
HAL Id: hal-01958133
https://hal.science/hal-01958133v2

Submitted on 20 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Navigating in Trees with Permanently Noisy Advice
Lucas Boczkowski, Uriel Feige, Amos Korman, Yoav Rodeh

To cite this version:
Lucas Boczkowski, Uriel Feige, Amos Korman, Yoav Rodeh. Navigating in Trees with Permanently
Noisy Advice. ACM Transactions on Algorithms, 2021, Leibniz International Proceedings in Infor-
matics (LIPIcs), pp.1-32. �10.1145/3448305�. �hal-01958133v2�

https://hal.science/hal-01958133v2
https://hal.archives-ouvertes.fr

Navigating in Trees with Permanently Noisy Advice ∗

Lucas Boczkowski1, Uriel Feige2, Amos Korman1, and Yoav Rodeh3

1CNRS, IRIF, Univ Paris Diderot, Paris, France.
2The Weizmann Institute of Science, Rehovot, Israel.

3Ort-Braude College, Karmiel, Israel.

Abstract

We consider a search problem on trees in which an agent starts at the root of a tree
and aims to locate an adversarially placed treasure, by moving along the edges, while
relying on local, partial information. Specifically, each node in the tree holds a pointer to
one of its neighbors, termed advice. A node is faulty with probability q. The advice at a
non-faulty node points to the neighbor that is closer to the treasure, and the advice at a
faulty node points to a uniformly random neighbor. Crucially, the advice is permanent,
in the sense that querying the same node again would yield the same answer.

Let ∆ denote the maximum degree. For the expected number of moves (edge traversals)
we show that a phase transition occurs when the noise parameter q is roughly 1/

√
∆. Below

the threshold, there exists an algorithm with expected number of moves O(D
√

∆), where
D is the depth of the treasure, whereas above the threshold, every search algorithm has
expected number of moves which is both exponential in D and polynomial in the number
of nodes n.

In contrast, if we require to find the treasure with probability at least 1− δ, then for
every fixed ε > 0, if q < 1/∆ε then there exists a search strategy that with probability

1 − δ finds the treasure using (δ−1D)O(1
ε) moves. Moreover, we show that (δ−1D)Ω(1

ε)

moves are necessary.

∗This work has received funding from the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement No 648032). This work was also supported
in part by the Israel Science Foundation (grant No. 1388/16). A preliminary version of this paper appeared in
ESA 2018. The current journal version contains many additional results.

1

Contents

1 Introduction 2
1.1 The Noisy Advice Model . 3
1.2 Our Results . 5

1.2.1 Results in Expectation . 6
1.2.2 Results in Probability Guarantee . 8

1.3 Related Work . 9
1.4 Notation . 10

2 Optimal Algorithm in Expectation 10
2.1 Algorithm Design following a Greedy Bayesian Approach 10
2.2 Algorithm Awalk . 11
2.3 Analysis . 12

3 Lower bounds in Expectation 14
3.1 The Random Noise Model . 15

3.1.1 Exponential complexity above the threshold 15
3.1.2 A Query Lower Bound of Ω(

√
∆D) when q ∼ 1/

√
∆ 15

3.2 The Semi-Adversarial Variant . 16

4 Probabilistic Following Algorithms 16

5 Upper Bounds in High Probability 20
5.1 The Meta Algorithm . 20
5.2 Upper Bound with High Probability . 20

6 Lower Bound for High Probability Algorithms 24
6.1 Proof of Theorem 1.7 . 24
6.2 Proof of Lemma 6.2 . 26

7 Open Problems 28

1 Introduction

This paper considers a navigation problem on trees, in which an agent moves on the edges of
a tree, aiming to find a treasure that is placed at one of the nodes by an adversary. Each node
of the tree holds information, called advice. The advice, if correct, specifies which neighbor of
the node is closer to the treasure. However, with some small probability, the advice is faulty
and points to an incorrect neighbor. The agent may query the advice at its node location in
order to accelerate the search.

Searching with advice on trees is an extension of binary search to tree topologies. This
type of extension has been the focus of numerous works [11, 12, 15, 16, 27, 28], some including
noise or errors in the advice. The problem may also be viewed as searching a poset [28, 27],
instead of a completely ordered set as in typical binary search. Some authors also motivate
the problem using the notion of “bug detection”, where the tree models dependencies between
programs [27]. When the searcher is restricted to walk on the edges of the underlying graph,

2

it is possible to view the problem as a routing problem with unreliable local information
[19, 21, 20]. An interesting application was also given in [14], in the context of interactive
learning.

The crucial feature of our model, that distinguishes it from most existing literature on
search with noisy advice, is the permanent nature of the faults. Given the tree and the
location of the treasure, there is a sampling procedure (which may be partly controlled by an
adversary) that determines the advice at every node of the tree. Depending on the outcome
of the sampling procedure, the advice at a node may either be correct or faulty (we also refer
to the latter case as noise). The advice is permanent – it does not change after the sampling
stage. Every query to a given node yields the same advice – there is no re-sampling of advice.
The difference between permanent noise and re-sampled one (as in e.g., [3, 15, 16, 24]) is
dramatic, since the re-sampled advice model allows algorithms to boost the confidence in
any given piece of advice by repeatedly querying the same advice. Permanent noise was
considered in [7] for the task of sorting, but this task is very different than the search task
considered in our paper (in particular, no algorithm can find the true sorted order when noise
is permanent). Searching with permanent faulty nodes has also been studied in a number
of works [8, 17, 20, 21, 22], but assuming that the faulty nodes are chosen by an adversary.
The difference between such worst case scenarios and the probabilistic version studied here
is again significant, both in terms of results and in terms of techniques (see more details in
Section 1.3).

The model of permanent faults aims to model faults that occur in the physical memory
associated with the node, rather than, for example, the noise that is associated with the
actual mechanism behind the query. Interestingly, the topic of noisy permanent advice is also
meaningful outside the realm of classical computer science, and was shown to be relevant in
the context of ant navigation [19]. The authors therein conducted experiments in which a
group of ants carry a large load of food aiming to transport it to their nest, while basing their
navigation on unreliable advice given by pheromones that are laid on the terrain. Indeed,
although the directions proposed by pheromones typically lead to the nest, trajectories as
experienced by small ants may be inaccessible to the load, and hence directional cues left by
ants sometimes lead the load towards dead-ends.

The current paper introduces the algorithmic study of search with permanent probabilisti-
cally noisy advice. Similarly to many other works on search we focus on trees, which is a very
important topological structure in computer science. Extending our work to general graphs
seems technically challenging and remains for future work, see Section 7.

1.1 The Noisy Advice Model

We start with some notation. Additional notation is introduced in Section 1.4. We present
the model for trees, but we remark that the definitions can be extended to general graphs (see
also Section 7). Let T be an n-node tree rooted at some arbitrary node σ. The distance d(u, v)
is the number of edges on the path between u and v. The depth of a node u is d(u) = d(σ, u).
Let d = d(τ) denote the depth of τ , and let the depth D of the tree be the maximum depth of
a node. Finally, let ∆u denote the degree of node u and let ∆ denote the maximum degree in
the tree. For an integer ∆ ≥ 2, a complete ∆-ary tree is a tree such that every internal node
has degree precisely ∆.

We consider an agent that is initially located at the root σ of T , aiming to find a node τ ,

3

called the treasure, which is chosen by an adversary. That is, the goal of the agent is to
be located at τ , and once it is there, the algorithm terminates. The agent can move by
traversing edges of the tree. At any time, the agent can query its hosting node in order to
“see” the corresponding advice and to detect whether the treasure is present there. The search
terminates when the agent queries the treasure. For the purpose of upper bounds, we consider
the move complexity, which is the number of edge traversals (where the same edge might be
counted multiple times, due to backtracking). For lower bound purposes, we consider the
query complexity, which is the number of queries made. As there is no point of querying the
same node twice, the number of queries is not larger than the number of distinct nodes visited,
and hence is at most one larger than the number of moves. We do not address in this paper
query complexity upper bounds, though the interested reader may find such upper bounds in
an expanded version of this paper [4].

Each node u 6= τ is assumed to be provided with an advice, termed adv(u), which provides
information regarding the direction of the treasure. Specifically, adv(u) is a pointer to one
of u’s neighbors. It is called correct if the pointed neighbor is one step closer to the treasure
than u is. Each node u 6= τ is faulty with probability q (the meaning of being faulty will soon
be explained), independently of other nodes. Otherwise, u is considered sound, in which case
its advice is correct. We call q the noise parameter. Unless otherwise stated, this parameter
is the same across all nodes, but in some occasions, we also allow it to vary across nodes. In
that case q is defined as maxu(qu).

Random and semi-adversarial variants. We consider two models for faulty nodes. The
main model assumes that the advice at a faulty node points to one of its neighbors chosen
uniformly at random (and so possibly pointing at the correct one). We also consider an
adversarial variant, called the semi-adversarial model, where this neighbor is chosen by an
adversary. The adversary may either be oblivious or adaptive. An oblivious adversary first de-
cides on adversarial advice for each node, afterwards each node becomes faulty independently
with probability q, and then the true advice of faulty nodes is replaced by the respective
adversarial advice. An adaptive adversary first sees the locations of all faulty nodes and only
afterwards decides on the advice at the faulty nodes.

Noise assumption. The noise parameter q governs the accuracy of the environment. If
q = 0 for all nodes, then advice is always correct. This case allows to find the treasure in
D moves, by simply following each encountered advice. On the other extreme, if q = 1,
then advice is essentially meaningless, and the search cannot be expected to be efficient. An
intriguing question is therefore to identify the largest value of q that allows for efficient search.

Expectation and high probability. Importantly, we consider two kinds of guarantees:
expectation, and high probability. In the first case, we measure the performance of the
algorithm as the expected number of moves before the treasure is found. Expectation is
taken over both the randomness involved in sampling the noisy advice, and over the possible
probabilistic choices made by the search algorithm. In the second case, we consider the number
of moves spent by algorithms that find the treasure with high probability (say, probability 0.9).
An upper bound on expectation can be converted into a high probability upper bound, by use
of the Markov inequality. However, the converse need not hold. Indeed, as our work shows,
in our setting the two kind of guarantees lead to quite different thresholds and techniques.

4

A simple example that demonstrates this difference is the star graph. If the center node
is faulty with some small probability q, then finding the treasure requires Ω(qn) moves in
expectation, but can be done in at most 2 moves, with probability 1− q.

Full-information model. For lower bound purposes, we find it instructive to also consider
the following full-information model. Here the structure of the tree is known, the algorithm
is given as input the advice of all nodes except for the leaves, and the treasure is at one of the
leaves. The queried node can be an arbitrary leaf, and the answer reveals whether the leaf
holds the treasure.

1.2 Our Results

We introduce the algorithmic study of search problems with probabilistic permanent faulty
advice. The results all assume the underlying graph is a tree.

Our results are grouped according to the convergence guarantee, which can refer to either
expectation or high probability. As is always the case with non-negative random variables, the
median cannot be much larger than the average, but it might be much smaller. Our results
imply that in the context of searching with noisy permanent advice, in a large regime of
noise, there is an exponential gap between the median and the average. The high expectation
running time is the consequence of a small fraction of the possible error patterns (the pattern
of errors in the advice) for which the search is very slow, but for almost all error patterns,
the treasure is found much faster than what the high expectation suggests. We start with the
average case, i.e., fast convergence in expectation.

Expected move complexity: Phase transition phenomena. Consider the noisy advice
model on trees with maximum degree ∆. Roughly speaking, we show that 1/

√
∆ is the

threshold for the noise parameter q, in order to obtain search algorithms with low expected
move complexity. Essentially, above the threshold, there exists trees (specifically, complete
∆-ary trees) such that for any algorithm, the expected number of moves required to find the
treasure is exponential d, the depth of the treasure. Conversely, below the threshold there
exists an algorithm whose expected move complexity is almost linear, that is, O(d

√
∆).

The proof that there is no algorithm with a small expected number of moves when the
noise exceeds 1/

√
∆− 1 is rather simple. In fact, it holds even in the full information model.

Intuitively, the argument is as follows (the formal proof appears in Section 3). Consider a
complete ∆-ary tree of depth D and assume that the treasure τ is placed at a leaf. The first
observation is that the expected number of leaves having more advice point to them than to
τ is a lower bound on the move complexity. The next observation is that there are more than
(∆− 1)D leaves whose distance from τ is 2D, and for each of those leaves u, the probability
that more advice points towards it than towards τ can be approximated by the probability
that all nodes on path connecting u and τ are faulty. As this latter probability is q2D, the
expected number of leaves that have more pointers leading to them is roughly (∆− 1)Dq2D.
This term explodes when q > 1/

√
∆− 1.

One of the main challenges we faced in the paper was show that for noise probability
below 1/

√
∆− 1 (by a constant factor) the lower bound no longer holds, and in fact, there

are extremely efficient algorithms. Interestingly, the optimal algorithm we present is based
on a Bayesian approach, which assumes the treasure location is random, yet it works even

5

under worst case assumptions. The challenging part in the construction was identifying the
correct prior. Constructing algorithms that ensure worst-case guarantees through a Bayesian
approach was done in [3] which studies a closely related, yet much simpler problem of search
on the line. Apart from [3] we are unaware of other works that follow this approach.

We also analyze the oblivious semi-adversarial model, and show that the expected move
complexity has a threshold also in this model, but it is much lower, around 1/∆.

High probability guarantee. We then turn our attention to studying the move complexity
under a given probability guarantee. We show that for every fixed ε > 0, if q < 1/∆ε then

there exists a search strategy that with probability 1− δ finds the treasure using (δ−1d)O(1
ε

)

moves. Moreover, we show that (δ−1d)Ω(1
ε

) moves are necessary. The upper bounds hold even
in the adaptive semi-adversarial variant, whereas the lower bound holds even in the purely
randomized variant.

The key concept towards proving the upper bound is a notion of node fitness. Essentially,
a node is declared fit if it has many pointers to it on the path coming from the root. This
is good evidence that the node is either on the path to the treasure, or at least not too far
from it. The idea is to explore the component of fit nodes to which the root, i.e., the starting
point, belongs. If the component contains the treasure, the nodes on the root to treasure path,
and not too many additional nodes, then the treasure is found quickly. With the appropriate
formalization of fitness, efficient search can be achieved with high probability.

Unlike the lower bound when considering the expected number of moves, the lower bound
in the high probability case uses the fact that obtaining the advice of nodes requires spending
queries. Hence this lower bound does not hold in the full information model. Consider the
complete ∆-ary tree of depth D, and assume that the treasure is at a leaf. Set q = ∆−ε and
h = ε−1 log∆(D/δ). Consider the length D path from the root to the treasure. On this path,
with probability at least δ, there exists a segment of length h, where all nodes are faulty. Let
us denote by H the subtree rooted at the highest endpoint of such a segment of h consecutive
faulty nodes. The algorithm needs to explore at least a constant fraction of H before finding
how to proceed towards the treasure. The lower bound follows as the size of the subtree H is
∆h = (D/δ)ε

−1
.

Figure 1 summarizes the results presented in this paper regarding walking algorithms.

1.2.1 Results in Expectation

In Section 2 we present an algorithm whose expected move complexity is optimal up to a
constant factor for the regime of noise below the threshold. Furthermore, this algorithm does
not require prior knowledge of either the tree’s structure, or the values of ∆, q, d, or n.

Before presenting the result, we extend the model slightly, by allowing each node v to
have a distinct noise parameter qv. This greater flexibility makes our results stronger. It also
happens to be convenient from a technical standpoint. When qv does not depend on v, we
say the noise is uniform. The following technical definition is used in our results, in place of
the more crude q � 1√

∆
given in Table 1.

Definition 1.1. Condition (?) holds with parameter 0 < ε < 1 if for every node v, we have

qv <
1− ε−∆

− 1
4

v
√

∆v + ∆
1
4
v

. (1)

6

Upper Bound Lower Bound

Regime Moves Regime Moves

Expectation q � 1√
∆
O(d
√

∆) q � 1√
∆

eΩ(d)

Expectation (S.A.) q � 1
∆ O(d) q � 1

∆ eΩ(d)

High Probability q < ∆−ε dO(ε−1) q > ∆−ε dΩ(ε−1)

Figure 1: A summary of our results, in a simplified form. The precise definition of the symbol
� will be clarified later. S.A. stands for oblivious semi-adversarial. The High Probability
upper bound includes the adaptive semi-adversarial model.

Since ∆v ≥ 2, the condition is always satisfiable when taking a small enough ε.
All our algorithms are deterministic, hence, expectation is taken with respect only to the

sampling of the advice.

Theorem 1.2. For every ε > 0, if Condition (?) holds with parameter ε, then there exists
a deterministic algorithm Awalk that requires O(

√
∆d) moves in expectation. The algorithm

does not require prior knowledge of either the tree’s structure, or any information regarding
the values of ∆, d, n, or the qv’s.

In the above theorem (and some other places in this paper) the O notation hides terms
that depends on ε. For Theorem 1.2, this hidden term is ε−3.

In Section 3 we establish the following lower bound.

Theorem 1.3. Consider a complete ∆-ary tree of depth D, and assume that the treasure is
at a leaf. For every constant ε > 0, if q ≥ 1+ε√

∆−1
, then every randomized search algorithm has

move (and query) complexity that in expectation is exponential in D. The result holds also in
the full-information model.

Observe that taken together, Theorems 1.2, 1.3 and Condition (?) (see Eq. (1)) imply that
for every given ε > 0 and large enough ∆, efficient search can be achieved if q < (1− ε)/

√
∆

but not if q > (1 + ε)/
√

∆.
We further complete our lower bounds with the following result, proved in Section 3.1.2.

Theorem 1.4. For a complete ∆-ary tree of depth D, the expected number of queries for
every algorithm is Ω(q∆D) (or equivalently, Ω(q∆ log∆ n)).

For q ∼
√

∆ the lower bound in Theorem 1.4 is Ω(
√

∆D), implying that that upper bound
stated in Theorem 1.2 is tight.

In Section 4 we analyze the performance of simple memoryless algorithms called proba-
bilistic following, suggested in [19]. At every step, the algorithm follows the advice at the
current vertex with some fixed probability λ, and performs a random walk step otherwise. It
turns out that such algorithms can perform well, but only in a very limited regime of noise.
Specifically, we prove:

7

Theorem 1.5. There exist positive constants c1, c2 and c3 such that the following holds. If
for every vertex u, qu < c1/∆u then there exists a probabilistic following algorithm that finds
the treasure in less than c2d expected steps. On the other hand, if q > c3/∆ then for every
probabilistic following strategy the move complexity on a complete ∆-ary tree is exponential in
the depth of the tree.

Since this algorithm is randomized, expectation is taken over both the randomness involved
in sampling advice and the possible probabilistic choices made by the algorithm.

Interestingly, when qu < c1/∆u for all vertices, this algorithm works even in the oblivious
semi-adversarial model. In fact, it turns out that in the semi-adversarial model, probabilistic
following algorithms are the best possible up to constant factors, as the threshold for efficient
search, with respect to any algorithm, is roughly 1/∆.

1.2.2 Results in Probability Guarantee

We start the investigation of algorithms having a good probability guarantee with the following
upper bound. The proof is presented in Section 5. The O(1) term in the exponent is to be
understood as an absolute constant, that does not depend on either d or ε.

Theorem 1.6. Let 0 < ε < 1/2 be a constant, and suppose that q = ∆−ε, and that ∆ is
sufficiently large (∆ ≥ 26/ε2 suffices). Let 0 < δ < 1 be a constant. Then there exists an

algorithm A′walk in the walk model that discovers τ in (dδ)O(1
ε

) moves with probability 1 − δ.
Moreover, the statement holds even in the adaptive semi-adversarial variant.

A remark about the parameters. The restriction of ε < 1
2 is inessential to Theorem 1.6,

and is included because the algorithms of Theorem 1.2 already handle the case ε ≥ 1
2 . The

requirement that ∆ is sufficiently large as a function of ε is natural, particularly for the
semi-adversarial setting. For example, taking ∆ ≤ (3/2)1/ε and keeping the assumption that
q = ∆−ε will lead to q ≥ 2/3. In the semi-adversarial setting, such levels of noise could not be
overcome efficiently. To see why, consider for instance a complete binary tree. The strategy of
an adversary could be, at each faulty node, to point to a uniformly chosen neighbor, amongst
the two that do not lead to τ . The result would then be that at every node, each direction of
the advice is uniform, making it useless. On the other hand, if we require q ≤ min(c,∆−ε)
for some suitable constant c > 0 that depends only on ε, then the requirement that ∆ is suf-
ficiently large can be removed. One can take c = 2−6/ε, and define ∆0 = 26/ε2. For ∆ ≥ ∆0

Theorem 1.6 applies because ∆ is sufficiently large, whereas for ∆ ≤ ∆0 Theorem 1.6 applies
because we may pretend that the largest degree is ∆0, and this does not affect the proofs.

The upper bound shown in Theorem 1.6 is matched up to the constant in the exponent,
by the following lower bound, presented in Section 6.

Theorem 1.7. Let 0 < ε < 1/2 be an arbitrary constant, and suppose that q = ∆−ε, and
that D is sufficiently large, as a function of ∆ and ε. Consider the complete ∆-ary tree of
depth D, with the treasure placed in one of its leaves. Let A be an algorithm with success

probability 1− δ. Then, with constant probability, A needs at least (δ−1D)
1−ε
ε

(1−oD(∗)) queries
(and consequently also moves) before finding τ . (oD(·) denotes a function of δ, ε, ∆ and
D, that tends to 0 when fixing the former parameters and letting D grow to infinity.) The
statement also holds with respect to randomized algorithms.

8

1.3 Related Work

In computer science, search algorithms have been the focus of numerous works, often on a tree
topology, see e.g., [26, 2, 28, 27]. Within the literature on search, many works considered noisy
queries [16, 24, 15]. However, it was typically assumed that noise can be resampled at every
query. Dealing with permanent faults entails challenges that are fundamentally different from
those that arise when allowing queries to be resampled. To illustrate this difference, consider
the simple example of a star graph and a constant q < 1. Straightforward amplification can
detect the target in O(1) queries in expectation. In contrast, in our model, it can be easily
seen that Ω(n) is a lower bound for both the expected move and the query complexities, for
any constant noise parameter.

A search problem on graphs in which the set of nodes with misleading advice is chosen
by an adversary was studied in [20, 21, 22], as part of the more general framework of the liar
models [1, 6, 9, 29]. Data structures with adversarial memory faults have been investigated
in the so called faulty-memory RAM model, introduced in [18]. In particular, data structures
(with adversarial memory faults) that support the same operations as search trees were studied
in [17, 8]. Interestingly, the data structures developed in [8] can cope with up to O(log n)
faults, happening at any time during the execution of the algorithm, while maintaining optimal
space and time complexity. It is important to observe that all these models take worst case
assumptions, leading to technical approaches and results which are very different from what
one would expect in average-case analysis. Persistent probabilistic memory faults, as we
study here, have been explicitly studied in [7], albeit in the context of sorting. Persistent
probabilistic errors were also studied in contexts of learning and optimization, see [23].

The noisy advice model considered in this paper actually originated in the recent biologi-
cally centered work [19], aiming to abstract navigation relying on guiding instructions in the
context of collaborative transport by ants. In that work, the authors modeled ant navigation
as a probabilistic following algorithm, and noticed that an execution of such an algorithm
can be viewed as an instance of Random Walks in Random Environment (RWRE) [30, 13].
Relying on results from this subfield of probability theory, the authors showed that when
tuned properly, such algorithms enjoy linear move complexity on grids, provided that the bias
towards the correct direction is sufficiently high.

An important theme of our work is the distinction between bounds on the expectation and
bounds that hold with high probability. When randomization is an aspect of the algorithm
rather than of the input instance, there is not much of a difference between expected running
time and median running time, if one is allowed to restart the algorithm several times with
fresh randomness. However, there might be a substantial difference if restarting with fresh
randomness is not allowed. In our model, this can be seen, for instance, in the aforementioned
star graph example in which each node is faulty with probability q. Here, finding the treasure
requires Ω(qn) moves in expectation, but can be done in at most 2 moves, with probability
1− q. In general, for settings in which the random aspect comes up in the generation of the
input instances (as in our case), generating a fresh random instance is not an option, and such
a difference may or may not arise. In the context of designing polynomial time algorithms for
distributions over instances of NP-hard problems, it is often the case that high probability
algorithms are designed first, and algorithms with low expected runtime (over the same input
distribution) are designed only later (see for example [25, 10]).

9

1.4 Notation

Denote p = 1 − q, and for a node u, pu = 1 − qu. For two nodes u, v, let 〈u, v〉 denote
the simple path connecting them, excluding the end nodes, and let [u, v〉 = 〈u, v〉 ∪ {u} and
[u, v] = [u, v〉 ∪ {v}. For a node u, let T (u) be the subtree rooted at u. We denote by−−→
adv(u) (resp.

←−−
adv(u)) the set of nodes whose advice points towards (resp. away from) u. By

convention u /∈ −−→adv(u) ∪←−−adv(u). Unless stated otherwise, log is the natural logarithm.
The nodes on the path from the root σ to the treasure τ are named as [σ, τ] := {v0 =

σ, v1, . . . , vd−1, vd = τ}. We say that node v is a descendant of node u if u lies on the path
from σ to v, and v is a child of u if it is both a descendant of u and a neighbor of u.

2 Optimal Algorithm in Expectation

In this section we prove Theorem 1.2. At a high level, at any given time, the algorithm
processes the advice seen so far, identifies a “promising” node to continue from on the border
of the already discovered connected component, moves to that node, and explores one of its
neighbors. The crux of the matter is identifying a notion of promising that leads to an efficient
algorithm. We do so by introducing a carefully chosen prior for the treasure location.

2.1 Algorithm Design following a Greedy Bayesian Approach

In our setting the treasure is placed by an adversary. However, we can still study algorithms
that assume that it is placed according to some known distribution, and see how they measure
up in our worst case setting. A similar approach is used in [3], which studies the related (but
simpler) problem of search on the line. The success of this scheme highly depends on the
choice of the prior distribution we take.

Suppose first that the structure of the tree is known to the algorithm, and that the treasure
is placed according to some known distribution θ supported on the leaves. Let adv denote the
advice on the nodes we have already visited. Aiming to find the treasure as fast as possible,
a possible greedy algorithm explores the vertex that, given the advice seen so far, has the
highest probability of having the treasure in its subtree.

We extend the definition of θ to internal nodes by defining θ(u) to be the sum of θ(w) over
all leaves w of T (u). Given some u that was not visited yet, and given the previously seen
advice adv, the probability of the treasure being in u’s subtree T (u), is:

P (τ ∈ T (u) | adv) =
P (τ ∈ T (u))

P (adv)
P (adv | τ ∈ T (u))

=
θ(u)

P (adv)

∏
w∈−→adv(u)

(
pw +

qw
∆w

) ∏
w∈←−adv(u)

qw
∆w

.

The last factor is qw/∆w because it is the probability that the advice at w points exactly
the way it does in adv, and not only away from τ . Note that the advice seen so far does
not involve vertices in T (u), because we consider a walking algorithm, and u has not been
visited yet. Therefore, if τ ∈ T (u) then correct advice in adv points to u. We ignore the
term pw + qw/∆w because this will not affect the results by much, and applying a log we can

10

approximate the relative strength of a node by:

log(θ(u)) +
∑

w∈←−adv(u)

log

(
qw
∆w

)
.

We replace qw by its upper bound 1/
√

∆w (consequently, the algorithm need not know the
exact value of qw). After scaling, we obtain our definition for the score of a vertex:

score(u) =
2

3
log(θ(u))−

∑
w∈←−adv(u)

log(∆w).

When comparing two specific vertices u and v, score(u) > score(v) iff:∑
w∈〈u,v〉∩−→adv(u)

log(∆w)−
∑

w∈〈u,v〉∩−→adv(v)

log(∆w) >
2

3
log

(
θ(v)

θ(u)

)
.

This is because any advice that is not on the path between u and v contributes the same to
both sides, as well as advice on vertices on the path that point sideways, and not towards u
or v. Since we use this score to compare two vertices that are neighbors of already explored
vertices, and our algorithm is a walking algorithm, then we will always have all the advice
on this path. In particular, the answer to whether score(u) > score(v), does not depend
on the specific choices of the algorithm, and does not change throughout the execution of the
algorithm, even though the scores themselves do change. The comparison depends only on
the advice given by the environment.

Let us try and justify the score criterion at an intuitive level. Consider the case of a
complete ∆-ary tree, with θ being the uniform distribution on the leaves. Here score(u) >
score(v) if (cheating a little by thinking of log(∆) and log(∆− 1) as equal):∣∣−−→adv(u) ∩ 〈u, v〉

∣∣− ∣∣−−→adv(v) ∩ 〈u, v〉
∣∣ > 2

3

(
d(u)− d(v)

)
.

If, for example, we consider two vertices u, v ∈ T at the same depth, then score(u) > score(v)
if there is more advice pointing towards u than towards v. If the vertices have different depths,
then the one closer to the root has some advantage, but it can still be beaten.

For general trees, perhaps the most natural θ is the uniform distribution on all nodes (or
just on all leaves - this choice is actually similar). It is also a generalization of the example
above. Unfortunately, however, while this works well on the complete ∆-ary tree, the uniform
distribution fails on other (non-complete) ∆-ary trees (see a preliminary version of this work
[5] for details).

2.2 Algorithm Awalk

In our context, there is no distribution over treasure location and we are free to choose θ as
we like. Take θ to be the distribution defined by a simple random process. Starting at the
root, at each step, walk down to a child uniformly at random, until reaching a leaf. For a leaf
v, define θ(v) as the probability that this process eventually reaches v. Our extension of θ
can be interpreted as θ(v) being the probability that this process passes through v. Formally,

11

θ(σ) = 1, and θ(u) = (∆σ
∏
w∈〈σ,u〉(∆w−1))−1. It turns out that this choice, slightly changed,

works remarkably well, and gives an optimal algorithm in noise conditions that practically
match those of our lower bound. For a vertex u 6= σ, define:

β(u) =
∏

w∈[σ,u〉

∆w. (2)

It is a sort of approximation of 1/θ(u), which we prefer for technical convenience. Indeed,
for all u, 1/β(u) ≤ θ(u). A useful property of this β (besides the fact that it gives rise to an
optimal algorithm) is that to calculate β(v) (just like θ), one only needs to know the degrees
of the vertices from v up to the root.

In the walking algorithm, if v is a candidate for exploration, the nodes on the path from σ
to v must have been visited already and so the algorithm does not need any a priori knowledge
of the structure of the tree. The following claim will be soon useful:

Claim 2.1. The following two inequalities hold for every c < 1:∑
v∈T

cd(v)

β(v)
≤ 1

1− c
,

∑
v∈T

d(v)cd(v)

β(v)
≤ c

(1− c)2
.

Proof. To prove the first inequality, follow the same random walk defining θ. Starting at the
root, at each step choose uniformly at random one of the children of the current vertex. Now,
while passing through a vertex v collect cd(v) points. No matter what choices are made, the
number of points is at most 1 + c + c2 + ... = 1/(1 − c). On the other hand,

∑
v∈T θ(v)cd(v)

is the expected number of points gained. The result follows since 1/β(v) ≤ θ(v). The second
inequality is derived similarly, using the fact that c+ 2c2 + 3c3 + . . . = c/(1− c)2.

For a vertex u ∈ T and previously seen advice adv define:

score(u) =
2

3
log

(
1

β(u)

)
−

∑
w∈←−adv(u)

log(∆w). (3)

This is similar to the definition of score(u) given in Section 2.1, except that θ(u) is now
replaced by its approximation 1

β(u) .
Algorithm Awalk keeps track of all vertices that are children of the vertices it explored so

far, and repeatedly walks to and then explores the one with highest score according to the
current advice, breaking ties arbitrarily. As stated in the introduction, the algorithm does
not require prior knowledge of either the tree’s structure, or the values of ∆, q, D or n.

2.3 Analysis

Recall the definition of Condition (?) from Equation (1). The next lemma provides a large
deviation bound tailored to our setting.

Lemma 2.2. Consider independent random variables X1, . . . , X`, where Xi takes the values
(− log ∆i, 0, log ∆i) with respective probabilities (qi∆i

, qi(1− 2
∆i

), pi+
qi
∆i

), for parameters pi, qi =
1− pi and ∆i > 0. Assume that Condition (?) holds for some ε > 0. Then for every integer
(positive or negative) m,

P

(∑̀
i=1

Xi ≤ m

)
≤ e

3m
4 (1− ε)`

∏̀
i=1

1√
∆i
.

12

Proof. For every s ∈ R,

P

(∑̀
i=1

Xi ≤ m

)
= P

(
es
∑`
i=1−Xi ≥ e−sm

)
≤ esmE

[
es
∑
i−Xi

]
= esm

∏
i

E
[
e−sXi

]
= esm

∏̀
i=1

(
pi + qi

∆i

elog(∆i)s
+ qi

(
1− 2

∆i

)
+

qi
∆i
elog(∆i)s

)

≤ esm
∏̀
i=1

(
1

∆s
i

+ qi + qi∆
s−1
i

)
.

We take s = 3
4 , and get:

P

(∑̀
i=1

Xi ≤ m

)
≤ e

3m
4

∏̀
i=1

(
∆
− 3

4
i + qi + qi∆

− 1
4

i

)
≤ e

3m
4

∏̀
i=1

1− ε√
∆i

,

where for the last step we used Condition (?) which says qi <
1−ε−∆

− 1
4

i
√

∆i+∆
1
4
i

implying that:

qi∆
1
2
i + qi∆

1
4
i + ∆

− 1
4

i < 1− ε, and hence

∆
− 3

4
i + qi + qi∆

− 1
4

i <
1− ε√

∆i
.

The next theorem establishes Theorem 1.2.

Theorem 2.3. Assume that Condition (?) holds for some fixed ε > 0. Then Awalk requires
only O(d

√
∆) moves in expectation. The constant hidden in the O notation only depends

polynomially on 1/ε.

Proof. Denote the vertices on the path from σ to τ by σ = u0, u1, . . . , ud = τ in order. Denote
by Ek the expected number of moves required to reach uk once uk−1 is reached. We will show
that for all k, Ek = O(

√
∆), and by linearity of expectation this concludes the proof.

Once uk−1 is visited, Awalk only goes to some of the nodes that have score at least as high
as uk. We can therefore bound Ek from above by assuming we go through all of them, and
this expression does not depend on the previous choices of the algorithm and the nodes it saw
before seeing uk. The length of this tour is bounded by twice the sum of distances of these
nodes from uk. Hence,

Ek ≤ 2
k∑
i=1

∑
u∈C(ui)

P (score(u) ≥ score(uk)) · d(uk, u),

where C(uk) = T (uk−1) \ T (uk), and so
⋃k
i=1C(ui) = T \ T (uk). Recall from Eq. (3) that

13

scores are defined so that

score(uk) ≤ score(u)

⇐⇒∑
w∈←−adv(u)

log(∆w)−
∑

w∈←−adv(uk)

log(∆w) ≤ 2

3

(
log

(
1

β(u)

)
− log

(
1

β(uk)

))
⇐⇒

∑
w∈〈u,uk〉


log(∆w) w points towards uk

− log(∆w) w points towards u

0 otherwise

≤ 2

3
log

(
β(uk)

β(u)

)

Indeed, a vertex x on the path should point towards uk: this happens with probability px +
qx/∆x. Otherwise, it points towards u with probability qx/∆x, and elsewhere with probability
qx(1 − 2/∆x). Denoting c = 1 − ε, setting m = 2

3 log(β(uk)/β(u)), and applying Lemma 2.2
we can upper bound the probability of this happening:

Ek
2
≤

k∑
i=1

∑
u∈C(ui)

e
3
4
· 2
3

log
(
β(uk)

β(u)

)
· cd(uk,u)−1

√√√√ ∏
v∈〈u,uk〉

1

∆v
· d(uk, u)

=
1

c

k∑
i=1

∑
u∈C(ui)

cd(uk,u)√
β(u)
β(uk)

√√√√ ∆ui
β(uk)
β(ui)

· β(u)
β(ui)

· d(uk, u)

≤
√

∆

c

k∑
i=1

cd(uk,ui)
∑

u∈C(ui)

cd(ui,u)β(ui)

β(u)
·
(
d(uk, ui) + d(ui, u)

)
.

By Claim 2.1, applied to the tree rooted at ui, we get:∑
u∈C(ui)

cd(ui,u)β(ui)

β(u)
<

1

1− c
, and

∑
u∈C(ui)

cd(ui,u)β(ui)

β(u)
d(ui, u) <

c

(1− c)2
.

And so:

Ek
2
≤

√
∆

c(1− c)

k∑
i=1

cd(uk,ui)d(uk, ui) +

√
∆

(1− c)2

k∑
i=1

cd(uk,ui)

≤ (1 + c)
√

∆

(1− c)3
≤ 2
√

∆

ε3
= O

(√
∆
)
,

where we again used the equality c+ 2c2 + 3c3 + . . . = c/(1− c)2.

3 Lower bounds in Expectation

Several of our lower bounds will invoke the following straightforward observation (whose proof
we omit).

Observation 3.1. Any randomized algorithm trying to find a treasure chosen uniformly at
random between k identical objects will need an expected number of queries that is at least
(k + 1)/2.

14

3.1 The Random Noise Model

3.1.1 Exponential complexity above the threshold

We prove here Theorem 1.3. Namely, that for every fixed ε > 0, and for every complete ∆-ary
tree, if q ≥ 1+ε√

∆−1
, then every randomized search algorithm has query (and move) complexity

which is exponential in the depth D of the treasure.

Proof. Our lower bound holds also in the query model, as we assume that the algorithm
gets as input the full topology of the tree. Moreover, to simplify the proof, we give the
algorithm access to additional information, and prove the lower bound even against this
stronger algorithm. The algorithm is strengthened in two respects: for every internal (non-
leaf) node, the algorithm is told whether the node is faulty, and moreover, if the internal node
is non-faulty, the advice of the node is revealed to the algorithm. This information for all
internal nodes is revealed to the algorithm for free, without the algorithm making any query.
Given that the algorithm is told which nodes are faulty, we may assume that faulty nodes
have no advice at all, because faulty advice is random and hence can be generated by the
algorithm itself.

Given the pattern of faults, a leaf is called uninformative if the whole root to leaf path
is faulty. Denote the number of leaves by N = ∆(∆ − 1)D−1, and the expected number of
uninformative leaves by µ = NqD. Let pi denote the probability that there are exactly i
uninformative leaves.

The adversary places the treasure at a random leaf. Conditioned on there being i unin-
formative leaves, the probability of the treasure being at an uninformative leaf is exactly i

N .
If the treasure is located at an uninformative leaf, the advice of all nonfaulty internal nodes
points to the root (recall that there is no advice on faulty nodes), and the algorithm can infer
that the treasure is at an uninformative leaf. As all uninformative leaves are equally probable,
the expected number of queries that the algorithm needs to make is exactly i+1

2 . Hence the
expected number of queries (in this stronger model) is:

∑
i

i+ 1

2

i

N
pi >

1

2N

∑
i

i2pi ≥
1

2N
µ2 =

Nq2D

2
.

In the last inequality we used the fact that E[X2] ≥ (E[X])2 for every random variable X.
(In our use the random variable is i, the number of uninformative leaves.)

Hence if q ≥ 1+ε√
∆−1

, the expected number of queries is at least 1
2(1 + ε)2D.

3.1.2 A Query Lower Bound of Ω(
√

∆D) when q ∼ 1/
√

∆

We now prove Theorem 1.4. Specifically, we prove that for ∆ ≥ 3, on the complete ∆-ary tree
of depth D, every algorithm needs Ω(q∆D) queries in expectation. Note that, in particular,
when q is roughly 1/

√
∆, the query complexity becomes Ω(

√
∆D).

To prove the lower bound of Ω(q∆D), consider the complete ∆-ary tree of depth D. We
prove by induction on D, that if the treasure is placed uniformly at random in one of the
leaves, then the expected query complexity of every algorithm is at least q(∆/2 − 1)D. If
D = 0, then there is nothing to show. Assume this is true for D, and we shall prove it for
D + 1. Let T1, . . . , T∆−1 be the subtrees hanging down from the root (in the induction, the
“root” is actually an internal node, and so has ∆ − 1 children), each having depth D. Let i

15

be the index such that τ ∈ Ti, and denote by Q the number of queries before the algorithm
makes its first query in Ti. We will assume that the algorithm gets the advice in the root for
free. Denote by Y the event that the root is faulty . In this case, Observation 3.1 applies,
and we need at least ∆/2 − 1 queries to hit the correct tree. We subtracted one query from
the count because we want to count the number of queries strictly before querying inside Ti.
We therefore get E [Q] ≥ P (Y) ·E [Q |Y] ≥ q(∆/2− 1). By linearity of expectation, using the
induction hypothesis, we get the result for a uniformly placed treasure over the leaves, and so
it holds also in the adversarial case.

3.2 The Semi-Adversarial Variant

Recall that in contrast to the purely probabilistic model, in the oblivious semi-adversarial
model, a faulty node u no longer points to a neighbor chosen uniformly at random, and
instead, the neighbor w which such a node points to is chosen by an adversary. Importantly,
for each node u, the adversary must specify its potentially faulty advice w, before it is known
which nodes will be faulty. In other words, first, the adversary specifies the faulty advice w
for each node u, and then the environment samples which node is faulty.

In the semi-adversarial noise model, if q > 1/(∆ − 1) then any algorithm must have
expected query and move complexity that are exponential in the depth D.

Theorem 3.2. Consider an algorithm in the oblivious semi-adversarial model. On the com-
plete ∆-ary tree of depth D, the expected number of queries to find the treasure is Ω

(
(q(∆− 1))D

)
.

The lower bound holds even if the algorithm has access to the advice of all internal nodes in
the tree.

Proof. Consider the complete ∆-ary tree and restrict attention to the cases where the treasure
is located at a leaf. The adversary behaves as follows. For every advice it gets a chance to
manipulate, it always make it point towards the root. With probability qD the adversary gets
to choose all the advice on the path between the root and the treasure. Any other advice
points towards the root as well (either because it was correct to begin with or because it was
set by the adversary). Hence with probability qD the tree that the algorithm sees is the same
regardless of the position of the treasure. When this happens, the expected time to find the
treasure is Ω((∆− 1)D) (linear in the number of leaves), by Observation 3.1.

4 Probabilistic Following Algorithms

In this section we present our results on the probabilistic following algorithms described in
the introduction. As mentioned, such algorithms can perform well also in the more difficult
oblivious semi-adversarial setting.

Recall that a Probabilistic Following (PF) algorithm is specified by a listening parameter
λ ∈ (0, 1). At each step, the algorithm “listens” to the advice with probability λ and takes
a uniform random step otherwise. The first item in the next theorem states that if the noise
parameter is smaller than c/∆ for some small enough constant 0 < c < 1, then there exists a
listening parameter λ for which Algorithm PF achievesO(D) move complexity. Moreover, this
result holds also in the oblivious semi-adversarial model. Hence, together with Theorem 3.2,
it implies that in order to achieve efficient search, the noise parameter threshold for the semi-
adversarial model is Θ(1/∆).

16

Theorem 4.1. 1. Assuming qu < 1/(10∆u) for every u, then PF with parameter λ = 0.7
finds the treasure in less than 100D expected steps, even in the oblivious semi-adversarial
setting.

2. Consider the complete ∆-ary tree and assume that q > 10/∆. Then for every choice
of λ the hitting time of the treasure by PF is exponential in the depth of the tree, even
assuming the faulty advice is drawn at random.

Proof. Our plan is to show that the expected time to make one step in the correct direction
is O(1), from any starting node. Conditioning on the advice setting, we make use of the
Markov property to relate these elementary steps to the total travel time. The main delicate
point in the proof stems from dealing with two different sources of randomness. Namely the
randomness of the advice and that of the walk itself.

In this section, it is convenient to picture the tree as rooted at the target node τ . For
every node u in the tree, we denote by u′ the parent of u with respect to the treasure. With
this convention, correct advice at a node u points to u′, while incorrect advice points to one
of its children. The fact the walk moves on a tree means that for a given advice setting, the
expected (over the walk) time it takes to reach u′ from u can be written conveniently as a
product of two independent random variables: one random variable that depends only on the
advice at u, and the other depends only on the advice on the set of u’s descendants.

We denote by t(u) the time it takes to reach node u. We also introduce a convention
regarding the notation used to denote expectations. In our setting there are two sources of
randomness, the first being the randomness used in drawing the advice, and the second being
the randomness used in the walk itself. We write E for expectation taken over the advice, while
we use Eu to denote expectation over the walk, conditioning on u being the starting node.
Observe that Eu(t(v)) is a random variable with respect to the advice, whereas EEu(t(v)) is
just a number.

The following is the central lemma of this section.

Lemma 4.2. Assume that for every vertex u, qu < 1/(10∆u), and λ = 0.7. Then for all
nodes u, EEut(u′) ≤ 100. The result holds also in the oblivious semi-adversarial model.

Let us now see how we can conclude the proof of the first item in Theorem 4.1, given
the lemma. Consider a designated source σ. Let us denote by σ = ud, ud−1, . . . , u0 = τ the
nodes on the path from σ to τ . Let δi be the random variable indicating the time it takes to
reach ui−1 after ui has been visited for the first time. The time to reach τ from σ is precisely∑d(σ,τ)

i=1 δi. Hence, the expected time to reach τ from σ is
∑d(σ,τ)

i=1 E[Eσδi] . Conditioning on
the advice setting, the process is a Markov chain and we may write

Eσδi = Euit(ui−1).

Taking expectations over the advice (E), under the assumptions of Lemma 4.2, it follows that
E(Eσδi) ≤ 100, for every i ∈ [d(σ, τ)]. And this immediately implies a bound of 100 · d(σ, τ).

Proof of Lemma 4.2. We start with partitioning the nodes of the tree according to their dis-
tance from the root τ . More precisely, for i = 1, 2, . . . , D, where D is the depth of the tree,
let us define

Li := {u ∈ T : d(u, τ) = i} .

17

The nodes in Li are referred to as level-i nodes. We treat the statement of the lemma for
nodes u ∈ Li as an induction hypothesis, with i being the induction parameter. The induction
goes backwards, meaning we assume the assumption holds at level i+ 1 and show it holds at
level i. The case of the maximal level (base case for the induction) is easy since, at a leaf the
walk can only go up and so if u is a leaf EEu(t(u′)) = 1 < 100.

Assume now that u ∈ Li. We first condition on the advice setting. A priori, Eut(u
′)

depends on the advice over the full tree, but in fact it is easy to see that only advice at layers
≥ i matter. Recall from Markov Chain theory that an excursion to/from a point is simply
the part of the walk between two visits to the given point. We denote Lu the average (over
the walk only) length of an excursion from u to itself that does not go straight to u′, and we
write Nu to denote the expected (over the walk only) number of excursions before going to u′.
We also refer to this number as a number of attempts. The variable Nu can be 0 if the walk
goes directly to u′ without any excursion. We decompose t(u′) in the following standard way,
using the Markov property

Eut(u
′) = 1 + Lu ·Nu. (4)

Indeed, the expectation Eut(u
′) can be seen as the expectation (over the walk) of 1 +

∑T
i=1 Yi

where the Yi’s are the lengths of each excursion from u and T is the (random) number of such
excursions before hitting u′. The term 1+ accounts for the step from u to u′. The event {T ≥ t}
is independent of Y1, . . . , Yt and so using Wald’s identity we have that Eut(u

′) = 1+EuT ·EuY1.
The term EuT is equal to Nu (by definition) while EuY1 is equal to Lu (by definition).

We now want to average equality (4), which is only an average over the walk, by taking
the expectation over all advice in layers ≥ i. To this aim, we write Lu as follows

Lu = 1 +
∑

v 6=u′,v∼u
pu,vEvt(u),

where we write u ∼ v when u and v are neighbors in the tree and pu,v is the probability to go
straight from u to v given the advice setting. By assumption on the model, Evt(u) depends on
the advice at layers ≥ i+1 only, if we start at a node v ∈ Li+1, while both pu,v and Nu depend
only on the advice at layer = i of the tree. This is true also in the oblivious semi-adversarial
model. Hence when we average, we can first average over the advice in layers > i to obtain,
denoting E>i, the expectation over the layers > i,

E>iEut(u′) = 1 +

1 +
∑

v 6=u′,v∼u
pu,vE>iEvt(u)

Nu,

= 1 +

1 +
∑

v 6=u′,v∼u
pu,vEEvt(u)

Nu. (5)

and using the fact that,
∑

v 6=u′ pu,v ≤ 1, together with the induction assumption at rank i+ 1,
we obtain

E>iEut(u′) ≤ 1 + (1 + 100)Nu.

Averaging over the layer i of advice we obtain

EEut(u′) ≤ 1 + 101ENu.

18

It only remains to analyse the term ENu. If the advice at u is correct, which happens with
probability pu = 1 − qu, then the number of attempts follows a (shifted by 1) geometric

law with parameter λ + (1−λ)
∆u

. In words, when the advice points to u′ which happens with
probability at most 1, the walker can go to the correct node either because she listens to the
advice, which happens with probability λ, or because she did not listen, but still took the
right edge, which happens with probability (1−λ)

∆u
. Similarly, when the advice points to a node

6= u′, which happens with probability at most qu, then Nu follows a geometric law (shifted by

1) with parameter (1−λ)
∆u

. The conclusion is that

ENu ≤

(
1

λ+ (1−λ)
∆u

− 1

)
+ qu

(
∆u

1− λ
− 1

)
≤ 1

λ
− 1 +

qu∆u

1− λ
(6)

And so it follows that

EEut(u′) ≤ 1 + 101 ·
(

1

λ
− 1 +

qu∆u

1− λ

)
Hence if qu∆u < 0.1 and we choose λ = 0.7 (this choice is a tradeoff between two considera-
tions: λ bounded away above 1

2 is required so that in expectation we make constant progress
towards the treasure when the advice is correct, and λ bounded away below 1 is required so
as to have probability larger than q for advancing when the advice is incorrect), we see that
ENu < 0.9. This is because

1

λ
− 1 +

0.1

1− λ
≤ 10

7
− 1 +

0.1

1− 0.7
< 0.9

Hence it follows that EEut(u′) ≤ 1 + 0.9 · 101 < 100. By our (backwards) induction, we have
just shown that, if q < 1

10∆ and we set λ = 0.7 then for all nodes u in the tree

EEut(u′) < 100.

This concludes the proof of Lemma 4.2 and hence also of the first part of Theorem 4.1.

Let us explain how the lower bound in the second part of Theorem 4.1 is derived in the
case that q∆ > 10. We assume the complete ∆-ary tree under our the uniform noise model.
With probability q there is fault at u and with probability 1− 1

∆ the advice does not point to
u′. Recall that Nu denotes the expected (over the walk only) number of excursions starting
from u before going to u’s parent. Then, Nu follows a geometric law with parameter 1−λ

∆ .
Hence

E(Nu) ≥ q∆
(

1− 1

∆

)
1

1− λ
− 1 ≥

10(1− 1
∆)

1− λ
− 1 ≥ 10

(
1− 1

∆

)
− 1 ≥ 3,

for every choice of λ, since ∆ ≥ 2. We proceed by induction similar to the proof of the first
part of Theorem 4.1, and use Equality (5) together with the lower bound on E(Nu) to obtain
that for every node on layer i, u with parent u′, EEut(u′) ≥ 1 + 3 minv∈Li+1 EEvt(v′), so in
particular

min
u∈Li

EEut(u′) ≥ 1 + 3 min
v∈Li+1

EEvt(v′).

The expected hitting time of the target τ , even starting at one of its children is therefore of
order Ω(3D).

19

5 Upper Bounds in High Probability

Our goal in this section is to prove Theorem 1.6, stating that for any constants 0 < δ < 1
and 0 < ε < 1/2, if q = ∆−ε, and ∆ is sufficiently large (specifically, ∆ ≥ 26/ε2 , see remark
in Section 1.2.2), then there exists a walking algorithm A′walk (parameterized by δ, ∆ and ε)

that discovers τ in (d/δ)O(1
ε

) moves with probability 1 − δ. Moreover, the statement holds
even in the adaptive semi-adversarial variant.

5.1 The Meta Algorithm

Underlying the upper bound presented in Theorem 1.6 is a simple, yet general, scheme. It
is based on a binary notion of fitness, which we define later. This notion depends on the
parameters of the model. It is carefully crafted such that the following fitness properties hold:

• F1. Whether or not a node u is fit only depends on the advice on the path [σ, u],
excluding u.

• F2. For every node u on the path [σ, τ], P (u is fit) ≥ 1− δ
2D .

• F3. With probability at least ≥ 1 − δ
2 , the connected component of fit nodes that

contains the root is of size bounded by f(D, δ), for some function f .

Once fitness is appropriately defined so that properties F1 - F3 hold, a depth first search
algorithm can be applied in the walk model. It consists of exploring in a depth-first fashion
the connected component of fit nodes containing the root. We refer to this algorithm as A′walk.
Property F1 ensures that A′walk is well-defined. The time to explore a component is at most
twice its size, because each edge is traversed at most twice.

Claim 5.1. Property F2 implies that A′walk eventually finds τ with probability ≥ 1− δ
2 .

Proof. Using Property F2, the probability that all nodes on the root to treasure path [σ, τ] are
fit is at least as large as 1− δD

2D = 1− δ
2 . Under this event, τ belongs to the same component

of fit nodes as the root, and hence A′walk eventually finds it.

By Property F3, the A′walk algorithm needs a number of steps which is upper bounded by
2f(D, δ) with probability 1− δ

2 . Using a union bound we derive the following claim.

Claim 5.2. If the fitness is defined so that properties F1-F3 are satisfied, then A′walk finds τ
in at most 2f(D, δ) steps with probability ≥ 1− δ.

5.2 Upper Bound with High Probability

This subsection is devoted to the proof of Theorem 1.6. We assume the following, w.l.o.g.

• The noise model is the adaptive semi-adversarial variant. Hence the results apply also
to the oblivious semi-adversarial and to the random variants.

• The algorithm knows the depth d of the treasure. This assumption can be removed by
an iterative process that guesses the depth to be 1,2,. . . . By running each iteration for
a limited time as specified in the theorem, the asymptotic runtime is not violated.

20

Given that the algorithm knows the depth d of the treasure, we further assume w.l.o.g. that
it never searches a node at depth greater than d. Equivalently, we may (and do) assume
that the depth of the tree is d = D, i.e., that the treasure is located at a leaf.

• The tree is balanced: all leaves are at depth D, and all non-leaf nodes have degree
exactly ∆. To remove this assumption, whenever the algorithm visits a node v at depth
i < D of degree dv < ∆, it can connect to it ∆ − dv “auxiliary trees”, where each
auxiliary tree has depth D − i − 1 and is balanced. The advice in all nodes of these
auxiliary trees points towards v, which is a valid choice in the adaptive semi-adversarial
model.

Our algorithm A′walk follows the general scheme presented in Section 5.1. It is based on a
notion of fitness presented below. With this notion in hand, A′walk simply visits, in a depth-
first fashion, the component of fit nodes to which the root σ belongs.

Definition 5.3. [Advice-fitness] Let h1 = 2
ε log∆(4δ−1D) and h2 = 6

ε2
log∆(4δ−1D). Let u

be a node and u−h2 be the ancestor of u at distance h2 from u, or σ if u is at distance < h2

from σ. The node u is said to be fit if the number of locations on the path [u−h2 , u] that do
not point towards u is less than h1. It is said to be unfit otherwise. Moreover, a fit node is
said to be reachable if it is in the connected component of fit nodes that contains the root (as
in Property F3). Equivalently, a node is reachable if either it is the root, or it is fit and its
parent is reachable.

Note that by definition, all nodes at depth < h1 are fit and reachable. The notion of
fitness clearly satisfies the first fitness property F1. We want to show that it also satisfies
the properties F2 and F3 with f(D, δ) = (δ−1D)O(1/ε). Let us first give two useful conditions
satisfied by our choice of h1 and h2.

Claim 5.4. The following inequalities hold:

1. 2h2∆−εh1 ≤ δ
4D ,

2. 2h2∆(1+ε)h1−εh2 ≤ δ
4D .

Proof. Equation (1). Replacing h1/2 by their values, we bound the left hand side in Equa-
tion (1) as follows

2
6
ε2

log∆(4δ−1D)∆−ε
2
ε

log∆(4δ−1D) = 2(6ε−2−2 log ∆) log∆(4δ−1D).

We assume that ∆ ≥ 26ε−2
so that 6ε−2 ≤ log ∆ and 6ε−2− 2 log ∆ ≤ − log ∆. Hence the left

hand side in Equation (1) is not greater than 2− log ∆ log∆(4δ−1D) = δ
4D .

Equation (2). Using the fact that ε ≤ 1 and that h2 = 3
εh1, we obtain that

(1 + ε)h1 − εh2 ≤ 2h1 − 3h1 = −h1 ≤ −εh1.

The result follows from Equation (1).

Proposition 5.5. The notion of advice-fitness introduced above satisfies Property F2, namely,
that for every node u on the path [σ, τ], we have P (u is fit) ≥ 1 − δ

2D . Hence, using Claim

5.1, with probability at least 1− δ
2 , algorithm A′walk succeeds in finding τ .

21

Proof. Let u ∈ [σ, τ]. We want to upper bound the probability that u is unfit. The probability
to be fit decreases with the distance to σ until reaching depth h2, by definition. Hence, it
suffices to check the case where u is at distance at least h2 from σ.

Let S be a set of h1 nodes on [u−h2 , u]. The set S is completely faulty with probability
qh1 ≤ ∆−εh1 . The number of such sets S is at most 2h2 . Hence P (u is unfit) ≤ 2h2∆−εh1 . We
conclude using Equation (1) from Claim 5.4, that P (u is unfit) ≤ δ

4D ≤
δ

2D .

σ

τ

h2

ui

h1

0-nodes

Fit0

Fiti

Figure 2: The partition of fit vertices introduced in the proof of Proposition 5.6. The colored nodes in
the subtree on the right are the close 0-nodes, where those colored with dark green are the reachable
fit 0-nodes. There are no fit 0-nodes at depth greater than h2 in this example.

Proposition 5.6. The notion of advice-fitness obeys Property F3 with f(D, δ) = (δ−1D)O(ε−1).
Hence the move complexity of A′walk is less than (δ−1D)O(ε−1), with probability ≥ 1− δ

2 .

Proof. Let Fit be the connected set of reachable nodes (as defined in Definition 5.3). Our
goal is to show that with high probability, namely, with probability at least 1 − δ

2 , we have

|Fit| = (δ−1D)O(ε−1).
For i ≥ 0, the term i-node will refer to any node whose common ancestor with τ is at

depth i. An i-node is further said to be close if its depth lies in the range [i, i+ h2]. Let Fiti
be the set of close i-nodes in Fit (see Figure 2).

Our first goal is to show that with high probability, Fit does not contain any 0-node at
depth h2 (Claim 5.8). Under this high probability event, A′walk visits only fit 0-nodes that
are close (i.e., at depth at most h2), because A′walk visits only reachable nodes, and fit 0-
nodes that are not close are disconnected from the root at depth h2. Hence all the 0-nodes
visited by A′walk are in Fit0. By symmetry, a similar statement holds for each layer i, and the
corresponding subset Fiti. Thus, under a high probability event, the nodes visited by A′walk
during its execution form a subset of

⋃D
i=0 Fiti (namely, f(D, δ) ≤ |

⋃D
i=0 Fiti|).

Denote the expected number of fit 0-nodes at depth h by

αh :=
∑

u is a 0-node at depth h

P (u is fit).

We have

E (|Fit0|) =
∑

u is a close 0-node

P (u is fit) =
∑
h≤h2

αh. (7)

22

Claim 5.7. 1.
∑

h≤h1
αh ≤ 2∆h1.

2. For every h1 < h ≤ h2, we have αh ≤ ∆h1(1+ε)2h∆−εh.

Proof. Every node at depth at most h1 is fit. There are at most 2∆h1 such nodes. Estima-
tion (1) follows.

We now show the second estimate. Let Uh be a node chosen uniformly at random among
all 0-nodes at depth h. Then P (Uh is fit) =

∑
u is a close 0-node P (Uh = u)P (u is fit), and

hence we may write:
αh = (∆− 1)hP (Uh is fit).

Choosing Uh randomly rather than arbitrarily is of crucial importance in the adaptive semi-
adversarial variant, because the adversary might choose to direct all the faulty advice towards
a specific node u. This could result in some terms in the sum (in the definition of αh) being
much bigger than the average. So it is important to avoid bounding the average by the max.
We draw a uniform path σ = U0, U1, . . . , Uh of length h from the root, in the component
of 0-nodes. Consider a node Ui on this path. With probability q, it is faulty. In this case,
regardless of how the adversary could set its advice, the advice at Ui points to Ui+1 with
probability of at most 1

∆−1 over the choice of Ui+1.
It follows that the number of ancestors of Uh whose advice points to Uh may be viewed as

the sum of h Bernoulli variables Bi with parameter q
∆−1 . Moreover, the previous argument

means that P (Bi = 1 | Bj , j < i) = q
∆−1 = P (Bi = 1). The Bi variables are thus uncorrelated

and hence independent since they are Bernoullis. The node Uh is fit if at least h− h1 ances-
tors point to it. Thus, by a union bound over the

(
h

h−h1

)
≤ 2h possible locations of faults,

P (Uh is fit) ≤ 2h
(

q
∆−1

)h−h1

. Hence

αh ≤ 2h(∆− 1)h
(

q

∆− 1

)h−h1

≤ 2hqh−h1∆h1 = ∆h1(1+ε)2h∆−εh.

In the last step, we used q = ∆−ε. This concludes the proof of Claim 5.7.

For h = h2, combining Claim 5.7 and Equation (2) stated in Claim 5.4 implies:

αh2 ≤
δ

4D
(8)

For i ∈ [D], denote by Zi (Z for zero) the event that there are no fit i-nodes at depth i+ h2.
Applying Markov inequality on Equation (8) implies that P (Z0) ≥ 1 − δ(4D)−1. Since the
same argument can be applied to any i ≤ D, we get

Claim 5.8. For every i ≤ D, we have P (Zi) ≥ 1− δ
4D and hence P (

⋂
Zi) ≥ 1− δ

4 .

If follows from the assumption on ∆ ≥ 26ε−2
that ∆ε ≥ 26 ≥ 8, so that 2∆−ε < 1

4 . Using
Eq. (7), Claim 5.7 and the definition of h1 we get:

E (|Fit0|) ≤
∑
h≤h2

αh ≤ 2∆h1 +

h2∑
h=h1

∆h1(1+ε)
(
2∆−ε

)h
≤ 2∆h1 + ∆h1(1+ε)

∑
h≥h1

4−h ≤ 2∆h1 + 2∆h1(1+ε) ≤ 4∆h1(1+ε)

≤ 4 · (4δ−1D)2ε−1+2 ≤ (4δ−1D)2ε−1+3.

23

The computation is the same for every i ≤ D, yielding that E(|Fiti|) ≤ (4δ−1D)2ε−1+3, and
by linearity of expectation, we obtain

E(|
D⋃
i=0

Fiti|) ≤ D · (4δ−1D)2ε−1+3.

Using the Markov inequality, with probability at least 1− δ
4D , this variable is upper bounded

by 4δ−1D2 · (4δ−1D)2ε−1+3 ≤ (4δ−1D)2ε−1+5. As explained in the beginning of the proof,
under the event

⋂
i≤D Zi (which occurs with probability at least 1− δ

4 thanks to Claim 5.8),
we have Fit ⊂

⋃
i≤D Fiti. Using a union bound, we conclude that with probability at least

1− δ
2 , we have |Fit| ≤ (4δ−1D)2ε−1+5 = (δ−1D)O(ε−1), as desired.

Claim 5.2 in combination with Propositions 5.5 and 5.6 proves Theorem 1.6.

6 Lower Bound for High Probability Algorithms

The goal of this section is to prove Theorem 1.7. Informally, the theorem shows that the
upper bound in Theorem 1.6 is the right bound, up to a constant factor in the exponent.

The proof is done for the query complexity, in a complete ∆-ary tree of depth D = log∆ n.
This also implies at least the same lower bound for the move complexity. Throughout the
proof, T denotes a complete ∆-ary tree of depth D. In our lower bound, the adversary places τ
at a leaf of T chosen at random according to the uniform distribution. We denote by F the set
of faulty nodes (without directional advice). Since this set as well as τ are chosen uniformly
at random, we may assume without loss of generality that the algorithm is deterministic. The
presentation of our proof is simplified if we assume that the algorithm is told which nodes of
T are faulty (namely, are in F). We can make this assumption because it only strengthens
our lower bound.

We reserve the letter H to denote a subtree of T , containing the descendants of its root
(with respect to the original root σ). A subset S is said to be completely faulty if all nodes in
S are faulty. Overloading this expression, we say that a leaf v of some subtree H is completely
faulty if the path from the root of H towards v is completely faulty. The relevant reference
subtree H will be specified if it is not clear from the context. The number of completely
faulty leaves of a subtree H is denoted B(H) or simply B if H is clear from the context.
When considering a subset S ⊆ T , we write S∗ to denote the pair (S, S ∩ F). In words, this
corresponds to a subset with the information of which nodes are faulty.

6.1 Proof of Theorem 1.7

At a high level, the argument is as follows. On the path from the root to τ , with probability
at least δ, there exists a segment [vi, vi+h−1] of length h ' 1

ε log∆(Dδ), where all nodes are
faulty (Lemma 6.1). On the other hand, the tree rooted at vi of depth h, typically hosts many
such completely faulty leaves (Lemma 6.2). In some sense these leaves are indistinguishable.
This means that any algorithm has constant probability of trying a constant fraction of them
before finding vi+h, the one leading to τ .

Let us make this intuition more precise. For each choice of faulty locations F and treasure
location τ = v, we define u(v, F) to be the first node on the path [σ, v] such that u and its

24

h− 1 “direct” descendants towards v, i.e., the next h− 1 nodes on the path to v, are faulty,
if such u exists, and otherwise we say u(v, F) is not defined.

Denote by H(v, F) the subtree rooted at u(v, F) of depth h. A central object in the proof
is H∗(v, F) which corresponds to the couple (H(v, F), (F ∩H(v, F))) (the subtree together
with the faulty locations on it). Henceforth, we will often drop the dependency on v, F in the
interest of readability, but we keep the bold notation to emphasize that H is a random object
(it depends on F). If u(v, F) is not defined, we also say that H is not defined.

The following lemma lower bounds the probability that H is well defined.

Lemma 6.1. Let 0 < δ < 1
16 . If h satisfies qh ≥ 8δh

D and D ≥ max[h, 8δh] (for D that does
not satisfy this condition the statement does not make sense), then P (H is well defined) ≥ 4δ.

Proof. Recall that we write [σ, τ] := {v0 = σ, v1, . . . , vD−1, vD = τ}. For a given i, h ∈ N, let
us denote by Fi,h the event that [vi, vi+h−1] is completely faulty.

With this definition, H is well defined if the event Fi,h holds for at least one value of i in
the range 0 ≤ i ≤ D − h. Hence what we want to show is that

P

(
NOT

D−h⋃
i=0

Fi,h

)
≤ 1− 4δ. (9)

For every fixed i and h, P (Fi,h) = qh. Indeed, there are h nodes on the path [vi, vi+h−1]
and each is independently faulty with probability q. The parameter h satisfies qh ≥ 8δh

D by
assumption.

The events Fi′·h,h are independent when i′ varies in [D/h]. The probability that none of
these holds is

(1− qh)D/h ≤
(

1− 8δh

D

)D
h

≤ e−
8δh
D

D
h = e−8δ ≤ 1− 8δ/2 = 1− 4δ.

The last inequality holds for sufficiently small δ (e.g., δ ≤ 1
16).

From now on, we assume for simplicity that h is chosen so that qh = 8δh
D . (h being an

integer, this is only an approximate equality in general. We ignore this point in the discussion,
assuming h has been appropriately rounded.) Recall that q = ∆−ε, so taking logarithms we
see that εh = log∆

D
δ − log∆ 8h. Viewing δ and ∆ as fixed and letting D go to infinity,

the previous equality entails that h = 1
ε (1 − oD(1)) log∆

D
δ , where the term oD(·) tends to

0 when D tends to infinity1. Let B(H∗) denote the number of completely faulty leaves in
H∗ = H∗(v, F). Lemma 6.2 below is proven in Section 6.2. It bounds the typical value of
B(H∗) in those cases that H is well defined.

Lemma 6.2. Let C be a sufficiently large constant that depends only on q. Then

P
(
B(H∗) ≤ (q∆)h−C | H is well defined

)
≤ 0.5.

The following two intermediate results express how “indistinguishable” is formalized in
this context.

1Indeed, h tends to infinity when D tends to infinity, so log∆ 8h = o(h).

25

Claim 6.3. Consider a leaf v and a subtree H∗ (together with the faulty locations in it). Then,
the value of pv,H∗ := PF (H∗(v, F) = H∗ | τ = v) is the same for all v such that pv,H∗ > 0.

Proof. Let H be a fixed subtree of depth h rooted at some node u. By definition, the statement
that P (H∗(v, F) = H∗ | τ = v) > 0 is equivalent to the following two statements:

A: There are no h consecutive faulty nodes in [σ, u] and, if u 6= σ, then u’s parent is not
faulty.

B: Leaf v is a descendant of u and the leaf of H∗ which is an ancestor of v is completely
faulty in H∗.

The probability of A depends only (in some complicated way) on the length of [σ, u] and q
and hence does not depend on v. With these notations, if v,H∗ and F are such that B holds,
then

P (H∗(v, F) = H∗ | τ = v) = q|F∩H|(1− q)|H\F |P (A).

The right hand side does not depend on v. The claim follows.

Lemma 6.4. Conditioning on the subtree H∗ (and hence its existence), the leaf of H∗ which
leads to the treasure is uniform amongst all completely faulty leaves v of H∗.

Proof. Denote by L the set of leaves of T . Using Bayes rule, and because we assume that τ
is uniform over all leaves L,

P (τ = v | H∗) = P (τ = v) · P (H∗ | τ = v)

P (H∗)
=

1

|L|
· P (H∗ | τ = v)

P (H∗)
.

It follows that P (τ = v | H∗) has the same value for all leaves v of T such that P (τ = w |
H∗) > 0. Indeed, we saw that the right hand term is independent of w, as soon as w is a
descendant of a completely faulty leaf of H∗ (Claim 6.3), and otherwise it is 0.

Since the tree T is complete and regular, each leaf of H∗ is the ancestor of the same
number of leaves in T , and so each completely faulty leaf of H∗ is equally likely to lead to the
treasure.

We now condition on the event that H is well defined and that it has more than s =
(q∆)h−C completely faulty leaves. This event holds with probability at least 4δ × 0.5 (com-
bining the results of Lemma 6.1 and Lemma 6.2). Under this conditioning, with prob-
ability at least 0.5 over treasure location the completely faulty leaf leading to the trea-
sure is visited after at least 0.5s other faulty leaves have been visited. Indeed there are
s faulty leaves, each being equally likely to lead to the treasure (Lemma 6.4). Overall,
with probability 4δ · 0.5 · 0.5 = δ, more than 0.5s nodes need to be visited. We saw that,

h = 1
ε (1 − oD(1)) log∆(Dδ), hence s = (q∆)h−C = (q∆)h·(1−oD(1)) = (∆1−ε)

1
ε

(1−oD(1)) log∆
D
δ .

After simplification, this is (δ−1D)
1−ε
ε

(1−oD(1)).

6.2 Proof of Lemma 6.2

The proof of Lemma 6.2 is broken into intermediate claims. To begin with we ignore the
treasure τ , and consider a fixed complete ∆-ary tree H of depth h, with root σ. Each node
of H is faulty (namely, belongs to the set F) independently with probability q. Let B denote
the number of completely faulty leaves in H.

26

Claim 6.5. It holds that P
(
B > 1

2(q∆)h
)

= Ω(q).

Proof. The proof uses a second moment argument. For every given leaf, the probability of
the full path from the root being faulty is qh and there are ∆h leaves. Hence E(B) = (q∆)h.
Let us denote by L the set of leaves. Using the Boolean indicator variable χi to denote that
leaf i is completely faulty, we have B =

∑
i χi. Hence, we may write E(B2) = E((

∑
i χi)

2) as

E(B2) = E(B) +
∑

u6=v∈L
P (u and v are completely faulty),

where the sum is taken on the ordered pairs u 6= v where both are in L. Fix a leaf v ∈ L,
and let L` denote the set of leaves whose common ancestor with v has depth h− `. For every
` ∈ [1, h], |L`| ≤ ∆`. Moreover, for u ∈ L`, u and v being completely faulty is equivalent to v
being completely faulty and the `− 1 nodes connecting u to the root-to-v path being faulty.
Hence, P (u and v are completely faulty) = q`+h−1. Altogether,

E(B2) ≤ (q∆)h + ∆h
h∑
`=1

∆`q`+h−1 = O

(
q−1(q∆)h

h∑
`=1

(q∆)`

)
= O

(
q−1(q∆)2h

)
= O(q−1E(B)2).

Using the Paley-Zygmund inequality, we get P (B ≥ 1
2E(B)) ≥ 1

4
E(B)2

E(B2)
= Ω(q).

Claim 6.6. For a constant C that depends only on q, P (B ≤ (q∆)h−C | B ≥ 1) ≤ 0.5.

Proof. First observe that for any constant C, we may consider only h ≥ C, since otherwise, if
h < C, then (q∆)h−C < 1 and the requirement trivially holds.

Since B ≥ 1 there exists a path [σ, v] which is completely faulty. For every u ∈ [σ, v] define
Tu as the subtree rooted at u excluding the subtree rooted at the child of u on [σ, v]. The
subtrees Tu are pairwise disjoint and form a partition of T . For u ∈ [σ, v], define Bu := B(Tu),
the number of completely faulty leaves of Tu. Note that B =

∑
uBu ≥ maxuBu. Moreover

since, for u 6= u′, Tu ∩ Tu′ = ∅, the variables Bu are independent.
Let S be the prefix of size C of [σ, v]. All subtrees rooted at a node u ∈ S are of depth

> h − C. Since q∆ > ∆1/2, we have (q∆)−C < 1/2 for every C ≥ 2. Using Claim 6.5,
together with the independence of the Bu’s, the probability that all Bu’s are smaller than
(q∆)h−C ≤ 1

2(q∆)h is less than (1 − cq)C for a constant c. The result follows, if C is large
enough (as a function of q).

If it exists, by definition, H∗ has at least one completely faulty leaf, which is the one
leading to τ . Outside of the branch leading to τ , the nodes of H∗ are still independently
faulty with probability q. This means that the number of completely faulty leaves of H∗,
B(H∗) | {H∗ is well defined} is distributed as B(H∗) | {B(H∗) ≥ 1} for every fixed subtree
H of depth h.

Using this together with Claim 6.6 finishes the proof of Lemma 6.2. Indeed, we obtain

P
(
B(H∗) ≤ (q∆)h−C | H is well defined

)
≤ 0.5.

27

7 Open Problems

As mentioned, the model with permanent noise can be extended to general graphs. Essentially,
when a node u is correct its advice points to one of the neighbors of u on a shortest path
to the treasure. As there might be several such neighbors, one may consider an adversary
that chooses which of these neighbors to point to. In the purely probabilistic setting, with
probability q, each node is faulty, in which case its advice points to a random neighbor. The
semi-adversarial setting can similarly be defined. Obtaining efficient search algorithms for
general graphs is highly intriguing. Even though the likelihood of a node being the treasure
under a uniform prior can still be computed in principle, it is not clear how to compare two
nodes as in Theorem 2.3 because there may be more than a single path between them.

In a limited regime of noise, we believe that memoryless strategies might very well be
efficient also on general graphs, and we pose the following conjecture. Proving it may require
the use of tools from the theory of Random Walks in Random Environments, which seem to
be lacking in the context of general graph topologies.

Conjecture 7.1. There exists a probabilistic following algorithm that finds the treasure in
expected linear time on every undirected graph assuming q < c/∆ for a small enough c > 0.

References

[1] Javed A. Aslam and Aditi Dhagat. Searching in the presence of linearly bounded errors.
STOC, pages 486–493, 1991.

[2] Yosi Ben-Asher, Eitan Farchi, and Ilan Newman. Optimal search in trees. SIAM J.
Comput., 28(6):2090–2102, 1999.

[3] Michael Ben-Or and Avinatan Hassidim. The bayesian learner is optimal for noisy binary
search (and pretty good for quantum as well). FOCS, pages 221–230, 2008.

[4] Lucas Boczkowski, Amos Korman, and Yoav Rodeh. Searching on trees with noisy
memory. CoRR, abs/1611.01403, 2016.

[5] Lucas Boczkowski, Amos Korman, and Yoav Rodeh. Searching a tree with permanently
noisy advice. ESA, 2018.

[6] Ryan S. Borgstrom and S. Rao Kosaraju. Comparison-based search in the presence of
errors. STOC, pages 130–136, 1993.

[7] Mark Braverman and Elchanan Mossel. Noisy sorting without resampling. SODA, pages
268–276, 2008.

[8] Gerth Stølting Brodal, Rolf Fagerberg, Irene Finocchi, Fabrizio Grandoni, Giuseppe F.
Italiano, Allan Grønlund Jørgensen, Gabriel Moruz, and Thomas Mølhave. Optimal re-
silient dynamic dictionaries. Algorithms - ESA 2007, 15th Annual European Symposium,
Eilat, Israel, October 8-10, 2007, Proceedings, pages 347–358, 2007.

[9] Ferdinando Cicalese and Ugo Vaccaro. Optimal strategies against a liar. Theor. Comput.
Sci., 230(1-2):167–193, 2000.

28

[10] Amin Coja-Oghlan. Solving NP-hard semirandom graph problems in polynomial expected
time. Journal of Algorithms, 62(1):19–46, 2007.

[11] Argyrios Deligkas, George B. Mertzios, and Paul G. Spirakis. Binary search in graphs
revisited. Algorithmica, 81(5):1757–1780, 2019.

[12] Dariusz Dereniowski, Stefan Tiegel, Przemys law Uznański, and Daniel Wolleb-Graf. A
framework for searching in graphs in the presence of errors. SOSA@SODA: 4:1-4:17,
2019.

[13] Alexander Drewitz and Alejandro F. Ramiréz. Selected topics in random walk in random
environment. Topics in Percolative and Disordered Systems, Springer Proceedings in
Mathematics and Statistics, 69:23–83, 2014.

[14] Ehsan Emamjomeh-Zadeh and David Kempe. A general framework for robust interactive
learning. NIPS, 2017.

[15] Ehsan Emamjomeh-Zadeh, David Kempe, and Vikrant Singhal. Deterministic and prob-
abilistic binary search in graphs. STOC, pages 519–532, 2016.

[16] Uriel Feige, Prabhakar Raghavan, David Peleg, and Eli Upfal. Computing with noisy
information. SIAM J. Comput., 23(5):1001–1018, October 1994.

[17] Irene Finocchi, Fabrizio Grandoni, and Giuseppe F. Italiano. Resilient search trees.
SODA, pages 547–553, 2007.

[18] Irene Finocchi and Giuseppe F. Italiano. Sorting and searching in the presence of memory
faults (without redundancy). STOC, pages 101–110, 2004.

[19] Ehud Fonio, Yael Heyman, Lucas Boczkowski, Aviram Gelblum, Adrian Kosowski, Amos
Korman, and Ofer Feinerman. A locally-blazed ant trail achieves efficient collective
navigation despite limited information, eLife 2016;5:e20185. eLife, 2016.

[20] Nicolas Hanusse, David Ilcinkas, Adrian Kosowski, and Nicolas Nisse. Locating a target
with an agent guided by unreliable local advice: How to beat the random walk when you
have a clock? PODC, pages 355–364, 2010.

[21] Nicolas Hanusse, Dimitris Kavvadias, Evangelos Kranakis, and Danny Krizanc. Memo-
ryless search algorithms in a network with faulty advice. Theoretical Computer Science,
402(2-3):190 – 198, 2008.

[22] Nicolas Hanusse, Evangelos Kranakis, and Danny Krizanc. Searching with mobile agents
in networks with liars. Discrete Applied Mathematics, 137(1):69–85, 2004.

[23] Avinatan Hassidim and Yaron Singer. Submodular optimization under noise. COLT,
pages 1069–1122, 2017.

[24] Richard M. Karp and Robert Kleinberg. Noisy binary search and its applications. SODA,
pages 881–890, 2007.

[25] Michael Krivelevich and Dan Vilenchik. Solving random satisfiable 3CNF formulas in
expected polynomial time. SODA, pages 454–463, 2006.

29

[26] Eduardo Sany Laber and Loana Tito Nogueira. Fast searching in trees. Eletronic Notes
on Discrete Mathematics, 2001.

[27] Shay Mozes, Krzysztof Onak, and Oren Weimann. Finding an optimal tree searching
strategy in linear time. SODA, pages 1096–1105, 2008.

[28] Krzysztof Onak and Pawel Parys. Generalization of binary search: Searching in trees
and forest-like partial orders. FOCS, pages 379–388, 2006.

[29] Andrzej Pelc. Searching games with errors - fifty years of coping with liars. Theor.
Comput. Sci., 270(1-2):71–109, 2002.

[30] Alain-Sol Snitzman. Topics in random walks in random environment. ICTP Lecture
Notes Series, 2004.

30

	Introduction
	The Noisy Advice Model
	Our Results
	Results in Expectation
	Results in Probability Guarantee

	Related Work
	Notation

	Optimal Algorithm in Expectation
	Algorithm Design following a Greedy Bayesian Approach
	Algorithm Awalk
	Analysis

	Lower bounds in Expectation
	The Random Noise Model
	Exponential complexity above the threshold
	A Query Lower Bound of (D) when q1/

	The Semi-Adversarial Variant

	Probabilistic Following Algorithms
	Upper Bounds in High Probability
	The Meta Algorithm
	Upper Bound with High Probability

	Lower Bound for High Probability Algorithms
	Proof of Theorem 1.7
	Proof of Lemma 6.2

	Open Problems

