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Abstract

We consider homogenization problems for linear elliptic equations in divergence form. The
coe�cients are assumed to be a local perturbation of some periodic background. We prove W 1,p

and Lipschitz convergence of the two-scale expansion, with explicit rates. For this purpose, we
use a corrector adapted to this particular setting, and de�ned in [10, 11], and apply the same
strategy of proof as Avellaneda and Lin in [1]. We also propose an abstract setting generalizing
our particular assumptions for which the same estimates hold.
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1 Introduction

The present paper follows up on the articles [9, 10, 11, 12]. In these works, we studied homogenization
theory for linear elliptic equations, for which the coe�cients are assumed to be periodic and perturbed
by local defects, that is, Lr(Rd) functions, r ∈]1,+∞[. As expected, the macroscopic behavior, in
the homogenization limit, is de�ned by the periodic background only. However, if one is interested in
�ner convergence properties, possibly with a convergence rate, then the defect may have an impact.
In such a case, a corrector taking the defect into account is necessary. Its existence has been proved
in [9] in the case r = 2, and in [10, 11] in the general case. Formal arguments in [9, 10] indicate that
this adapted corrector is important for having a good convergence rate and/or convergence in a �ner
topology.

The aim of the present paper is to prove that the corrector constructed in [9, 10, 11, 12] indeed
allows for such convergence results. The work [1] and, more recently, [25], are the two major reference
works on these issues. They both address the periodic setting, and we will brie�y summarize the
important results they established in Section 1.1 below.

Our proofs, in the setting of a periodic geometry perturbed by a local defect, closely follow the
general pattern of the proofs exposed in [25] and reproduce many key ingredients and details of both
[1] and [25]. For the sake of clarity and brevity, and also with a speci�c pedagogic purpose because
the arguments may become very rapidly technical, we have however decided to present our proofs in
the particular case of equations, as opposed to systems. Some simpli�cations of the proofs of [1, 25],
which all apply to systems as well as to equations, are then possible. The reader might better, then,
appreciate the string of key arguments, in the absence of some unnecessary technicalities. Similarly, we
have also provided some additional internal details of the proofs which can be useful to non experts for
a better comprehension. Our results carry over to elliptic systems (satisfying the Legendre condition,
as is the case for [1, 25]), provided some of the arguments are adjusted, and then follow those of [1, 25]
even more closely. We did not check all the details in this direction.

One interesting feature we emphasize in the present contribution is that the results of [1, 25] of
the periodic setting indeed carry over not only to the perturbed periodic setting, but also to a quite
general abstract setting, which we make precise in Section 1.2 below. The latter observation about
the generalization of the results of [1] and related works to non periodic setting is corroborated by the
recent works [5, 17]. Some of the necessary assumptions presented there (in the context of random
homogenization) are quite close in spirit to our own formalization.

We consider the following problem:− div
[
a
(x
ε

)
∇uε

]
= f in Ω,

uε = 0 on ∂Ω.
(1.1)

Here, Ω is a domain of Rd, the regularity of which will be made precise below. The right-hand side f is
in Lq(Ω) for some q ∈]1,+∞[, and the matrix-valued coe�cient a satis�es the following assumptions:

a = aper + ã (1.2)

where aper denotes a periodic unperturbed background, and ã the perturbation, with
aper(x) + ã(x) and aper(x) are both uniformly elliptic, inx ∈ Rd,
aper ∈

(
L∞(Rd)

)d×d
,

ã ∈
(
L∞(Rd) ∩ Lr(Rd)

)d×d
, for some 1 ≤ r < +∞

aper, ã ∈
(
C0,α

unif

(
Rd
))d×d

for some α > 0,

(1.3)

where C0,α
unif(Rd) denotes the space functions that are, uniformly on Rd, Hölder continuous with coef-

�cient α.
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From now on, we will not make the distinction between the spaces Lq(Ω), (Lq(Ω))
d
and (Lq(Ω))

d×d
,

denoting ‖z‖Lq(Ω) the norm of z even if z is a vector-valued or a matrix-valued function. The same
convention is adopted for Hölder spaces C0,α.

We also note that we assume d ≥ 3. All our proofs and results can be adapted to the dimension
d = 2. Of course, dimension 1 is speci�c and can be addressed by (mostly explicit) analytic arguments
that we omit here.

All the results we present here have been announced in [8], and are part of the PhD thesis [23].

1.1 The periodic case

In the periodic case, that is, ã ≡ 0, it is well-known (see for instance [6]) that problem (1.1) converges
to the following homogenized problem{

− div [a∗∇u∗] = f in Ω,

u∗ = 0 on ∂Ω,
(1.4)

where a∗ is a constant matrix. It is classical that uε −→ u∗ in L2(Ω), and that ∇uε −⇀ ∇u∗ in
L2(Ω). In order to have strong convergence of the gradient, correctors need to be introduced, that is,
the solutions to the following problem

− div (aper(x) (p+∇wp,per(x))) = 0, wp,per is periodic, (1.5)

posed for each �xed vector p ∈ Rd. It is well-known (see, here again, [6]), that problem (1.5) has a
unique solution (up to the addition of a constant), for any p ∈ Rd. Given (1.3), elliptic regularity
implies that ∇wp,per ∈ C0,α

unif(Rd). Introducing the remainder

Rεper(x) := uε(x)− u∗(x)− ε
d∑
j=1

wper,ej

(x
ε

)
∂ju
∗(x), (1.6)

the results of [6] imply that ∇Rεper −→ 0 in L2(Ω), with the following convergence rate:∥∥∇Rεper∥∥L2(Ω)
≤ C‖f‖L2(Ω)

√
ε, (1.7)

for some constant independent of f . The convergence rate O(
√
ε) is mainly due to the existence of a

boundary layer, and an O(ε) convergence can actually be proved for interior domains.
In [18, 19], the generalization of the above results (both (1.7) and interior convergence of order ε)

are proved under more general assumptions (Ω of class C1,1, a ∈ L∞ and the corrector is not assumed
to have its gradient in L∞). Also in [19], in the case of Lipschitz domains, a convergence up to the
boundary of order εγ , for some 0 < γ ≤ 1/3, is established.

In order to have a O(ε) convergence rate up to the boundary, an adaptation of the corrector is
needed. This question was studied in [29] in the case of non-Hölder coe�cients. For the case of
systems (as opposed to equations) it was studied in [24] (actually also with non-homogeneous Dirichlet
conditions).

Issues regarding the convergence of the remainder are also addressed in [1], where Avellaneda and
Lin proved uniform (with respect to ε) continuity for the operator Lε which, to the couple (f, g),
associates the solution uε of (1.1) with Dirichlet condition uε = g. This continuity holds from Lq(Ω)×
C0,γ(∂Ω) to C0,µ(Ω) if q > d, with µ = min(γ, d/q). If q ≤ d, with homogeneous Dirichlet conditions,
the continuity holds from Lq(Ω) toW 1,r(Ω), with 1/r+1/q = 1/d. These results also hold for systems,
and actually improve an earlier and more restricted work [2]. In [3], the same kind of results were
extended to equations in non-divergence form. In [25], estimates were proved for the convergence of
the Green functions associated to (1.1), both for Dirichlet and Neumann conditions. These estimates
allow to prove the convergence rate of Rε in W 1,p.

All the above results are valid only for periodic coe�cients. In the preprint [17], some important
results of [1] were extended to the stochastic case, using the idea that, in [1], periodicity was only used
to ensure some uniform H-convergence. This is also a key idea of the present work.
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1.2 The periodic case with a local defect

In order to develop the approximation estimates for (1.1)-(1.2)-(1.3) for ã 6≡ 0, we de�ne the corrector
problem 

− div (a (p+∇wp)) = 0 in Rd,
|wp(x)|
1 + |x|

−→
|x|→+∞

0.
(1.8)

In the special case ã ≡ 0, a Liouville-type theorem was proven in [4], showing that (1.8) reduces to
(1.5): up to the addition of a constant, the only solution that is strictly sublinear at in�nity is the
periodic solution. In the case ã 6≡ 0, it has been proven in [9, 10, 11] (see also the recent work [21],
that brings a di�erent perspective) that Problem (1.8) has a solution, that reads as

wp = wp,per + w̃p, (1.9)

where wp,per is the solution to (1.5), w̃p is the solution to

− div (a∇w̃p) = div (ã (p+∇wp,per)) in Rd, (1.10)

and, if ã ∈ Lr(Rd), ∇w̃p ∈ Lr(Rd), for any r ∈]1,+∞[. Even if ã 6≡ 0, the proofs of [6] still imply in
this case that uε −→ u∗ in L2(Ω) and ∇uε −⇀ ∇u∗ in L2(Ω), as ε → 0, where u∗ solves (1.4), and
the matrix a∗ is equal to the periodic homogenized matrix. However, in order to improve and quantify
this convergence, [9, 10, 11] show that we need to replace the periodic corrector (1.5) by the solution
to (1.8), and de�ne

Rε(x) := uε(x)− u∗(x)− ε
d∑
j=1

wej

(x
ε

)
∂ju
∗(x), (1.11)

instead of (1.6). Then we have:

Theorem 1.1 (Local defects in periodic backgrounds). Assume d ≥ 3. Consider (1.1), where
the matrix-valued coe�cient a satis�es (1.2), and aper and ã satisfy (1.3). Assume that Ω is a C2,1

domain, that Ω1 ⊂⊂ Ω, that r 6= d and de�ne

νr = min

(
1,
d

r

)
∈]0, 1]. (1.12)

Let f ∈ L2(Ω), and let uε, u∗ be the solutions to (1.1) and (1.4), respectively. De�ne Rε by (1.11),
where the corrector wp with p = ej, 1 ≤ j ≤ d, is de�ned by (1.9)-(1.10)-(1.5) (thus in particular solves
(1.8)). Then Rε satis�es the following:

1. Rε ∈ H1(Ω), and
‖Rε‖L2(Ω) ≤ Cε

νr‖f‖L2(Ω), (1.13)

‖∇Rε‖L2(Ω1) ≤ Cε
νr‖f‖L2(Ω). (1.14)

2. If f ∈ Lq(Ω) for some q ≥ 2, then Rε ∈W 1,q(Ω) and

‖∇Rε‖Lq(Ω1) ≤ Cε
νr‖f‖Lq(Ω). (1.15)

3. If f ∈ C0,β(Ω) for some β ∈]0, 1[, then Rε ∈W 1,∞(Ω) and

‖∇Rε‖L∞(Ω1) ≤ Cε
νr ln

(
2 + ε−1

)
‖f‖C0,β(Ω), (1.16)

where, in (1.13) through (1.16), the various constants C > 0 do not depend on f nor on ε.
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Given (1.12), this result gives two di�erent behaviors of the remainder Rε according to r < d or
r > d. In the �rst case, the defect is so localized that the estimates are exactly those of the periodic case
[25]. On the contrary, if r > d, the defect is spread out, and the quality of approximation deteriorates
as r grows. In the critical case r = d, we can apply the results of the case r > d in order to have the
above estimates, in which ενr is replaced by εν , for any ν < νr = 1.

As already pointed out in [10], the case r = d is a critical case for the existence of a corrector.
Indeed, even if aper ≡ 1, hence ∇wper = 0, the corrector equation reads as

−∆w̃p = div (ãp) .

Hence, as |x| → +∞, w̃p(x) ≈ C

∫
(x− y) · (ã(y) p)

|x− y|d
dy, for some constant C 6= 0. This makes clear

the fact that ã(y) ∼ |y|−1 is reminiscent of the criticality of the space Ld(Rd).

Remark 1.2. In Theorem 1.1, the domain Ω is assumed to be C2,1. However, as far as estimates
(1.13)-(1.14)-(1.15) are concerned, a C1,1 regularity is su�cient. The regularity C2,1 is only necessary
to prove that Rε ∈W 1,∞(Ω).

1.3 Abstract general assumptions

As we shall see below, Theorem 1.1 is a consequence of a more general, abstract, result that we state
in the present subsection. The point is that, in the theory of [1], the periodicity of the matrix-valued
coe�cient a is essentially useful in order to have a bounded corrector. This assumption may be replaced
by uniform H-convergence (a notion which is made precise below in De�nition 1.3).

Let us now emphasize that (1.1) considers a rescaled coe�cient a
(
x
ε

)
, which is a strong assumption

of our setting. This implies, since a∗ is de�ned as some weak limit of functions of x/ε, that a∗ is
homogeneous of degree 0. Hence, if it is continuous, it must be a constant. This is why we hereafter
assume that

a∗ is a constant matrix. (1.17)

We now introduce a set of assumptions that formalize our mathematical setting. We consider a
matrix-valued coe�cient a that satis�es the following conditions

Assumption (A1). There exists µ > 0 such that

∀x ∈ Rd, ∀ξ ∈ Rd, µ|ξ|2 ≤ (a(x)ξ) · ξ ≤ 1

µ
|ξ|2.

Assumption (A2). There exists α ∈]0, 1[ such that a ∈ C0,α
unif(Rd).

Assumptions (A1) and (A2) are standard, and were made already in [1]. We now give more speci�c
assumptions that aim at generalizing periodicity. The �rst one is the existence of a corrector:

Assumption (A3). For any p ∈ Rd, there exists wp ∈ H1
loc(Rd) solution to the corrector equation

(1.8).

As in the periodic case, we assume that the gradient of the corrector is bounded uniformly:

Assumption (A4). For any p ∈ Rd, the gradient of wp is in L2
unif(Rd), that is:

‖∇wp‖L2
unif (Rd) := sup

x∈Rd
‖∇wp‖L2(B(x,1)) < +∞,

where B(x, 1) denotes the unit ball of center x.

In the periodic case, we have ∇wp
( ·
ε

)
−⇀ 0 as ε → 0. Moreover, this property is uniform with

respect to translation. This is a property we will impose here:
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Assumption (A5). For any sequence (yn)n∈N of vectors in Rd and any sequence εn → 0, and for
any p ∈ Rd, ∫

Q

∇wp
(
x

εn
+ yn

)
dx −→

n→+∞
0,

where Q is the unit cube of Rd.

With a view to addressing non-symmetric matrix-valued coe�cients, note that, in contrast to
(1.2), the fact that a satis�es Assumption (A3)-(A4)-(A5) does not imply that aT does. We will in
some situations need to assume that aT also satis�es Assumption (A3)-(A4)-(A5), and likewise other
assumptions that follow below. In such a case, we denote by wTp the corrector associated to the

coe�cient aT .

We will assume that the convergence to the homogenized matrix a∗ is uniform in the following
sense:

Assumption (A6). There exists a constant matrix a∗ such that, for any sequence (yn)n∈N of vectors
in Rd, any sequence εn → 0 and for any p ∈ Rd,∫

Q

a

(
x

εn
+ yn

)(
p+∇wp

(
x

εn
+ yn

))
dx −→

n→+∞
a∗p,

where the matrix a∗ is the homogenized matrix in (1.4).

It is stated in Proposition 2.4 below that this implies uniform H-convergence, in the sense of the
following de�nition:

De�nition 1.3. We say that the matrix-valued coe�cient a
(
x
ε

)
uniformly H-converges to a∗ if for

any sequence εn → 0 and any sequence (yn)n∈N ,

a

(
x

εn
+ yn

)
H-converges to a∗.

For the de�nition of H-convergence itself, we refer to [27, De�nition 1] or [32, De�nition 6.4].

As we will see below, an important quantity in order to analyze the behaviour of the remainder Rε

de�ned by (1.11) is the potential associated with a. In order to de�ne it, we �rst introduce the vector
�eld Mk de�ned by

M i
k(x) = a∗ik −

d∑
j=1

aij(x) (δjk + ∂jwek(x)) , 1 ≤ i ≤ d, (1.18)

which is divergence-free, according to (1.8). Hence, formally, there exists Bijk (x), which is skew-
symmetric with respect to the indices i, j, and is solution to div(Bk) = Mk, that is,

∀i, j, k ∈ {1, . . . , d}, Bijk = −Bjik . (1.19)

∀j, k ∈ {1, . . . , d} ,
d∑
i=1

∂iB
ij
k = M j

k . (1.20)

A simple way to build this potential B is to solve the following equation

∀ i, j, k ∈ {1, . . . , d} , −∆Bijk = ∂jM
i
k − ∂iM

j
k . (1.21)

It is clear that if B solves (1.21), then it satis�es (1.19). Moreover, taking the divergence of (1.21), we
get −∆(div(B)) = −∆M , that is,

∀j, k ∈ {1, . . . , d} , −∆

(
d∑
i=1

∂iB
ij
k

)
= −∆M j

k .
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Hence, up to the addition of a harmonic function, we �nd (1.20). In most cases, this harmonic function
is necessarily a constant (think for instance of the periodic case).

The above construction can be made precise in the periodic case (see [22], pp 26-27). We will see
below how and why the construction also makes sense in our setting (1.2)-(1.3).

The link between B and Rε will be clear below when we write the equation satis�ed by Rε (see
(2.6)-(2.7)). In order to apply a method close to that of [1], we are going to assume that, in some
sense, εwp(x/ε) and εB(x/ε) vanish as ε→ 0. This is the meaning of the following two assumptions

Assumption (A7). There exists C > 0 and ν ∈ [0, 1[ such that, for any x ∈ Rd, any y ∈ Rd, and
any k ∈ {1, . . . , d},

|x− y| ≥ 1 ⇒ |wek(x)− wek(y)| ≤ C|x− y|1−ν .

Assumption (A8). There exists a potential B ∈ H1
loc(Rd) de�ned by (1.21), and there exists C > 0

such that, for any x ∈ Rd and any y ∈ Rd,

|x− y| ≥ 1 ⇒ |B(x)−B(y)| ≤ C|x− y|1−ν .

Here, the constant ν ∈ [0, 1[ is assumed to be the same as in Assumption (A7).

Proposition 5.5 below will establish that, in the case of a coe�cient a satisfying (1.2) and (1.3),
the above assumptions are satis�ed with ν = νr de�ned by (1.12).

Our main result in this general abstract setting is

Theorem 1.4 (Abstract general setting). Assume d ≥ 3 and that the coe�cients a and aT (and
their respective correctors wp and wTp ) satisfy Assumptions (A1) through (A6), and (A7)-(A8) for
some ν > 0. Assume that Ω is a C2,1 domain, and that Ω1 ⊂⊂ Ω. Let ε ∈]0, 1[ and let uε, u∗, Rε be
de�ned by (1.1), (1.4), (1.11), respectively, where f ∈ L2(Ω). Then we have

1. Rε ∈ H1(Ω), and
‖Rε‖L2(Ω) ≤ Cε

ν‖f‖L2(Ω), (1.22)

‖∇Rε‖L2(Ω1) ≤ Cε
ν‖f‖L2(Ω). (1.23)

2. If f ∈ Lp(Ω) for some p ≥ 2, then Rε ∈W 1,p(Ω) and

‖∇Rε‖Lp(Ω1) ≤ Cε
ν‖f‖Lp(Ω). (1.24)

3. If f ∈ C0,β(Ω) for some β ∈]0, 1[, then Rε ∈W 1,∞(Ω) and

‖∇Rε‖L∞(Ω1) ≤ Cε
ν ln

(
2 + ε−1

)
‖f‖C0,β(Ω), (1.25)

where in (1.22) through (1.25), the various constants C > 0 do not depend on f nor on ε.

The proof of Theorem 1.4 will consist in applying the strategy of proof of [1] and [25], which
were originally restricted to the periodic case. Here, periodicity is replaced by Assumptions (A3)
through (A8). The proofs follow those of [1, 25], but we need to everywhere keep track of the use of
assumptions (A3) through (A8), and check that these properties are su�cient to proceed at each step
of the arguments.

Remark 1.5. As we already pointed out in Remark 1.2 for the speci�c case of localized defects, in
Theorem 1.4, the assumption that Ω is of class C2,1 is, here again, only needed for the estimate
‖∇Rε‖L∞(Ω).
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Given this result, it is clear that proving Theorem 1.1 amounts to proving that, in the case of a
defect, Assumptions (A1) through (A8) are satis�ed with ν = νr de�ned by (1.12).

Our article is organized as follows. In Section 2, we start with some comments on Assumptions
(A1) through (A8). Then we study the existence and uniqueness of the potential B, and we relate it
to the remainder Rε, using (2.6)-(2.7), that is,

−div
(
a
(x
ε

)
∇Rε

)
= div (Hε) ,

with

Hε
i (x) = ε

d∑
j,k=1

aij

(x
ε

)
wek

(x
ε

)
∂j∂ku

∗(x)− ε
d∑

j,k=1

Bijk

(x
ε

)
∂j∂ku

∗(x),

Our method to prove estimates onRε relies on some regularity properties of the operator−div(a(x/ε)∇·)
on the one hand, and bounds on the right-hand side Hε on the other hand. In Section 3, we prove
such regularity estimates in the homogeneous case (that is, if the right-hand side is 0). In Section 4,
we extend these results to the inhomogeneous case. Finally, in Section 5, we conclude the proof of
Theorem 1.4 (abstract setting) and that of Theorem 1.1 (local defects).

2 Preliminaries

2.1 Some remarks on our assumptions

Alternative formulations of our Assumptions. Assume (A1), (A2) and (A3). Then, it is clear
that Assumptions (A4) and (A5) are equivalent to

∇wp
(
x

εn
+ yn

)
−⇀

n→+∞
0 in L2(D),

for any bounded Lipschitz domain D, any p ∈ Rd, and for any sequences (yn)n∈N and εn → 0.
Similarly, if Assumptions (A1), (A2) and (A3) are satis�ed, Assumptions (A4) and (A6) are equiv-

alent to

a

(
x

εn
+ yn

)(
p+∇wp

(
x

εn
+ yn

))
−⇀

n→+∞
a∗p in L2(D),

for any bounded Lipschitz domain Ω, any p ∈ Rd, and for any sequences (yn)n∈N and εn → 0.

Another important point is that Assumptions (A4) and (A5) are in fact equivalent to some strict
sublinearity condition at in�nity for the corrector:

Lemma 2.1. Assume that the matrix-valued coe�cient a satis�es Assumptions (A1) and (A3). Then,
it satis�es Assumptions (A4) and (A5) if and only if

∀p ∈ Rd, lim
|x|→+∞

(
sup
y∈Rd

|wp(x+ y)− wp(y)|
1 + |x|

)
= 0. (2.1)

Proof. We �rst assume that Assumptions (A4) and (A5) are satis�ed and prove (2.1) using a contra-
diction argument. If (2.1) does not hold, then there exists two sequences (yn)n∈N and (xn)n∈N such
that

|xn| −→
n→+∞

+∞, and
|wp(xn + yn)− wp(yn)|

1 + |xn|
≥ γ > 0,

where γ does not depend on n. De�ning εn = |xn|−1 and xn = xn/|xn|, this inequality implies

εn → 0, |xn| = 1, εn

∣∣∣∣wp(xnεn + yn

)
− wp(yn)

∣∣∣∣ ≥ γ > 0.
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Hence, de�ning vn(x) := εn

(
wp

(
x

εn
+ yn

)
− wp(yn)

)
, we have

vn(0) = 0, |vn(xn)| ≥ γ > 0, |xn| = 1. (2.2)

Moreover, Assumption (A5) implies

∇vn = ∇wp
(
·
εn

+ yn

)
−⇀

n→+∞
0 in L2

loc(Rd). (2.3)

Since −div
(
a
(
x
εn

+ yn

)
∇ (vn(x) + p · x)

)
= 0, Nash-Moser estimates [16, Theorem 8.24] imply that

vn is bounded C0,β(B(0, 2)) for some β > 0. Hence, up to extracting a subsequence, it converges in
C0(B(0, 1)) to some v ∈ C0(B(0, 1)). Now, extracting a subsequence once again, we have xn → x,
with |x| = 1. Hence, (2.2) implies

v(0) = 0, |v(x)| ≥ γ > 0, |x| = 1.

Since (2.3) implies ∇v = 0, we have reached a contradiction.
Conversely, if (2.1) is satis�ed, then there exists A > 0 such that

∀x ∈ B(0, A)C , ∀y ∈ Rd, |wp(x+ y)− wp(y)| ≤ 1 + |x|.

If necessary, we can take A large enough to have A ≥ 2. In particular, we have |wp(x+y)−wp(y)+p·x| ≤
1 +A+A|p| on ∂B(0, A). Recalling that

−divx [a(x+ y)∇x (wp(x+ y)− wp(y) + p · x)] = 0,

in B(0, A), this implies that

∀x ∈ B(0, A), |wp(x+ y)− wp(y) + px| ≤ 1 +A+A|p|.

Then, we apply the Caccioppoli inequality, which gives a constant C depending only on the coe�cient
a such that∫

B(y,1)

|∇wp(z) + p|2dz ≤ C
∫
B(y,2)

|wp(z)− wp(y) + p · (z − y)|2dz

= C

∫
B(0,2)

|wp(x+ y)− wp(y) + p · x|2dx ≤ C (1 +A+A|p|) |B(0, 2)|.

This implies Assumption (A4). In order to prove Assumption (A5), we integrate by parts, �nding∫
Q

∇wp
(
x

εn
+ yn

)
dx =

∫
∂Q

εnwp

(
x

εn
+ yn

)
n(x)dx

=

d∑
j=1

∫
∂Q+

j

εn

[
wp

(
x

εn
+ yn

)
− wp

(
− x

εn
+ yn

)]
n(x)dx.

Here, ∂Q±j denotes the faces of the cube Q, namely the set of equations {|xk| < 1/2 k 6= j, xj = ±1/2},
and n(x) is the outer normal to Q at point x. Applying (2.1), we �nd (A5).

Logical links between our assumptions. We have the following logical links between the assump-
tions

Lemma 2.2. Assume that the matrix-valued coe�cient a satis�es Assumptions (A1) and (A3).
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1. If it satis�es Assumption (A7), then it satis�es Assumptions (A4) and (A5).

2. If it satis�es Assumption (A8), then it satis�es Assumption (A6).

Proof. We �rst prove Assertion 1: if (A7) holds, then clearly (2.1) is satis�ed. Hence, applying
Lemma 2.1, we have (A4) and (A5).

As for Assertion 2, B satis�es (1.20), hence

∫
Q

 d∑
j=1

aij

(
x

εn
+ yn

)(
δjk + ∂jwek

(
x

εn
+ yn

))
− a∗jk

 dx =

∫
Q

d∑
j=1

∂jB
ij
k

(
x

εn
+ yn

)
dx

=

d∑
j=1

∫
∂Q

εn

(
Bijk

(
x

εn
+ yn

)
−Bijk (yn)

)
ej · n(x)dx, (2.4)

where n(x) is the outer normal to Q at point x. Applying Assumption (A8), we have, for any x ∈ ∂Q,

εn

∣∣∣∣Bijk ( x

εn
+ yn

)
−Bijk (yn)

∣∣∣∣ ≤ Cεn|x|1−νεν−1
n ≤ C|x|ενn.

Inserting this estimate into (2.4), we prove Assumption (A6).

Remark 2.3. The above proof implies that, if B satis�es (2.1), that is,

lim
|x|→+∞

(
sup
y∈Rd

|B(x+ y)−B(y)|
1 + |x|

)
= 0, (2.5)

then it satis�es Assumption (A6). Indeed, (2.5) is su�cient, with (2.4), to prove (A6).

Uniform H-convergence. First, we prove that under Assumptions (A1) through (A6), we have a
uniform H-convergence property, in the sense of De�nition 1.3:

Proposition 2.4. Assume that the matrix-valued coe�cient a satis�es Assumptions (A1) through
(A6). Then, for any sequence (yn)n∈N of Rd and any sequence (εn)n∈N of positive numbers such that

εn → 0, and any bounded domain Ω, the coe�cient a
(
x
εn

+ yn

)
H-converges to a∗ on Ω, where a∗ is

de�ned by Assumption (A6).

Proof. This is a standard application of homogenization tools (div-curl lemma in particular, see [22,
Lemma 1.1]), so we skip it. The only important point is that all the estimates, hence the convergences,
are uniform with respect to yn.

The following example proves that (A6) is not satis�ed in general: in dimension 1, de�ne

a(x) =

{
2 if 2n ≤ x ≤ 2n + 2n

log(1+|n|) , n ∈ Z,
1 otherwise.

Then it is clear that a∗ = 1, and that the corrector is equal to w′ = 1−a
a . Hence, using yn = 2n and

εn = log(1 + |n|)2−n, we have ∫ 1

0

a

(
yn +

x

εn

)
w′
(
yn +

x

εn

)
dx = −1.

Hence, Assumption (A6) is not satis�ed.

10



The matrix-valued coe�cients a and aT . If the matrix-valued coe�cient a is not symmetric,
we will in the sequel need to assume that both a and aT satisfy assumptions (A3) through (A8) (note
that (A1) and (A2) are stable under transposition of a).

In full generality, the existence of strictly sublinear correctors satisfying Assumptions (A4) and (A5)
for the coe�cient a does not imply the existence of correctors for the adjoint coe�cient aT satisfying
the same properties, as the following two-dimensional counter-example shows it. Note that it extends
mutatis mutandis to any dimension d ≥ 3.

Consider

a(x1, x2) =

(
1 γ(x2)
0 1

)
,

where γ ∈ L∞(R), and |γ| ≤ 1, so that a is indeed uniformly elliptic. Then div(ae1) = div(ae2) = 0,
hence the correctors associated with a are all equal to 0. We also compute

div
(
aT e1

)
= γ′(x2).

Assume that aT admits a corrector for the vector e1, and that it sastis�es (A4) and (A5). We denote
it by wTe1 . It is solution to

∂2
1w

T
e1 + ∂2

(
γ(x2)

(
∂1w

T
e1 + 1

))
+ ∂2

2w
T
e1 = 0.

Hence, v = ∂1w
T
e1 is a solution to ∆v+∂2 (γ(x2)∂1v) = 0. This is an elliptic equation, and v ∈ L2

unif(Rd)
according to (A4). Hence, applying the Liouville theorem, v is a constant. If this constant is not 0,
then wTe1 cannot be sublinear at in�nity. Hence v = 0, which means that wTe1 depends only on x2.
Hence ∂2

2w
T
e1 = −γ′(x2). This implies

wTe1(x1, x2) = C2 −
∫ x2

0

(γ(z) + C1) dz.

We choose for γ the function

γ = χ ∗ γ0, with γ0(z) =
1

2

∑
n∈N

(
1[22n+1,22n+2](z) + 1[−22n+2,−22n+1](z)

)
,

where χ is a smooth compactly-supported function such that 0 ≤ χ ≤ 1 and
∫
χ = 1. For this γ, it is

easily seen that wTe1 cannot be strictly sublinear at in�nity.

On the value of νr. Let us point out that the value (1.12) of νr is optimal in the following sense:
�rst, in the periodic case, we recover the results of [25] (with νr = 1, that is, both the correctors and
the potential are bounded). Second, we have the following example, in dimension one, in which

∣∣(Rε)′∣∣
is bounded from below, up to a logarithmic term, by ενr . It is unclear to us whether a similar example
can, or not, be constructed in higher dimensions. It however strongly suggests that the convergence
rate stated is sharp.

Consider
ã ∈ Lr(R), 0 ≤ ã ≤ 1, ã(x) = ã(−x), and aper = 1.

Then a∗ = 1, and the corrector is easily seen to be equal to

w(x) = w̃(x) = −
∫ x

0

ã(z)

1 + ã(z)
dz.

In the special case f = 1, if we solve (1.1) and (1.4) with Ω =]− 1, 1[, one easily computes

(uε)
′
(x) = − x

1 + ã
(
x
ε

) , (u∗)
′
(x) = −x.

11



Hence, computing (Rε)
′
, we have

(Rε)
′
(x) = (uε)

′
(x)− (u∗)

′
(x)− εw

(x
ε

)
(u∗)

′′
(x)− w′

(x
ε

)
(u∗)

′
(x)

= − x

1 + ã
(
x
ε

) + x− ε
∫ x/ε

0

ã(z)

1 + ã(z)
dz − x

ã
(
x
ε

)
1 + ã

(
x
ε

) = −ε
∫ x/ε

0

ã(z)

1 + ã(z)
dz.

Hence, since 0 ≤ ã ≤ 1, ∣∣(Rε)′ (x)
∣∣ ≥ ε

2

∫ x/ε

0

ã(z)dz.

Using

ã(z) =
1

(1 + |z|)1/r
(1 + log(1 + |z|)1+δ)

1/r
, δ > 0,

we �nd that, if x > 0,

∣∣(Rε)′ (x)
∣∣ ≥ ε

2

∫ x/ε

0

dz

(1 + |z|)1/r
(1 + log(1 + |z|)1+δ)

1/r

≥ ε

2

∫ x/ε

0

dz

(1 + |x|/ε)1/r
(1 + log(1 + |x|/ε)1+δ)

1/r

=
ε

2

|x|
ε

1

(1 + |x|/ε)1/r
(1 + log(1 + |x|/ε)1+δ)

1/r
≥ Cε1/r log

(
ε−1
)−(1+δ)/r

.

Hence, estimate (1.14) is optimal, up to logarithmic terms.

2.2 Equation satis�ed by the remainder

We now prove

Proposition 2.5. Assume (A1), (A3), (A4), and that there exists B ∈W 1,1
loc

(
Rd
)
solution to (1.19)-

(1.20). Then Rε de�ned by (1.11) solves

−div
(
a
(x
ε

)
∇Rε

)
= div (Hε) , (2.6)

Hε
i (x) = ε

d∑
j,k=1

aij

(x
ε

)
wek

(x
ε

)
∂j∂ku

∗(x)− ε
d∑

j,k=1

Bijk

(x
ε

)
∂j∂ku

∗(x), (2.7)

where wek is the corrector de�ned by (1.8) with p = ek, 1 ≤ k ≤ d.

Proof. By de�nition of Rε, that is, (1.11),

∇Rε(x) = ∇uε(x)−∇u∗(x)−
d∑
j=1

∂ju
∗(x)∇wej

(x
ε

)
− ε

d∑
j=1

wej

(x
ε

)
∇∂ju∗(x).

We have, using −div
[
a
(x
ε

)
∇uε

]
= −div (a∗∇u∗),

− div
(
a
(x
ε

)
∇Rε

)
= div

(a(x
ε

)
− a∗

)
∇u∗ + a

(x
ε

) d∑
j=1

∂ju
∗(x)∇wej

(x
ε

)

+ε a
(x
ε

) d∑
j=1

wej

(x
ε

)
∇∂ju∗(x)

 ,
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in the sense of distributions. Using the de�nition (1.18) of Mk = (M1
k , . . . ,M

d
k )T , this reads as

−div
(
a
(x
ε

)
∇Rε

)
= div

− d∑
k=1

∂ku
∗(x)Mk

(x
ε

)
+ ε a

(x
ε

) d∑
j=1

wej

(x
ε

)
∇∂ju∗(x)


We concentrate on the �rst term of the right-hand side, and use div(Mk) = 0:

div

[
d∑
k=1

∂ku
∗(x)Mk

(x
ε

)]
=

d∑
j=1

d∑
k=1

M j
k

(x
ε

)
∂j∂ku

∗(x).

We now use the potential B de�ned by (1.19)-(1.20), and write

div

[
d∑
k=1

∂ku
∗(x)Mk

(x
ε

)]
=

d∑
i=1

d∑
j=1

d∑
k=1

∂iB
ij
k

(x
ε

)
∂j∂ku

∗(x)

=

d∑
i=1

∂i

 d∑
j=1

d∑
k=1

εBijk

(x
ε

)
∂j∂ku

∗(x)

− d∑
i=1

d∑
j=1

d∑
k=1

Bijk

(x
ε

)
∂i∂j∂ku

∗(x).

The right-most term vanishes because, for each k, Bk is skew-symmetric and D2 (∂ku
∗) is symmetric.

Considering (2.6)-(2.7), a natural strategy to prove bounds on Rε is the following: �rst prove bounds
on Hε, then prove elliptic regularity estimates for the operator −div(a(x/ε)∇·) that are uniform with
respect to ε.

The following two Lemmas achieve the �rst step of this strategy, establishing bounds on Hε.

Lemma 2.6. Assume (A1) through (A4). Then, the correctors de�ned by Assumption (A3) satisfy

∀p ∈ Rd, ∇wp ∈ C0,α
unif(R

d). (2.8)

If in addition Assumption (A8) holds, the potential B de�ned by (1.21) satis�es

∇B ∈ C0,α
unif(R

d). (2.9)

Proof. Estimate (2.8) is a direct consequence of elliptic estimates [16, Theorem 8.32]. Similarly, (1.21)
reads −∆Bijk = ∂jM

i
k − ∂iM

j
k = div(M i

kei − M j
kej), where M

j
k is de�ned by (1.18). Using (2.8),

M j
k ∈ C

0,α
unif(Rd). Thus, applying [16, Theorem 8.32] again, we have (2.9).

Lemma 2.7. Assume (A1)-(A2)-(A3), and (A7)-(A8) for some ν > 0, and let Hε be de�ned by (2.7).
Then, for any R > 0 and any q ∈ [1,+∞], if D2u∗ ∈ Lq(Ω), we have

‖Hε‖Lq(Ω∩B(0,R)) ≤ Cε
νR1−ν ∥∥D2u∗

∥∥
Lq(Ω∩B(0,R))

, (2.10)

where the constant C does not depend on D2u∗, R, ε.
Moreover, α being de�ned by Assumption (A2), for any β ∈ [0, α], if u∗ ∈ C2,β(Ω), we have

[Hε]C0,β(Ω∩B(0,R)) ≤ Cε
νR1−ν [D2u∗

]
C0,β(Ω∩B(0,R))

+ Cεν−βR1−ν ∥∥D2u∗
∥∥
L∞(Ω∩B(0,R))

, (2.11)

where C does not depend on D2u∗, R, ε.

We recall here that the Hölder semi-norm [·]C0,β(Ω′) is de�ned by

[v]C0,β(Ω′) = sup
x 6=y∈Ω′

|v(x)− v(y)|
|x− y|β

. (2.12)

13



Remark 2.8. Lemma 2.7 is proved under Assumptions (A1), (A2), (A3), (A7), (A8) only. However,
applying Lemma 2.2, this in fact implies that Assumptions (A4), (A5), (A6) are satis�ed.

Proof. First, it is clear that

‖Hε‖Lq(Ω∩B(0,R)) ≤ ε

(
‖a‖L∞(Rd)

d∑
k=1

∥∥∥wek ( ·ε)∥∥∥L∞(Ω∩B(0,R))
+
∥∥∥B ( ·

ε

)∥∥∥
L∞(Ω∩B(0,R))

)
×
∥∥D2u∗

∥∥
Lq(Ω∩B(0,R))

. (2.13)

Note that, wek and B being de�ned up to the addition of a constant, we can always assume that
wek(0) = 0 and B(0) = 0. Hence, if |x|/ε > 1, Assumptions (A7) and (A8) imply∣∣∣wek (xε)∣∣∣ ≤ C

(
|x|
ε

)1−ν

,
∣∣∣B (x

ε

)∣∣∣ ≤ C ( |x|
ε

)1−ν

. (2.14)

If |x|/ε ≤ 1, we use Lemma 2.6, which implies that ∇wek ∈ L∞(Rd) and ∇B ∈ L∞(Rd), whence∣∣∣wek (xε)∣∣∣ ≤ C |x|ε ≤ C
(
|x|
ε

)1−ν

,
∣∣∣B (x

ε

)∣∣∣ ≤ C |x|
ε
≤ C

(
|x|
ε

)1−ν

. (2.15)

Inserting (2.14)-(2.15) into (2.13), we �nd (2.10).
Next, we prove (2.11), writing

[Hε]C0,β(Ω∩B(0,R)) ≤ ε‖a‖L∞(Rd)

d∑
k=1

∥∥∥wek ( ·ε)∥∥∥L∞(Ω∩B(0,R))

[
D2u∗

]
C0,β(Ω∩B(0,R))

+ ε‖a‖L∞(Rd)

d∑
k=1

[
wek

( ·
ε

)]
C0,β(Ω∩B(0,R))

∥∥D2u∗
∥∥
L∞(Ω∩B(0,R))

+ ε
[
a
( ·
ε

)]
C0,β(Ω∩B(0,R))

d∑
k=1

∥∥∥wek ( ·ε)∥∥∥L∞(Ω∩B(0,R))

∥∥D2u∗
∥∥
L∞(Ω∩B(0,R))

+ ε
∥∥∥B ( ·

ε

)∥∥∥
L∞(Ω∩B(0,R))

[
D2u∗

]
C0,β(Ω∩B(0,R))

+ ε
[
B
( ·
ε

)]
C0,β(Ω∩B(0,R))

∥∥D2u∗
∥∥
L∞(Ω∩B(0,R))

(2.16)

Here again, we use (2.14)-(2.15), which imply

d∑
k=1

∥∥∥wek ( ·ε)∥∥∥L∞(Ω∩B(0,R))
+
∥∥∥B ( ·

ε

)∥∥∥
L∞(Ω∩B(0,R))

≤ Cεν−1R1−ν . (2.17)

Using Assumption (A2), we also have, since β ≤ α,[
a
( ·
ε

)]
C0,β(Ω∩B(0,R))

≤ Cε−β . (2.18)

Using (2.8), we have, for |x− y| < ε,∣∣εwek (xε )− εwek (yε )∣∣
|x− y|β

≤ C ‖∇wek‖L∞(Rd) |x− y|
1−β

= C ‖∇wek‖L∞(Rd) |x− y|
ν−β |x− y|1−ν ≤ C ‖∇wek‖L∞(Rd) ε

ν−βR1−ν .

If |x− y| > ε, we use Assumption (A7), which implies∣∣εwek (xε )− εwek (yε )∣∣
|x− y|β

≤ Cεν |x− y|1−β−ν = Cεν |x− y|−β |x− y|1−ν ≤ Cεν−βR1−ν .
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Collecting the above estimates, we obtain[
εwek

(x
ε

)]
C0,β(Ω∩B(0,R))

≤ Cεν−βR1−ν . (2.19)

A similar argument allows to prove that[
εB
(x
ε

)]
C0,β(Ω∩B(0,R))

≤ Cεν−βR1−ν . (2.20)

Hence, inserting (2.17), (2.18), (2.19), (2.20) into (2.16), we �nd (2.11).

Next, we are going to prove elliptic regularity estimates for the operator −div(a(x/ε)∇·) that are
uniform in ε. This will in turn allow to prove estimates on Rε using (2.6).

3 Estimates in the homogeneous case

Our aim is now to prove, as a �rst step, that, if the coe�cient a satis�es (A1) through (A6), then a
solution vε to

−div
(
a
(x
ε

+ y
)
∇vε

)
= 0, (3.1)

satis�es Lipschitz bounds uniformly in ε > 0 and y ∈ Rd. To this end, we apply the compactness
method of Avellaneda and Lin [1]. Loosely speaking, since as ε vanishes, the equation homogenizes
into

div (a∗∇v∗) = 0,

for which Lipschitz bounds hold, thus, for ε su�ciently small, such bounds should survive. On the
other hand, for ε "large", bounded away from zero, they also hold, uniformly, by standard elliptic
regularity results, thus, intuitively, the result.

3.1 Hölder estimates

The main result of this Section is a generalization of [1, Lemma 24] to the present setting:

Theorem 3.1. Assume that the matrix-valued coe�cient a satis�es (A1) through (A6). Assume that
Ω is a C2,1 bounded domain, that β ∈]0, 1[, y ∈ Rd, and g ∈ C0,β

(
B(0, 1)

)
. Assume that vε is a

solution to − div
(
a
(x
ε

+ y
)
∇vε

)
= 0 in Ω ∩B(0, 1),

vε = g in (∂Ω) ∩B(0, 1).

Then there exists a constant depending only on a, β and Ω such that

‖vε‖C0,β(Ω∩B(0,1/2)) ≤ C
(
‖g‖C0,β((∂Ω)∩B(0,1)) + ‖vε‖L2(Ω∩B(0,1))

)
(3.2)

In order to prove Theorem 3.1, we �rst assume that B(0, 1) ⊂ Ω. In such a case, (3.2) becomes an
interior estimate. Its proof is the matter of Lemma 3.2 and Lemma 3.3 below. In a second step, we
allow for B(0, 1) to intersect ∂Ω and prove the same type of estimates (Lemma 3.4 and 3.5 below).

We �rst prove a result that generalizes [1, Lemma 7] (with f = 0 there) to the present setting.

Lemma 3.2. Assume (A1) through (A6), and let β ∈]0, 1[. There exists θ ∈]0, 1/4[ depending only
on µ (see Assumption (A1)) and β, there exists a ε0 > 0 depending only on a, β and θ, such that,
∀y ∈ Rd, if vε is a solution to

−div
(
a
(x
ε

+ y
)
∇vε

)
= 0 in B(0, 1), (3.3)

then

−
∫
B(0,θ)

∣∣∣∣∣vε −−
∫
B(0,θ)

vε

∣∣∣∣∣
2

dx ≤ θ2β−
∫
B(0,1)

|vε(x)|2 dx. (3.4)
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Proof. We reproduce the proof of [1, Lemma 7], and use, instead of periodicity, uniform H-convergence.
Consider v∗ a solution to − div(a∗∇v∗) = 0 in B(0, 1/2). The matrix a∗ being constant, we have

−
∫
B(0,θ)

∣∣∣∣∣v∗ −−
∫
B(0,θ)

v∗

∣∣∣∣∣
2

dx ≤ θ2 ‖∇v∗‖2L∞(B(0,θ)) ≤ θ
2 ‖∇v∗‖2L∞(B(0,1/4))

≤ Cθ2−
∫
B(0,1/2)

|v∗(x)|2 dx.

The right-most inequality is a consequence of elliptic regularity results. It may be proved by successively
applying [16, Theorem 8.32], and [16, Theorem 8.24]. Hence, for θ su�ciently small,

−
∫
B(0,θ)

∣∣∣∣∣v∗ −−
∫
B(0,θ)

v∗

∣∣∣∣∣
2

dx ≤ θ2β

2d+1
−
∫
B(0,1/2)

|v∗(x)|2 dx (3.5)

We then �x such a θ and argue by contradiction to prove that vε satis�es

−
∫
B(0,θ)

∣∣∣∣∣vε −−
∫
B(0,θ)

vε

∣∣∣∣∣
2

dx ≤ θ2β

2d
−
∫
B(0,1/2)

|vε(x)|2 dx. (3.6)

If it does not hold, then we can build sequences εn → 0 and yn ∈ Rd such that

−
∫
B(0,θ)

∣∣∣∣∣vεn −−
∫
B(0,θ)

vεn

∣∣∣∣∣
2

dx >
θ2β

2d
−
∫
B(0,1/2)

|vεn(x)|2 dx, (3.7)

where vεn solves (3.3) (with ε = εn and y = yn). Normalizing vεn if necessary, we may assume

that −
∫
B(0,1)

|vεn |2 = 1. Applying the Caccioppoli inequality [15, page 76], the sequence (vεn)n∈N is

bounded in H1(B(0, 1/2)). Hence we can extract a subsequence converging strongly in L2(B(0, 1/2))
and weakly in H1(B(0, 1/2)), to some limit v∗ ∈ H1(B(0, 1/2)). Applying Proposition 2.4 (this where
we use assumptions (A1) through (A6)), we see that v∗ is a solution to −div(a∗∇v∗) = 0 in B(0, 1/2).
Hence it satis�es (3.5). On the other hand, strong convergence in L2(B(0, 1/2) allows to pass to the
limit in (3.7), reaching a contradiction. We have proved (3.6), which clearly implies (3.4).

Exactly as in [1, Lemma 8] (with f = 0 there), a proof by induction (which we therefore do not
include here) from Lemma 3.2 allows to prove the following

Lemma 3.3. Under the assumptions of Lemma 3.2, let θ ∈]0, 1/4[ and ε0 be given by Lemma 3.2. If
ε ∈]0, θkε0[, and if vε satis�es (3.3), then

−
∫
B(0,θk)

∣∣∣∣∣vε −−
∫
B(0,θk)

vε

∣∣∣∣∣
2

dx ≤ θ2kβ−
∫
B(0,1)

|vε(x)|2 dx.

Following the sketch of the proof of [1, Lemma 10] (with f = 0 and g = 0 there), and using uniform
H-convergence where periodicity was used in [1], we obtain

Lemma 3.4. Assume (A1) through (A6) with β ∈]0, 1[, and that Ω is a C1,α bounded domain such
that, say, 0 ∈ ∂Ω. There exists θ ∈]0, 1/4[ and ε0 > 0 depending only on a, β and Ω, such that, for
any ε < ε0, any y ∈ Rd, and any solution vε of− div

(
a
(x
ε

+ y
)
∇vε

)
= 0 in Ω ∩B(0, 1),

vε = 0 on (∂Ω) ∩B(0, 1),
(3.8)

we have

−
∫

Ω∩B(0,θ)

|vε(x)|2 dx ≤ θ2β−
∫

Ω∩B(0,1)

|vε(x)|2 dx. (3.9)
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Proof. Assume temporarily that v∗ is a solution to{
− div (a∗∇v∗) = 0 in Ω ∩B(0, 1),

v∗ = 0 in (∂Ω) ∩B(0, 1).
(3.10)

In particular, we have v∗(0) = 0, hence, for any θ ∈]0, 1/4[,

−
∫

Ω∩B(0,θ)

|v∗|2 ≤ Cθ2 ‖∇v∗‖2L∞(Ω∩B(0,1/4)) .

Applying the boundary gradient estimate [16, Corollary 8.36], we have

‖∇v∗‖L∞(Ω∩B(0,1/4)) ≤ C‖v
∗‖L∞(Ω∩B(0,1/2)),

hence

−
∫

Ω∩B(0,θ)

|v∗|2 ≤ Cθ2 ‖v∗‖2L∞(Ω∩B(0,1/2)) (3.11)

We apply [16, Theorem 8.25]. This gives ‖v∗‖L∞(Ω∩B(0,1/2)) ≤ C−
∫

Ω∩B(0,1)

|v∗|2. Hence, inserting this

estimate into (3.11), we �nd

−
∫

Ω∩B(0,θ)

|v∗|2 ≤ Cθ2−
∫

Ω∩B(0,1)

|v∗|2

Thus, for θ > 0 su�ciently small,

−
∫

Ω∩B(0,θ)

|v∗|2 ≤ θ2β

2
−
∫

Ω∩B(0,1)

|v∗|2 . (3.12)

We now �x θ > 0 to this value, and argue by contradiction: if (3.9) does not hold, then one can �nd
a sequence εn → 0 and a sequence yn such that, for each n the solution vεn of (3.8) (with ε = εn,
y = yn) satis�es

−
∫

Ω∩B(0,θ)

|vεn |2 > θ2β−
∫

Ω∩B(0,1)

|vεn |2. (3.13)

Multiplying vεn by a normalizing constant if necessary, we may assume that

−
∫

Ω∩B(0,1)

|vεn |2 = 1. (3.14)

The sequence (vεn)n∈N is bounded in H1(Ω ∩ B(0, 1/2)) according to Caccioppoli's inequality [15,
Proposition 2.1, p 76]. Hence, we can extract weak convergence in L2(Ω∩B(0, 1)∩H1(Ω∩B(0, 1/2))
and strong convergence in L2(Ω ∩B(0, 1/2)). We Denote by v∗ its limit. Inequality (3.13) implies

θ2β−
∫

Ω∩B(0,1)

|v∗|2 ≤ θ2β lim inf
n→+∞

−
∫

Ω∩B(0,1)

|vεn |2 ≤ lim inf
n→+∞

−
∫

Ω∩B(0,θ)

|vεn |2 = −
∫

Ω∩B(0,θ)

|v∗|2.

In addition, Proposition 2.4, which is valid since we assumed (A1) through (A6), allows to prove that
v∗ is a solution to (3.10), hence satis�es (3.12). We therefore reach a contradiction, concluding the
proof.

Here again, using an induction argument as in the proof of [1, Lemma 11] (with f = 0 there), we
have

Lemma 3.5. Under the same assumptions as those of Lemma 3.4, with θ > 0 and ε0 > 0 de�ned by
the conclusion of Lemma 3.4, we have, for any integer k ≥ 0, if ε < θkε0,

−
∫

Ω∩B(0,θk)

|vε|2 ≤ θ2kβ−
∫

Ω∩B(0,1)

|vε|2.
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The four above Lemmas allow us to proceed with the proof of Theorem 3.1. We �rst deal with the
case of interior estimate, that is, ∂Ω ∩B(0, 1) = ∅, then we prove the general case.

Proof of Theorem 3.1. Assume �rst that ∂Ω ∩ B(0, 1) = ∅. Then the proof is exactly that of [1,
Lemma 9] with f = 0, in which periodicity is not used. Next, if ∂Ω ∩B(0, 1) 6= ∅, we follow the proof
of [1, Lemma 24].

3.2 Lipschitz estimates

In this Section, we prove the following result, which is the generalization of [1, Lemma 16] (with f = 0
there) to he present setting:

Theorem 3.6. Assume (A1) through (A6). Let y ∈ Rd, R > 0, and assume that vε ∈ H1(B(0, 2R))
is a solution to

−div
(
a
(x
ε

+ y
)
∇vε(x)

)
= 0 in B(0, 2R).

Then, there exists a constant C depending only on the coe�cient a such that

sup
x∈B(0,R)

|∇vε(x)| ≤ C

R

(
−
∫
B(0,2R)

|vε|2
)1/2

. (3.15)

As we did for the proof of Hölder estimates above, we are going to apply the proof of [1], replacing,
when necessary, periodicity by assumptions (A3) through (A6).

We �rst prove a result that is the generalization of [1, Lemma 14] (with f = 0 there) to our setting.

Lemma 3.7. Assume that the matrix-valued coe�cient a satis�es Assumptions (A1) through (A6),
and let γ ∈]0, 1[. Then there exists ε0 > 0 and θ ∈]0, 1/4[ depending only on a and γ such that, if
ε < ε0 and if vε satis�es

−div
(
a
(x
ε

+ y
)
∇vε(x)

)
= 0 in B(0, 1), (3.16)

then

sup
x∈B(0,θ)

∣∣∣∣∣∣vε(x)− vε(0)−
d∑
j=1

[
xj + ε

(
wej

(x
ε

+ y
)
− wej (y)

)]
−
∫
B(0,θ)

∂jv
ε

∣∣∣∣∣∣
≤ θ1+γ

(
−
∫
B(0,1)

|vε|2
)1/2

(3.17)

Proof. As in the proof of Lemma 3.4, we argue by contradiction. Let v∗ ∈ H1(B(0, 1/2)) be a solution
to

−div (a∗∇v∗) = 0 in B

(
0,

1

2

)
. (3.18)

Since a∗ is constant, ∂j∂jv
∗ is also a solution to (3.18). Hence, applying the interior Hölder estimate

of [16, Theorem 8.24], we have ‖D2v∗‖C0,β(B(0,1/8)) ≤ C‖D2v∗‖L2(B(0,1/4)), where C and β depend
only on a∗. Hence,

‖D2v∗‖L∞(B(0,1/8)) ≤ C‖D2v∗‖L2(B(0,1/4)). (3.19)

Then applying the Caccioppoli inequality [15, Proposition 2.1, p 76] twice, we infer∫
B(0,1/4)

|D2v∗|2 ≤ C
∫
B(0,1/2)

|v∗|2. (3.20)
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In (3.19) and (3.20), the constant C depends only on a∗. Using a Taylor expansion, and applying
(3.19) and (3.20) to bound the remainder, we �nd that there exists a constant C0 depending only on
a∗ such that

sup
x∈B(0,θ)

∣∣∣∣∣v∗(x)− v∗(0)− x · −
∫
B(0,θ)

∇v∗
∣∣∣∣∣ ≤ C0θ

2

(
−
∫
B(0,1/2)

|v∗|2
)1/2

.

Hence, choosing θ such that C0θ
2 ≤ θ1+γ

21+d/2 , we �nd that v∗ satis�es (3.17) wej is replaced by 0, that
is,

sup
x∈B(0,θ)

∣∣∣∣∣v∗ − v∗(0)− x · −
∫
B(0,θ)

∇v∗
∣∣∣∣∣ ≤ θ1+γ

2

1

2d/2

(
−
∫
B(0,1/2)

|v∗|2
)1/2

. (3.21)

The condition on θ reads θ ≤
(
21+d/2C0

)−1/(1−γ)
, which depends only on a∗, d and γ.

Next, we assume that (3.17) does not hold, that is, there exists sequences εn → 0, yn ∈ Rd and
vεn ∈ H1(B(0, 1)) such that (3.16) holds (with ε = εn, y = yn, v

ε = vεn), and

sup
x∈B(0,θ)

∣∣∣∣∣∣vεn(x)− vεn(0)−
d∑
j=1

[
xj + εn

(
wej

(
x

εn
+ y

)
− wej (y)

)]
−
∫
B(0,θ)

∂jv
εn

∣∣∣∣∣∣
> θ1+γ

(
−
∫
B(0,1)

|vεn |2
)1/2

. (3.22)

Multiplying vεn by some constant if necessary, we may assume that −
∫
B(0,1)

|vεn |2 = 1. Applying the

Caccioppoli inequality, we deduce that vεn is bounded in H1(B(0, 1/2)), hence, up to extracting a
subsequence, we have vεn −⇀ v∗ in H1(B(0, 1/2)) ∩ L2(B(0, 1)). Applying Proposition 2.4 (thereby
using Assumptions (A1) through (A6)), we prove that v∗ satis�es (3.18), hence (3.21). Next, applying
Theorem 3.1, we have ‖vεn‖C0,β(B(0,1/2)) ≤ C. This allows to pass to the limit in the �rst two terms of
the left-hand side of (3.22). Weak convergence in H1(B(0, 1/2)) allows to pass to the limit in the term

−
∫
B(0,θ)

∂jv
εn . Moreover, Assumptions (A1) through (A5) allow to apply Lemma 2.1, which implies

that, for all j ∈ {1, 2, . . . , d},

sup
y∈Rd

sup
x∈B(0,1)

ε
∣∣∣wej (xε + y

)
− wej (y)

∣∣∣−→
ε→0

0.

Hence, passing to the limit in (3.22), we �nd

sup
x∈B(0,θ)

∣∣∣∣∣v∗(x)− v∗(0)− x · −
∫
B(0,θ)

∇v∗
∣∣∣∣∣ ≥ lim inf

n→+∞
θ1+γ

(
−
∫
B(0,1)

|vεn |2
)1/2

≥ θ1+γ

(
−
∫
B(0,1)

|v∗|2
)1/2

=
θ1+γ

2d/2

(
−
∫
B(0,1/2)

|v∗|2
)1/2

,

and we reach a contradiction with (3.21).

As in [1, Lemma 15] (with f = 0 there), an induction argument allows to prove the following

Lemma 3.8. Assume (A1) through (A6), and that γ ∈]0, 1[. Let θ and ε0 be given by Lemma 3.7.
There exists C > 0 depending only on θ such that, for any y ∈ Rd, if 0 < ε ≤ ε0θ

n, n ∈ N, and if
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vε ∈ H1(B(0, 1)) satis�es (3.16), we have

sup
x∈B(0,θn+1)

∣∣∣∣∣∣vε(x)− vε(0)−
d∑
j=1

[
xj + ε

(
wej

(x
ε

+ y
)
− wej (y)

)]
κj(n)

∣∣∣∣∣∣ ≤ θ(1+n)(1+γ) ‖vε‖L∞(B(0,1)) ,

where κj(n) satis�es

sup
1≤j≤d

|κj(n)| ≤ C‖vε‖L∞(B(0,1))

n∑
`=0

θγ`. (3.23)

Remark 3.9. In (3.23), the important point is that C depends on θ but not on n. Hence, since θ < 1,
it implies sup

1≤j≤d
|κj(n)| ≤ C‖vε‖L∞(B(0,1)), and will be used as such in the sequel. However, the form

(3.23) is more convenient for the induction proof.

Proof of Theorem 3.6. This exactly the proof of [1, Lemma 16], based on Lemma 3.7 and Lemma 3.8.
We therefore omit it.

4 Estimates in the inhomogeneous case

In this Section, we deal with the non-homogeneous case, that is, the case when the right-hand side of
(3.1) is some div(f), f ∈ L2(Ω), with f 6= 0.

We �rst prove estimates on the Green function Gε of the operator −div
(
a
(
x
ε

)
∇·
)
with homoge-

neous Dirichlet boundary conditions. This uses the results on the homogeneous case, since x 7→ Gε(x, y)
and x 7→ ∇yGε(x, y) are solution to −div

(
a
(
x
ε

)
∇xv

)
= 0 in any open set that does not contain y.

Then, we use the representation uε(x) =
∫

Ω
Gε(x, y)f(y)dy to prove estimates in the case f 6= 0.

4.1 Green function estimates

First, we recall that in [20], Gε was proved to exist and be unique inW 1,1
0 (Ω). In addition, the following

estimates were established in [20, 13]:

∀x 6= y ∈ Ω, 0 ≤ Gε(x, y) ≤ C

|x− y|d−2
, (4.1)

‖∇xGε(·, y)‖
L

d
d−1

,∞
(Ω)

+ ‖∇yGε(x, ·)‖
L

d
d−1

,∞
(Ω)
≤ C,

where C depends only on ‖a‖L∞ and on its ellipticity constant. Here, Lp,∞ denotes the Marcinkiewicz
space of order p, as de�ned, e.g., in [7].

We now show

Theorem 4.1. Let d ≥ 3. Assume (A1) through (A6). Let Ω be a C1,α bounded domain. Denote
by Gε the Green function of the operator −div

(
a
(
x
ε

)
∇·
)
on Ω with homogeneous Dirichlet boundary

conditions. For any Ω1 ⊂⊂ Ω, we have the following estimates:

1.

∀x ∈ Ω1, ∀y ∈ Ω, x 6= y, |∇xGε(x, y)| ≤ C

|x− y|d−1
. (4.2)

2. If in addition aT satis�es Assumptions (A3), (A4), (A5) and (A6), then we have

∀y ∈ Ω1, ∀x ∈ Ω, x 6= y, |∇yGε(x, y)| ≤ C

|x− y|d−1
, (4.3)

∀x ∈ Ω1, ∀y ∈ Ω1, x 6= y, |∇y∇xGε(x, y)| ≤ C

|x− y|d
. (4.4)
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In (4.2)-(4.3)-(4.4), the various constants C depend only on the coe�cient a, on Ω and on Ω1.

The above result is actually contained in [1], if the coe�cient a is assumed to be periodic. However,
it is not stated as such, and its proof, which may be found in the course of the proof of [1, Lemma 17],
is di�erent from the one we present here.

Proof. We �rst prove Assertion 1. We de�ne δ = inf {|x− y|, x ∈ Ω1, y ∈ ∂Ω} > 0. Let x0 ∈ Ω1,
y0 ∈ Ω \ {x0}. We set

R =
1

2
min

(
d(x0, ∂Ω) , |x0 − y0|

)
We have

2R ≤ |x0 − y0| ≤ CR, (4.5)

where the constant C is C = 2 if R = 1
2 |x0−y0|, and C = 2 diam(Ω)

δ otherwise. In particular it depends
only on Ω and Ω1. Since y0 /∈ B(x0, R),

−divx

(
a
(x
ε

)
∇xGε(x, y0)

)
= 0 in B(x0, R). (4.6)

Applying Theorem 3.6 to x 7→ Gε(x, y0), we have

|∇xGε(x0, y0)| ≤ C

R

(
−
∫
B(x0,R/2)

|Gε(x, y0)|2 dx

)1/2

.

Using (4.1), (4.5), and the triangle inequality, |x− y0| ≥ |x0 − y0| − |x− x0|, we have(
−
∫
B(x0,R/2)

|Gε(x, y0)|2 dx

)1/2

≤ C

(
−
∫
B(x0,R/2)

1

R2(d−2)
dx

)1/2

=
C

Rd−2
.

Hence,

|∇xGε(x0, y0)| ≤ C

Rd−1
.

Using (4.5) again, we �nd (4.2).
Next, we prove Assertion 2. It is well-known (see [20, Theorem 1.3]) that the Green function GεT

of the operator − div
(
aT
(
x
ε

)
∇·
)
with homogeneous Dirichlet condition satis�es GεT (x, y) = Gε(y, x).

Since aT satis�es Assumptions (A1), (A2), (A3), (A4), (A5), (A6), GεT satis�es (4.2). This clearly
implies (4.3).

Finally, we note that ∇yG(x, y0) is also a solution to (4.6). Hence, applying the proof of Assertion 2
to ∇yG, we �nd (4.4).

4.2 W 1,p estimates

We now prove W 1,p estimates on the solution vε of (4.7) below. The following Proposition is the
generalization of [31, Theorem 2.4.1] to the present setting.

Proposition 4.2. Assume (A1) through (A6). Let q ∈]2,+∞[, y ∈ Rd, R > 0 and H ∈ Lq(B(0, 2R),Rd).
Assume that vε ∈ H1(B(0, 2R)) is a solution to

−div
(
a
(x
ε

+ y
)
∇vε

)
= div(H) in B(0, 2R). (4.7)

Then, there exists C > 0 depending only on the coe�cient a and on q (in particular it does not depend
on y nor on ε) such that(

−
∫
B(0,R)

|∇vε|q
)1/q

≤ C

(
−
∫
B(0,2R)

|H|q
)1/q

+ C

(
−
∫
B(0,2R)

|∇vε|2
)1/2

.
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Before we get to the proof of Proposition 4.2, we �rst state the following Lemma, which is a simple
consequence of [30, Theorem 2.4] (see also [31, Theorem 2.3.1]):

Lemma 4.3. Let B0 = B(x0, R0) be a ball of Rd, and F ∈ L2(4B0). Let 2 < q1 < q2, f ∈ Lq1(4B0).
Assume that there exists K > 0 such that for any ball B ⊂ 2B0 with 2|B| ≤ |B0|, there exists
F1 ∈ L2(2B) and F2 ∈ Lq2(2B) such that

|F | ≤ |F1|+ |F2| in 2B,(
−
∫

2B

|F1|2
)1/2

≤ K sup
B⊂B′⊂4B0

(
−
∫
B′
|f |2

)1/2

,(
−
∫

2B

|F2|q2
)1/q2

≤ K

[(
−
∫

4B

|F |2
)1/2

+ sup
B⊂B′⊂4B0

(
−
∫
B′
|f |2

)1/2
]
,

where the supremum is taken over any ball B′ such that B ⊂ B′ ⊂ B(x0, 4R0). Then, F ∈ Lq1(B0),
and (

−
∫
B0

|F |q1
)1/q1

≤ C

[(
−
∫

4B0

|F |2
)1/2

+

(
−
∫

4B0

|f |q1
)1/q1

]
,

where C depends on K, q1, q2 only.

Proof of Proposition 4.2. The proof follows the lines of [31, Theorem 2.4.1]. However, since the setting
is slightly di�erent, we reproduce it here for the sake of clarity and for the reader's convenience.

Let x0 ∈ B(0, 2R) and R0 > 0 such that B0 := B(x0, R0) satis�es 8B0 ⊂ B(0, 2R). We intend to
apply Lemma 4.3 to F = ∇vε and f = H. For this purpose, we �x y0 ∈ 2B0 and R1 > 0 such that
B := B(y0, R1) ⊂ 2B0.

vε = vε1 + vε2,

where vε1 satis�es − div
(
a
(x
ε

+ y
)
∇vε1

)
= div(H) in B(y0, 4R1),

vε1 = 0 in ∂ (B(y0, 4R1)) .

Multiplying this equation by vε1 and integrating by parts, we have(
−
∫
B(y0,4R1)

|∇vε1|2
)1/2

≤ C

(
−
∫
B(y0,4R1)

|H|2
)1/2

, (4.8)

where C depends only on the ellipticity constant of a. On the other hand, vε2 satis�es

−div
(
a
(x
ε

+ y
)
∇vε2

)
= 0 in B(y0, 4R1).

Thus, applying Theorem 3.6 to vε2 −−
∫
B(y0,4R1)

vε2, we have

‖∇vε2‖L∞(B(y0,2R1)) ≤
C

R 1

−∫
B(y0,4R1)

∣∣∣∣∣vε2 −−
∫
B(y0,4R1)

vε2

∣∣∣∣∣
2
1/2

,

where the constant C depends only on the coe�cient a. Applying the Poincaré-Wirtinger inequality,
this implies

‖∇vε2‖L∞(B(y0,2R1)) ≤ C ′
(
−
∫
B(y0,4R1)

|∇vε2|2
)1/2

.
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The constant C ′ is equal to C ′ = C
R1
CPW (B(y0, 4R1)) = CCPW (B(y0, 4)), due to the scaling of the

constant CPW in the Poincaré-Wirtinger inequality. Hence, C ′ depends only on a. On the other hand,
using (4.8) and the triangle inequality, we have

(
−
∫
B(y0,4R1)

|∇vε2|2
)1/2

≤

(
−
∫
B(y0,4R1)

|∇vε1|2
)1/2

+

(
−
∫
B(y0,4R1)

|∇vε|2
)1/2

≤ C

(
−
∫
B(y0,4R1)

|H|2
)1/2

+

(
−
∫
B(y0,4R1)

|∇vε|2
)1/2

.

Thus,

‖∇vε2‖L∞(B(y0,2R1)) ≤ C

(
−
∫
B(y0,4R1)

|H|2
)1/2

+

(
−
∫
B(y0,4R1)

|∇vε|2
)1/2

. (4.9)

Collecting (4.8) and (4.9), we may apply Lemma 4.3 (with B0 = B(x0, R0), q1 = q, q2 = 2q1, f = H,
F1 = ∇vε1, F2 = ∇vε2, and B = B(y0, R1)) �nding(

−
∫
B0

|∇vε|q
)1/q

≤ C

[(
−
∫

4B0

|H|q
)1/q

+

(
−
∫

4B0

|∇vε|2
)1/2

]
.

This is valid for any x0 and R0 > 0 such that B(x0, 8R0) ⊂ B(0, 2R). Hence, covering B(0, R) by a
�nite number of such balls, we conclude the proof.

4.3 Lipschitz estimates

Note that Proposition 4.2 does not include the case q = +∞. However, using the estimates we have
proved on the gradient of Gε in Theorem 4.1, we are able to now derive Lipschitz estimates:

Proposition 4.4. Assume that the coe�cients a and aT satisfy Assumptions (A1) through (A6). Let
β > 0 and R > ε > 0, and assume that H ∈ C0,β(B(0, 2R)). Then, there exists a constant C > 0
depending only on a and β such that, if vε satis�es (4.7), then

‖∇vε‖L∞(B(0,R)) ≤ C

(
−
∫
B(0,2R)

|∇vε|2
)1/2

+ Cεβ [H]C0,β(B(0,2R))

+ C ln

(
1 +

R

ε

)
‖H‖L∞(B(0,2R)). (4.10)

We recall here that [·]C0,β(B(0,2R)) denotes the Hölder semi-norm on B(0, 2R) (see (2.12)).

Proposition 4.4 is a generalization of [25, Lemma 3.5], in two ways. First, we replace, here, the
periodicity assumption by (A1) through (A6). Second, in [25], Lemma 3.5 is stated only for the speci�c
case where vε = Rε de�ned by (1.11), hence H = Hε de�ned by (2.7). Due to these di�erences, we
provide below a complete proof, although the ideas are contained in [25].

Proof. We split the proof in several steps: �rst, introducing a cut-o� function, we write vε as an integral
of Gε, which is the Green function of the operator −div

(
a
(
x
ε + y

)
∇·
)
with homogeneous Dirichlet

boundary conditions on B(0, 2R). Then, we use this representation and Theorem 4.1 to prove (4.10).

Step 1: introduction of a cut-o� function and use of the Green function. We de�ne φ ∈ C∞c (B(0, 3R/2))
such that

0 ≤ φ ≤ 1, φ = 1 in B(0, 5R/4), ‖∇φ‖L∞(B(0,2R)) ≤
C

R
, ‖D2φ‖L∞(B(0,2R)) ≤

C

R2
.
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We clearly have ‖∇(φvε)‖L∞(B(0,R)) = ‖∇vε‖L∞(B(0,R)). Moreover,

−div
(
a
(z
ε

+ y
)
∇ (φvε)

)
= −div

(
vεa

(z
ε

+ y
)
∇φ
)
−
(
a
(z
ε

+ y
)
∇vε

)
· ∇φ+ φ div(H).

Hence, multiplying by Gε(x, z) and integrating with respect to z over B(0, 2R),

φ(x)vε(x) = −
∫
B(0,2R)

Gε(x, z)
[
a
(z
ε

+ y
)
∇vε(z)

]
· ∇φ(z)dz

+

∫
B(0,2R)

∇zGε(x, z) ·
(
vε(z)a

(z
ε

+ y
)
∇φ(z)

)
dz

−
∫
B(0,2R)

∇z (Gε(x, z)φ(z)) ·H(z)dz

=: vε1(x) + vε2(x) + vε3(x).

Step 2: bound on vε1. Let x ∈ B(0, R). Since ∇φ vanishes in B(0, 5R/4) and outside B(0, 3R/2), we
have

|∇vε1(x)| ≤
∫
B(0,3R/2)\B(0,5R/4)

|∇xGε(x, z)|
∣∣∣a(z

ε
+ y
)∣∣∣ |∇vε(z)| |∇φ(z)|dz.

Successively using |∇φ| ≤ C
R , estimate (4.2), and B(0, 3R/2) \ B(0, 5R/4) ⊂ B(0, 2R) \ B(0, R), we

deduce

|∇vε1(x)| ≤ C

Rd

∫
B(0,2R)\B(0,R)

|∇vε| ≤ C

(
−
∫
B(0,2R)

|∇vε|2
)1/2

. (4.11)

Step 3: bound on vε2. Similar arguments allow to prove that

|∇vε2(x)| ≤
∫
B(0,3R/2)\B(0,5R/4)

|∇x∇zGε(x, z)| |vε(z)|
∣∣∣a(z

ε
+ y
)∣∣∣ |∇φ(z)|dz

≤ C

R

(∫
B(0,3R/2)\B(0,5R/4)

|∇x∇zG(x, z)|2dz

)1/2

‖vε‖L2(B(0,2R)), (4.12)

the last inequality coming from the Cauchy-Schwarz inequality. We then apply (4.4), which implies(∫
B(0,3R/2)\B(0,5R/4)

|∇x∇zG(x, z)|2dz

)1/2

≤ C

Rd/2
. (4.13)

We point out that adding a constant to vε does not change (4.7), hence we may assume that
∫
B(0,2R)

vε =

0. So, using the Poincaré-Wirtinger inequality, we have

‖vε‖L2(B(0,2R)) ≤ C

(
R2

∫
B(0,2R)

|∇vε|2
)1/2

= CR1+d/2

(
−
∫
B(0,2R)

|∇vε|2
)1/2

,

where C does not depend on R. Inserting this inequality and (4.13) into (4.12), we infer

|∇vε2(x)| ≤ C

(
−
∫
B(0,2R)

|∇vε2|2
)1/2

. (4.14)

Step 4: bound on vε3. We �x here again x ∈ B(0, R). Integrating by parts, we have
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∫
B(0,2R)

∇z (Gε(x, z)φ(z)) dz = 0, (4.15)

hence

vε3(x) =

∫
B(0,2R)

∇z (Gε(x, z)φ(z)) · (H(z)−H(x))dz.

We di�erentiate this equalilty with respect to x, and use (4.15) again, �nding

∇vε3(x) =

∫
B(0,2R)

∇z (∇xGε(x, z)φ(z)) · (H(z)−H(x))dz −
∫
B(0,2R)

∇z (Gε(x, z)φ(z)) · ∇xH(x)dz︸ ︷︷ ︸
=0

.

Thus,

|∇vε3(x)| ≤
∫
B(0,2R)

|φ(z)| |∇z∇xGε(x, z)| |H(z)−H(x)|dz

+

∫
B(0,2R)

|∇φ(z)| |∇xGε(x, z)| |H(z)−H(x)|dz

Using that ∇φ vanishes in B(0, 5R/4) and outside B(0, 3R/2), that |∇φ| ≤ C/R, and (4.2), we have∫
B(0,2R)

|∇φ(z)| |∇xGε(x, z)| |H(z)−H(x)|dz

≤ C

R
‖H‖L∞(B(0,2R))

∫
B(0,3R/2)\B(0,5R/4)

1

|x− z|d−1
dz ≤ C‖H‖L∞(B(0,2R)).

Moreover, using (4.4) and the fact that H is β-Hölder continuous, we also have,∫
B(0,2R)

|φ(z)| |∇z∇xGε(x, z)| |H(z)−H(x)|dz ≤ C[H]C0,β(B(0,2R))

∫
B(x,ε)

|x− z|β

|x− z|d
dz

+ 2‖H‖L∞(B(0,2R))

∫
B(0,2R)\B(x,ε)

dz

|x− z|d
.

The integral in the right-most term of the right-hand side is bounded as follows (we use here |x| ≤ R):∫
B(0,2R)\B(x,ε)

dz

|x− z|d
≤ C

∫ max(3R,ε)

ε

rd−1dr

rd
= C ln

(
max(3R, ε)

ε

)
≤ C ln

(
1 +

R

ε

)
.

Hence,
|∇vε3(x)| ≤ Cεβ [H]C0,β(B(0,2R)) + C ln

(
1 +Rε−1

)
‖H‖L∞(B(0,2R)). (4.16)

Collecting (4.11), (4.14), (4.16), we have proved (4.10).

Remark 4.5. In Propoisition 4.4, we have assumed that both coe�cients a and aT satisfy Assump-
tions (A1) through (A6). The result however still holds if only a satis�es those assumptions. Indeed,
the assumption on aT is only used for the proof of (4.13) and (4.16): in both cases, we have used the
pointwise bound (4.4) on ∇x∇yG, but the only relevant bound for proceeding with the proof of Propo-
sition 4.4 is an L2 bound, which can alternately be obtained using (4.2) and the Cacciopoli inequality
(see [23, Section 2.5.3] for the details).
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4.4 Convergence rates for Green functions

We now prove the following convergence result of Gε to the Green function G∗ of the operator
−div(a∗∇·) with homogeneous Dirichlet conditions on Ω. It is the extension, in our setting, of [25,
Theorem 3.3]

Theorem 4.6. Assume that the matrix-valued coe�cients a and aT satisfy Assumptions (A1) through
(A6), and (A7)-(A8) for some ν > 0. Let Ω be a domain of class C2,1, and denote by Gε and G∗

the Green functions of the operators −div
(
a
(
x
ε

)
∇·
)
and −div(a∗∇·), respectively, with homogeneous

Dirichlet boundary conditions on Ω. Then there exists a constant C > 0 depending only on a, Ω and
ν such that

∀x 6= y ∈ Ω, |Gε(x, y)−G∗(x, y)| ≤ C εν

|x− y|d+ν−2
. (4.17)

The proof of Theorem 4.6 replicates that of [25, Theorem 3.3], but we need to everywhere keep
track of the use of Assumptions (A7)-(A8) and check that these properties are su�cient to proceed at
each step of the arguments.

We prove the following lemma, which is a generalization of [25, Lemma 3.2]:

Lemma 4.7. Assume that the matrix-valued coe�cient a satis�es (A1) through (A6), and (A7)-(A8)
for some ν > 0. Let Ω be a C2,1 bounded domain, x0 ∈ Ω, R > 0, q1 > d and q2 ∈]1,+∞[. Assume
that uε ∈ H1(Ω ∩B(x0, 4R)) and u∗ ∈W 2,q1(Ω ∩B(x0, 4R)) satisfy− div

(
a
(x
ε

)
∇uε

)
= −div(a∗∇u∗) in Ω ∩B(x0, 4R),

uε = u∗ on (∂Ω) ∩B(x0, 4R).

Then, there exists a constant C depending only on a, Ω, q1 and q2 such that

‖uε − u∗‖L∞(Ω∩B(x0,R)) ≤ CR
− d
q2 ‖uε − u∗‖Lq2 (Ω∩B(x0,4R)) + CενR1−ν‖∇u∗‖L∞(Ω∩B(x0,4R))

+ CενR2− d
q1
−ν‖D2u∗‖Lq1 (Ω∩B(x0,4R)) (4.18)

Proof. We follow the proof of [25, Lemma 3.2], adapting it when necessary. First, since the problem

is translation invariant, we may assume that x0 = 0. Then, we de�ne a smooth open set Ω̃ such that

Ω ∩B(0, 2R) ⊂ Ω̃ ⊂ Ω ∩B(0, 4R).

We de�ne the remainder Rε by (1.11). We know that it satis�es (2.6), with Hε de�ned by (2.7). Next,
we split Rε into Rε = Rε1 +Rε2, where R

ε
1 is de�ned as the unique solution of− div

(
a
(x
ε

)
∇Rε1

)
= −div(Hε) in Ω̃,

Rε1 = 0 on ∂Ω̃.
(4.19)

Hence, Rε2 satis�es 
− div

(
a
(x
ε

)
∇Rε2

)
= 0 in Ω̃,

Rε2(x) = ε

d∑
j=1

wej

(x
ε

)
∂ju
∗(x) on ∂Ω̃ ∩ ∂Ω.

(4.20)

We use a scaling argument, de�ning R
ε

2(x) = Rε2(x/R), a(x) = a(x/R), wej (x) = wej (x/R), and

u∗(x) = u∗(x/R). Writing down the equation satis�ed by R
ε

2, we are thus in the case R = 1 and we
may apply De Giorgi-Nash estimate. Scaling back to the original unknown Rε2, this implies

‖Rε2‖L∞(Ω∩B(0,R)) ≤ C

∥∥∥∥∥∥ε
d∑
j=1

wej

(x
ε

)
∂ju
∗(x)

∥∥∥∥∥∥
L∞(Ω̃)

+
C

Rd/q2
‖Rε2‖Lq2 (Ω̃).
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Using Assumption (A7) and the triangle inequality, this implies

‖Rε2‖L∞(Ω∩B(0,R)) ≤ Cε
νR1−ν‖∇u∗‖L∞(Ω̃) +

C

Rd/q2
‖Rε‖Lq2 (Ω̃) + C‖Rε1‖L∞(Ω̃). (4.21)

Next, according to the de�nition (1.11) of Rε, and using Assumption (A7) again, we have

‖Rε‖Lq2 (Ω̃) ≤ ‖u
ε − u∗‖Lq2 (Ω̃) + CRd/q2

∥∥∥∥∥∥ε
d∑
j=1

wej

(x
ε

)
∂ju
∗(x)

∥∥∥∥∥∥
L∞(Ω̃)

≤ ‖uε − u∗‖Lq2 (Ω̃) + CενRd/q2+1−ν‖∇u∗‖L∞(Ω̃). (4.22)

Inserting (4.22) into (4.21), we thus have

‖Rε2‖L∞(Ω∩B(0,R)) ≤ CενR1−ν‖∇u∗‖L∞(Ω̃) +
C

Rd/q2
‖uε − u∗‖Lq2 (Ω̃) + C‖Rε1‖L∞(Ω̃). (4.23)

Next, we bound Rε1. Denoting by Gε the Green function of the operator −div
(
a
(
x
ε

)
∇·
)
on Ω̃ with

homogeneous Dirichlet boundary conditions on Ω̃, we have, for any x ∈ Ω̃,

Rε1(x) = −
∫

Ω̃

∇yGε(x, y) ·Hε(y)dy.

Using the Hölder inequality and the estimate (2.10) of Lemma 2.7 (this is where we use Assump-
tion (A8)), we have

|Rε1(x)| ≤ CενR1−ν‖∇yG(x, ·)‖
Lq
′
1 (Ω̃)
‖D2u∗‖Lq1 (Ω̃).

Since q1 > d, we have q′1 <
d
d−1 , hence, using [20, Equation (1.12)] and Theorem 4.1,

|Rε1(x)| ≤ CενR1−ν
∣∣∣Ω̃∣∣∣ 1

q′1
− d−1

d ‖∇yG(x, ·)‖
L

d
d−1

,∞
(Ω̃)
‖D2u∗‖Lq1 (Ω̃)

≤ CενR2− d
q1
−ν‖D2u∗‖Lq1 (Ω̃). (4.24)

Collecting (4.23) and (4.24), we have proved

‖Rε‖L∞(Ω∩B(x0,R)) ≤ CR
−d/q2‖uε − u∗‖Lq2 (Ω∩B(x0,4R)) + CενR1−ν‖∇u∗‖L∞(Ω∩B(x0,4R))

+ CενR2− d
q1
−ν‖D2u∗‖Lq1 (Ω∩B(x0,4R)). (4.25)

Next, we write

uε(x)− u∗(x) = Rε(x) + ε

d∑
j=1

wej

(x
ε

)
∂ju
∗(x),

which implies, using the triangle inequality and Assumption (A7),

‖vε − v∗‖L∞(Ω∩B(x0,R)) ≤ ‖R
ε‖L∞(Ω∩B(x0,R)) + Cε

(
R

ε

)1−ν

‖∇u∗‖L∞(Ω∩B(x0,R)) .

Inserting (4.25) into this estimate, we �nd (4.18).

The following result is the generalization of [25, Theorem 3.4] (with q = ∞ there) to the present
setting. Here, the proof is substantially di�erent from [25, Lemma 3.2].
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Lemma 4.8. Under the assumptions of Theorem 4.6, let q > d, x0 6= y0 ∈ Ω, R = |x0 − y0|/16.
Assume that f ∈ C∞c (Ω ∩B(y0, 4R)), and that uε and u∗ are solutions to− div

(
a
(x
ε

)
∇uε

)
= −div(a∗∇u∗) = f in Ω,

uε = u∗ = 0 on ∂Ω.

Then,

‖uε − u∗‖L∞(Ω∩B(x0,R)) ≤ CR
2− dq−νεν‖f‖Lq(Ω), (4.26)

where C depends only on the coe�cient a, q and Ω.

Proof. Due to translation invariance, we may assume that y0 = 0. We apply Lemma 4.7 with q1 = q.
Hence, uε − u∗ satis�es (4.18), that is,

‖uε − u∗‖L∞(Ω∩B(x0,R)) ≤ CR
− d
q2 ‖uε − u∗‖Lq2 (Ω∩B(x0,4R)) + CενR1−ν‖∇u∗‖L∞(Ω∩B(x0,4R))

+ CενR2− dq−ν‖D2u∗‖Lq(Ω∩B(x0,4R)), (4.27)

for any q2 > 1. We �x q2 < 2, and we are going to estimate separately each term of the right-hand
side of (4.27).
Step 1: bound on ‖∇u∗‖L∞ . Denoting by G∗ the Green function of the operator −div (a∗∇·) with
homogeneous Dirichlet boundary conditions on Ω, we have

∀x ∈ Ω, ∇u∗(x) =

∫
Ω

∇xG∗(x, y)f(y)dy =

∫
Ω∩B(0,4R)

∇xG∗(x, y)f(y)dy.

Hence, |∇u∗(x)| ≤ ‖∇xG∗(x, ·)‖Lq′ (Ω∩B(0,4R))‖f‖Lq(Ω). Applying [20, Theorem 3.3 (iv)], we have

‖∇xG∗ (x, ·) ‖Lq′ (Ω∩B(0,4R)) ≤ C

(∫
B(0,4R)

1

|x− y|q′(d−1)
dy

)1/q′

≤

{
CR

d
q′−d+1

if |x| < 8R,

CR
d
q′ |x|−d+1 if |x| ≥ 8R.

Hence,

|∇u∗(x)| ≤ C‖f‖Lq(Ω)
Rd−

d
q

max (Rd−1, |x|d−1)
. (4.28)

In particular, we have

‖∇u∗‖L∞(Ω) ≤ CR1− dq ‖f‖Lq(Ω), (4.29)

where C depends only on a∗ and Ω.
Step 2: bound on ‖D2u∗‖Lq . According to standard elliptic regularity results (see for instance [16,
Lemma 9.17]), we have

‖D2u∗‖Lq(Ω) ≤ C‖f‖Lq(Ω), (4.30)

where C depends only on a∗ and Ω. In addition, using the Green function representation again, [20,
Theorem 3.3 (vi)], and an argument similar to the proof of (4.28), we have, if |x| > 8R,

|D2u∗(x)| ≤
∣∣∣∣∫

Ω

∇2
xG
∗(x, y)f(y)dy

∣∣∣∣ ≤ C ∫
Ω∩B(0,4R)

1

|x− y|d
|f(y)|dy ≤ CR

d− dq

|x|d
‖f‖Lq(Ω). (4.31)

Pointing out that |x| ≥ R for all x ∈ B(x0, 4R), this implies, using the Hölder inequality,

∥∥D2u∗
∥∥
Lq(Ω∩B(x0,4R))

≤ CRd−d/q 1

Rd
Rd/q

′
|B(x0, 4R)|d/q‖f‖Lq(Ω) = CRd−2d/q‖f‖Lq(Ω)

≤ C (diam(Ω))
d−2d/q ‖f‖Lq(Ω). (4.32)
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Step 3: bound on ‖uε − u∗‖Lq(Ω∩B(x0,4R)). As in the proof of Lemma 4.7, we de�ne Rε by (1.11), and

write Rε = Rε1 + Rε2, where R
ε
1 and Rε2 are solutions to (4.19) and (4.20), respectively (with Ω̃ = Ω),

and Hε is de�ned by (2.7). Mutliplying the �rst line of (4.19) by Rε1 and integrating, we have

‖∇Rε1‖L2(Ω) ≤ C‖Hε‖L2(Ω), (4.33)

where C depends only on the ellipticity constant of the coe�cient a. We claim that

‖Hε‖L2(Ω) ≤ CενR
d
2−

d
q+1−ν‖f‖Lq(Ω). (4.34)

We �rst deal with ‖Hε‖L2(Ω\B(0,8R)), then with ‖Hε‖L2(Ω∩B(0,8R)). Using Assumptions (A7) and (A8),
we have, for all x ∈ Ω,

|Hε(x)| ≤ ε‖a‖L∞ sup
1≤j≤d

∣∣∣wej (xε)∣∣∣ |D2u∗(x)|+ ε
∣∣∣B (x

ε

)∣∣∣ ∣∣D2u∗(x)
∣∣ ≤ Cε( |x|

ε

)1−ν

|D2u∗(x)|

≤ Cεν |x|1−ν |D2u∗(x)|.

We then compute the L2 norm of Hε on Ω \B(0, 8R), and use (4.31), together with |x| ≥ R:

‖Hε‖L2(Ω\B(0,8R)) ≤ Cε
ν

(∫
Ω\B(0,8R)

|x|2(1−ν)|D2u∗(x)|2dx

)1/2

≤ Cεν
(∫

Ω\B(0,8R)

1

|x|2d+2ν−2
R2d− 2d

q dx

)1/2

‖f‖Lq(Ω) ≤ CενR1−ν+ d
2−

d
q ‖f‖Lq(Ω). (4.35)

In addition, successively using Lemma 2.7 (with q = 2 there), the Hölder inequality, and [16, Lemma
9.17],

‖Hε‖L2(Ω∩B(0,8R)) ≤ CενR1−ν‖D2u∗‖L2(Ω∩B(0,8R)) ≤ CενR
d
2−

d
q+1−ν‖f‖Lq(Ω). (4.36)

Collecting (4.35) and (4.36), we infer (4.34). Inserting (4.34) into (4.33), we thus have ‖∇Rε1‖L2(Ω) ≤
CενR

d
2−

d
q+1−ν‖f‖Lq(Ω). Hence, using the Hölder inequality again and Sobolev embeddings,

‖Rε1‖Lq2 (Ω∩B(0,4R)) ≤ CR
d
q2
−( d2−1)‖Rε1‖

L
2d
d−2 (Ω∩B(0,4R))

≤ CR
d
q2

+1− d2 ‖∇Rε1‖L2(Ω)

≤ CενR2+ d
q2
− dq−ν‖f‖Lq(Ω). (4.37)

We estimate Rε2. Using the maximum principle,we have

‖Rε2‖L∞(Ω) ≤

∥∥∥∥∥∥ε
d∑
j=1

wej

( ·
ε

)
∂ju
∗

∥∥∥∥∥∥
L∞(∂Ω)

.

This estimate, together with (4.28) and Assumption (A7), imply

‖Rε2‖L∞(Ω) ≤ CενRd−
d
q ‖f‖Lq(Ω) sup

x∈∂Ω

{
|x|1−ν

max (Rd−1, |x|d−1)

}
≤ CενRd−

d
q ‖f‖Lq(Ω)R

2−d−ν .

Thus,

‖Rε2‖L∞(Ω) ≤ CενR2−ν− dq ‖f‖Lq(Ω). (4.38)
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We next bound uε − u∗. Applying the triangle inequality,

‖uε − u∗‖Lq2 (Ω∩B(x0,4R)) ≤

∥∥∥∥∥∥ε
d∑
j=1

wej

( ·
ε

)
∂ju
∗

∥∥∥∥∥∥
Lq2 (Ω∩B(x0,4R))

+ ‖Rε1‖Lq2 (Ω∩B(x0,4R)) + ‖Rε2‖Lq2 (Ω∩B(x0,4R)) . (4.39)

The �rst term is bounded using Assumption (A7) and (4.29):∥∥∥∥∥∥ε
d∑
j=1

wej

( ·
ε

)
∂ju
∗

∥∥∥∥∥∥
Lq2 (Ω∩B(x0,4R))

≤ CενR2+ d
q2
− dq−ν‖f‖Lq(Ω). (4.40)

Hence, inserting (4.37), (4.38), (4.40) into (4.39), we infer

‖uε − u∗‖Lq2 (Ω∩B(x0,4R)) ≤ CενR2+ d
q2
− dq−ν‖f‖Lq(Ω). (4.41)

Finally, we collect (4.27), (4.29), (4.32) and (4.41), which proves (4.26).

We are now in position to prove Theorem 4.6.

Proof of Theorem 4.6. Let q > d, x0, y0 ∈ Ω, R = |x0 − y0|/16 and f ∈ C∞c (Ω∩B(y0, 4R)). We apply
Lemma 4.8. We have

uε(x) =

∫
Ω

Gε(x, y)f(y)dy and u∗(x) =

∫
Ω

G∗(x, y)f(y)dy.

Since q > d, we may apply inequality (4.26). This gives∣∣∣∣∫
Ω

(Gε(x, y)−G∗(x, y)) f(y)dy

∣∣∣∣ ≤ CενR2− dq−ν‖f‖Lq(Ω∩B(y0,R)).

Thus, a duality argument allows to prove

‖Gε(x, ·)−G∗(x, ·)‖Lq′ (Ω∩B(y0,4R)) ≤ Cε
νR2− dq−ν . (4.42)

Moreover, Gε and G∗ satisfy
−divy

(
aT
(y
ε

)
∇yGε(x0, y)

)
= 0 in Ω ∩B(y0, 4R),

−divy

(
(a∗)

T ∇yG∗(x0, y)
)

= 0 in Ω ∩B(y0, 4R),

Gε(x0, ·) = G∗(x0, ·) = 0 on (∂Ω) ∩B(y0, 4R).

Hence, we may apply Lemma 4.7 with q2 = q′. This implies

|Gε(x0, y0)−G∗(x0, y0)| ≤ CR−
d
q′ ‖Gε(x0, ·)−G∗(x0, ·)‖Lq′ (Ω∩B(y0,4R))

+ CενR1−ν‖∇yG∗(x0, ·)‖L∞(Ω∩B(y0,4R)) + CενR2− dq−ν‖D2
yG
∗(x0, ·)‖Lq(Ω∩B(y0,4R)) .

Applying once again [20, Theorem 3.3] to G∗, we have ‖∇yG∗(x0, ·)‖L∞(Ω∩B(y0,4R)) ≤ CR1−d and

‖D2
yG
∗(x0, ·)‖Lq(Ω∩B(y0,4R)) ≤ CR

− d
q′ . Thus, using (4.42), we get

|Gε(x0, y0)−G∗(x0, y0)| ≤ CενR2−d−ν ,

which concludes the proof, since 16R = |x0 − y0|.
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Next, we prove the following result, which is a consequence of Theorem 4.6, and is the generalization
of [25, Theorem 3.4] to the present setting.

Corollary 4.9. Assume that the matrix-valued coe�cients a and aT satisfy Assumptions (A1) through
(A6), and (A7)-(A8) for some ν > 0. Let Ω be a bounded C2,1 domain and q ∈ [1,+∞[. Then there
exists a constant C > 0 depending only on a, ν, Ω and q, such that for any f ∈ Lq(Ω), if uε and u∗

are solution to (1.1) and (1.4), respectively, then

‖uε − u∗‖Ls(Ω) ≤ Cεν‖f‖Lq(Ω),

where
1

q
− 2− ν

d
=

1

s
, if

1

q
>

2− ν
d

,

and

s = +∞ if
1

q
<

2− ν
d

.

Proof. First, assume that 1
q > 2−ν

d . Since the function g de�ned by g(x) = |x|2−d−ν satis�es g ∈
Ld/(d−2+ν),∞, and since uε − u∗ satis�es

uε(x)− u∗(x) =

∫
Ω

(Gε(x, y)−G∗(x, y)) f(y)dy,

we use Theorem 4.6 and a simple application of Young-O'Neil inequality [28, 33], which gives

‖uε − u∗‖Ls(Ω) ≤ Cε
ν
∥∥ g ∗ |f |∥∥

Ls,q(Ω)
≤ Cεν ‖g‖Ld/(d−2+ν),∞(Ω) ‖f‖Lq(Ω),

which proves the result. The case s = +∞ is treated by a similar argument.

5 Proof of the main results

5.1 Proof of Theorem 1.4

We give in this section the

Proof of Theorem 1.4. We �rst prove (1.22). Applying Corollary 4.9, we clearly have

‖Rε‖L2(Ω) ≤ Cεν‖f‖L2(Ω) + ε

∥∥∥∥∥∥
d∑
j=1

wej

( ·
ε

)
∂ju
∗

∥∥∥∥∥∥
L2(Ω)

.

Hence, using Assumption (A7) and the fact that ‖∇u∗‖L2(Ω) ≤ C‖f‖L2(Ω), we deduce (1.22).

Next, we prove (1.23). For this purpose, we write again Rε = Rε1 + Rε2, where R
ε
1 and Rε2 are

de�ned by (4.19) and (4.20), respectively (with Ω̃ = Ω.) Multiplying the �rst line of (4.19) by Rε1
and integrating by parts, we have ‖∇Rε1‖L2(Ω) ≤ C‖Hε‖L2(Ω). Hence, applying Lemma 2.7, we have
(2.10), which implies

‖∇Rε1‖L2(Ω) ≤ Cεν‖D2u∗‖L2(Ω) ≤ Cεν‖f‖L2(Ω). (5.1)

The right-most estimate is a consequence of standard elliptic regularity estimates [16, Lemma 9.17].
Next, we apply the Caccioppoli inequality (actually, we need to cover Ω1 ⊂⊂ Ω by balls Br(xi) such
that B2r(xi) ⊂ Ω for each i, and apply the Caccioppoli inequality on each of theses balls), getting

‖∇Rε2‖L2(Ω1) ≤ C ‖Rε2‖L2(Ω) ≤ C‖R
ε
1‖L2(Ω) + C‖Rε‖L2(Ω) ≤ C‖∇Rε1‖L2(Ω) + C‖Rε‖L2(Ω),

where we applied the Poincaré inequality to Rε1. The constant C in the above inequality only depends
on Ω1, Ω, and the coe�cient a. Using (1.22) and (5.1), we prove (1.23).
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We now turn to the proof of (1.24). We �x Ω2 such that Ω1 ⊂⊂ Ω2 ⊂⊂ Ω. We cover Ω1 by balls
Br(xj) such that B2r(xj) ⊂ Ω2 for all j. Applying Proposition 4.2 to Rε, we have

‖∇Rε‖Lq(Ω1) ≤ C‖Hε‖Lq(Ω) + C‖∇Rε‖L2(Ω2)

Hence, using (1.23) and (2.10) again, this implies

‖∇Rε‖Lq(Ω1) ≤ Cεν‖D2u∗‖Lq(Ω) + Cεν‖f‖L2(Ω)

Here again, elliptic regularity [16, Lemma 9.17] implies ‖D2u∗‖Lq(Ω) ≤ ‖f‖Lq(Ω), and we conclude
using the Hölder inequality.

Finally, we prove (1.25). We assume f ∈ C0,β(Ω). We �rst assume β ≤ α. Here again, we de�ne Ω2

such that Ω1 ⊂⊂ Ω2 ⊂⊂ Ω. We cover Ω1 by balls Br(xj) such that B2r(xj) ⊂ Ω2 for all j. Applying
Proposition 4.4 to vε = Rε, we �nd

‖∇Rε‖L∞(Ω1) ≤ C‖∇Rε‖L2(Ω2) + Cεβ [Hε]C0,β(Ω) + C ln
(
2 + ε−1

)
‖Hε‖L∞(Ω).

We apply (1.23), (2.10) and (2.11), whence

‖∇Rε‖L∞(Ω1) ≤ Cεν‖f‖L2(Ω2) + Cεν+β [D2u∗]C0,β(Ω) + Cεν ln
(
2 + ε−1

)
‖D2u∗‖L∞(Ω).

Here again, we apply standard elliptic estimates [16, Corollary 8.36], thereby proving (1.25).
We assume now that β > α. In particular, we have f ∈ C0,α(Ω). Thus, we may apply the above

result with β = α, and we have

‖∇Rε‖L∞(Ω1) ≤ Cεν ln
(
2 + ε−1

)
‖f‖C0,α(Ω) ≤ Cεν ln

(
2 + ε−1

)
‖f‖C0,β(Ω),

which completes the proof.

5.2 Application to local perturbations of periodic problems: proof of The-

orem 1.1

We prove here that the setting de�ned by (1.2), (1.3) is covered by Theorem 1.4 with ν = νr de�ned
by (1.12), thereby proving Theorem 1.1. First, we recall that [11] (see also [10]) shows that in such a
setting, the corrector equation (1.8) has a solution wp which reads as (1.9), where w̃p satis�es

if r > 1, ∇w̃p ∈ Lq(Rd), ∀q ∈ [r,+∞[, (5.2)

if r = 1, ∇w̃p ∈ Lq(Rd), ∀q ∈]1,+∞[, (5.3)

and with the property
if r < d, w̃p ∈ L∞(Rd). (5.4)

Proposition 5.1. Assume that the matrix-valued coe�cient a satis�es (1.2) and (1.3), with r 6= d.
Then there exists a constant C > 0 depending only on a such that

∀p ∈ Rd, ∀x ∈ Rd, ∀y ∈ Rd, |wp(x)− wp(y)| ≤ C|p| |x− y|1−νr , (5.5)

where νr is de�ned by (1.12).

Remark 5.2. In Proposition 5.1, the case r = d is not covered. However, since in fact ã ∈ Lr ∩ L∞,
this case can be addressed using the fact that ã ∈ Lr for any r > d.

Proof. Since p 7→ wp is a linear map, it is su�cient to prove (5.5) in the case |p| = 1. First, elliptic

regularity [16, Theorem 8.32] implies that wp,per ∈ C1,α
unif(Rd), hence it clearly satis�es (5.5). Therefore,

we only prove that w̃p satis�es (5.5).
If r < d, νr = 1, and (5.5) is a direct consequence of (5.4).
If r > d, we apply Morrey's Theorem [14, Theorem 4.10] to w̃p:

|w̃p(x)− w̃p(y)| ≤ ‖∇w̃p‖Lr(Rd) |x− y|
1− dr = ‖∇w̃p‖Lr(Rd) |x− y|

1−νr

Applying the triangle inequality, (5.5) is proved.
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We now prove that a potential B de�ned by (1.21) exists and has suitable properties in the present
setting.

Lemma 5.3. Assume that 1 < q < +∞, and that M̃ =
(
M̃ i
k

)
1≤i,k≤d

∈ Lq(Rd) satis�es

∀k ∈ {1, . . . , d}, div
(
M̃k

)
= 0.

Then, the potential B̃ijk de�ned by

B̃ijk (x) =

∫
Rd

(
1

dωd

xi − yi
|x− y|d

M̃ j
k(y)− 1

dωd

xj − yj
|x− y|d

M̃ i
k(y)

)
dy, (5.6)

where the constant ωd is the surface of the unit sphere in Rd, satis�es ∇B̃ ∈ Lq(Rd), and (1.21), hence
(1.18)-(1.19)-(1.20). In addition, there exists a constant depending on d and q only such that∥∥∥∇B̃∥∥∥

Lq(Rd)
≤ C

∥∥∥M̃∥∥∥
Lq(Rd)

. (5.7)

Finally, if q < d and if M̃ ∈ L∞(Rd), then B̃ ∈ L∞(Rd), and there exists a constant depending only
on d and q such that ∥∥∥B̃∥∥∥

L∞(Rd)
≤ C

(∥∥∥M̃∥∥∥
Lq(Rd)

+
∥∥∥M̃∥∥∥

L∞(Rd)

)
. (5.8)

Proof. First, it is clear that (5.6) is a well-de�ned function if M has compact support. Next, we

consider the operator T , which to M̃ associates ∇B̃. Moreover, (1.19)-(1.20) are clearly satis�ed by

B̃, hence, we have (1.21). Multiplying it by B and integrating by parts, we have∫
Rd
|∇B|2 =

∫
Rd
−M i

k∂jB
ij
k +M j

k∂iB
ij
k ≤ ‖M‖L2(Rd) ‖∇B‖L2(Rd).

Hence, a density argument allows to de�ne it as a continuous operator from L2(Rd) to itself. Further-
more, T is a Calderon-Zygmund operator (see [26, Def. 1, p 224]). Hence, (5.7) holds.

It remains to prove (5.8). We split the integral in (5.6) into the integral over |x − y| < 1 and the
integral over |x− y| > 1, and �nd∣∣∣B̃(x)

∣∣∣ ≤ C ∣∣∣∣M̃ ∗ ( 1

|x|d−1
1|x|<1

)∣∣∣∣ (x) + C

∣∣∣∣M̃ ∗ ( 1

|x|d−1
1|x|>1

)∣∣∣∣ (x).

Hence, applying the Hölder inequality,∥∥∥B̃∥∥∥
L∞(Rd)

≤ C
∥∥∥M̃∥∥∥

L∞(Rd)

∥∥∥∥ 1

|x|d−1

∥∥∥∥
L1(B(0,1)

+ C
∥∥∥M̃∥∥∥

Lq(Rd)

∥∥∥∥ 1

|x|d−1

∥∥∥∥
Lq′ (B(0,1)C

.

We point out that, on the one hand, |x|1−d ∈ L1(B(0, 1)), and on the other hand, since q < d,
q′ > d/(d− 1), whence |x|1−d ∈ Lq′(B(0, 1)C). We have thus proved (5.8).

Proposition 5.4. Assume that the matrix-valued coe�cient a satis�es (1.2) and (1.3) for some r ≥ 1.
Let

M i
k(x) = a∗ik −

d∑
j=1

aij(x) (δjk + ∂jwek(x))

be de�ned by (1.18). Then there exists Bijk , 1 ≤ i, j, k ≤ d, solution to (1.19)-(1.20), that is,

∀i, j, k ∈ {1, . . . , d}, Bijk = −Bjik ,
d∑
i=1

∂iB
ij
k = M j

k .

Moreover, if r 6= d, then there exists C > 0 such that

∀x ∈ Rd, ∀y ∈ Rd, |B(x)−B(y)| ≤ C|x− y|1−νr . (5.9)
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Proof. We de�ne B = Bper + B̃, where Bper is the periodic solution to

(Bper)
ij
k = − (Bper)

ij
k ,

d∑
i=1

∂i (Bper)
ij
k = a∗jk −

d∑
i=1

aperji
(
δik + ∂iw

per
ek

)
:= (Mper)

j
k .

This solution is proved to exist in [22, pages 6-7]. In addition, Bper is solution to

∆ (Bper)
ij
k = ∂i (Mper)

j
k − ∂j (Mper)

i
k .

Our Assumption (A2) and classical elliptic regularity (applied to wp,per) show that (Mper)
j
k is in

C0,α
unif(Rd). Hence, still using elliptic regularity [16, Corollary 8.32], we have ∇Bper ∈ C0,α

unif(Rd).
Arguing as in the proof of Proposition 5.1, we obtain that Bper satis�es (5.9).

We now turn to B̃. In order to de�ne it, we �rst set, for all j, k,

M̃ j
k = −

d∑
i=1

ãji (δik + ∂iwek)−
d∑
i=1

aperij ∂iw̃ek . (5.10)

In view of (5.2) and (5.3), we have M̃ ∈ Lq(Rd), for any q ∈]r,+∞[, with q = r allowed if r > 1.

Hence, M̃ satis�es the assumptions of Lemma 5.3, hence there exists B̃, de�ned by (5.6). We have

∇B̃ ∈ Lq(Rd), and one easily proves that B̃ is a solution to

B̃ijk = −B̃ijk ,
d∑
i=1

∂iB̃
ij
k = −

d∑
i=1

ãji (δik + ∂iwek)−
d∑
i=1

aperij ∂iw̃ek . (5.11)

In the case r < d, we simply apply (5.8), �nding that B̃ ∈ L∞(Rd), which implies (5.9), since νr = 1.

In the case r > d, we have ∇B̃ ∈ Lq(Rd), and we may apply Morrey's Theorem as we did above for
w̃p. This proves (5.9).

Collecting the results of Proposition 5.1 and Proposition 5.4, we have thus proved the following
Proposition, which in turn implies Theorem 1.1.

Proposition 5.5. Assume that r ∈ [1,+∞[, r 6= d, and that the coe�cient a satis�es (1.2) and (1.3).
Then a satis�es Assumptions (A1) through (A6), and (A7)-(A8), with ν = νr de�ned by (1.12).

Proof. It is clear that (1.3) implies (A1) and (A2). As mentioned above, the results of [10, 11] imply
that (A3) and (A4) are satis�ed. Proposition 5.1 implies (A7), and Proposition 5.4 implies (A8).
Finally, Lemma 2.2 implies (A5) and (A6).
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