
HAL Id: hal-01958244
https://hal.science/hal-01958244

Submitted on 17 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Backward sensitivity analysis and reduced-order
covariance estimation in noninvasive parameter

identification for cerebral arteries
Robert Rapadamnaba, Franck Nicoud, Bijan Mohammadi

To cite this version:
Robert Rapadamnaba, Franck Nicoud, Bijan Mohammadi. Backward sensitivity analysis and
reduced-order covariance estimation in noninvasive parameter identification for cerebral arteries.
International Journal for Numerical Methods in Biomedical Engineering, 2019, 35 (4), pp.e3170.
�10.1002/cnm.3170�. �hal-01958244�

https://hal.science/hal-01958244
https://hal.archives-ouvertes.fr


Backward sensitivity analysis and reduced-order covariance

estimation in noninvasive parameter identification for cerebral

arteries

Robert Rapadamnaba1,∗, Franck Nicoud1 and Bijan Mohammadi1

1 IMAG, Université de Montpellier, CC051, 34095 Montpellier, France.

SUMMARY

Using a previously developed inversion platform for functional cerebral medical imaging with ensemble

Kalman filters, this work analyzes the sensitivity of the results with respect to different parameters entering

the physical model and inversion procedure, such as the inlet flow rate from the heart, the choice of the

boundary conditions, and the nonsymmetry in the network terminations. It also proposes an alternative low

complexity construction for the covariance matrix of the hemodynamic parameters of a network of arteries

including the circle of Willis. The platform takes as input patient-specific blood flow rates extracted from

magnetic resonance angiography and magnetic resonance imaging (dicom files) and is applied to several

available patients data. The paper presents full analysis of the results for one of these patients, including a

sensitivity study with respect to the proximal and distal boundary conditions. The results notably show that

the uncertainties on the inlet flow rate led to uncertainties of the same order of magnitude in the estimated

parameters (blood pressure and elastic parameters) and that three-lumped parameters boundary conditions

are necessary for a correct retrieval of the target signals.

KEY WORDS: covariance matrix, ensemble Kalman filter, parameter estimation, reduced order

compartment blood model, uncertainty quantification, sensitivity analysis.
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1. INTRODUCTION

Cardiovascular diseases are obviously major health concerns nowadays as according to the World

Health Organization, they are the leading cause of death globally [1]. Among these diseases,

intracranial aneurysms, which usually take place in the circle of Willis (CoW) [2], require special

attention. Indeed, according to the Brain Aneurysm Foundation, the cerebral aneurysm is known as

silent killer because in the most of the cases, it is completely asymptomatic and is discovered by

chance frequently in people undergoing brain imaging, such as magnetic resonance angiography and

magnetic resonance imaging (MRA&MRI), and for other reasons, such as evaluation of headaches,

after head trauma, or in work-up of other neurological symptoms [3]. Often in these situations,

the aneurysm itself is an incidental finding, unrelated to the symptoms that prompted the imaging,

but a ruptured aneurysm can cause life-threatening blood loss, which leads to death. That is why

over the last few decades, to better understand and identify the mechanisms linked to aneurysm

formation and rupture, many researchers, across a series of studies, made every effort to establish

the key factors that contribute to the development and the rupture of cerebral aneurysms [4–9].

Some addressed the substantial challenges facing them regarding hemodynamics and the blood flow

mechanism in the CoW [10–13]. Their main objective was to understand the factors increasing the

risk of stroke and the blood flow distribution in the brain. Others have demonstrated the considerable

influence of patient-specific anatomy of cerebral arterial network on blood flow patterns in local

cerebral aneurysms [10, 14–19].

In previous studies [20–24], still others have developed an algorithm based on a data assimilation

technique to estimate hemodynamic parameters such as elastic properties of arteries, arterial

compliance, and boundary condition parameters (Windkessel boundary parameters and reflection

coefficients).

∗Correspondence to: Robert Rapadamnaba, IMAG, Université de Montpellier, CC051, 34095 Montpellier, France.

Email: robert.rapadamnaba@umontpellier.fr
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In our recent publications [25, 26], the usefulness of this kind of algorithm in estimating the

hemodynamic parameters (eg, the wall thickness and the Young modulus), which are difficult to

identify noninvasively, was demonstrated. And to examine the robustness of the approach, several

sensitivity analyses have been carried out. More precisely, the behavior of the algorithm has been

analyzed for

• different initial guesses for the parameters,

• different levels of observations uncertainty,

• the effect of bias in known parameter values and the type of observations,

• the effect of the ensemble size qens on the estimated parameters,

• the location of observations and the number of observations nobs.

This work considers other sources of uncertainties and studies their impacts on the inversion

outcomes. More precisely, it will address

• the uncertainties on the inlet flow rate time series from MRA&MRI, which has been

considered as deterministic in our previous works;

• the uncertainties related to the choice of the boundary conditions at the terminations;

• the uncertainties related to the symmetry assumption previously used between the left and

right network terminations.

Another proposal in this paper is a deterministic construction for backward uncertainty

propagation not using an ensemble approach and an alternative estimation of the covariance matrix

of the estimated parameters after inversion. This construction can be used even without an ensemble

formulation and with deterministic gradient-based minimization algorithms.

The general minimization framework in which the fluid-structure coupling is cast is recalled

in Section 2. The cardiovascular network model, which is made of 0D lumped compartments, is

presented together with the associated minimization problem in Section 3. Section 4 presents the

set up, which will be used to illustrate the different results. This is from one of the patient-specific

data provided by Montpellier University Hospital, Gui de Chauliac. Section 5 gathers the results
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of various sensitivity analyses. The inversion procedure is based on the ensemble Kalman filter

(EnKF) algorithm described in Lal et al. [25]. These ensemble algorithms give an estimation of the

covariance matrix covx of the optimization parameters. This is compared to an alternative derivation

of the covariance matrix in Section 6. Section 7 discusses some limitations of the paper in the light

of the model assumptions.

2. GENERAL SETTINGS

This section presents materials for this work. It follows in broad outline the description made in

Mohammadi [27].

This study focuses on a class of minimization problems written as follows:

min
x∈Oad

J(y(x, z),yobs), y,yobs ∈ Y ⊂ IRnobs , z ∈ Z ⊂ IRm, x ∈ Oad ⊂ IRn, (1)

where x, yobs, and z are independent variables. Only the state variable, y, depends on the cost

function, J . The optimization parameter x belongs to Oad the optimization admissible domain [28].

The physical meaning of all the variables will be given in Section 3.2.

This is a very general context, and it is important to address the effects of the variability in z

and yobs on the solution of the minimization problem. To analyze these, different approaches will

be adopted: an ensemble approach (ie, EnKF here) for the effect of the variability in yobs and a

separated treatment through a consideration of adequate ensemble of ensembles for the effect of the

variability in z.

To be more precise, attention is paid on functional J of the form

J(y(x, z),yobs) = ‖y(x, z)− yobs‖∗, (2)

where the state y(x, z) is solution of a state equation F (y(x, z)) = 0, yobs comes from a direct

observation (measurements) of the system, and ‖.‖∗ is a suitable norm. These will be specified in

Section 3.2. The variable yobs is assumed uncertain and independent, and its components are given

by their probability density functions here assumed GaussianN (µi, σ
2
i ), i = 1, ..., nobs with means

µi and variances σ2
i .
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3. MODELLING AND PROBLEM SPECIFICATION

3.1. Physical model

Many sophisticated and complex physical models representing the human cardiovascular system

exist in the literature [10, 29–32], the simplest of these being the 0D model (also called

compartement model or lumped parameter model). It is the physical model adopted for this work.

In this model, built using an electrical analogy [32–35], the arterial network is divided into different

compartments, each with a resistor (resistance R of blood due to blood viscosity and the vessel

diameter), an inductor (blood inertia L), and a capacitor (compliance C of the artery corresponding

to the quality of the latter to accumulate and release blood due to elastic deformations) as shown in

Figure 1.

R L

C

qin

Pin Pout

qout

Figure 1. A single compartment circuit illustration

The governing system of equations relating the variables R,L, and C for this model results from

the Kirchhoff current and voltage laws (corresponding to the momentum and mass conservation

principles here) applied to a single compartment assumed being filled with an incompressible

Newtonian fluid. They take the form [32–34]

dPout
dt

=
qin − qout

C

dqin
dt

=
Pin − Pout −Rqin

L
,

(3)

where for each artery, Pin, Pout, qin, and qout are inlet blood pressure, outlet blood pressure, inlet

flow rate, and outlet flow rate, respectively. For arteries with a radius r < 0.2 cm, the inertial effect

is ignored [36], and in this case, the flow rate is given by qin = (Pin − Pout)/R.

To calculate the parameters R,L, and C of each compartment, the following equations [35] are

used : Hagen-Poiseuille equation for resistance, R = 8µl/πr4, L = ρl/πr2, and C = 3πr3l/2Eh,
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where r, l, µ, ρ, h, and E are the radius of the artery, the length of the arterial segment, the blood

viscosity, the blood density, the arterial wall thickness, and the Young modulus, respectively.

Each arterial segment of the full network including the CoW is represented by a reduced-order

0D model containing the three elements R,L, and C (see Figures 3C,D, where each of the arterial

segments is modeled with a single compartment). In this way, the full network is represented by a

distributed lumped parameter model in which multiple lumped compartments are interconnected.

At the bifurcations, the enforcement of the mass conservation principle and of the continuity

equation for pressure permits to prescribe the boundary conditions. In order to include the effect of

the downstream vasculature, the blood flow model is coupled to the three-element Windkessel model

(WK3-lumped parameter model) [12, 37] at the outlet of each terminal compartment. In the WK3

model, the equation relating the instantaneous blood pressure and the flow rate reads as follows:

dp(t)

dt
+

p

RDC
= RP

dq(t)

dt
+

qRT
RDC

, (4)

where p, q, C, RP , and RD are the instantaneous pressure at the inlet of the WK3 model,

the instantaneous flow rate, the compliance, the proximal resistance, and the distal resistance

of the vascular beds, respectively. RT = RP +RD expresses the total peripheral resistance. The

sensitivity of the present approach with respect to the choice of the boundary conditions will be

discussed in Section 5.3.

It is not easy to solve the first order differential equations 3 and 4 in view of the stiffness of the

system. That is why the Fortran version of an implicit numerical integration solver DVODE [38, 39],

available on http://www.radford.edu/~thompson/vodef90web/, is used to solve the

system.

3.2. Problem Specification

With the physical model above adopted, the general optimization problem presented in Section 2

can be more specified. The optimization parameter x of size n are the hemodynamic parameters for

each segment plus the number of parameters in the termination boundary conditions. The vector z

of sizem contains the parameters used to describe the flow rate from the heart. Thus,m corresponds

http://www.radford.edu/~thompson/vodef90web/
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either to the number of points in a discrete representation or to the number of parameters for

a reduced-order representation of the signal as shown in Section 5.2. The variable yobs (called

observations) is flow rate time series from MRA&MRI acquisitions at given arteries as described

in Section 4. With time-series observations yobs(t), different functional J can be considered.

Following Lal and colleagues[25, 26], this work aims at minimizing a time-dependent functional

based on instantaneous incoming information:

J(t,y(x, z, t),yobs(t)) = ‖y(x, z, t)− yobs(t)‖∗ =
1

2
‖y(x, z,t)− yobs(t)‖2.

4. PATIENT-SPECIFIC CLINICAL DATA

This section presents patient-specific clinical data used in the remainder of the paper. These data

have been provided by the Department of Neuroradiology of the Centre Hospitalier Régional

Universitaire de Montpellier (CHRU), Montpellier, France, and have been extensively described

in Lal [26] together with their acquisition procedures.

As a reminder, before and after image acquisition, arterial systolic brachial pressure (SBP)

and diastolic brachial pressure (DBP) at rest were measured using a brachial automatic

sphygmomanometer (Maglife, Schiller Medical). The pressure values measured were (115 and

72 mmHg) in the left brachial artery and (125 and 72 mmHg ) in the right one. The ascending

aorta and the internal carotid arteries (right and left ICAs) have been considered for the analysis of

blood flow rates.

Figure 2 shows two pairs of the magnitude and phase contrast images acquired — one for the

ascending aorta (Figure 2B) and the other one for ICAs ( Figure 2C) — and their corresponding

blood flow rates (Figure 2A,C ). These flow rates have been obtained from the GyroTools

software, called GTFlow (http://www.gyrotools.com/products/gt-flow.html/

).

(http://www.gyrotools.com/products/gt-flow.html/)
(http://www.gyrotools.com/products/gt-flow.html/)
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Figure 3 shows the typical 3D model (and morphology) of CoW (see Figure 3A,B) determined

through segmentation of a 3D time of flight magnetic resonance angiography (3D-TOF-MRA) of

the patient’s CoW.

Using these different images, a complex arterial network of 33 arteries (Figure 3d) consisting

of the aorta, vertebral, carotid, and brachial arteries together with an integral CoW adapted from

Alastruey et al. [10] has been modeled, and as shown in Table I, some geometric measurements

such as lengths and radii of CoW’s blood vessel have been obtained. More precisely, in the

cerebral regions with best/high image quality, lengths and radii of cerebral arteries have been

manually extracted from MRA using RadiANT DICOM Viewer software (http://www.

radiantviewer.com/), while in the regions with poor image quality, they were obtained from

average data reported in the literature. Also, other geometries, such as the carotid vascular tree one,

could not be obtained because their acquisition requires the injection of contrast material called

gadolinium, which is impossible to perform on healthy volunteers. To fill this kind of geometries

and all the missing geometry of the full network, data reported in the literature were also necessary.

(http://www.radiantviewer.com/)
(http://www.radiantviewer.com/)
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Table I. Geometric parameters corresponding to arterial segments (and compartments) in Figure 3 measured

from magnetic resonance imaging. The missing geometry (marked with an asterisk) of larger arteries is

taken up from the average data in the literature [10, 12]. R indicates right and L, left.

Id Name l, cm r, cm Id Name l, cm r, cm

1 Ascending aorta (AA) 4.00∗ 1.200∗ 18 L. post. comm. artery (L.PCoA) 1.20 0.075

2 Brachiocephalic (BraCe) 3.40∗ 0.620∗ 19 R. post. cerebral artery P2 (R.PCA, P2) 8.50 0.100

3 Aortic arch I (Aa I) 2.00∗ 1.120∗ 20 R. post. comm. artery (R.PCoA) 1.20 0.075

4 R. subclavian (R.Sub) 3.40∗ 0.423∗ 21 R. internal carotid I (R-ICA) 17.7∗ 0.200

5 R. common carotid (R.CC) 17.7∗ 0.250∗ 22 R. external carotid (R.ECA) 17.7∗ 0.150∗

6 L. common carotid (L.CC) 20.8∗ 0.250∗ 23 L. internal carotid I (L-ICA) 17.7∗ 0.200

7 Aortic arch II (Aa II) 3.90∗ 1.070∗ 24 L. external carotid (L.ECA) 17.7∗ 0.150∗

8 L. subclavian (L.Sub) 3.40∗ 0.423∗ 25 R. internal carotid II (R.ICA) 0.50 0.200

9 Thoracic aorta (ThorA) 15.6∗ 0.999∗ 26 L. internal carotid II (L.ICA) 0.50 0.200

10 R. brachial (R.BRA) 42.2∗ 0.403∗ 27 L. middle cerebral artery (L.MCA) 11.9 0.143

11 R. vertebral (R.VA) 14.8∗ 0.136∗ 28 L. anterior cerebral artery A1 (L.ACA, A1) 1.20 0.117

12 L. vertebral (L.VA) 14.8∗ 0.136∗ 29 R.middle cerebral artery (R.MCA) 11.9 0.143

13 L. brachial (L.BRA) 42.2∗ 0.403∗ 30 R. anterior cerebral artery A1 (R.ACA, A1) 1.20 0.117

14 Basilar (BAS) 2.70 0.150 31 R. anterior cerebral artery A2 (R.ACA, A2) 10.3 0.120

15 R. post. cerebral artery P1 (R.PCA, P1) 0.56 0.110 32 Anterior comm. artery (ACoA) 0.30 0.074

16 L. post. cerebral artery P1 (L.PCA, P1) 0.56 0.110 33 L. anterior cerebral artery A2 (L.ACA, A2) 10.3 0.120

17 L. post. cerebral artery P2 (L.PCA, P2) 8.50 0.100

The inverse hemodynamic problem aims at identifying unknown parameters (the arterial stiffness

and the WK3 model boundary parameters) for the network as shown in Figure 3D and as described

in Lal and colleagues [25, 26]. In the parameter estimation problem, both available patient-specific

flow rate waveforms for the right internal carotid (R-ICA; #21 in Table I) and the left internal

carotid (L-ICA; #23 in Table I) were used as observations during EnKF assimilation steps. Blood

rheological parameters µ and ρ were set at 0.004 Pa s and 1050 kg m−3 and at the inlet (ascending

aorta, compartment #1 in Figure 3D), specific values of flow rates, qin, measured by PC-MRI (see

Figure 2A,B) were imposed.

The results shown in the next section were obtained under the following assumptions on the

unknown model parameters:
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• The parameters R,L,C, and the WK3 boundary condition parameters are assumed to well

reproduce the patient-specific description of the 0D blood flow model expressed by Equation

3.

• Eh, the product of Young modulus and thickness of arteries, is the unknown quantity to

recover by data assimilation, and it is assumed to be given by this empirical formula [40]:

Eh = r(k1 e
k2r + k3), (5)

where the radius (r) is measured from MRA. An estimation of the product Eh is found

by looking for an estimation of the unknown constants ki with their initial guesses as

k1 = 2.0× 107 g cm−1s−2, k2 = −22.0 cm−1 and k3 = 8.0× 105 g cm−1s−2.

• For each left and right pair of terminal compartments, the same WK3 parameters are assumed

by symmetry. For instance, the terminal compartments #22 and #24 are assigned with the same

WK3 boundary conditions. The parameters RPi
, RDi

and Ci where i = 9, 10, 19, 22, 29, 31

denotes the compartment numbers are also considered as unknown model parameters. Thus,

21 parameters consisting of six proximal resistances, six distal resistances, six compliances,

and three constants defining the product Eh are estimated. The initial estimates for the

proximal resistances and the compliances were taken from the data published by Alastruey

et al.[10], and the initial guesses for the distal resistances RD are chosen such that the ratio

RP /RT = 0.2, ie, RD = 4RP [41].
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m
L
/s

m
L
/s

m
L
/s

Figure 2. PC-MRI of the patient-specific ascending aorta and internal carotid arteries (right and left) showing

the blood flow through one of the selected slices. In the center, on the left are the magnitude images and

on the right are the phase contrast images B, and C, with Venc setting of 200 and 80 cm s−1 for the

ascending aorta and the internal carotid arteries, respectively. The instantaneous blood flow rate values,

q(t) are acquired at each time frame and are plotted against time for one cardiac cycle as shown on the top

for AA A, and at the bottom for ICAs D. In panel A, the signals obtained from three different segmentations

performed by the same “operator” are reported to give a feeling of the uncertainty on the inlet flow rate.
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Figure 3. A TOF MRI scan A, and the corresponding segmented 3D model of the CoW B, for the considered

patient-specific case. The network [10] of a 1D blood flow model of the upper body arteries and of the CoW

C, and its equivalent compartment model D. The lines size indicates relative size of the arteries. The numbers

on segmented model refer to the Ids of the arterial segments in Table I. Arrows indicate the direction of flow.

Flow rates are assigned the compartment numbers corresponding to those in Table I. At the inlet (ascending

aorta, compartment #1), specific values of flow rates, qin, are imposed.
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5. PATIENT-SPECIFIC RESULTS

This section presents typical convergence of the inversion algorithm and sensitivity analysis for

the inverse problem with respect to several modeling issues and parameters of the direct model.

Before presenting these results, it seems appropriate to clarify first the meaning of convergence in

the remaining of this paper.

More precisely, it is said that there is convergence if, on the basis of a visual inspection, the

estimated parameters have only very minor variations from systole to diastole on the one hand, and

on the other, from one cardiac cycle to the next. Quantitative parameters for convergence could be

introduced, but it would weigh down the procedure.

5.1. Convergence

Figure 4 shows the target and model signals in time. One observes that there is a good agreement

between the target and predicted flow rate waveforms after 10 cycles (about 8.35 s).

Figures 5 and 6 show the evolutions of the first two moments of the 21 estimated optimization

parameters x. One sees very different convergence patterns. Some variables do not fully converge

even though the observations are well recovered. This suggests that those variables have small

effects on the solution. The final estimates of the 21 parameters with their associated uncertainties

are tabulated in Table II. As the most important information is the elastic characteristics of

the vessels, figure 7 shows the evolutions of three of the estimated Young moduli during the

EnKF iterations. As the Young moduli are obtained through a same expression, they bare similar

convergence patterns. The most important thing here to note is that all the Young moduli for the

33 arteries tend to realistic values with respect to the literature (ie, between 0.1 and 1.2 MPa)

[10, 42, 43].
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Figure 4. Comparison of the model simulated blood flow rate waveform in R-ICA (on the left) and L-ICA

(on the right) to the target signals.

Figure 5. Histories of the mean and standard deviation of the nine first estimated parameters during EnKF

iterations.
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Figure 6. Histories of the mean and standard deviation of the 12 last estimated parameters during EnKF

iterations.
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Table II. Estimated parameters with the associated errors for the patient-specific. The values of constants

k1, k2, and k3 are in ×107 g cm−1s−2, cm−1, and ×105 g cm−1s−2 respectively. The proximal (RP ) and

distal (RD) resistances are in ×109 Pa s m−3 and the compliance (C) are in ×10−10 m3 Pa−1.

Parameter Initial guess EnKF estimate ± error

k1 2.00 3.49 ± 0.19

k2 -22.0 -5.00 ± 0.26

k3 8.5 4.39 ± 0.24

RP9 0.02 0.028 ± 0.001

RP10 0.13 0.25 ± 0.017

RP19 4.8 1.88 ± 0.15

RP22 1.67 1.33 ± 0.12

RP29 2.61 1.54 ± 0.11

RP31 3.70 6.39 ± 0.43

RD9 0.08 0.30 ± 0.0005

RD10 0.52 1.03 ± 0.007

RD19 19.32 4.19 ± 0.034

RD22 6.68 12.88 ± 0.174

RD29 10.44 1.79 ± 0.018

RD31 14.80 9.69 ± 0.068

C9 38.78 47.12 ± 2.62

C10 2.58 1.82 ± 0.17

C19 0.62 0.63 ± 0.043

C22 1.27 4.02 ± 0.49

C29 1.16 0.17 ± 0.023

C31 0.82 2.00 ± 0.15
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Figure 7. Mean and standard deviation of estimated Young moduli for three of the 33 segments of the

network. The evolution is over 8.35 s corresponding to about 10 cardiac cycles.

To illustrate this, a compared overview of some of estimated parameters with those reported in

previous studies [10, 12, 41, 43–45] was carried out, and the model-simulated flow rates through all

the termination models and carotid arteries were also examined. The results of the comparison of the

parameters are shown in Figure 8 and the model-simulated flow one in Figures 4 and 9. These latter

are also compared with blood flow rates values reported in Alastruey et al [10] and Reymond et al

[12] and with clinically measured blood flow rates using MRI in Table III. One notices that almost all

estimated parameters were found to be in the same order of magnitude than those reported in other

studies [10, 12, 41, 43–45]. Furthermore, one observes good overall agreement in flow waveforms

but considerable differences in flow amplitude at all arterial terminations. All mean, systolic, and

diastolic flow rates reported in Alastruey et al [10] and Reymond et al [12] are much higher than

model outputs except those of MCA. This is to a large extent due to the difference of patients and

models considered in investigated cases and especially to flow rate difference from the beginning in

the ascending aorta (420, -33, and 96 mL s−1 for systolic, diastolic, and mean flow rate, respectively,

in Reymond et al [12] versus 302, 0, and 62.4 mL s−1 for systolic, diastolic, and mean flow rate,

respectively, in the model). This prevents from properly comparing the different flow divisions of

the model with those reported in Alastruey et al [10] and Reymond et al [12].
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Despite these substantial differences, note that the model provided flow rate predictions that

faithfully reproduced wave characteristics in the ICAs. This is illustrated in Figure 4, which shows

the comparison between the target (clinically measured blood flow rates in the ICAs using MRI) and

blood flow model simulations (predictions) based on the estimated parameters. From the results, the

comparison between the assimilated 0D model and in vivo data (MRI) is fair. All mean, systolic,

and diastolic flow rates measurements using MRI and model outputs in ICAs differ by less than

5%, and thus, one can conclude, in the absence of other clinically measured flow rates, that the 0D

model considered here may very well predict blood flow rate in the entire arterial tree.

Figure 8. Comparison of estimated compliances and total peripheral resistances at the arterial terminations

with reports in the literature. The estimated parameters using the assimilated compartment model

(represented by empty squares) are in the same order of magnitude than those existing in the literature.



BACKWARD SENSITIVITY ANALYSIS IN NON-INVASIVE IDENTIFICATION 19

Figure 9. Mean and standard deviation of estimated blood flow rate at the arterial terminations.
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5.2. Sensitivity analysis with respect to the inlet flow rate qin(t)

One important source of uncertainty in the inversion is due to the variability in the segmentation

procedure by the “operator” in charge from PC-MRI data to define the variable called z in the

minimization problem (1).

Let us consider qin(t) the patient-specific blood flow rate time series through one of the selected

slices in the ascending aorta as shown in Figure 2A for one cardiac cycle. As presented in this figure,

qin(t) is defined in a deterministic way. One however observes that different segmentations, even by

a same “operator”, lead to different flow rates time series. To analyze the sensitivity of the inversion

with respect to this uncertainty, it is convenient to represent qin(t) using a reduced-order model. For

that purpose, the model proposed in Alastruey et al [10] involving two parameters which will be

considered as stochastic here (see Figure 10) will be adapted as follows:

qin(t) =


α sin(πt/τ) if t < τ,

ε otherwise,

(6)

where α (mL s−1) = N (µα, σ
2
α), τ (s)= N (µτ , σ

2
τ ), and ε (mL s−1) = N (µε, σ

2
ε) are the

components of z in (1). µα, µτ , and µε are patient-specific. They are chosen solving a least square

problem to fit the inflow rate shown in figure 2. This leads to the following values: µα = 302 mL

s−1, σα = 15 mL s−1, µτ = 0.35 s, στ = 0.0175 s, µε = 21.65 mL s−1, and σε = 1.0825 mL s−1.

The standard deviations that are of the order of 5 % of mean values model the uncertainty that an

“operator” will introduce through the manual acquisition/segmentation steps from dicom format

files.



BACKWARD SENSITIVITY ANALYSIS IN NON-INVASIVE IDENTIFICATION 23

Figure 10. Uncertain inflow rate qin and the low complexity model. The latter will be used for uncertainty

propagation in inversion.

To analyze the sensitivity of the inversion with respect to the uncertainty on qin(t), 30 inversions

for Gaussian sampling in α, τ , and ε have been performed. An ensemble of size 30 has been used

for all inversions. This ensemble size choice is based on a synthetic case study results that have

shown that an ensemble of size 30 seemed to be good enough to estimate 21 model parameters for

the prediction of cerebral arterial pressure with an error of less than 10 % [26]. To generate the

30 ensemble members, one proceeds as follows: from initial estimate of n unknown parameters

(mean xl and variance Pl for l = 1, . . . , n), we randomly initialize an ensemble of parameters,

xi, for i = 1 . . . , qens where xi = (x1, x2, . . . , xn) and xl ∼ N (xl, Pl) for l = 1, . . . , n. For more

details, the reader is referred to Lal [26]. It is interesting to illustrate the convergence not for the

optimization variables x but for the Young moduli, which are obtained from following expression

(5): E = r(k1 e
k2r + k3)/h where k1, k2, and k3 are the three first components of x.

Once all the inversions are completed, one can proceed with some statistics. Figure 11 shows the

estimated mean value and standard deviation for the Young modulus of each segment. One sees that

the “operator” uncertainty can have up to 5% impact on the elastic parameter estimation. This is

therefore of the order of the patient-specific uncertainty in z = (α, τ, ε) in equation 6 and obtained

assimilating uncertain patient data by the low complexity qin model. This means that the procedure
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seems to work linearly in connection with the errors propagation. This is not an aberration as a

result; on the contrary, this is satisfactory in that it reveals that the procedure does not seem to

reduce nor to amplify the errors. However, qin needs to receive very accurate treatment if one would

like to have an uncertainty below say 5% on the outcomes, which is may be difficult to achieve

given the nature of the problem and also the way data are acquired.

Figure 12 presents the estimated mean and standard deviation for the right brachial pressure. It is

quite reassuring to notice that despite the “operator” uncertainty, the predicted brachial pressure

remains coherent with the ausculatory measure of the patient using a sphygmomanometer (ie,

between 72 and 125 mmHg) taken after the acquisition. This gives some indication for the level

of uncertainty one can tolerate because of manual acquisition steps.

Figure 11. Mean and standard deviation of different segments Young moduli showing the impact of the

uncertainty on the inlet flow rate qin(t) on the inversion.
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Figure 12. Right brachial pressure mean and standard deviation for two cardiac cycles showing the impact

of the uncertainty on qin(t) on the inversion. The clinically measured SBP and DBP are 125 and 72,

respectively.

5.3. Sensitivity analysis with respect to the boundary conditions

Another important source of uncertainty in the inversion is related to the choice of the boundary

conditions at the outlet of each of the terminal compartments. As described in Section 3.1, the

blood flow model uses a three-element Windkessel condition, which couples the instantaneous blood

flow rate and pressure through equation 4. It would be interesting to see how the use of a simpler

boundary condition will affect the inversion. More precisely, WK1 boundary conditions where the

blood flow rates at terminations are related to the instantaneous pressure through a simple algebraic

relation involving the proximal and distal resistances are considered:

p = qRT = q(RP +RD), (7)

Hence, a WK1 condition is a WK3 one with zero compliance. One advantage of WK1 is a

reduction of the number of optimization variables from 21 to nine: the six total resistances RTi
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with i = 9, 10, 19, 22, 29, 31 and the three constants k1, k2, and k3 necessary for the definition of

Eh. However, the same ensemble size of 30 is used for both inversions.

Figures 13, 14, and 15 show the impact on the inversion of a change of the boundary conditions

from WK3 to WK1. This analysis shows that the WK1 conditions are clearly insufficient to describe

the underlying physics of the problem. Indeed, despite the inversion’s success in recovering the

target flow rate at R-ICA and L-ICA segments, the brachial pressures are miscalculated. One also

sees that the convergence of the EnKF algorithm is not fully achieved. Actually, some parameters

do not converge at all and this despite the ensemble size advantages in the WK1 inversion. Yet,

to be adopted, the prescribed boundary conditions must allow at the same time to provide good

convergence for the estimated parameters, to well reproduce both available patient-specific flow

rate waveforms for the right internal carotid and the left internal carotid and to well predict brachial

blood pressure. If one of these expected results is not achieved by the chosen boundary conditions,

this choice cannot be relevant. As a conclusion, only WK3 conditions will be considered for the

next sensitivity analysis regarding the interrogations of the assumed symmetry in the terminations

boundary conditions.

Figure 13. Flow rate waveform using WK1 and WK3 and comparison with the target flow rate in R-ICA and

L-ICA.
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Figure 14. Comparison between R. and L. brachial pressures with WK1 and WK3. The clinically measured

SBP and DBP in the right and the left brachial arteries are 125 and 72, and 115 and 72, respectively.
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Figure 15. Convergence of estimated parameters during EnKF using WK1 and WK3. The shaded areas

represent the standard deviation around the ensemble mean values (dashed and solid lines).

As presented in Section 4, the same WK3 boundary conditions have been applied at the left

and right pairs of the terminal compartments. To analyze the sensitivity of the inversion with

respect to this assumption, one proceeds with several nonsymmetric scenarios. Unfortunately, to the

knowledge of the authors, no indication on how the nonsymmetry takes place can be found in the

literature. In other words, it is unclear if, for instance, the termination resistances or compliance

are higher or lower on the left with respect to the right-hand side. Actually, it seems that the

nonsymmetry is patient-dependent. The analysis will be carried out in three steps: nonsymmetric

resistances with symmetric compliances, nonsymmetric compliances with symmetric resistances,

and nonsymmetric resistances and compliances.

Let us start analyzing the effect of nonsymmetry in the resistances on the inversion keeping

the compliances symmetric. The nonsymmetry has been introduced considering RleftD = aRR
right
D
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and RleftP = aRR
right
P where aR is a constant. Several inversions have been made for the values

of aR = 0.5, 0.75, 1 (symmetric WK3), 1.25 and 1.5, meaning that for each value chosen for aR,

the parameter identification procedure has been applied using the EnkF algorithm, which leads

to the full set of physiological parameters. These values of aR have been a priori chosen, and

different sampling can be considered without difficulty. This is an illustration of how the inversion

procedure can be used to analyze a possible hypothesis made by practitioners on the possibility of

nonsymmetric behavior in terminations. Also, the sampling is made in order for the resistance to

have admissible physiological values around the reference value “1” corresponding to the symmetric

WK3 boundary conditions case. Rleft,rightD and Rleft,rightP replace RD and RP in expression

(4) in corresponding left and right terminations. Figures 16, 17, and 18 show the impact of this

nonsymmetry on the inversion. One notices that a loss of symmetry on the resistances does not

impact the flow rate. However, it plays a big role in pressure estimation as the mean brachial

pressures and the SBP-DBP differences (DeltaP) increase with the level of resistances on the

left terminations.

Figure 16. Flow rate waveform using WK3 with the same compliances and different resistances for left and

right pairs of terminal compartments and comparison with the target flow rate in ICAs.
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Figure 17. Comparison between R. and L. brachial pressures estimated using WK3 with the same

compliances and different resistances for left and right pairs of ICAs’ terminal compartments. The clinically

measured SBP and DBP in the right and the left brachial artery are 125 and 72, and 115 and 72, respectively.

Figure 18. Rate of variation of different pressure information with respect to aR. The different pressure

information increase with the level of resistances.

Now, let us see the impact of a nonsymmetry on the compliances for symmetric resistances. The

nonsymmetry is again introduced through a multiplication by a constant aC on the left compliances,

Cleft = aCC
right. Again, several inversions have been performed for the values of aC = 0.5, 0.75, 1

(symmetric WK3), 1.25 and 1.5. Cleft,right replace C in expression (4) in corresponding left and
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right terminations. Figures 19, 20, and 21 show the impact of this nonsymmetry on the inversion. It

appears that, unlike with the nonsymmetry in the resistances, a loss of symmetry on the compliances

has much less impact on the inversions.

As a conclusion, nonsymmetry in the resistances seems to play a much bigger role.

Figure 19. Comparison of the model simulated blood flow rate waveform using WK3 with the same

resistances and different compliances for left and right pairs of ICAs’ terminal compartments.

Figure 20. Comparison between R. and L. brachial pressures estimated using WK3 with the same resistances

and different compliances for left and right pairs of ICAs’ terminal compartments. The clinically measured

SBP and DBP in the right and the left brachial artery are 125 and 72, and 115 and 72, respectively.
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Figure 21. Rate of variation of different pressure information with respect to aC . Despite the systolic and

diastolic pressures vary, their difference DeltaP is nearly invariant with respect to this nonsymmetry.

Finally, both the resistances and compliances are considered as nonsymmetric. Figures 22, 23, and

24 show the impact of this loss of symmetry. One sees that the target signals are well recovered by

all the inversions. It is therefore unclear if nonsymmetry should be introduced during the inversion

if the only available information is the flow rate. Considering the brachial pressures, still the

improvement is not spectacular compared to the symmetric configuration as many combinations

produce acceptable brachial pressure levels. A symmetric set up appears to be suitable for this

patient. This is shown in Figure 24 indicating the acceptable nonsymmetry combinations for

(aR, aC), ie, the combinations for which similar results than the symmetric WK3 conditions are

obtained. The same trends were observed for the other patients considered in this study. In short,

if one wants the inversion to identify possible nonsymmetry, one would need more discriminating

data.
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Figure 22. Comparison of the model simulated blood flow rate waveform after inversion with different

combinations of aC and aR.

Figure 23. Comparison between R. and L. brachial pressures after inversion with different combinations of

aC and aR.
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Figure 24. Impact of the nonsymmetry on compliances and resistances on the right (R) and left (L) brachial

pressures. Diastolic (left column) and Systolic (middle column) pressures (DBP and SBP) are sensitive

to nonsymmetry in both resistance and compliance while DeltaP, the difference between the two (right

column) only sees the nonsymmetry in the resistance. The delimited region by the two contours indicates

where the nonsymmetric combination produces similar results than the symmetric WK3 conditions.

6. ALTERNATIVE BACKWARD UNCERTAINTY QUANTIFICATION

6.1. Linear theory for an alternative covariance matrix construction

EnKF is an elegant way for backward uncertainty propagation as one has access to the covariance

matrix (covx) of the optimization variables during the inversion from ensemble information. Indeed,

at each iteration k of the EnKF algortihm, covx
k

can be defined with a similar expression to those
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used for calculating the error covariance matrices necessary to the Kalman gain matrix computation:

covx
k
=

1

qens − 1

qens∑
i=1

[
xfi
k − xf

k

] [
xfi
k − xf

k

]>
,

where qens is the size of the ensemble, the superscripts f and fi stand for forecast and the ith forecast

member of an ensemble of size qens, xfi
k is the forecast ensemble of parameters for i = 1, . . . , qens,

and xf
k is the mean of the forecast ensemble of parameters ( xf

k = 1
qens

∑qens
i=1 x

fi
k ).

This section presents an alternative low-complexity construction of the covariance matrix [46] of

the parameters (covx) not necessitating ensemble information. It is based on the assumption of a

local linear relationship (δy = J δx) between the hemodynamic parameter variations δx = x− x

and the state variations δy = y − y with respect to the mean values x and y. One interest of this

construction is that it can also be used with deterministic minimization algorithms suitable for large

dimensional problems where ensemble methods might fail.

Let us establish the expression for the covariance matrix covx of the parameters x knowing the

covariance matrix covy of the model solution. These are supposed independent which means that

covy is diagonal.

The covariance matrix of y is given by

covy = IE
[
(y − y)(y − y)

>
]
= IE

[
J (x− x) (x− x)

> J>
]

= J IE
[
(x− x)(x− x)

>
]
J>

= J covx J>,

and therefore,

covx = J−1 covy J−>,

where J−> = (J>)−1 and J = ∇xy. As x and y do not have the same size, J is a rectangular

matrix. A least square formulation is introduced to give a sense to J−1 through its normal form,

minimizing

1

2
< J covx J>,J covx J> > − < covy,J covx J> > .

First order optimality condition with respect to covx gives

J>J covx J>J − J> covy J = 0,
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which implies

covx = (J>J )−1 J> covy J (J>J )−1,

and finally leads to

covx = J−1 covy J−> =
(
J> covy

−1 J
)−1

. (8)

To get covx knowing covy, it is therefore sufficient to evaluate the Jacobian J . This can be done

using a finite difference approximation.

When the inversion is successful, the model states y and the observations yobs are close.

Assuming that covyobs
∼ covy, this construction from covy can be extended to covyobs

.

6.2. Application to the patient-specific data

This section applies the backward uncertainty quantification construction presented in Section 6.1

to the patient-specific data and compares the outcome with the ensemble analysis through EnKF

results.

Figure 25 shows a comparative overview of the square root of covx diagonal elements calculated

using EnKF (blue points) and the low cost linear theory (red points). These values represent standard

deviation associated with the estimated parameters. The linear theory seems to provide lower bounds

for the backward uncertainty on the inversion. This comparison shows that the linear hypothesis

permits to a posteriori obtain the uncertainty on the inversion solution with an error of less than

15%, and this especially without requiring any extra information when used together with a gradient

based minimization algorithm.
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Figure 25. Comparison of the square root of covx diagonal elements coming from EnKF solution (blue

points) to the square root of covx diagonal elements calculated with the low complexity deterministic

evaluation based on the linear theory given in equation 8 (red points).

7. LIMITATIONS

It is worth bearing in mind the limitations of the present study, both intentional and unintentional.

One of the limitations could be the use of 0D models. Indeed, as pointed out by Shi et al [47] and

Kokalari et al [48], the 0D models consider as uniform the distribution of fundamental variables

(pressure, volume, and flow rate) at any instant in time. Thereby, they do not account for the

spatial variation of these parameters [48]. They are therefore only appropriate for the study of

global distribution of the pressure, flow rate, and blood volume in systemic arterial network and for

specific physiological conditions. Phenomena, such as wave transmission, wave travel, and wave

reflections, cannot be or are not studied [49]. It is worth noting that several studies have pointed out

the shortcomings of the lumped models and have proposed more complex and sophisticated models

to better capture the characteristics of blood flow [33, 47, 50–52]. However, this is not central to our

discussion and is beyond the scope of this paper. What is shown here and is regularly employed in

the literature concerning arterial hemodynamics is that this simple model permits to give reasonable

results. Moreover, the region studied being compact, (the size of the cerebral network [of order 10

cm] is small compared with typical pressure wavelength [of order a few meters]), assuming that all
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the quantities are homogeneous over each segment (viz, making the 0D assumption at the scale of

each element), is acceptable. Of course, it would not be acceptable if this study was dealing with

the arterial network of the whole body.

Another limitation could be the choice of the formula relating Young modulus, thickness, and

radius for the cerebral arteries in Equation 5. This work assumes the same phenomenological

relation for both large and cerebral arteries. The other factor might be the failure to account for

the variation of arteries radii along arterial axes and the adaptation of missing data, such as the

geometrical parameters of the arteries, from the literature. Future work should include sensitivity

analysis of the optimization parameters outcomes with respect to this simplification. For instance,

one way to quantify how this simplification would affect the results of optimization parameters is to

perform several inversions, with the present tool, using perturbed geometries and see the impact of

this perturbation on the outcomes. This is a step to be taken in the future to improve the robustness

of the approach.

As possible improvements, one could also mention the marked changes in simulated brachial

pressure wave resulting from assigning different resistances for left and right pairs of terminal

cerebral compartments. From the physiological point of view, this might not be correct as some

studies support that arterial blood pressure wave is mainly determined by the systemic vessels

rather than the cerebral vessels. In other words, changing cerebral vascular resistances should

not induce such large changes in systemic arterial pressure wave. To demonstrate the relevance

of this issue, new tests of nonsymmetry in resistances with aR = 1.5 only have been performed.

The results are summarized in Figure 26. They show that changing the resistances of only one

termination in cerebral or brachial arteries has no effect on brachial pressure. However, they reveal

that changing resistances at only thoracic aorta termination has the same impact (or even more) on

brachial pressure as the nonsymmetry in resistances at all the arterial terminations except thoracic

aorta case above presented. Furthermore, one notices that changing resistances at all terminations

induces more important changes in brachial pressure. Thus, the apparent effects of resistances

at arterial terminations on the brachial pressure might result from the fact that the lower part of
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systemic circulation, which is of major importance in determining arterial blood pressure wave is

only represented here by distal boundary conditions.

At last, it is necessary to highlight the lack of clinically measured flow rates in arteries other than

ICAs and ascending aorta. This prevents the proper validation of the predicted flow divisions among

major tissues. More clinical data are required.

Figure 26. Importance of systemic arteries with respect to cerebral arteries in determining R. and L.

brachial pressures estimated using WK3 with nonsymmetry in resistances with aR = 1.5 only. Changing

resistances at only thoracic aorta termination (dashed green) has the same impact on brachial pressure as

the nonsymmetry in resistances at all the arterial terminations except thoracic aorta case (dashed black).

Changing resistances at all terminations (thin blue) induces more important changes in brachial pressure.

The clinically measured SBP and DBP in the right and the left brachial artery are 125 and 72, and 115 and

72, respectively.

8. CONCLUSION

The robustness of a functional cerebral imaging platform has been analyzed for patient-specific

situations. In particular, detailed results for one patient have been reported to illustrate the kind

of information and sensitivity analyses which can be produced in addition to the classical inversion
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results. The aim is to be able to quantify the impact of the uncertainty of different parameters usually

considered as deterministic on the hemodynamic parameters obtained after inversion.

An important source of uncertainty being the flow rate from the heart is that the sensitivity of the

inversion with respect of the inlet flow has been analyzed. The conclusion drawn from this analysis

has been that the predicted pressure and the elastic parameter estimation are of the same order of

magnitude than the assumed uncertainty on the inlet flow rate. This provides additional guidance

to practitioners as it gives some indication for the level of uncertainty one can tolerate because of

manual acquisition steps. The sensitivity of the inversion with respect to the choice of the boundary

conditions in the direct model has been analyzed. The WK3 boundary conditions appear necessary

for a correct retrieval of the target signals. Then the impact of nonsymmetry in the terminations

resistances and compliances has been analyzed. The former effects appear prominent. However,

one notices that available observations are not enough discriminating and, therefore, do not make it

obvious for possible nonsymmetry to be identified through the inversion procedure.

Finally, an ensemble approach might be unsuccessful if the size of the inversion problem is large.

To address this issue, one might use deterministic gradient-based inversion algorithms together with

an adjoint formulation for the gradient evaluation. But these algorithms do not propagate backward

the uncertainty on the observations. To address this issue, a low-complexity backward uncertainty

quantification construction has been introduced. It uses a local linear relationship between the blood

flow rate and the hemodynamic parameters. The construction has been favorably compared to the

ensemble outcome, which is interesting as this is a generic construction and can be used with any

deterministic inversion algorithm.
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