CONVERSE PROOF OF THEOREM II.6

We consider that the pair of rate and state leakage (R,E) is achievable with a causal code. By definition

II.5, for all ε > 0, there exists a n̄ such that for all n ≥ n̄, there exists a code c⋆ ∈ C(n,M) that satisfies

the three following equations:

log2 |M|

n
≥R − ε, (294)

∣∣∣∣Le(c)− E

∣∣∣∣ =
∣∣∣∣
1

n
· I(Sn;Y n)− E

∣∣∣∣ ≤ ε, (295)

Pe(c) =P

(
M 6= M̂

)
≤ ε. (296)

We introduce the auxiliary random variables W1,i = (M,Si−1) that satisfy the Markov chains of the set

of probability distribution Qc for all i ∈ {1, . . . , n}:

Si independent of W1,i, (297)

Yi −
− (Xi, Si)−
−W1,i, (298)

where (297) comes from the i.i.d. property of the source that induces the independence between Si and

(M,Si−1) = W1,i; (298) comes from the memoryless property of the channel TY |XS .
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We introduce the random variable T that is uniformly distributed over the indices {1, . . . , n} and

the corresponding mean random variables (ST ,XT ,W1,T , YT ). The auxiliary random variables W1 =

(W1,T , T ) belongs to the set of probability distributions Qc and satisfies the four information constraints

of Theorem II.6:

I(S;Y |W1) ≤ E ≤ H(S), (299)

R + E ≤ I(W1, S;Y ). (300)

First Constraint:

n · E ≥I(Sn;Y n)− n · ε (301)

=I(Sn;Y n,M)− I(Sn;M |Y n)− n · ε (302)

≥
n∑

i=1

I(Si;Y
n,M |Si−1)−H(M |Y n)− n · ε (303)

≥
n∑

i=1

I(Si;Y
n,M |Si−1)− n · 2ε (304)

=

n∑

i=1

I(Si;Y
n|M,Si−1)− n · 2ε (305)

≥
n∑

i=1

I(Si;Yi|M,Si−1)− n · 2ε (306)

=

n∑

i=1

I(Si;Yi|W1,i)− n · 2ε (307)

=n · I(ST ;YT |W1,T , T )− n · 2ε (308)

=n ·

(
I(S;Y |W1)− 2ε

)
, (309)

where (301) comes from the definition of achievable state leakage rate E, stated in equation (295); (302)

and (303) come from the properties of the mutual information; (304) comes from equation (296) and

Fano’s inequality, stated pp. 19, in [34]; (305) comes from the independence between the message M and

the channel states (Si−1, Si); (306) comes from the properties of the mutual information; (307) comes

from the introduction of the auxiliary random variable W1,i = (M,Si−1), for all i ∈ {1, . . . , n}; (308)

comes from the introduction of the uniform random variable T over {1, . . . , n} and the corresponding

mean random variables ST , W1,T , YT ; (309) comes from identifying W1 = (W1,T , T ) and S = ST ,

Y = YT .
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Second Constraint:

n · E ≤I(Sn;Y n) + n · ε (310)

≤H(Sn) + n · ε (311)

=n ·

(
H(S) + ε

)
, (312)

where (310) comes from the definition of the achievable state leakage rate E, stated in equation (295);

(311) comes from the properties of the mutual information; (312) comes from the i.i.d. property of the

channel states S.

Third Constraint:

n ·

(
E + R

)
≤I(Sn;Y n) +H(M) + n · 2ε (313)

=I(Sn;Y n) + I(M ;Y n) +H(M |Y n) + n · 2ε (314)

≤I(Sn;Y n) + I(M ;Y n) + n · 3ε (315)

≤I(Sn;Y n) + I(M ;Y n|Sn) + n · 3ε (316)

≤I(Sn,M ;Y n) + n · 3ε (317)

=

n∑

i=1

I(Sn,M ;Yi|Y
n
i+1) + n · 3ε (318)

≤
n∑

i=1

I(Sn,M, Y n
i+1;Yi) + n · 3ε (319)

=

n∑

i=1

I(Si, S
i−1,M ;Yi) +

n∑

i=1

I(Sn
i+1, Y

n
i+1;Yi|Si, S

i−1,M) + n · 3ε (320)

=

n∑

i=1

I(Si, S
i−1,M ;Yi) + n · 3ε (321)

=

n∑

i=1

I(Si,W1,i;Yi) + n · 3ε (322)

=n · I(ST ,W1,T ;YT |T ) + n · 3ε (323)

≤n · I(ST ,W1,T , T ;YT ) + n · 3ε (324)

≤n ·

(
I(S,W1;Y ) + 3ε

)
, (325)

where (313) comes from the definition of achievable rate and information leakage (R,E), stated in

equations (294) and (295); (314) comes from the definitions of the mutual information; (315) comes

from equation (296) and Fano’s inequality, stated pp. 19, in [34]; (316) comes from the independence
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between the message M and the channel states Sn, hence I(M ;Y n) ≤ I(M ;Y n, Sn) = I(M ;Y n|Sn);

(317), (318), (319), (320) comes from the properties of the mutual information; (321) comes from the

Markov chain Yi −
− (Si,M, Si−1) −
− (Sn
i+1, Y

n
i+1), stated in Lemma 4. It is a direct consequence

of the causal encoding function and the memoryless property of the channel; (322) comes from the

introduction of the auxiliary random variable W1,i = (M,Si−1), for all i ∈ {1, . . . , n}; (323) comes

from the introduction of the uniform random variable T over {1, . . . , n} and the corresponding mean

random variables ST , W1,T , YT ; (324) comes from the properties of the mutual information; (325) comes

from identifying W1 = (W1,T , T ) and S = ST , Y = YT .

Conclusion: If the pair of rate and state leakage (R,E) is achievable with causal encoding, then the

following equations are satisfied for all ε > 0:

I(S;Y |W1)− 2ε ≤ E ≤ H(S) + ε, (326)

R + E ≤ I(S,W1;Y ) + 3ε. (327)

This corresponds to equations (17), (14) and (15) and concludes the converse proof of Theorem II.6.

Remark G.1 For the converse proof of Theorem II.6, the causal encoding is not necessarily deterministic.

The same optimal performances can be obtained by considering stochastic causal encoding.

APPENDIX H

CONVERSE PROOF OF THEOREM IV.3

Consider that the triple of rate, state leakage and probability distribution (R,E,Q) is achievable with

a causal code. We introduce the random event of error E ∈ {0, 1} defined with respect to the achievable

joint probability distribution QUSZXY V , as follows:

E =

{
0 if

∣∣∣∣Qn −Q
∣∣∣∣
1
≤ ε ⇐⇒ (Un, Sn, Zn,Xn, Y n, V n) ∈ Tδ(Q),

1 if
∣∣∣∣Qn −Q

∣∣∣∣
1
> ε ⇐⇒ (Un, Sn, Zn,Xn, Y n, V n) /∈ Tδ(Q).

(328)

The event E = 1 occurs if the sequences (Un, Sn, Zn,Xn, Y n, V n) /∈ Tδ(Q) are not jointly typical for

the target probability distribution Q. By definition IV.1, for all ε > 0, there exists a n̄ such that for all

n ≥ n̄, there exists a code c⋆ ∈ C(n,M) that satisfies the three following equations:

log2 |M|

n
≥R − ε, (329)

∣∣∣∣Le(c
⋆)− E

∣∣∣∣ =
∣∣∣∣
1

n
· I(Un, Sn;Y n, Zn)− E

∣∣∣∣ ≤ ε, (330)

Pe(c
⋆) =P

(
M 6= M̂

)
+ P

(∣∣∣
∣∣∣Qn −Q

∣∣∣
∣∣∣
1
≥ ε

)
≤ ε. (331)
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We introduce the auxiliary random variables W1,i = (M,U i−1, Si−1) and W2,i = (Y n
i+1, Z

n
i+1), that

satisfy the Markov chain of the set of probability distribution Q2 for all i ∈ {1, . . . , n}:

(Ui, Si) independent of W1,i, (332)

Xi −
− (Ui, Si,W1,i)−
−W2,i, (333)

Yi −
− (Xi, Si)−
− (Ui, Zi,W1,i,W2,i), (334)

Zi −
− (Ui, Si)−
− (Xi, Yi,W1,i,W2,i), (335)

Vi −
− (Yi, Zi,W1,i,W2,i)−
− (Ui, Si,Xi), (336)

where (332) comes from the i.i.d. property of the source that induces the independence between (Ui, Si)

and (M,U i−1, Si−1) = W1,i; (333) comes from Lemma 11. It is a direct consequence of the causal

encoding function, the memoryless property of the channel and the i.i.d. property of the source; (334)

comes from the memoryless property of the channel TY |XS; (335) comes from the i.i.d. property of the

source PUSZ ; (336) comes from Lemma 12. It is a direct consequence of the causal encoding function,

the non-causal decoding function, the memoryless property of the channel and the i.i.d. property of the

source.

We introduce the random variable T that is uniformly distributed over the indices {1, . . . , n} and the

corresponding mean random variables W1,T , W2,T , UT , ST , ZT , XT , YT , VT . The auxiliary random

variables W1 = (W1,T , T ) and W2 = W2,T belong to the set of probability distributions Q2 and satisfy

the four information constraints of Theorem IV.3:

I(U,S;W1,W2, Y, Z) ≤ E ≤ H(U,S), (337)

R + E ≤ I(W1, U, S;Y,Z). (338)

First Constraint:

n · E ≥I(Un, Sn;Y n, Zn)− n · ε (339)

=I(Un, Sn;Y n, Zn,M)− I(Un, Sn;M |Y n, Zn)− n · ε (340)

≥
n∑

i=1

I(Ui, Si;Y
n, Zn,M |U i−1, Si−1)−H(M |Y n, Zn)− n · ε (341)

≥
n∑

i=1

I(Ui, Si;Y
n, Zn,M |U i−1, Si−1)− n · 2ε (342)

=

n∑

i=1

I(Ui, Si;Y
n, Zn,M,U i−1, Si−1)− n · 2ε (343)
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≥
n∑

i=1

I(Ui, Si;Y
n
i+1, Z

n
i+1,M,U i−1, Si−1, Yi, Zi)− n · 2ε (344)

=

n∑

i=1

I(Ui, Si;W1,i,W2,i, Yi, Zi)− n · 2ε (345)

=n · I(UT , ST ;W1,T ,W2,T , YT , ZT |T )− n · 2ε (346)

=n · I(UT , ST ;W1,T ,W2,T , YT , ZT , T )− n · 2ε (347)

=n ·

(
I(UT , ST ;W1,W2, YT , ZT )− 2ε

)
(348)

≥n ·

(
I(UT , ST ;W1,W2, YT , ZT |E = 0)− 3ε

)
(349)

≥n ·

(
I(U,S;W1,W2, Y, Z)− 4ε

)
, (350)

where (339) comes from the definition of achievable state leakage rate E, stated in equation (330);

(340) and (341) come from the properties of the mutual information; (342) comes from equation (331)

and Fano’s inequality, stated pp. 19, in [34]; (343) comes from the i.i.d. property of the channel states

that implies (Ui, Si) is independent of (U i−1, Si−1); (344) comes from the properties of the mutual

information; (345) comes from the introduction of the auxiliary random variables W1,i = (M,U i−1, Si−1)

and W2,i = (Y n
i+1, Z

n
i+1), for all i ∈ {1, . . . , n}; (346) comes from the introduction of the uniform

random variable T over {1, . . . , n} and the corresponding mean random variables UT , ST , W1,T , W2,T ,

YT , ZT ; (347) comes from the independence between T and (UT , ST ); (348) comes from identifying

the auxiliary random variablesW1 = (W1,T , T ) and W2 = W2,T ; (349) comes from the empirical

coordination requirement as stated in Lemma 6. The sequences of symbols (Un, Sn, Zn,Xn, Y n, V n) are

not jointly typical with small error probability P(E = 1); (350) comes from Lemma 7. The sequences

of symbols (Un, Sn, Zn,Xn, Y n, V n) are jointly typical, hence the distribution of the mean random

variables PUTSTZTXTYTVT |E=0 is closed to the target probability distribution QUSZXY V . The continuity

of the entropy function stated pp. 33 in [32] concludes.

Second Constraint:

n · E ≤I(Un, Sn;Y n, Zn) + n · ε (351)

≤H(Un, Sn) + n · ε (352)

=n ·

(
H(U,S) + ε

)
, (353)

where (351) comes from the definition of the achievable state leakage rate E, stated in equation (330);

(352) comes from the properties of the mutual information; (353) comes from the i.i.d. property of the

channel states (U,S).
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Third Constraint:

n ·

(
E + R

)
≤I(Un, Sn;Y n, Zn) +H(M) + n · 2ε (354)

=I(Un, Sn;Y n, Zn) + I(M ;Y n, Zn) +H(M |Y n, Zn) + n · 2ε (355)

≤I(Un, Sn;Y n, Zn) + I(M ;Y n, Zn) + n · 3ε (356)

≤I(Un, Sn;Y n, Zn) + I(M ;Y n, Zn|Un, Sn) + n · 3ε (357)

≤I(Un, Sn,M ;Y n, Zn) + n · 3ε (358)

=

n∑

i=1

I(Un, Sn,M ;Yi, Zi|Y
n
i+1, Z

n
i+1) + n · 3ε (359)

≤
n∑

i=1

I(Un, Sn,M, Y n
i+1, Z

n
i+1;Yi, Zi) + n · 3ε (360)

=

n∑

i=1

I(Ui, Si,M,U i−1, Si−1;Yi, Zi)

+

n∑

i=1

I(Un
i+1, S

n
i+1, Y

n
i+1, Z

n
i+1;Yi|Ui, Si,M,U i−1, Si−1)

+

n∑

i=1

I(Un
i+1, S

n
i+1, Y

n
i+1, Z

n
i+1;Zi|Ui, Si,M,U i−1, Si−1, Yi) + n · 3ε (361)

=

n∑

i=1

I(Ui, Si,M,U i−1, Si−1;Yi, Zi)

+

n∑

i=1

I(Un
i+1, S

n
i+1, Y

n
i+1, Z

n
i+1;Zi|Ui, Si,M,U i−1, Si−1, Yi) + n · 3ε (362)

=

n∑

i=1

I(Ui, Si,M,U i−1, Si−1;Yi, Zi) + n · 3ε (363)

=

n∑

i=1

I(Ui, Si,W1,i;Yi, Zi) + n · 3ε (364)

=n · I(UT , ST ,W1,T ;YT , ZT |T ) + n · 3ε (365)

≤n · I(UT , ST ,W1,T , T ;YT , ZT ) + n · 3ε (366)

≤n ·

(
I(UT , ST ,W1;YT , ZT ) + 3ε

)
(367)

≤n ·

(
I(UT , ST ,W1;YT , ZT |E = 0) + 4ε

)
(368)

≤n ·

(
I(U,S,W1;Y,Z) + 5ε

)
, (369)

where (354) comes from the definition of achievable rate and information leakage (R,E), stated
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in equations (329) and (330); (356) comes from equation (331) and Fano’s inequality, stated

pp. 19, in [34]; (357) comes from the independence between the message M and the channel

states (Un, Sn), hence I(M ;Y n, Zn) ≤ I(M ;Y n, Zn, Un, Sn) = I(M ;Y n, Zn|Un, Sn); (362)

comes from the Markov chain Yi −
− (Ui, Si,M,U i−1, Si−1) −
− (Un
i+1, S

n
i+1, Y

n
i+1, Z

n
i+1) stated

in Lemma 13. It is a direct consequence of the causal encoding function and the memory-

less property of the channel; (363) comes from the i.i.d. property of the source that induces

the Markov chain Zi −
− (Ui, Si) −
− (Un
i+1, S

n
i+1, Y

n
i+1, Z

n
i+1,M,U i−1, Si−1, Yi), hence we have:

I(Un
i+1, S

n
i+1, Y

n
i+1, Z

n
i+1;Zi|Ui, Si,M,U i−1, Si−1, Yi) = 0; (364) comes from the introduction of the

auxiliary random variable W1,i = (M,U i−1, Si−1), for all i ∈ {1, . . . , n}; (365) comes from the intro-

duction of the uniform random variable T over {1, . . . , n} and the corresponding mean random variables

UT , ST , W1,T , YT , ZT ; (367) comes from identifying the auxiliary random variable W1 = (W1,T , T );

(368) comes from the empirical coordination requirement as stated in Lemma 5. The sequences of

symbols (Un, Sn, Zn,Xn, Y n, V n) are not jointly typical with small error probability P(E = 1); (369)

comes from Lemma 7. The sequences of symbols (Un, Sn, Zn,Xn, Y n, V n) are jointly typical, hence

the distribution of the mean random variables PUTSTZTXTYTVT |E=0 is closed to the target probability

distribution QUSZXY V . The continuity of the entropy function stated pp. 33 in [32] concludes.

Conclusion: If the triple of rate, state leakage and probability distribution(R,E,Q) is achievable with

causal encoding, then the following equations are satisfied for all ε > 0:

I(U,S;W1,W2, Y, Z)− 4ε ≤ E ≤ H(S) + ε, (370)

R + E ≤ I(U,S,W1;Y,Z) + 5ε. (371)

This corresponds to equations (43) and (44) and concludes the converse proof of Theorem IV.3.

Remark H.1 For the converse proof of Theorem IV.3, the causal encoding is not necessarily deterministic.

The same optimal performances can be obtained by considering stochastic causal encoding.

Lemma 11 The causal encoding function, the memoryless property of the channel and the i.i.d. property

of the source induce the Markov chain property corresponding to equation (333):

Xi −
− (Ui, Si,W1,i)−
−W2,i. (372)

This Markov chain is satisfied with W1,i = (M,U i−1, Si−1) and W2,i = (Y n
i+1, Z

n
i+1), for all i ∈

{1, . . . , n}.
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Proof. [Lemma 11] The auxiliary random variables W1,i = (M,U i−1, Si−1) and W2,i = (Y n
i+1, Z

n
i+1)

satisfy the following equations for all (un, sn, zn, xn, yn, vn,m):

P(w2,i|ui, si, w1,i, xi) = P(yni+1, z
n
i+1|ui, si,m, ui−1, si−1, xi)

=
∑

un
i+1,s

n
i+1,x

n
i+1

P(uni+1, s
n
i+1, x

n
i+1, y

n
i+1, z

n
i+1|ui, si,m, ui−1, si−1, xi) (373)

=
∑

un
i+1,s

n
i+1,x

n
i+1

P(uni+1, s
n
i+1, x

n
i+1|ui, si,m, ui−1, si−1, xi)

· P(yni+1, z
n
i+1|u

n
i+1, s

n
i+1, x

n
i+1, ui, si,m, ui−1, si−1, xi) (374)

=
∑

un
i+1,s

n
i+1,x

n
i+1

P(uni+1, s
n
i+1, x

n
i+1|ui, si,m, ui−1, si−1)

· P(yni+1, z
n
i+1|u

n
i+1, s

n
i+1, x

n
i+1, ui, si,m, ui−1, si−1, xi) (375)

=
∑

un
i+1,s

n
i+1,x

n
i+1

P(uni+1, s
n
i+1, x

n
i+1|ui, si,m, ui−1, si−1) · P(yni+1|s

n
i+1, x

n
i+1) · P(zni+1|u

n
i+1, s

n
i+1) (376)

=
∑

un
i+1,s

n
i+1,x

n
i+1

P(uni+1, s
n
i+1, x

n
i+1, y

n
i+1, z

n
i+1|ui, si,m, ui−1, si−1) (377)

=P(yni+1, z
n
i+1|ui, si,m, ui−1, si−1) = P(w2,i|ui, si, w1,i), (378)

where (375) comes from the causal encoding function that induces the Markov chain Xi −
−

(Ui, Si,M,U i−1, Si−1) −
− (Un
i+1, S

n
i+1,X

n
i+1); (376) comes from the memoryless property of the

channel Y n
i+1 −
− (Sn

i+1,X
n
i+1)−
− (Un

i+1, Ui, Si,M,U i−1, Si−1,Xi) and the i.i.d. property of the source

Zn
i+1−
− (Sn

i+1, U
n
i+1)−
− (Un

i+1, Ui, Si,M,U i−1, Si−1,Xi, Y
n
i+1). This concludes the proof of Lemma 11.

Lemma 12 The causal encoding function, the non-causal decoding function, the memoryless property

of the channel and the i.i.d. property of the source induce the Markov chain property corresponding to

equation (336):

Vi −
− (Yi, Zi,W1,i,W2,i)−
− (Ui, Si,Xi). (379)

This Markov chain is satisfied with W1,i = (M,U i−1, Si−1) and W2,i = (Y n
i+1, Z

n
i+1), for all i ∈

{1, . . . , n}.

Proof. [Lemma 12] The auxiliary random variables W1,i = (M,U i−1, Si−1) and W2,i = (Y n
i+1, Z

n
i+1)
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satisfy the following equations for all (un, sn, zn, wn
1 , w

n
2 , x

n, yn, vn,m):

P(vi|yi, zi, w1,i, w2,i, ui, si, xi)

=P(vi|yi, zi,m, ui−1, si−1, yni+1, z
n
i+1, ui, si, xi)

=
∑

xi−1,yi−1,zi−1

P(vi, x
i−1, yi−1, zi−1|yi, zi,m, ui−1, si−1, yni+1, z

n
i+1, ui, si, xi) (380)

=
∑

xi−1,yi−1,zi−1

P(zi−1|yi, zi,m, ui−1, si−1, yni+1, z
n
i+1, ui, si, xi)

· P(xi−1|yi, zi,m, ui−1, si−1, yni+1, z
n
i+1, ui, si, xi, z

i−1)

· P(yi−1|yi, zi,m, ui−1, si−1, yni+1, z
n
i+1, ui, si, xi, z

i−1, xi−1)

· P(vi|yi, zi,m, ui−1, si−1, yni+1, z
n
i+1, ui, si, xi, z

i−1, xi−1, yi−1). (381)

we can remove (ui, si, xi), in the four conditional probability distributions:

P(zi−1|yi, zi,m, ui−1, si−1, yni+1, z
n
i+1, ui, si, xi) =P(zi−1|ui−1, si−1), (382)

P(xi−1|yi, zi,m, ui−1, si−1, yni+1, z
n
i+1, ui, si, xi, z

i−1) =P(xi−1|m,ui−1, si−1), (383)

P(yi−1|yi, zi,m, ui−1, si−1, yni+1, z
n
i+1, ui, si, xi, z

i−1, xi−1) =P(yi−1|si−1, xi−1), (384)

P(vi|yi, zi,m, ui−1, si−1, yni+1, z
n
i+1, ui, si, xi, z

i−1, xi−1, yi−1) =P(vi|yi, zi, y
n
i+1, z

n
i+1, z

i−1, yi−1),

(385)

where (382) comes from the i.i.d. property of the information source: Zi−1 only depends on (U i−1, Si−1);

(383) comes from the causal encoding that induces the Markov chain Xi−1 −
− (M,U i−1, Si−1) −
−

(Yi, Zi, Y
n
i+1, Z

n
i+1,Xi, Z

i−1, Ui, Si); (384) comes from the memoryless property of the channel: Y i−1

only depends on (Xi−1, Si−1); (385) comes from the non-causal decoding that induces the Markov

chain Vi−
− (Yi, Zi, Y
n
i+1, Z

n
i+1, Z

i−1, Y i−1)−
− (M,U i−1, Si−1, Ui, Si,Xi,X
i−1). Hence we have for all

(un, sn, zn, xn, yn, vn,m):

P(vi|yi, zi, w1,i, w2,i, ui, si, xi)

=
∑

xi−1,yi−1,zi−1

P(vi, x
i−1, yi−1, zi−1|yi, zi,m, ui−1, si−1, yni+1, z

n
i+1) (386)

=P(vi|yi, zi,m, ui−1, si−1, yni+1, z
n
i+1) (387)

=P(vi|yi, zi, w1,i, w2,i). (388)
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The above equation corresponds to the Markov chain Vi −
− (Yi, Zi,W1,i,W2,i) −
− (Ui, Si,Xi) and it

concludes the proof of Lemma 12.

Lemma 13 The causal encoding function and the memoryless property of the channel induce the

following Markov chain property:

Yi −
− (Ui, Si,M,U i−1, Si−1)−
− (Un
i+1, S

n
i+1, Y

n
i+1, Z

n
i+1). (389)

This Markov chain is satisfied for all i ∈ {1, . . . , n}.

Proof. [Lemma 13] We have the following equations for all (un, sn, zn, xn, yn, vn,m):

P(yi|ui, si,m, ui−1, si−1, uni+1, s
n
i+1, y

n
i+1, z

n
i+1)

=
∑

xi

P(xi, yi|ui, si,m, ui−1, si−1, uni+1, s
n
i+1, y

n
i+1, z

n
i+1) (390)

=
∑

xi

P(xi|ui, si,m, ui−1, si−1, uni+1, s
n
i+1, y

n
i+1, z

n
i+1)

· P(yi|xi, ui, si,m, ui−1, si−1, uni+1, s
n
i+1, y

n
i+1, z

n
i+1) (391)

=
∑

xi

P(xi|ui, si,m, ui−1, si−1) · P(yi|xi, ui, si,m, ui−1, si−1, uni+1, s
n
i+1, y

n
i+1, z

n
i+1) (392)

=
∑

xi

P(xi|ui, si,m, ui−1, si−1) · P(yi|xi, si) (393)

=
∑

xi

P(xi, yi|ui, si,m, ui−1, si−1) = P(yi|ui, si,m, ui−1, si−1), (394)

where (392) comes from the causal encoding function that induces the Markov chain Xi −
−

(Ui, Si,M,U i−1, Si−1) −
− (Un
i+1, S

n
i+1, Y

n
i+1, Z

n
i+1); (393) comes from the memoryless property of the

channel that induces the Markov chain: Yi −
− (Xi, Si) −
− (Ui,M,U i−1, Si−1, Un
i+1, S

n
i+1, Y

n
i+1, Z

n
i+1).

This concludes the proof of Lemma 13.

APPENDIX I

CONVERSE PROOF OF THEOREM IV.5

The converse proof for information constraints (48) and (49) are the same as for Theorem II.3, in

Appendix B. We prove the converse result for the information constraint (47). We consider the joint

probability distribution QSXY1Y2V and we introduce the random event of error E ∈ {0, 1} defined as

follows:

E =

{
0 if

∣∣∣∣Qn −Q
∣∣∣∣
1
≤ ε ⇐⇒ (Sn,Xn, Y n

1 , Y n
2 , V n) ∈ Tδ(Q),

1 if
∣∣∣∣Qn −Q

∣∣∣∣
1
> ε ⇐⇒ (Sn,Xn, Y n

1 , Y n
2 , V n) /∈ Tδ(Q).

(395)
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Consider a sequence of code c(n) ∈ C that achieves the probability distribution QSXY1Y2V , i.e. for which

the probability of error Pe(c) = P(E = 1) goes to zero. We have:

n · R ≤ log2 |M|+ n · ε (396)

=H(M) + n · ε (397)

=I(M ;Y n
1 ) +H(M |Y n

1 ) + n · ε (398)

≤I(M ;Y n
1 ) + n · 2ε (399)

=

n∑

i=1

I(M ;Y1,i|Y
n
1,i+1) + n · ε (400)

=

n∑

i=1

I(M,Si−1, Y i−1
2 ;Y1,i|Y

n
1,i+1)−

n∑

i=1

I(Si−1, Y i−1
2 ;Y1,i|Y

n
1,i+1,M) + n · 2ε (401)

=

n∑

i=1

I(M,Si−1, Y i−1
2 ;Y1,i|Y

n
1,i+1)−

n∑

i=1

I(Y n
1,i+1;Si, Y2,i|S

i−1, Y i−1
2 ,M) + n · 2ε (402)

≤
n∑

i=1

I(M,Si−1, Y i−1
2 , Y n

1,i+1;Y1,i)−
n∑

i=1

I(Y n
1,i+1;Si, Y2,i|S

i−1, Y i−1
2 ,M) + n · 2ε (403)

=

n∑

i=1

I(W1,i,W2,i;Y1,i)−
n∑

i=1

I(W2,i;Si, Y2,i|W1,i) + n · 2ε, (404)

where (396) comes from the definition of achievable rate R, stated in equation (154); (397) comes from

the uniform distribution of the random message M ; (398) comes from the definition of the mutual

information; (399) comes from equation (156) and Fano’s inequality, stated pp. 19, in [34]; (402) comes

from Csiszár Sum Identity stated pp. 25 in [34]; (404) comes from the introduction of the auxiliary

random variables W1,i = (M,Si−1, Y i−1
2 ) and W2,i = Y n

1,i+1, that satisfy the properties corresponding

to the set of probability distributions Qf , as proved in Lemma 14.

Lemma 14 For all i ∈ {1, . . . , n}, the auxiliary random variables W1,i = (M,Si−1, Y i−1
2 ) and W2,i =

Y n
1,i+1 satisfy following the properties corresponding to the set of probability distributions Qf :

(Si) are independent of W1,i, (405)

(Y1,i, Y2,i)−
− (Xi, Si)−
−W1,i, (406)

W2,i −
− (Si, Y2,i,W1,i)−
− (Xi, Y1,i), (407)

Vi −
− (Y1,i,W1,i,W2,i)−
− (Xi, Si, Y2,i). (408)
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Equation (404) gives:

n · R ≤
n∑

i=1

I(W1,i,W2,i;Y1,i)−
n∑

i=1

I(W2,i;Si, Y2,i|W1,i) + n · 2ε

=n ·

(
I(W1,T ,W2,T ;Y1,T |T )− I(W2,T ;ST , Y2,T |W1,T , T ) + 2ε

)
(409)

≤n ·

(
I(T,W1,T ,W2,T ;Y1,T )− I(W2,T ;ST , Y2,T |W1,T , T ) + 2ε

)
(410)

≤n · max
Q∈Qf

(
I(W1,W2;Y1,T )− I(W2;ST , Y2,T |W1) + 2ε

)
(411)

≤n · max
Q∈Qf

(
I(W1,W2;Y1,T |E = 0)− I(W2;ST , Y2,T |W1, E = 0) + 3ε

)
(412)

≤n · max
Q∈Qf

(
I(W1,W2;Y1)− I(W2;S, Y2|W1) + 4ε

)
, (413)

where (409) comes from the introduction of the uniform random variable T over {1, . . . , n} and the

introduction of the corresponding mean random variables ST , W1,T , W2,T , XT , Y1,T , Y2,T , VT ; (410)

and comes from the properties of the mutual information; (411) comes from the identifying W1 with

(W1,T , T ), W2 with W2,T and taking the maximum over the probability distributions that belong to the

set Qf ; (412) comes from the empirical coordination requirement as stated in Lemma 5 in Section B-B,

since the sequences are not jointly typical with small error probability P(E = 1); (413) comes from

Lemma 7 in Appendix B-B, that states that the probability distribution induced by the coding scheme

PSTXTY1,TY2,TVT |E=0 is closed to the target probability distribution Q(s, x, y1, y2, v). The continuity of

the entropy function stated pp. 33 in [32] concludes. This concludes the converse proof of Theorem IV.5.

Proof. [Lemma 14] Equation (405) comes from the i.i.d. property of the source S, the independence of

S with respect to the message M and the causal encoding function, hence Si is independent of the past

channel inputs Xi−1, hence Si is independent of Y i−1
2 ; (406) comes from the memoryless property of

the channel, hence (Y1,i, Y2,i) is drawn with (Xi, Si); (407) comes from the following equations:

P(xi, y1,i|si, y2,i, w1,i, w2,i) (414)

=P(xi|si, y2,i,m, si−1, yi−1
2 , yn1,i+1) · P(y1,i|xi, si, y2,i,m, si−1, yi−1

2 , yn1,i+1) (415)

=P(xi|si, y2,i,m, si−1, yi−1
2 ) · P(y1,i|xi, si, y2,i,m, si−1, yi−1

2 , yn1,i+1) (416)

=P(xi|si, y2,i,m, si−1, yi−1
2 ) · P(y1,i|xi, si, y2,i,m, si−1, yi−1

2 ) (417)

=P(xi, y1,i|si, y2,i, w1,i) ∀(sn, xn, yn1 , y
n
2 , w

n
1 , w

n
2 ). (418)

Equation (415) comes from the choice of the auxiliary random variables W1,i = (M,Si−1, Y i−1
2 ) and

W2,i = Y n
1,i+1; (416) comes from the causal encoding that implies Xi is a function of (Si,M, Si−1, Y i−1

2 )
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but not of Y n
1,i+1; (417) comes from the memoryless property of the channel that implies Y1,i is drawn

depending on (Xi, Si, Y2,i) and not on Y n
1,i+1; (418) concludes that the Markov chain (407) holds.

Equation (408) comes from the following equations for all (un, sn, zn, xn, yn, vn,m):

P(vi|y1,i, w1,i, w2,i, xi, si, y2,i) (419)

=
∑

xi−1,yi−1
1

P(vi, x
i−1, yi−1

1 |y1,i,m, si−1, yi−1
2 , yn1,i+1, xi, si, y2,i) (420)

=
∑

xi−1,yi−1
1

P(xi−1|y1,i,m, si−1, yi−1
2 , yn1,i+1, xi, si, y2,i)

· P(yi−1
1 |xi−1, y1,i,m, si−1, yi−1

2 , yn1,i+1, xi, si, y2,i)

· P(vi|x
i−1, yi−1

1 , y1,i,m, si−1, yi−1
2 , yn1,i+1, xi, si, y2,i) (421)

=
∑

xi−1,yi−1
1

P(xi−1|y1,i,m, si−1, yi−1
2 , yn1,i+1) (422)

· P(yi−1
1 |xi−1, y1,i,m, si−1, yi−1

2 , yn1,i+1) (423)

· P(vi|x
i−1, yi−1

1 , y1,i,m, si−1, yi−1
2 , yn1,i+1) (424)

=P(vi|y1,i, w1,i, w2,i), (425)

where (420) comes from the choice of the auxiliary random variables W1,i = (M,Si−1, Y i−1
2 ) and

W2,i = Y n
1,i+1; (421) comes from the decomposition of the probability; (422) comes from the causal

encoding that implies Xi−1 is a function of (M,Si−1, Y i−2
2 ) but not of (Xi, Si, Y2,i); (423) comes

from the memoryless property of the channel that implies Y i−1
1 depends only on (Xi−1, Si−1, Y i−1

2 )

and not on (Xi, Si, Y2,i); (424) comes from the non-causal decoding that implies Vi is a function of

(Y i−1
1 , Y1,i, Y

n
1,i+1) but not of (Xi, Si, Y2,i); (425) concludes that the Markov chain (408) holds. This

concludes the proof of Lemma 14.

APPENDIX J

CONVERSE PROOF OF THEOREM V.2

We consider that the triple of rate, information leakage and probability distribution (R,E,Q) is

achievable with a strictly causal code. We introduce the random event of error E ∈ {0, 1} defined

with respect to the achievable joint probability distribution QSXY V , as follows:

E =

{
0 if

∣∣∣∣Qn −Q
∣∣∣∣
tv
≤ ε ⇐⇒ (Sn,Xn, Y n, V n) ∈ Tδ(Q),

1 if
∣∣∣∣Qn −Q

∣∣∣∣
tv
> ε ⇐⇒ (Sn,Xn, Y n, V n) /∈ Tδ(Q).

(426)
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The event E = 1 occurs if the sequences (Sn,Xn, Y n, V n) /∈ Tδ(Q) are not jointly typical for the target

probability distribution Q. By definition V.1, for all ε > 0, there exists a n̄ such that for all n ≥ n̄, there

exists a code c⋆ ∈ C(n,M) that satisfies the three following equations:

log2 |M|

n
≥ R − ε, (427)

∣∣∣∣Le(c
⋆)− E

∣∣∣∣ =

∣∣∣∣
1

n
· I(Sn;Y n)− E

∣∣∣∣ ≤ ε, (428)

Pe(c
⋆) = P

(
M 6= M̂

)
+ P

(∣∣∣
∣∣∣Qn −Q

∣∣∣
∣∣∣
tv
≥ ε

)
≤ ε. (429)

We introduce the auxiliary random variables W2,i = (M,Si−1, Y n
i+1) that satisfy the Markov chains of

the set of probability distribution Qse for all i ∈ {1, . . . , n}:

Si independent of Xi, (430)

Yi −
− (Xi, Si)−
−W2,i, (431)

Vi −
− (Yi,Xi,W2,i)−
− Si, (432)

where (430) comes from the strictly causal encoding function; (431) comes from the memoryless property

of the channel TY |XS; (432) comes from slight modification of Lemma 3 where only the random variable

Si is removed from the equations (201), (202), (203). It is a direct consequence of the strictly causal

encoding function, the non-causal decoding function and the memoryless property of the channel TY |XS .

We introduce the random variable T that is uniformly distributed over the indices {1, . . . , n} and the

corresponding mean random variables W2,T , ST , XT , YT , VT . The auxiliary random variable W2 =

(W2,T , T ) belongs to the set of probability distributions Qse and satisfies the information constraints of

Theorem V.2:

I(S;X,W2, Y ) ≤ E ≤ H(S), (433)

R + E ≤ I(X,S;Y ). (434)

First Constraint:

n · E ≥I(Sn;Y n)− n · ε (435)

=I(Sn;Y n,M)− I(Sn;M |Y n)− n · ε (436)

≥n ·H(S)−H(Sn|Y n,M)−H(M |Y n)− n · ε (437)

≥n ·H(S)−H(Sn|Y n,M)− n · 2ε (438)

=n ·H(S)−
n∑

i=1

H(Si|Y
n,M, Si−1)− n · 2ε (439)
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≥n ·H(S)−
n∑

i=1

H(Si|Y
n
i+1, Yi,M, Si−1)− n · 2ε (440)

=n ·H(S)−
n∑

i=1

H(Si|Y
n
i+1, Yi,M, Si−1,Xi)− n · 2ε (441)

=n ·H(S)−
n∑

i=1

H(Si|W2,i,Xi, Yi)− n · 2ε (442)

=n ·H(S)− n ·H(ST |W2,T ,XT , YT , T )− n · 2ε (443)

=n ·H(S)− n ·H(ST |W2,XT , YT )− n · 2ε (444)

≥n ·H(S)− n ·H(ST |W2,XT , YT , E = 0)− n · 3ε (445)

≥n ·H(S)− n ·H(S|W2,X, Y )− n · 4ε (446)

=n ·

(
I(S;W,X, Y )− 4ε

)
, (447)

where (435) comes from the definition of achievable information leakage rate E, stated in equation (428);

(438) comes from equation (429) and Fano’s inequality, stated pp. 19, in [34]; (441) comes from the strictly

causal encoding Xi = fi(M,Si−1) that implies I(Si;Xi|Y
n
i+1, Yi,M, Si−1) = 0, for all i ∈ {1, . . . , n};

(442) comes from the introduction of the auxiliary random variable W2,i = (M,Si−1, Y n
i+1), for all

i ∈ {1, . . . , n}; (443) comes from the introduction of the uniform random variable T over {1, . . . , n}

and the introduction of the corresponding mean random variables ST , W2,T , XT , YT ; (444) comes

from identifying W2 = (W2,T , T ); (445) comes from the empirical coordination requirement as stated in

Lemma 6. The sequences of symbols (Sn,Xn, Y n, V n) are not jointly typical with small error probability

P(E = 1); (446) comes from Lemma 7. The sequences of symbols (Sn,Xn, Y n, V n) are jointly typical,

hence the distribution of the mean random variables PSTXTYTVT |E=0 is closed to the target probability

distribution QSXY V . The continuity of the entropy function stated pp. 33 in [32] concludes.

Second Constraint:

n · E ≤I(Sn;Y n) + n · ε ≤ H(Sn) + n · ε = n ·

(
H(S) + ε

)
, (448)

where (448) comes from the definition of the leakage rate E, stated in equation (428) and the i.i.d.

property of the channel states S.
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Third Constraint:

n ·

(
E + R

)
≤ I(Sn;Y n) +H(M) + n · 2ε (449)

= I(Sn;Y n) + I(M ;Y n) +H(M |Y n) + n · 2ε (450)

≤ I(Sn;Y n) + I(M ;Y n) + n · 3ε (451)

≤ I(Sn;Y n) + I(M ;Y n|Sn) + n · 3ε (452)

≤ I(Sn,M ;Y n) + n · 3ε (453)

≤ I(Sn,Xn;Y n) + n · 3ε (454)

≤ n ·

(
I(S,X;Y ) + 3ε

)
, (455)

where (449) comes from the definition of achievable rate and information leakage (R,E), stated in

equations (427) and (428); (451) comes from equation (429) and Fano’s inequality, stated pp. 19, in

[34]; (452) comes from the independence between the message M and the channel states Sn, hence

I(M ;Y n) ≤ I(M ;Y n, Sn) = I(M ;Y n|Sn); (454) comes from the Markov chain Y n −
− (Xn, Sn) −


−M , induced by the channel; (455) comes from the memoryless property of the channel that implies:

H(Y n|Sn,Xn) = n ·H(Y |X,S).

Conclusion: If the triple of rate, information leakage and probability distribution(R,E,Q) is achievable

with strictly causal encoding, then the following equations are satisfied for all ε > 0:

I(S;X,Y,W2)− 4ε ≤ E ≤ H(S) + ε, (456)

R + E ≤ I(X,S;Y ) + 3ε. (457)

This corresponds to equations (53) and (54) and concludes the converse proof of Theorem V.2.
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