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Abstract11

We consider a search problem on trees using unreliable guiding instructions. Specifically, an12

agent starts a search at the root of a tree aiming to find a treasure hidden at one of the nodes13

by an adversary. Each visited node holds information, called advice, regarding the most prom-14

ising neighbor to continue the search. However, the memory holding this information may be15

unreliable. Modeling this scenario, we focus on a probabilistic setting. That is, the advice at a16

node is a pointer to one of its neighbors. With probability q each node is faulty, independently17

of other nodes, in which case its advice points at an arbitrary neighbor, chosen uniformly at18

random. Otherwise, the node is sound and points at the correct neighbor. Crucially, the advice19

is permanent, in the sense that querying a node several times would yield the same answer. We20

evaluate efficiency by two measures: The move complexity denotes the expected number of edge21

traversals, and the query complexity denotes the expected number of queries.22

Let ∆ denote the maximal degree. Roughly speaking, the main message of this paper is that23

a phase transition occurs when the noise parameter q is roughly 1/
√

∆. More precisely, we prove24

that above the threshold, every search algorithm has query complexity (and move complexity)25

which is both exponential in the depth d of the treasure and polynomial in the number of nodes n.26

Conversely, below the threshold, there exists an algorithm with move complexity O(d
√

∆), and27

an algorithm with query complexity O(
√

∆ log ∆ log2 n). Moreover, for the case of regular trees,28

we obtain an algorithm with query complexity O(
√

∆ logn log logn). For q that is below but29

close to the threshold, the bound for the move complexity is tight, and the bounds for the query30

complexity are not far from the lower bound of Ω(
√

∆ log∆ n).31

In addition, we also consider a semi-adversarial variant, in which faulty nodes are still chosen32

at random, but an adversary chooses (beforehand) the advice of such nodes. For this variant,33

the threshold for efficient moving algorithms happens when the noise parameter is roughly 1/∆.34

In fact, above this threshold a simple protocol that follows each advice with a fixed probability35

already achieves optimal move complexity.36
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54:2 Searching a Tree with Permanently Noisy Advice

1 Introduction45

This paper considers a basic search problem on trees, in which the goal is to find a treasure46

that is placed at one of the nodes by an adversary. Each node of the tree holds information,47

called advice, regarding which of its neighbors is closer to the treasure, and the search may48

consult the advice at some nodes in order to accelerate the search. Crucially, we assume that49

advice at nodes may be faulty with some probability. Many works consider noisy queries50

in the context of search, but it is typically assumed that queries can be resampled (see51

e.g., [11, 18, 4, 10]). In contrast, we assume that each location is associated with a single52

permanent advice. That is, faults are in the physical memory associated with the node, and53

hence querying the node again would yield the same answer. This difference is dramatic,54

as the search under our model does not allow for simple amplification procedures (similar55

to [6] albeit in the context of sorting). Searching in contexts of permanently faulty nodes56

has been studied in a number of works [7, 12, 15, 16, 17], but only assuming that the faulty57

nodes are chosen by an adversary. The difference between such worst case scenarios and the58

probabilistic version studied here is again significant, both in terms of results and techniques59

(see more details in Section 1.3).60

1.1 The Noisy Advice Model61

We start with some notation. Further notations are given in Section 1.4. Let T be an n-node62

tree1 rooted at some arbitrary node σ. We consider an agent that is initially located at the63

root σ of T , aiming to find a node τ , called the treasure, which is chosen by an adversary.64

The distance d(u, v) is the number of edges on the path between u and v. The depth of a65

node u is d(u) = d(σ, u). Let d = d(τ) denote the depth of τ , and let the depth D of the66

tree be the maximal depth of a node. Finally, let ∆u denote the degree of node u and let ∆67

denote the maximal degree in the tree.68

Each node u 6= τ is assumed to be provided with an advice, termed adv(u), which69

provides information regarding the direction of the treasure. Specifically, adv(u) is a pointer70

to one of u’s neighbors. It is called correct if the pointed neighbor is one step closer to the71

treasure than u is. Each vertex u 6= τ is faulty with probability qu (the meaning of being72

faulty will soon be explained). Otherwise, u is considered sound, in which case its advice73

is correct. We call qu the noise parameter of u, and define the general noise parameter as74

q = max{qu | u ∈ T}.75

We consider two models for faulty nodes. The main model assumes that the advice at76

a faulty node points to one of its neighbors chosen uniformly at random (and so possibly77

pointing at the correct one). We also consider an adversarial variant, called the semi-78

adversarial model, where this neighbor is chosen by an oblivious adversary. That is, an79

adversary specifies for each node what advice it would have assuming it is faulty. Then,80

faulty nodes are still chosen randomly as in the main model, but their advice is specified by81

the adversary.82

The agent can move by traversing edges of the tree. At any time, the agent can query its83

hosting node in order to “see” the corresponding advice and to detect whether the treasure84

is present there. The protocol terminates when the agent queries the treasure. We evaluate85

a search algorithm A by two measures: The move complexity, termedM(A), is the expected86

1 We present the model for trees, but it should be clear that it can be similarly defined for arbitrary
graphs (see also Section 5).
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number of edge traversals, and the query complexity, termed Q(A), is the expected number87

of queries2. Expectation is taken over both the randomness involved in sampling advice88

and the possible probabilistic choices made by A. We note that when considering walking89

algorithms, we assume that the agent does not know the structure of the tree in advance,90

and discovers it as it moves. Conversely, when focusing on minimizing the query complexity91

only, we assume that the tree structure is known to the algorithm.92

The noise parameters (qu)u∈T govern the accuracy of the environment. On the one93

extreme, if qu = 0 for all nodes, then advice is always correct. This case allows to find94

the treasure in d moves, by simply following each encountered advice. Alternatively, it also95

allows to find the treasure using O(logn) queries, by performing a separator based search.96

On the other extreme, if qu = 1 for all nodes, then advice is essentially meaningless, and the97

search cannot be expected to be efficient. An intriguing question is therefore to identify the98

largest value of q that allows for efficient search.99

The reader wishing to increase its familiarity with the model and its algorithmic chal-100

lenges may read Appendix A, where a natural greedy algorithm is analyzed, and shown to101

be inefficient.102

1.2 Our Results103

Consider the noisy advice model on trees with maximum degree ∆ and depth D. Roughly104

speaking, we show that 1/
√

∆ is the threshold for the noise parameter q, in order to obtain105

search algorithms with low expected complexities.106

The proof that there is no algorithm with low expected complexities when the noise107

exceeds 1/
√

∆ is rather simple, and in fact, holds even if the algorithm has access to the108

advice of all internal nodes. Intuitively, the argument is as follows (the formal proof appears109

in Section 4.1). Consider a complete ∆-ary tree of depth D and assume that the treasure τ110

is placed at a leaf. The first observation (Lemma 10) is that the expected number of leaves111

having more advice point to them than to τ is a lower bound on the query complexity. The112

next observation is that there are roughly ∆D leaves whose distance from τ is 2D. For each113

of those leaves u, the probability that more advice points towards it than towards τ can be114

approximated by the probability that all nodes on path connecting u and τ are faulty. As115

this latter probability is q2D, the expected number of leaves that have more pointers leading116

to them is roughly ∆Dq2D, which explodes when q � 1/
√

∆. This essentially establishes117

the lower bound for the noise regime.118

The main technical difficulties we had to face appeared when we aimed to show that119

the 1/
√

∆ lower bound is, in fact, tight, and moreover, that there exist extremely efficient120

algorithms when the noise is above the threshold. In this regard, we note two technical121

contributions. The first appears in the construction of the moving algorithm Awalk. Even122

though the algorithm should be designed to quickly find an adversarially placed treasure, it is123

in fact based on a Bayesian approach. The challenging part is identifying the correct prior.124

Constructing algorithms that ensure worst-case guarantees through a Bayesian approach125

was done in [4] which studies a closely related, yet much simpler problem of search on the126

line. Apart from [4] we are unaware of other works that follow this approach. The second127

technical contribution corresponds to the query setting, where we mimic the resampling of128

advice at separator nodes, by locally applying the moving algorithm.129

2 The success probability after a fixed number of rounds is another quantity of interest. It is left for
future work.

ESA 2018
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1.2.1 Upper Bounds130

In Section 2, we present a walking algorithm that is optimal up to a constant factor for131

the regime of noise below the threshold. Furthermore, this algorithm does not require prior132

knowledge of either the tree’s structure, or the values of ∆, q, d, or n.133

Using this walking algorithm, we derive two query algorithms (in Section 3). The first134

is optimal up to a factor of O(log2(∆) logn) and the second is restricted to regular trees,135

but is optimal up to a factor of O(log(∆) log logn). Note that the query algorithms use the136

knowledge of the tree structure, as well as bounds on the regime of noise.137

Before stating our theorems, we need the following definition.138

I Definition 1. Condition (?) holds with parameter 0 < ε < 1 if for every node v, we have

qv <
1− ε−∆−

1
4

v
√

∆v + ∆
1
4
v

.

Note that since ∆v ≥ 2, the condition is always satisfiable when taking a small enough ε. In139

the following theorems the O notation hides only a polynomial a polynomial term in 1/ε.140

Note, all our algorithms are deterministic, hence, expectation is taken with respect only141

to the sampling of the advice.142

I Theorem 2. There exists a deterministic walking algorithm Awalk such that for any con-143

stant ε > 0, if Condition (?) holds with parameter ε thenM(Awalk) = O(
√

∆d).144

I Theorem 3. 1. For any ε > 0, there exists a deterministic query algorithm Asep such145

that if Condition (?) holds with parameter ε then the query complexity is Q(Asep) =146

O(
√

∆ log ∆ · log2 n).147

2. Assume that q < c/
√

∆ for a small enough constant c > 0. Then there exists a determ-148

inistic query algorithm A2−layers such that, restricted to (not necessarily complete) ∆-ary149

trees, Q(A2−layers) = O(
√

∆ logn · log logn).150

1.2.2 Lower Bounds151

We establish (in Section 4 and Appendix G) the following lower bounds.152

I Theorem 4. The following holds for any randomized algorithm A and any integer ∆ ≥ 3.153

1. Exponential complexity above the threshold.154

Consider a complete ∆-ary tree. For every constant ε > 0, if q ≥ 1+ε√
∆−1 · (1 + 1

∆−1 ), then155

both Q(A) andM(A) are exponential in D.156

2. Lower bounds for any q.157

(a) Consider a complete ∆-ary tree. Then Q(A) = Ω(q∆ log∆ n).158

(b) For any integer d, there is a tree with at most d∆ nodes, and a placement of the159

treasure at depth d, such thatM(A) = Ω(dq∆).160

Observe that taken together, Theorems 2,4,3 and Condition (?) imply that for any ε > 0 and161

large enough ∆, efficient search can be achieved if q < (1−ε)/
√

∆ but not if q > (1+ε)/
√

∆.162

1.2.3 Memory-less Algorithms163

Query algorithms assume the knowledge of the tree and hence cannot avoid memory com-164

plexity which is linear in n. In contrast, our walking algorithm Awalk uses memory that is165

composed of advice accumulated during the walk, and hence remains low, in expectation.166
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Finally, we analyse the performance of simple memoryless algorithms called probabilistic167

following, suggested in [14]. At every step, the algorithm follows the advice at the current168

vertex with some fixed probability λ, and performs a random walk step otherwise. It turns169

out that such algorithms can perform well, but only in a very limited regime of noise.170

Specifically, we prove:171

I Theorem 5. There exist positive constants c1, c2 and c3 such that the following holds. If172

for every vertex u, qu < c1/∆u then there exists a probabilistic following algorithm that finds173

the treasure in less than c2d expected steps. On the other hand, if q > c3/∆ then for any174

probabilistic following strategy the move complexity on a complete ∆-ary tree is exponential175

in the depth of the tree.176

Since this algorithm is randomized, expectation is taken over both the randomness involved177

in sampling advice and the possible probabilistic choices made by the algorithm.178

Interestingly, when qu < c1/∆u for all vertices, this algorithm works even in a semi-179

adversarial model. In fact, it turns out that in the semi-adversarial model, probabilistic180

following algorithms are the best possible, as the threshold for efficient search, with respect181

to any algorithm, is roughly 1/∆. Due to lack of space these results are discussed and proved182

in Appendix H.183

1.3 Related Work184

In computer science, search algorithms have been the focus of numerous works. Due to their185

importance, trees are particularly popular structures to investigate search, see e.g., [19, 3,186

21, 20]. Within the literature on search, many works considered noisy queries [11, 18, 10],187

however, it was typically assumed that noise can be resampled at every query. As mentioned,188

dealing with permanent faults incurs challenges that are fundamentally different from those189

that arise when allowing queries to be resampled. To illustrate this difference, consider the190

simple example of a star graph and a constant q < 1. Straightforward amplification can191

detect the target in O(1) expected number of queries. In contrast, in our model, it can be192

easily seen that Ω(n) is a lower bound for both the move and the query complexities, for193

any constant noise parameter.194

A search problem on graphs in which the set of nodes with misleading advice is chosen195

by an adversary was studied in [15, 16, 17], as part of the more general framework of the liar196

models [1, 2, 5, 8, 22]. Data structures with adversarial memory faults have been investigated197

in the so called faulty-memory RAM model introduced in [13]. In particular, data structures198

supporting the same operations as search trees with adversarial memory faults were studied199

in [12, 7]. Interestingly, the data structures developed in [7] can cope with up to O(logn)200

faults, happening at any time during the execution of the algorithm, while maintaining201

optimal space and time complexity. All these worst case models are, however, significantly202

different from the randomized one we consider, both in terms of techniques and results. The203

subject of queries with probabilistic memory faults, as the ones we study here, has been204

explicitly studied in the context of sorting [6].205

The noisy advice model considered in this paper actually originated in the recent biolo-206

gically centered work [14], aiming to abstract navigation relying on guiding instructions in207

the context of collaborative transport by ants. There, a group of ants carry a large load of208

food aiming to transport it to their nest, while basing their navigation on unreliable advice209

given by pheromones that are laid on the terrain. In that work, the authors modelled ant210

navigation as a probabilistic following algorithm, and noticed that an execution of such an211

algorithm can be viewed as an instance of Random Walks in Random Environment (RWRE)212

ESA 2018



54:6 Searching a Tree with Permanently Noisy Advice

[23, 9]. Relying on results from this subfield of probability theory, the authors showed that213

when tuned properly, such algorithms enjoy linear move complexity on grids, provided that214

the bias towards the correct direction is sufficiently high.215

1.4 Notations216

Denote p = 1 − q, and for a node u, pu = 1 − qu. For two nodes u, v, let 〈u, v〉 denote the217

simple path connecting them, excluding the end nodes, and let [u, v〉 = 〈u, v〉 ∪ {u} and218

[u, v] = [u, v〉 ∪ {v}. For a node u, let T (u) be the subtree rooted at u. We denote by219
−−→
adv(u) (resp. ←−−adv(u)) the set of nodes whose advice points towards (resp. away from) u.220

By convention u /∈ −−→adv(u) ∪←−−adv(u). Unless stated otherwise, log is the natural logarithm.221

1.5 Organization222

In Section 2 we present our optimal walking algorithm. Section 3 presents our query al-223

gorithms, while most of the details regarding the more elaborated algorithm on regular trees224

are deferred to Appendix E. In Section 4 we show the lower bounds for both the move225

and query complexities. In Section 5, we give a list of open problems. Theorem 5 and the226

threshold of Θ(1/∆) that applies to the semi-adversarial setting are proved in Appendix H.227

2 Optimal Walking Algorithm228

In this section we prove Theorem 2. At a very high level, at any given time, the walking229

algorithm processes the advice seen so far, identifies a promising node to continue from on230

the border of the already discovered connected component, moves to that node, and explores231

one of its neighbors.232

2.1 Algorithm Design following a Greedy Bayesian Approach233

In our setting the treasure is placed by an adversary. However, we can still study algorithms234

induced by assuming that it is placed in one of the vertices according to some known distri-235

bution and see how they measure up in our worst case setting. As mentioned, this approach236

is similar to [4], which studies the closely related, yet much simpler problem of search on237

the line. Of course, the success of this scheme highly depends on the choice of the prior238

distribution we take.239

To make our life easier, let us first assume that the structure of the tree is known to the240

algorithm. Also, we assume the treasure is placed in one of the leaves of the tree according241

to some known distribution θ, and denote by adv the advice on the nodes we have already242

visited. Aiming to find the treasure as fast as possible, a possible greedy algorithm explores243

the vertex that, given the advice seen so far, has the highest probability of having the244

treasure in its subtree.245

We extend the definition of θ to internal nodes by defining θ(u) to be the sum of θ(w)246

over all leaves w of T (u). Given some u that was not visited yet, and given the previously247

seen advice adv, the probability of the treasure being in u’s subtree T (u), is:248

P (τ ∈ T (u) | adv) = P (τ ∈ T (u))
P (adv) P (adv | τ ∈ T (u))249

= θ(u)
P (adv)

∏
w∈−→adv(u)

(
pw + qw

∆w

) ∏
w∈←−adv(u)

qw
∆w

.250

251
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The last factor is qw/∆w because it is the probability that the advice at w points exactly
the way it does in adv, and not only away from τ . Note that the advice seen so far is
never for vertices in T (u) as we consider a walking algorithm, and u has not been visited
yet. Therefore, if τ ∈ T (u) then correct advice in adv points to u. We ignore the term
pw + qw/∆w as it is normally quite close to 1, and applying a log we can approximate the
relative strength of a node by:

log(θ(u)) +
∑

w∈←−adv(u)

log
(
qw
∆w

)
.

We do not want to assume that our algorithm knows qw, but we do assume that in the worst
scenario qw ∼ 1/

√
∆w. Assigning this value and rescaling we finally define:

score(u) = 2
3 log(θ(u))−

∑
w∈←−adv(u)

log(∆w).

When comparing two specific vertices u and v, score(u) > score(v) iff:

∑
w∈〈u,v〉∩−→adv(u)

log(∆w)−
∑

w∈〈u,v〉∩−→adv(v)

log(∆w) > 2
3 log

(
θ(v)
θ(u)

)
.

This is because any advice that is not on the path between u and v contributes the same to252

both sides, as well as advice on vertices on the path that point sideways, and not towards u253

or v3. Since we use this score to compare two vertices that are neighbors of already explored254

vertices, and our algorithm is a walking algorithm, then we will always have all the advice255

on this path. In particular, the answer to whether score(u) > score(v), does not depend256

on the specific choices of the algorithm, and does not change throughout the execution of257

the algorithm, even though the scores themselves do change. The comparison depends only258

on the advice given by the environment.259

Let us try and justify the score criterion at an intuitive level. Consider the case of a
complete ∆-ary tree, with θ being the uniform distribution on the leaves4. Here score(u) >
score(v) if (cheating a little by thinking of log(∆) and log(∆− 1) as equal):

∣∣−−→adv(u) ∩ 〈u, v〉
∣∣− ∣∣−−→adv(v) ∩ 〈u, v〉

∣∣ > 2
3
(
d(u)− d(v)

)
.

If, for example, we consider two vertices u, v ∈ T at the same depth, then score(u) > score(v)260

if there is more advice pointing towards u than towards v. If the vertices have different261

depths, then the one closer to the root has some advantage, but it can still be beaten.262

For general trees, perhaps the most natural θ to take is the uniform distribution on all263

nodes (or just on all leaves - this choice is actually similar). It is also a generalization of the264

example above. Unfortunately, however, while this works well on the complete ∆-ary tree,265

we show in Appendix C that this approach fails on other (non-complete) ∆-ary trees.266

3 It is tempting to define score(u) as the sum of weighted advice from the root to u. However, when
comparing two vertices, the advice of their least common ancestor would be counted twice, which we
prefer to avoid.

4 Actually, a similar formula could be derived choosing θ to be the uniform distribution over all nodes,
but for technical reasons it is easier to restrict it to leaves only.

ESA 2018



54:8 Searching a Tree with Permanently Noisy Advice

2.2 Algorithm Awalk267

In our context, there is no distribution over treasure location and we are free to choose θ as
we like. We take θ to be the distribution defined by a simple random process. Starting at
the root, at each step, walk down to a child uniformly at random. until reaching a leaf. For
a leaf v, define θ(v) as the probability that this process eventually reaches v. Our extension
of θ can be interpreted as θ(v) being the probability that this process passes through v.
Formally, θ(σ) = 1, and θ(u) = (∆σ

∏
w∈〈σ,u〉(∆w − 1))−1. It turns out that this choice,

slightly changed, works remarkably well, and gives an optimal algorithm in noise conditions
that practically match those of our lower bound. For a vertex u 6= σ, define:

β(u) =
∏

w∈[σ,u〉

∆w.

It is a sort of approximation of 1/θ(u), which we prefer for technical convenience. Indeed,268

for all u, 1/β(u) ≤ θ(u). A wonderful property of this β (besides the fact that it gives rise269

to an optimal algorithm) is that to calculate β(v) (just like θ), one only needs to know the270

degrees of the vertices from v up to the root. It is hard to imagine distributions on leaves271

that allow us to calculate the probability of being in a subtree without knowing anything272

about it!273

In the walking algorithm, if v is a candidate for exploration, these nodes must have been274

visited already and so the algorithm does not need any a priori knowledge of the structure275

of the tree. The following claim will be soon useful:276

I Claim 6. The following two inequalities hold for every c < 1:

∑
v∈T

cd(v)

β(v) ≤
1

1− c ,
∑
v∈T

d(v)cd(v)

β(v) ≤ c

(1− c)2 .

Proof. To prove the first inequality, follow the same random walk defining θ. Starting at the277

root, at each step choose uniformly at random one of the children of the current vertex. Now,278

while passing through a vertex v collect cd(v) points. No matter what choices are made, the279

number of points is at most 1+c+c2 + ... = 1/(1−c). On the other hand,
∑
v∈T θ(v)cd(v) is280

the expected number of points gained. The result follows since 1/β(v) ≤ θ(v). The second281

inequality is derived similarly, using the fact that c+ 2c2 + 3c3 + . . . = c/(1− c)2. J282

For a vertex u ∈ T and previously seen advice adv define:

score(u) = 2
3 log

(
1

β(u)

)
−

∑
w∈←−adv(u)

log(∆w).

Algorithm Awalk keeps track of all vertices that are children of the vertices it explored so283

far, and repeatedly walks to and then explores the one with highest score according to the284

current advice, breaking ties arbitrarily. Note that the algorithm does not require prior285

knowledge of either the tree’s structure, or the values of ∆, q, d or n.286

2.3 Analysis287

Recall the definition of Condition (?) from Definition 1. The next lemma provides a large288

deviation bound tailored to our setting. The proof appears in Appendix B.289
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I Lemma 7. Consider independent random variables X1, . . . , X`, where Xi takes the values
(− log ∆i, 0, log ∆i) with respective probabilities (pi + qi

∆i
, qi(1 − 2

∆i
), qi∆i

), for parameters
pi, qi = 1−pi and ∆i > 0. Assume that Condition (?) holds for some ε > 0. Then for every
integer (positive or negative) m,

P

(∑̀
i=1

Xi ≥ m

)
≤ (1− ε)`

e
3m

4

∏̀
i=1

1√
∆i

.

The next theorem states that Awalk is optimal up to a constant factor for the regime of noise290

below the threshold. It establishes Theorem 2.291

I Theorem 8. Assume that Condition (?) holds for some fixed ε > 0. Then M(Awalk) =292

O(d
√

∆), where the constant hidden in the O notation only depends polynomially on 1/ε.293

Proof. Denote the vertices on the path from σ to τ by σ = u0, u1, . . . , ud = τ in order.294

Denote by Ek the expected time to reach uk once uk−1 is reached. We will show that for all295

k, Ek = O(
√

∆), and by linearity of expectation this concludes the proof.296

Once uk−1 is visited, Awalk only goes to some of the nodes that have score at least as
high as uk. We can therefore bound Ek from above by assuming we go through all of them,
and this expression does not depend on the previous choices of the algorithm and the nodes
it saw before seeing uk. The length of this tour is bounded by twice the sum of distances of
these nodes from uk. Hence,

Ek ≤ 2
k∑
i=1

∑
u∈C(ui)

P (score(u) ≥ score(uk)) · d(uk, u).

Where C(uk) = T (uk−1) \ T (uk), and so ∪ki=1C(ui) = T \ T (uk). Recall that scores are297

defined so that u has a larger score than uk, if the sum of weighted arrows on the path 〈uk, u〉298

is at least 2
3 log(β(u)/β(uk)). Setting m to be this value, Lemma 7 allows to calculate this299

probability exactly. Indeed, a vertex x on the path should point towards uk: this happens300

with probability px + qx/∆x. Otherwise, it points towards u with probability qx/∆x, and301

elsewhere with probability qx(1− 2/∆x). Denoting c = 1− ε,302

Ek
2 ≤

k∑
i=1

∑
u∈C(ui)

cd(uk,u)−1

e
3
4 ·

2
3 log

(
β(u)
β(uk)

)√√√√ ∏
v∈〈u,uk〉

1
∆v
· d(uk, u)303

= 1
c

k∑
i=1

∑
u∈C(ui)

cd(uk,u)√
β(u)
β(uk)

√
∆ui

β(uk)
β(ui) ·

β(u)
β(ui)

· d(uk, u)304

≤
√

∆
c

k∑
i=1

cd(uk,ui)
∑

u∈C(ui)

cd(ui,u) β(ui)
β(u) ·

(
d(uk, ui) + d(ui, u)

)
.305

306

By Claim 6, applied to the tree rooted at ui, we get:307 ∑
u∈C(ui)

cd(ui,u)β(ui)
β(u) <

1
1− c , and

∑
u∈C(ui)

cd(ui,u)β(ui)
β(u) d(ui, u) < c

(1− c)2 .308

And so:309

Ek
2 ≤

√
∆

c(1− c)

k∑
i=1

cd(uk,ui)d(uk, ui) +
√

∆
(1− c)2

k∑
i=1

cd(uk,ui)310

≤ (1 + c)
√

∆
(1− c)3 ≤ 2

√
∆

ε3 = O
(√

∆
)
,311

312
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where we again used the equality c+ 2c2 + 3c3 + . . . = c/(1− c)2. J313

3 Query Algorithms314

3.1 An O(
√

∆ log ∆ log2 n) Queries Algorithm315

Our next goal is to prove the first item in Theorem 3. As is common in search on trees, our316

technique in this section is based on separators. We say a node u is a separator of T if all317

the connected components of T \ {u} are of size at most |T |/2. It is well known that such318

a node exists. Assume there is some local procedure, that given a vertex u decides with319

probability 1− δ in which one of the connected components of T \ {u}, the treasure resides.320

Applying this procedure on a separator of the tree, and then focusing the search recursively321

only on the component it pointed out, results in a type of algorithm we call a separator based322

algorithm. It uses the local procedure at most dlog2 ne times, and by a union bound, finds323

the treasure with probability at least 1− dlog2 neδ. Broadly speaking, we will be interested324

in the expected running time of this sort of algorithm conditioned on it being successful.325

This sort of conditioning complicates matters slightly. In what follows, we assume that the326

set of separators for the tree is fixed.327

Proof. (of the first item in Theorem 3) The algorithm we build is denoted Asep. It runs a328

separator based algorithm in parallel to some arbitrary exhaustive search algorithm. The329

meaning of in parallel here simply means that the two algorithms are run in an alternating330

fashion. Fix some small h. The local exploration procedure, denoted localh, for a vertex u331

proceeds as follows.332

333

Procedure localh(u). Consider the tree Th(u) rooted at u consisting of all vertices satisfy-334

ing log∆ β(v) < h together with their children. So a leaf of v ∈ Th(u) is either a leaf of T , or335

satisfies ∆h ≤ β(v) < ∆h+1. Denote the second kind a nominee. Call a nominee promising if336

the number of weighted arrows pointing to v is large, specifically, if
∑
w∈[u,v〉Xw ≥ 2

3h log ∆,337

where Xw = log ∆w if the advice at w is pointing to v, Xw = − log ∆w if it is pointing to u,338

and Xw = 0 otherwise. Viewing it as a query algorithm, we now run the walking algorithm339

Awalk on Th(u) (starting at its root u) until it either finds the treasure or finds a promising340

nominee. In the latter case, localh(u) declares that the treasure is on the connected com-341

ponent of T \ {u} containing this nominee. If τ ∈ Th(u) then set τu = τ . Otherwise let τu342

be the leaf of Th(u) closest to the treasure, and so in this case τu is a nominee. Say that u is343

h-misleading if either (1) τ 6∈ Th(u) and τu is not promising, or (2) there is some promising344

nominee v ∈ Th(u) that is not in the same connected component of T \ {u} as τu. Note345

that if u is not h-misleading then localh(u) necessarily outputs the correct component of346

T \ {u}, namely, the one containing the treasure. The proof of the following lemma appears347

in Appendix D. The part regarding regular trees will be needed later.348

I Lemma 9. For any u, P (u is h-misleading) ≤ (∆+1)(1−ε)h. Also, for any event X such349

that X occurring always implies that u is not misleading, we have P (X)Q (localh(u) | X) =350

O(
√

∆ log ∆ ·h). In the case the tree is regular, these bounds become 2(1−ε)h and O(
√

∆ ·h)351

respectively. The constant hidden in the O notation only depends polynomially on 1/ε.352

Taking h = −3 log(2n)/ log(1 − ε), gives P (u is misleading) ≤ 1/n2. Denote by Good353

the event that none of the separators encountered are misleading. By a union bound,354

P (Good c) ≤ 1/n.355

Q(Asep) = P (Good )Q (Asep | Good ) + P (Good c)Q (Asep | Good c) . (1)356
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As Asep runs an exhaustive search algorithm in parallel, the second term is O(1). For the first357

term, note that conditioning on Good , all local procedures either find the treasure or give358

the correct answer, and so there are O(logn) of them and they eventually find the treasure.359

Denote by ui the i-th vertex that localh is executed on. By linearity of expectation, and360

applying Lemma 9, the first term of (1) is P (Good )
∑
iQ (localh(ui) | Good ) = O(logn ·361 √

∆ log ∆ · h) = O(
√

∆ log ∆ log2 n). As log(1 + x) > x always, then −1/ log(1 − ε) ≤ 1/ε,362

and the hidden factor in the O is as stated. J363

3.2 An Almost Tight Result for Regular Trees364

We now turn our attention to the second item in Theorem 3. Due to space constraints365

its full proof is deferred to Appendix E. At a high level, we run two algorithms in parallel366

(i.e., in an alternating fashion): Afast , and Amid . Algorithm Afast is actually Asep applied367

with parameter h = Θ(log logn) instead of Θ(logn). Using Lemma 9, with probability368

1− 1/logO(1)(n), the local procedure of Afast always detects the correct component for each369

separator, and Afast needs an expected number of O(
√

∆ · logn · log logn) queries to find370

the treasure. This is the running time we are aiming for.371

Algorithm Amid is similar to Asep except it uses a different subroutine for local explor-372

ation. It then remains to show that it finds the treasure using a relatively low expected373

number of queries even conditioning on the event that caused Afast to fail, namely, the374

event that there is a misleading separator at the scale h = Θ(log logn). The query complex-375

ity of Amid does blow up under this event but we show that the blowup is not that bad, and376

can be compensated by the fact that the bad event has small probability. This is the core of377

the proof, and what requires most work. In fact, the complexity of the arguments led us to378

restrict the discussion to regular trees and also modify the subroutine for local exploration379

to ease the analysis.380

4 Lower Bounds381

We next prove Items (1) and (2a) of Theorem 4. Item (2b) is proved in Appendix G.2.382

4.1 Exponential Complexity Above the Threshold383

We wish to prove Item (1) in Theorem 4. Namely, that for every fixed ε > 0, and for every384

complete ∆-ary tree, if q ≥ 1+ε√
∆−1 · (1 + 1

∆−1 ), then every randomized search algorithm has385

query (and move) complexity which is both exponential in the depth d of the treasure and386

polynomial in n. In fact, this lower bound holds even if the algorithm has access to the387

advice of all internal nodes. The following lemma is proved in Appendix G.1:388

I Lemma 10. Assume the treasure is placed in a leaf τ of the complete ∆-ary tree. Denote by389

adv the random advice on all internal nodes, then the expected number of leaves u satisfying390

|−−→adv(u)| > |−−→adv(τ)|, is a lower bound on the query complexity of any algorithm.391

Using Lemma 10, all we need to do is approximate the number of leaves u satisfying392

|−−→adv(u)| > |−−→adv(τ)|. When comparing the number of pointers that point towards each of393

two different nodes, only the pointers of the internal nodes on the path between them may394

influence on the result. The probability that a leaf u “beats” the treasure τ in the sense of395

Lemma 10, is at least the probability that exactly one node on the path points to u and396
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none of the rest point towards the treasure. This probability is at least397

q

∆ ·
(
q ·
(

1− 1
∆

))d(u,τ)−2
.398

There are precisely (∆− 1)D leaves whose distance from the treasure is 2D. Therefore, the399

expected number of leaves that beat the treasure is at least:400

q

∆(∆− 1)Dq2D−2 ·
(

1− 1
∆

)2D−2
= ∆
q(∆− 1)2 ·

(
q2(∆− 1)3

∆2

)D
≥ ∆
q(∆− 1)2 · (1 + ε)2D.401

402

Item (1) in Theorem 4 follows. J403

4.2 A Lower Bound of Ω(
√

∆ · log∆ n) when q ∼ 1/
√

∆404

We now prove Item (2a) in Theorem 4. We wish to prove that for ∆ ≥ 3, on the complete405

∆-ary tree of depth D, any algorithm needs Ω(q∆D) queries in expectation. Note that,406

in particular, when q is roughly 1/
√

∆, and n is the tree size, the query complexity is407

Ω(
√

∆ · log∆ n). Before proving this lower bound, we need the following observation (proved408

in Appendix G.3)409

I Observation 11. Any randomized algorithm that finds a uniformly chosen treasure between410

k identical objects needs an at least (k + 1)/2 queries in expectation.411

To prove the lower bound of Ω(q∆D), consider the complete ∆-ary tree of depth D. We412

prove by induction on D, that if the treasure is placed uniformly at random. in one of the413

leaves, then the expected query complexity of any algorithm is at least q(∆/2 − 1)D. If414

D = 0, then there is nothing to show. Assume this is true for D, and we shall prove it for415

D+ 1. Let T1, . . . , T∆−1 be the subtrees hanging down from the root (in the induction, the416

“root” is actually an internal node, and so has ∆− 1 children), each having depth D. Let i417

be the index such that τ ∈ Ti, and denote by Q the number of queries before the algorithm418

makes its first query in Ti. We will assume that the algorithm gets the advice in the root419

for free. Denote by Y the event that the root is faulty. In this case, Observation 11 applies,420

and we need at least ∆/2− 1 queries to hit the correct tree. We subtracted one query from421

the count because we want to count the number of queries strictly before querying inside Ti.422

We therefore get E [Q] ≥ P (Y ) · E [Q |Y ] ≥ q(∆/2 − 1). By linearity of expectation, using423

the induction hypothesis, we get the result for a uniformly placed treasure over the leaves,424

and so it holds also in the adversarial case. J425

5 Open Problems426

Closing the small gap between the upper and lower bounds for the query setting remains427

open. The noisy advice model may well be interesting to study in other search settings.428

In particular, obtaining efficient search algorithms for general graphs is highly intriguing.429

Even though the likelihood of a node being the treasure under a uniform prior can still be430

computed in principle, it is not so easy to compare two nodes as in Theorem 8 because there431

may be more than a single path between them.432

In a limited regime of noise, we believe that memoryless strategies might very well be433

efficient also on general graphs, and we pose the following conjecture. Proving it may require434

the use of tools from the theory of RWRE, which seem to be lacking in the context of general435

graph topologies.436

I Conjecture 12. There exists a probabilistic following algorithm that finds the treasure in437

expected linear time on any undirected graph assuming q < c/∆ for a small enough c > 0.438
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Appendix494

A A Natural Attempt that Fails495

The following example provides useful intuition. Consider the permissive scenario where496

the tree is known and all the advice at the internal nodes of the tree is available to the497

algorithm. Since advice is sampled independently at each node, it seems natural, at least498

at first glance, to associate each node with a “likelihood rank”, being the total number of499

advice pointers pointing to it in the whole tree. A natural query algorithm Anatural would500

then be to query the nodes one by one, according to the resulting ranking. In other terms501

Anatural goes at each step to the unvisited node having most arrows pointing to it among502

the neighbors of previously seen nodes. Unfortunately, this naive strategy turns out highly503

inefficient. To see why, consider a complete ∆-ary tree of depth D, except for one child504

of the root, which is turned into a leaf, trimming its (∆ − 1)D−1 descendants. Assume505

further that this particular child is in fact the treasure location τ . For any leaf v 6= τ , with506

probability q
∆ · q

D−1(1− 1
∆ )D−1 the root points towards v and all the rest of the nodes on507

the path 〈σ, `〉 do not point upward (towards the treasure). This makes all nodes of the path508

better ranked than τ , and so Anatural would query them all before querying τ . There are509

(∆− 1)D such leaves, and hence the expected number of nodes queried before the treasure510

is at least qD(∆− 1)D−1(1− 1
∆ )D in expectation. Even for q as small as c/∆ this number511

is exponential in the depth of the tree.512

The main reason why Anatural fails is that, although the suggested ranking reflects the513

correct likelihood under a uniform prior of the treasure, this uniform prior is not tailored to514

our setting of adversarial treasure location. Instead, the algorithm we present in Section 2515

relies on a ranking which incorporates in a clever way the tree structure.516

B Proof of the Chernoff Estimate517

I Lemma 7 (restated). Consider independent random variables X1, . . . , X`, where Xi takes
the values (− log ∆i, 0, log ∆i) with respective probabilities (pi+ qi

∆i
, qi(1− 2

∆i
), qi∆i

), for para-
meters pi, qi = 1 − pi and ∆i > 0. Assume that Condition (?) holds for some ε > 0. Then
for every integer (positive or negative) m,

P

(∑̀
i=1

Xi ≥ m

)
≤ (1− ε)`

e
3m

4

∏̀
i=1

1√
∆i

.



L. Boczkowski, A. Korman, and Y. Rodeh 54:15

Proof. For any s ∈ R,518

P

(∑̀
i=1

Xi ≥ m

)
= P

(
es
∑`

i=1
Xi ≥ esm

)
≤

E
[
es
∑

i
Xi
]

esm
=
∏
i E
[
esXi

]
esm

519

= 1
esm

∏̀
i=1

(
pi + qi

∆i

elog(∆i)s
+ qi

(
1− 2

∆i

)
+ qi

∆i
elog(∆i)s

)
520

≤ 1
esm

∏̀
i=1

(
1

∆s
i

+ qi + qi∆s−1
i

)
.521

522

We take s = 3
4 , and get:523

P

(∑̀
i=1

Xi ≥ m

)
≤ 1
e

3m
4

∏̀
i=1

(
∆−

3
4

i + qi + qi∆
− 1

4
i

)
≤ 1
e

3m
4

∏̀
i=1

1− ε√
∆i

524

Where for the last step we used Condition (?) which says:525

qi <
1− ε−∆−

1
4

i√
∆i + ∆

1
4
i

=⇒ qi∆
1
2
i +qi∆

1
4
i +∆−

1
4

i < 1−ε =⇒ ∆−
3
4

i +qi+qi∆
− 1

4
i <

1− ε√
∆i

526

J527

C Taking θ to be the Uniform Distribution is not a Good Idea528

As mentioned at the end of Section 2.1, when our tree is a complete ∆-ary tree, choosing θ529

to be the uniform distribution over the leaves results in an efficient algorithm with respect530

to the worst case placement of the treasure. Trying to tackle more general trees, perhaps531

the most natural a priori distribution is the uniform one over the nodes of the tree. As our532

technical presentation accommodates only distributions on leaves, we take θ to be uniform533

over the leaves only, and remark that the same result we get here applies to the former case.534

Unfortunately, we show that this variant may take exponentially many queries before535

finding the treasure no matter what q is. This in fact follows from a similar argument to536

the one mentioned in Section A. The instance we consider is a complete ∆-ary tree of depth537

D, except for one child of the root, which is turned into a leaf, trimming its (∆ − 1)D−1
538

descendants. We consider the case that this particular child is in fact the treasure location539

τ .540

Recall from Section 2.1 that score(u) > score(τ) iff:541 ∑
w∈〈u,τ〉∩−→adv(u)

log(∆w)−
∑

w∈〈u,τ〉∩−→adv(τ)

log(∆w) > 2
3 log

(
θ(τ)
θ(u)

)
, (2)542

543

where θ(u) is now understood as the ratio between the number of leaves in T (u) divided by544

the total number of leaves in T , as opposed to the total number of leaves if the tree was a545

complete tree.546

In particular, consider any node u at distance a · D from the root for some a < 2/5.547

This node u owns a tree T (u) of size (∆ − 1)D(1−a), hence θ(u) ∼ (∆ − 1)−a. In contrast548

θ(τ) = (∆− 1)−D. Therefore,549

2
3 log

(
θ(τ)
θ(u)

)
= −2

3D(1− a) log(∆),550

551
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where we write log(∆) in place of log(∆− 1) as it does not change the nature of the result,552

only the choice of the constant 2/5. On the other hand there are only a ·∆ nodes on the path553

〈u, τ〉 so the left side of (2) is always greater than −aD log ∆. In other words if a < 2/5554

then − 2
3D(1 − a) log ∆ < −aD log ∆, and any node u at depth a · D has a better score555

than τ , regardless of the advice on the path 〈τ, u〉 which means that our algorithm needs556

(∆− 1)2/5D steps at least.557

D Proof of Lemma 9558

I Lemma 9 (restated). For any u, P (u is h-misleading) ≤ (∆ + 1)(1− ε)h. Also, for any559

event X such that X occurring always implies that u is not misleading, we have P (X)Q (localh(u) | X) =560

O(
√

∆ log ∆ ·h). In the case the tree is regular, these bounds become 2(1−ε)h and O(
√

∆ ·h)561

respectively. The constant hidden in the O notation only depends polynomially on 1/ε.562

Proof. To check the probability that u is misleading, consider two cases:563

1. τ 6∈ Th(u), and τu is not promising. By Lemma 7, and recalling that ∆h ≤ β(τu), the564

probability τu is not promising is:565

P

 ∑
w∈[u,τu〉

−Xw ≤
2
3h log(∆)

 = P

 ∑
w∈[u,τu〉

Xw ≥ −
2
3 · h log(∆)

566

≤
∏

w∈[u,τu〉

1− ε√
∆w

· e 3
4 ·

2
3h log(∆) = (1− ε)d(u,τu)√

β(τu)
∆h

2 ≤ (1− ε)d(u,τu).567

568

As d(u, τu) ≥ log∆ β(τu) ≥ h, this is at most (1− ε)h.569

2. If v is a nominee that is not in the same connected component of T \ {u} as τu, then by570

Lemma 7, the probability that v is promising is571

P

 ∑
w∈[u,v〉

Xw ≥
2
3 log ∆ · h

 ≤ ∏
w∈[u,v〉

1− ε√
∆w

· e− 3
4 ·

2
3h log ∆

572

= (1− ε)d(u,v)√
β(v)

∆−h2 ≤ (1− ε)d(u,v)

∆h
.573

574

However, denote by L the set of nominees in Tu. As they are a subset of the leaves of575

Tu, by the way θ is defined:576

1 ≥
∑
x∈L

θ(v) ≥
∑
x∈L

1
β(v) ≥

∑
x∈L

1
∆h+1 = |L|

∆h+1 (3)577

So, |L| ≤ ∆h+1. Therefore, by a union bound, the probability that there exists a nominee578

v that renders u misleading is at most ∆(1− ε)h.579

The probability that u is misleading is then at most (1 + ∆)(1− ε)h as stated. In the case580

where the tree is regular, the analysis is the same, except that in (3), β(v) = ∆h, and so581

following the same logic, |L| ≤ ∆h, and this part contributes only (1− ε)h.582

For the second part of the lemma, consider some event X where u is not misleading. As583

τu is either the actual treasure or promising, and acts as the treasure in the eyes of Awalk,584

then the local procedure stops when it encounters τu. It might actually stop before (because585

it found another promising node), so, Q (localh(u) | X) ≤ Q (Awalk(Th(u)) | X). Therefore,586

P (X)Q (local(u) | X) ≤ P (X)Q (Awalk(Th(u)) | X) ≤ Q (Awalk(Th(u))) = O(
√

∆·depth(Th(u)))587
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But the depth of Tu is at most O(h log ∆), since its leaves satisfy β(v) < ∆h+1, and β(v) ≥588

2depth(v). For the case of a regular tree, β(v) = ∆depth(v) and so the depth of Tu is at most589

h, giving the result. J590

E A More Involved O(
√

∆ log n · log log n) Algorithm for Regular Trees591

In this section we give a formal proof for the second item in Theorem 3. That is, we592

present algorithm A2−layers which is designed for (not necessarily complete) ∆-ary trees,593

and performs extremely well in the regime where q < c/
√

∆ for some small enough positive594

constant c. Specifically, in that regime, it finds the treasure in O(
√

∆ logn · log logn) queries595

in expectation. Before we continue, let us note that taking a small enough c, the condition596

q < c/
√

∆ we are using here actually implies5 Condition (?) with ε = (1− 2−1/4)/2.597

Algorithm A2−layers runs two algorithms in parallel, namely, Afast , and Amid . Algorithm598

Afast is actually Asep, except that it applies the local procedure with parameter h being599

h2 = dκ2 log logne rather than Θ(logn). Algorithm Amid is similar to Asep, as it also600

uses h being h1 = dκ1 logne. However it uses a different local exploration procedure, see601

more details in Section E.1. κ1 and κ2 are constant independent of n whose value will be602

determined later. We will henceforth omit the ceiling d·e in the interest of readability.603

Let us first recall some of the definitions that were introduced in Section 3.1. Since only604

regular trees are considered in this section, some of the definitions are simplified. Here Th(u)605

denotes the tree of nodes at distance at most h from u. Call a leaf v ∈ Th(u) a nominee if606

its distance to u is exactly h. Denote by U(u) the set of nominees that are not in the same607

component as τu in T \{u}. Call a nominee promising if
∑
w∈[u,v〉Xw ≥ 2

3h, where Xw = 1 if608

the advice at w is pointing to v, Xw = −1 if it is pointing to u, and Xw = 0 otherwise. Note609

that Xu can never be −1. Let τu be the leaf on Th(u) closest to τ if τ /∈ Th(u) and τu = τ610

otherwise. Recall also that u is called h-misleading, if one of the two following happens (1)611

τu 6= τ and τu is not promising, or (2) There is some promising nominee in U(u).612

Let Excellent be the event that no separator on the way to the treasure is h2-misleading.613

The following claim is a direct consequence of Lemma 9 (regular tree case) and linearity of614

expectation, summing the query complexity of the dlogne separators on the way to the615

treasure.616

I Claim 13.

P(Excellent ) · Q (Afast | Excellent ) = O
(√

∆ logn · log logn
)
.617

To bound the total expected number of queries, we run in parallel algorithm Amid . All that618

remains is then to prove that P(Excellent c) · Q (Amid | Excellent c) = O(
√

∆ logn).619

E.1 Algorithm Amid620

As mentioned, Amid is similar to Asep except that it uses a different local procedure. More621

precisely, recall that Asep executes Procedure localh(u) by running Awalk on Th(u) until it622

either finds the treasure or finds a promising nominee, and in the latter case, it declares that623

the treasure is on the connected component of T \{u} containing this nominee. In the context624

5 Indeed, recall that for regular trees, Condition (?) reads q < 1−ε−∆−1/4
√

∆+∆1/4 . Now, ∆ ≥ 2 implies that

1−∆−1/4 ≥ 1− 2−1/4 and ∆1/4 ≤
√

∆. Hence 1−ε−∆−1/4
v√

∆+∆1/4 ≥
1−2−1/4−ε

2
1√
∆
. We may set ε = 1−2−1/4

2

so that, as soon as c < 1−2−1/4−ε
2 = 1−2−1/4

4 , q < c∆−1/2 implies Condition (?) with that choice of ε.
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of Algorithm Amid , for technical commodity, we choose to run Procedure localh(u) with a625

simpler exploration routine which we call Aloop. It is less efficient than Awalk but its simplicity626

will be useful for analyzing its behaviour in various, “less clean”, circumstances. Indeed,627

we will need to analyse the performances of Aloop, conditioning on the event Excellent c,628

implying that some parts of the tree have to be pointing in the wrong direction.629

The fact that Aloop is less efficient than Awalk will not affect the final bound, as its running630

time will dominate the total running time with very low probability.631

Algorithm Aloop. Recall in this section we only deal with ∆-regular trees. Define level i as632

the set of all nodes at distance i from the root. At each round, Aloop only compares nodes633

within a given level i. Specifically, it goes to the node in level i with most arrows pointing at634

it among the non-visited nodes in level i. Note that it considers only vertices whose parent635

has been explored already. The index i is incremented modulo the depth of the tree D, on636

every round. Below is a description in pseudocode. The loop over i explains the name Aloop.637

Algorithm 1: Algorithm Aloop

1 Continuously loop over levels 1, 2, . . . , D
2 When considering level i, go to the yet unexplored reachable node at the current

level (if one exists) that has most arrows pointing to it.

In what follows we will analyse Algorithm Aloop conditioning on some parts of the tree638

being misleading. For readability considerations, the interested reader might wish to first see639

how it behaves on a simpler scenario, without any conditioning. The proof of the following640

appears in Appendix F.2.641

I Lemma 14. Consider a (not necessarily complete) ∆-ary tree. Then Q(Aloop) = O(D3
√

∆).642

In fact, a slightly more refined analysis shows that Q(Aloop) = O(D2
√

∆), but this not643

needed for our current purposes, and so we omit it.644

E.2 Analysis of Amid Conditioning on Excellent c
645

To complete the proof of the second item in Theorem 3 we will show that if c small enough,646

then647

P(Excellent c) · Q (Amid | Excellent c) = O(
√

∆ logn).648
649

E.2.1 Decomposing Excellent c
650

At a high level, we seek to break Excellent c into many elementary bad events. Denote651

u1, . . . u` the sequence of separators on the way to the treasure τ . Note that ` ≤ dlogne.652

First,653

Excellent c =
⋃
i≤`

{ui is h2-misleading} .654

655

Using the union bound argument in Section F (Claim 21),656

Q
(

Amid
⋂

Excellent c
)
≤
∑
i≤`

Q
(

Amid
⋂
ui is h2-misleading

)
, (4)657

658

where, to keep the equation light we write Q(A
⋂
E) in place of Q(A | E) · P(E) where A is659

an algorithm and E is an event.660
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Since we ultimately want to show that the left hand side in the previous equation is661

O(
√

∆ logn), it is sufficient to show that for any fixed i ≤ `,662

Q
(

Amid
⋂
ui is h2-misleading

)
= O(

√
∆). (5)663

664

From now on, we fix i and focus on the case where ui is h2-misleading. Recall that665

algorithm Amid , just as Asep, proceeds in phases of local exploration, running also an ex-666

haustive search in parallel to handle the case that one of the local explorations ends with a667

wrong answer. Denote by Good the event that all separators on the way to the treasure,668

namely, u1, . . . , u`, are not h1-misleading. Under Good , the local exploration phases amount669

to running Aloop on Th1(uj) for j ≤ `. Now,670

Q
(

Amid
⋂
ui is h2-misleading

)
= Q

(
Amid

⋂
(ui is h2-misleading ∩ Good )

)
671

+Q
(

Amid
⋂

(ui is h2-misleading ∩ ¬Good )
)
.672

673

By Lemma 9 (regular tree case),674

P(¬Good ) ≤ 2(1− ε)h1 = 2(1− ε)κ1 logn
675

Recall that Condition (?) is satisfied with the constant ε = (1 − 2−1/4)/2, and so taking676

κ1 to be a large enough constant, gives that P(¬Good ) > 1/n. This means that if Good677

does not hold, it is fine to resort to exhaustive search, as the second term above becomes678

O(1). Also, since Amid runs Aloop on local subtrees until it finds a promising nominee, and679

conditioned on Good , the local “treasure” is such a promising nominee, then the number of680

queries made by such a local run is bounded above by number of queries Aloop needs to find681

the treasure there. So by linearity of expectation,682

Q
(

Amid
⋂
ui is h2-misleading

)
683

≤
∑

j≤logn
Q
(

Aloop (Th1(uj))
⋂

(ui is h2-misleading ∩ Good )
)

+O(1)684

≤
∑

j≤logn
Q
(

Aloop (Th1(uj))
⋂
ui is h2-misleading

)
+O(1).685

686

The last inequality follows from the fact that for any algorithm A and any two events687

E1 ⊆ E2, Q(A
⋂
E1) ≤ Q(A

⋂
E2).688

For the sake of lightening notations, we henceforth refer to uj as σ′ and ui as u. This689

choice of notations reflects the fact that we are rooting the tree at uj = σ′ and running Aloop690

on Th1(σ′). The fact that σ′ and u are separators is not relevant in this analysis. We also691

denote by τu the leaf on Th2(u) that is closest to τ and by τ ′ the leaf of Th1(u) that is closest692

to τ or simply τ if τ ∈ Th1(u). With these notations Equation (5) immediately follows once693

we prove:694

I Lemma 15. For any σ′, u ∈ T ,695

Q
(

Aloop (Th1(σ′))
⋂
u is h2-misleading

)
= O

( √
∆

logn

)
.696

697

E.2.2 Decomposing the Event {u is h2-misleading}698

So far we saw that it is sufficient to analyse the events where one separator is h2-misleading.699

We now pursue decomposing these events into even smaller ones. To this aim the following700

definition is convenient.701
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I Definition 16. Let a, b ∈ T be two nodes such that a is the closest one to τ out of the702

nodes in [a, b]. Noting that a vertex can never point to itself:703

For S ⊆ 〈a, b], denote by MS
sides(a, b) the event that the nodes of S neither point towards704

a nor towards b.705

For S ⊆ [a, b〉, denote by MS
up(a, b) the event that the nodes of S all point towards b.706

I Claim 17. For any a, b and S as in Definition 16,707

P
(
MS

sides(a, b)
)
≤ q|S|,708

P
(
MS

up(a, b)
)
≤
(
q
∆
)|S|.709

Let us now see in more detail what it means for a node u to be h2-misleading. First recall710

from the definition that |[u, τu]| = h2, as otherwise τ ∈ Th2(u) and u cannot be h2-misleading711

because of the path [u, τu]. Several cases need to be considered.712

1. τu is not promising, and so the sum of advice on [u, τu〉 is strictly less than 2
3h2. In this713

case, at least one of the following two must be true:714

a. There are 1
6h2 locations on the path [u, τu〉 where the advice points outside of the715

path (the value of the corresponding Xi’s is 0). This corresponds to MS
sides(τu, u) for716

some set S ⊆ [u, τu〉 of size6 |S| = 1
6h2.717

b. There are 1
12h2 locations on 〈u, τu〉 that point towards u (the value of the corres-718

ponding Xi’s is 1). This corresponds to MS
up(τu, u) for some set S ⊆ [u, τu] of size719

|S| = 1
12h2.720

2. Some v ∈ U(u) is promising. In this case there must be some 2
3h2 locations on [u, v]721

that point towards v. This corresponds to MS
up(u, v) for some S ⊆ MS

up([v, u]) of size722

|S| = 2
3h2.723

Define C(u) = {S ⊆ [u, τu] | |S| = 1
6h2} and D(u) = {S ⊆ [u, τu] | |S| = 1

12h2}. Similarly724

define E(u) = {(v, S) | v ∈ U(u), S ⊆ [u, v], and |S| = 2
3h2}. Combining Definition 16 with725

the previous paragraph, yields726

{u is h2-misleading} ⊆ {τu is not promising} ∪
⋃

v∈U(u)

{v is promising}727

⊆
⋃

S∈C(u)

MS
sides(τu, u)

⋃
S∈D(u)

MS
up(τu, u)

⋃
(v,S)∈E(u)

MS
up(u, v).728

729

In fact, E(u) needs to be further decomposed. For each v ∈ E(u), let k(v) = |[u, v] ∩730

[σ′, τ ′]|. For each non-negative integer k ≥ 0, let731

Ek(u) = {(v, S) ∈ E(u) | k(v) = k}.732

Clearly, E(u) = ∪h2
k=0Ek(u).733

6 Here again we omit the d·e.
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Th2
(u)

Th1
(σ) k(v)

MS
sides(τu, u) MS

up(u, v)

u

τ

σ

?

?
?

τu

τ

σ

?

?
?

τu

MS
up(τu, u)

τ

σ

?

?
?

τu

u v

??
?

u

?
?

σ

Figure 1 Different relative positions of u, τu and σ′. The path [u, τu] and different mistake
patterns. In the left one mistakes (depicted as red stars) point outside of [u, τu], in the second they
point towards u and in the third towards a nominee of Th2 (u), v ∈ U(u).

Using the union bound (Claim 21) as in Equation 4, the aforementioned decomposition734

implies:735

Q
(

Aloop (Th1(σ′))
⋂
u is h2-misleading

)
≤

∑
S∈C(u)

Q
(

Aloop(Th1(σ′))
⋂
MS

sides(τu, u)
)

736

+
∑

S∈D(u)

Q
(

Aloop(Th1(σ′))
⋂
MS

up(τu, u)
)

737

+
h2∑
k=0

∑
(v,S)∈Ek(u)

Q
(

Aloop(Th1(σ′))
⋂
MS

up(u, v)
)

(6)

738

739

To prove Lemma 15, our goal will be to show that each sum in the above equation is at740

most O(
√

∆/ logn).741

E.3 Analysing Atomic Expressions742

To prove that each sum is indeed O(
√

∆/ logn) we use the following two lemmas (proved743

in Appendix E.4), which encapsulate the core of this proof, namely, the resilience of Aloop744

to certain kinds of error patterns.745

I Lemma 18. Consider a tree T rooted at σ with treasure located at τ . Let a, b ∈ T be two746

nodes such that a is the closest one to τ out of the nodes in [a, b]. Then,747

Q
(
Aloop |MS

sides(a, b)
)

= O
(
D4∆

|S|+1
2

)
.748

749

I Lemma 19. Consider a tree T rooted at σ with treasure located at τ . Let a, b ∈ T be two750

nodes such that a is the closest one to τ out of the nodes in [a, b]. Then,751

Q
(
Aloop |MS

up(a, b)
)

= O
(
D4∆K+ 1

2 4|S|
)
,752

753

where K = |S ∩ [σ, τ ]|.754

As a first step to bounding the three sums of Equation (6), note that:755

|C(u)| ≤ 2h2 (7)756

|D(u)| ≤ 2h2 , (8)757

|Ek(u)| ≤ 2h2∆h2−k. (9)758
759
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Indeed, C(u),D(u) are sets of subsets of a path of length h2. For the last term, the number760

of v ∈ U(u) at distance h2 from u for which k(v) = k is bounded by ∆h2−k. Now the three761

sums:762

1. S ∈ C(u), so S ⊆ [u, τu] and |S| = 1
6h2, and τu is the closest to τ of all the nodes on the763

path. By Lemma 18,764

Q
(
Aloop(Th1(σ′)) |MS

sides(τu, u)
)

= O
(
h4

1∆
|S|+1

2

)
.765

According to Claim 17,766

P(MS
sides(τu, u)) ≤ q|S|.767

Combining these bounds and (7) yields768 ∑
S∈C(u)

Q
(

Aloop(Th1(σ′))
⋂
MS

sides(τu, u)
)

= O
(

2h2 · q|S| · h4
1∆

|S|+1
2

)
769

= O
(√

∆ · 2h2 · c|S| · h4
1

)
,770

771

because q < c/
√

∆. Recall that h1 = κ1 logn, h2 = κ2 log logn, and |S| = 1
6h2. κ1 was772

already set to be some constant. Taking a large enough κ2 and a small enough c, both773

independent of n, the previous expression is O(
√

∆/ logn) as needed.774

2. S ∈ D(u), so S ⊆ [u, τu] and |S| = 1
12h2. Therefore, by Lemma 19,775

Q
(
Aloop(Th1(σ′)) |MS

up(τu, u)
)

= O
(
h4

1∆|S|+ 1
2 2h2

)
.776

Because K ≤ |S| and 4|S| ≤ 2h2 . Combined with Claim 17 and (8):777 ∑
S∈D(u)

Q
(

Aloop(Th1(σ′))
⋂
MS

up(τu, u)
)

= O
(

2h2 ·
( q

∆

)|S|
· h4

1∆|S|+ 1
2 2h2

)
778

= O
(√

∆ · 4h2 · q|S|h4
1

)
779
780

Again, since |S| = 1
12h2, then c and κ2 can be chosen so that this is O(

√
∆/ logn).781

3. (v, S) ∈ Ek(u), where v ∈ U(u), S ⊆ [u, v], and |S| = 2
3h2. Also, |[u, v] ∩ [σ′, τ ′]| = k,782

and so |S ∩ [σ′, τ ′]| ≤ k. As v ∈ U(u), then u is the closest to treasure of the vertices on783

[u, v]. By Lemma 19,784

Q
(
Aloop(Th1(σ′)) |MS

up(u, v)
)

= O
(
h4

1∆k+ 1
2 4h2

)
785

Combined with (9) and Claim 17:786

h2∑
k=0

∑
(v,S)∈Ek(u)

Q
(

Aloop(Th1(σ′))
⋂
MS

up(u, v)
)

= O

∑
k≤h2

2h2∆h2−k ·
( q

∆

) 2
3h2

h4
1 ·∆k+ 1

2 4h2

787

= O
(√

∆ · h28h2h4
1
(
q2∆

) 1
3h2
)
.788

= O
(√

∆ · h28h2h4
1 · c

1
3h2
)
.789790

Similarly to the two previous sums, this whole expression can be made as small as791

O(
√

∆/ logn).792

Note that we assumed for simplicity that u, τu and v are all inside Th1(σ′). If they are793

not, we take nodes that are the closest to them on this subtree, which can only improve the794

bounds.795

This concludes the proof of Lemma 15 and hence completes the proof of the second item796

in Theorem 3.797
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E.4 The Lemmas About the Resilience of Aloop798

u

τ

σ

a b

z1 z2 z3 z4

?

?
? ?

?

Figure 2 Notations introduced in the proof of Lemma 18 and 19. Points of S are depicted
in red. On the figure n(z1) = 0,m(z1) = 0, n(z2) = 1,m(z2) = 0, n(z3) = 3,m(z3) = 2 and
n(z4) = 3,m(z4) = 0.

I Lemma 18 (restated). Consider a tree T rooted at σ with treasure located at τ . Let799

a, b ∈ T be two nodes such that a is the closest one to τ out of the nodes in [a, b]. Then,800

Q
(
Aloop |MS

sides(a, b)
)

= O
(
D4∆

|S|+1
2

)
.801

802

Proof. As in the proof of Lemma 14, we break the number of queries made by Aloop condi-803

tioning on MS
sides(a, b) into a sum of random variables Qj which correspond to the number804

of queries needed to discover the j-th node on the path [σ, τ ] once the (j − 1)-th was dis-805

covered. Each Qj is bounded above by D times the expected number of competitors who806

beat this node. This is because each phase takes D steps, and only a subset of these807

nodes will actually be checked by Aloop on layer j before trying the correct node. Hence, a808

bound on the number of competitors who beat a given u ∈ [σ, τ ] translates to a bound on809

Q
(
Aloop(T ) |MS

sides(τ, σ)
)
by multiplying it by D2.810

Let u be such a node, and z be a competitor of u (i.e., it is at the same level as u).811

Define k(z) as half the distance between z and u, and denote n(z) := |S ∩ [σ, τ ]∩ [u, z]| and812

m(z) := |S ∩ [σ, τ ]c ∩ [u, z]|. See Figure 2 for illustraion.813

First note, that since all advice of S ⊆ [a, b] points sideways w.r.t. to this path, then any814

of it which is on the path [u, z] also points sideways w.r.t. it, except possibly at one point,815

which may actually point towards z. The different cases are seen in Figure 2:816

For z1, the paths do not intersect at all.817

In the case of z2, if the least common ancestor of u and z2 was a member of S, then it818

could point towards z2, and that would be sideways w.r.t. [a, b].819

For z3, the least common ancestor of b and z3 could point towards z3.820

For z4, the least common ancestor of a and b could point towards z4.821

There is also the case where a /∈ [σ, τ ], which is not depicted on Figure 2. The analysis822

remains valid, and in fact n(z) = 0 for all competitors z.823
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This one special vertex, if it exists, conditioned on that it points sideways w.r.t. [a, b], points824

towards z with probabilty 1/(∆− 2), and otherwise points sideways w.r.t. [u, z].825

Fix k, n andm, and consider a competitor z such that k(z) = k, n(z) = n, andm(z) = m.826

On the path [u, z] the number of advice remaining to be sampled is 2k − n − m − 1. By827

Lemma 20:828

P (z beats u) ≤
(

1− 1
∆− 2

)
P

(2k−1−n−m∑
s=1

Xs ≥ 0
)

+ 1
∆− 2P

(2k−1−n−m∑
s=1

Xs ≥ −1
)

829

=
(

1√
∆

)2k−1−n−m
+ 4

∆− 2

(
1√
∆

)2k−2−n−m
830

=
(

1 + 4
√

∆
∆− 2

)(
1√
∆

)2k−1−n−m
≤ 7 ·

(
1√
∆

)2k−1−n−m
,831

832

as ∆ ≥ 3. For fixed k, n,m there are at most ∆k−m nodes z with k(z) = k and m(z) = m.833

Also, for each such node, n + m ≤ 2k. Hence, the total expected number of competitors834

that beat u is at most:835 ∑
k≤D,n+m≤2k

∆k−m · 7
(

1√
∆

)2k−1−m−n
836

837

For each choice of k there is exactly one corresponding value of n. This n satisfies n ≤ |S|.838

There are also at most D choices for m. Thus, the above is at most839

7 ·
∑

k≤D,n+m≤2k
∆(n+1−m)/2 = O

(
D2∆(|S|+1)/2

)
.840

841

J842

I Lemma 19 (restated). Consider a tree T rooted at σ with treasure located at τ . Let843

a, b ∈ T be two nodes such that a is the closest one to τ out of the nodes in [a, b]. Then,844

Q
(
Aloop |MS

up(a, b)
)

= O
(
D4∆K+ 1

2 4|S|
)
,845

846

where K = |S ∩ [σ, τ ]|.847

Proof. Let u be a node on the path [σ, τ ]. Our aim is to show that the expected number of848

competitors of u that beat it is O(D2∆K+ 1
2 4|S|).849

As in the proof of Lemma 18, let z be a competitor of u. Define k(z) as half the850

distance between z and u, namely k(z) := d(z, u)/2. Denote n(z) := |S ∩ [σ, τ ] ∩ [u, z]|, and851

m(z) := |S ∩ [σ, τ ]c ∩ [u, z]|.852

Fixing k, n and m, take a competitor z such that k(z) = k, n(z) = n, and k(z) = k. The853

probability that such a z beats u is854

P

(2k−1−n−m∑
s=1

Xs ≥ −n−m

)
≤ 4n+m∆n+m−k+ 1

2 ,855

856

by Lemma 20. There are at most ∆k−m such nodes z. We bound the probability that each857

of these nodes z beats the treasure using the trivial bound 1 or the one above, depending858

on whether n+m ≤ k or n+m > k. Hence the total expected number of competitors of u859

who beat it is at most860 ∑
k≤D,n+m≤k

∆k−m · 4n+m∆n+m−k+ 1
2 +

∑
k≤D,n+m>k

∆k−m.861

862
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Since n+m ≤ |S|, and n ≤ K, the first term is at most:863

4|S|
∑

k≤D,n+m≤k
∆K+ 1

2 ≤ 4|S| ·D2 ·∆K+ 1
2 ,864

where we used the fact that there are most D distinct values for k and D distinct values for865

m, while there is only one choice of n for each k. As for the second term, since n+m > k,866

then it is at most:867 ∑
k≤D,n+m>k

∆n ≤
∑

k≤D,n+m>k
∆K ≤

∑
k,m≤D

∆K ≤ D2 ·∆K ,868

concluding the proof. J869

F Complementary Proofs870

F.1 Another Large Deviation Estimate871

Here, we introduce another large deviation estimate used for the analysis of the query872

algorithm for regular trees. It gives better results for large h, yet works only for identical873

random variables, and so suits regular trees, unlike Lemma 7.874

I Lemma 20. Consider random variables Xi taking values {−1, 0, 1} with respective prob-875

abilities (1− q, q
(
1− 2

∆
)
, q∆ ). If q < c√

∆
where c < 1/64, then for all 0 ≤ h ≤ l,876

P

(∑̀
i=1

Xi ≥ −h

)
≤ (4
√

∆)h∆−`/2877

Proof. Assume
∑`
i=1Xi ≥ −h. Denote by j := {i | Xi = 1}. As the number of −1’s is at878

least h, then j ≤ (` − h)/2. There must also be at least ` − h − 2j zeros amongst what879

remains, otherwise the sum is less than −h. Using a union bound over the value of j and880

the locations of the ones and zeros we get:881

P

(∑̀
i=1

Xi ≥ −h

)
≤

`−h
2∑
j=0

(
`

j

)(
`− j

`− h− 2j

)(
q(1− 2

∆)
)`−h−2j ( q

∆

)j
882

≤

`−h
2∑
j=0

(
`

j

)(
`− j

`− h− 2j

)
q`−h−2j

( q
∆

)j
883

≤ 3`
`−h

2∑
j=0

q`−h−2j
( q

∆

)j
≤ 3` · `2

(
q`−h +

( q
∆

) `−h
2
)
.884

885

The last step uses the bound
∑N
j=1 ρ

k ≤ N · (ρ+ ρN ). Note that x/2 < (4/3)x always, and886

assigning q < c/
√

∆, this is at most:887

4` 1
√

∆
`−h

(
c`−h +

( √
c

∆3/2

)`−h)
≤ 4` 1

√
∆
`−h

(
c`−h +

√
c
`−h
)
≤ 4`

(
2
√
c√

∆

)`−h
.888

889

Since c < 1/64, then 2
√
c ≤ 1/4 which means that this is at most890

4h
(

1√
∆

)`−h
,891

giving the desired bound. J892
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F.2 Algorithm Aloop without Conditioning893

I Lemma 14 (restated). Consider a (not necessarily complete) ∆-ary tree. Then Q(Aloop) =894

O(D3
√

∆).895

Proof. Denote by Nlayer(u) the number of nodes on the same depth as u which have more896

discovered arrows than u pointing to them. This definition is central because of the following897

observation. The number of moves needed before finding ui+1 once ui has been found is less898

than O(DNlayer(ui)). Indeed, once ui is discovered, only a subset of the nodes which have899

more arrows pointing to them than ui+1 on layer i+ 1 are tried before ui+1 (at step (2) in900

the pseudocode description). The loop over the levels (at step (1)) induces a multiplicative901

factor of O(D).902

Using linearity of expectation, it only remains to estimate E (Nlayer(ui)) where ui is the903

ancestor of the treasure at depth i ≤ d. There are at most ∆` nodes on layer i at distance904

2` − 1 from ui, for any 1 ≤ ` ≤ i. Moreover the probability that each of these nodes has905

more arrows pointing towards it than ui exactly corresponds to P
(∑2`−1

j=1 Xj ≥ 0
)
, with the906

notations of Lemma 20.907

Indeed, when comparing the amount of advice pointing to two different nodes u and v,908

only the nodes of 〈u, v〉 matter.909

When estimating the probability that v beats u, each random variable Xj has to be910

interpreted as taking value +1 if the advice points towards v, −1 if it points towards u, and911

0 if it points neither to u nor v. In the case that u = uj and v is another node on layer j,912

these events happen respectively with probability q/∆, 1− q + q/∆ and q(1− 2 1
∆ ).913

This means that for each i,914

E (Nlayer(ui)) ≤
i∑

`=1
P

2`−1∑
j=1

Xj ≥ 0

∆` ≤
d∑
`=1

P

2`−1∑
j=1

Xj ≥ 0

∆`.915

916

By Lemma 20 this is at most917

O

(
d∑
`=1

∆−`+ 1
2 ·∆`

)
= O(D

√
∆) = O

(
D
√

∆
)
.918

J919

F.3 Special Form of Union Bound920

I Claim 21. Let A be an event that can be decomposed as the union of events (Ai)i∈I ,921

A ⊆
⋃
i∈I Ai. Let X be a random variable.922

E(X | A)P(A) ≤
∑
i

E(X | Ai)P(Ai)923

924

Proof. We denote by χ(B) the indicator function of event B. Then925

E(X | A)P(A) = E(X · χ(A)) ≤ E

(
X · χ

(⋃
i

Ai

))
≤ E

(
X ·

∑
i

χ(Ai)
)

926

=
∑
i

E (X · χ(Ai)) =
∑
i

E(X | Ai)P(Ai).927

928

Where we used the union bound in the form χ(
⋃
iAi) ≤

∑
i χAi and then linearity of929

expectation. J930
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G Lower bounds931

G.1 An Exponential Lower Bound Above the Threshold: Proof of932

Lemma 10933

For the lower bound, assume the algorithm is given the advice adv for all the internal nodes934

for free. By Yao’s principle, instead of taking the worst case placement of the treasure for a935

randomized algorithm, we obtain a lower bound by considering only deterministic algorithms936

when the treasure is placed uniformly at random at one of the leaves.937

In this simplified setting, an optimal algorithm can be described explicitly: It sorts938

the leaves according P (· | adv) (Claim 22) and tries them in this order. This order in fact939

corresponds to ranking nodes by how many arrows point to them (Claim 23). The expected940

number of nodes which are higher than the treasure in this ordering is therefore a lower941

bound for this algorithm, and thus for all algorithms.942

Let L be the set of leaves. For a given leaf u ∈ L and an advice configuration adv, let
C(A, adv, u) be the cost (number of queries) of A when the advice is equal to adv and the
treasure is located at u. We also define the cost C(A, u) of an algorithm A when the treasure
τ is located at u to be the expected cost of A before finding τ where the expectation is over
advice setting. That is:

C(A, u) =
∑
adv

C(A, adv, u)P (adv |u) .

In our setting, the expected number of queries of A is:

C(A) =
∑
u∈L

P (u)
∑
adv

C(A, adv, u)P (adv |u) .

I Claim 22. The algorithm A that tries the locations u in the order given by P (u | adv), i.e.,943

the most likely u is tried first and the least likely tried last, minimizes C(A).944

Proof. We can write945

C(A) =
∑
adv

P (adv)
∑
u∈L

C(A, adv, u)P (u | adv) ,946

947

where it is understood that P (adv) is the marginal of P (adv, u) with respect to the advice.948

Note that the term P (u | adv), standing for the probability of u holding the treasure given949

that the advice configuration is adv, is only defined because we assume the treasure is placed950

according to a known distribution (uniform in our case). For a fixed advice setting adv, it951

follows from the rearrangement inequality that
∑
u∈L C(A, adv, u)P (u | adv) is minimized952

when C(A, adv, u) and P (u | adv) are sorted in the same order with respect to u. This953

corresponds to algorithm A trying the locations u in the order given by P (u | adv), which954

is exactly the statement of the claim. Hence, since we assume that all advice is known,955

the algorithm we have just described is feasible, and, in fact, optimal. Moreover, its query956

complexity is at least 1 plus the expected number of nodes which are strictly more likely957

than the treasure, where the expectation is taken over the randomness of the advice. J958

It only remains to check that a node u is more likely than τ given an advice setting adv959

iff more arrows point to u than τ . This will conclude the proof of Lemma 10 and hence of960

the exponential lower bound in Theorem 4.961

I Claim 23. For two leaves u, v ∈ L, and advice configuration adv, P (u | adv) > P (v | adv)962

if and only if there is more advice pointing towards u than advice pointing towards v.963
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Proof. Recall that, by definition of the model964

P (adv | τ = u) =
(
p+ q

∆

)|−→adv(u)|(
q(1− 1

∆)
)|←−adv(u)|

,965

In our regime it will always be the case that p+ q
∆ > q(1− 1

∆ ), simply because we assume966

q < p. Hence P (adv | τ = u) is an increasing function of |−−→adv(u)|.967

Since τ is placed uniformly at random, it follows from Bayes rule that P (adv | τ = u) ∝968

P (τ = u | adv). The symbol ∝ indicates that we omit the renormalizing factor. Hence, we969

obtain that P (τ = u | adv) > P (τ = v | adv) if and only if |−−→adv(u)| > |−−→adv(v)|. J970

G.2 A Lower Bound for the Move Complexity971

I Observation 24. For any ∆ and d, there exists a tree of depth d and maximal degree972

at most ∆ for which any search algorithm A has move complexity M(A) = Ω(dq∆). In973

particular, when q ∼ 1/
√

∆, we haveM(A) = Ω(d
√

∆).974

Proof. To see why the observation holds consider the caterpillar tree, composed of a path975

of length n/∆ with each of its nodes being the center of a star graph of degree ∆. Assume976

that the agent starts at one of the end sides of the path and the treasure at distance d977

on the caterpillar spine. Recall that we assume that the algorithm does not know the tree978

structure. in expectation, Ω(dq) nodes will point at an incorrect neighbor, and to pass from979

any of those to the next node on the path, will require the agent to perform Ω(∆) trials in980

expectation. J981

G.3 Proof of Observation 11982

A randomized strategy may be viewed as a convex combination of deterministic strategies.983

The performance of a randomized strategy is thus a linear combination of the performance984

of deterministic ones. Hence, it suffices to focus on deterministic strategies.985

Since the treasure location is uniform over the k objects, a deterministic strategy finds986

it after exactly i attemps with probability 1/k for any i ≤ k. In other words, the number of987

objects that are tried is distributed as a uniform random variable in [1, k]. Such a random988

variable has mean 1/k
∑k
i=1 i = (k + 1)/2.989

H Memoryless Algorithms and the Semi-Adversarial Model990

In this section we present our results on the memoryless algorithms described in the in-991

troduction. As mentioned, such algorithms can perform well also in a more difficult semi-992

adversarial setting. Before we present these algorithms let us first describe formally the993

semi-adversarial variant.994

I Definition 25 (The Semi-Adversarial Model). As in the purely-probabilistic Noisy Advice995

Model, each node is chosen to be faulty with probability q, and otherwise it is sound.996

Also, similarly to the original model, a sound vertex always points at its correct neighbors.997

However, in the semi-adversarial model, a faulty node u no longer points at a neighbor chosen998

uniformly at random, and instead, the neighbor w which such a node points at is chosen by999

an adversary. Importantly, for each node u, the adversary must specify its potentially faulty1000

advice w, before it is known which nodes will be faulty. In other words, first, the adversary1001

specifies the faulty advice w for each node u, and then the environment samples which node1002

is faulty and which is sound.1003
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H.1 Lower Bound in the Semi-Adversarial Variant1004

The following result implies that if q > 1/∆ then any algorithm must have exponential query1005

and move complexity in the depth D (or polynomial in n).1006

I Theorem 26. Consider an algorithm in the semi-adversarial model. On the complete1007

∆-ary tree of depth D, the expected number of queries to find the treasure is Ω
(
(q∆)D

)
.1008

The lower bound holds even if the algorithm has access to the advice of all internal nodes in1009

the tree.1010

Proof. Consider the complete ∆-ary tree and assume that the treasure is located at a leaf.1011

The adversary behaves as follows. For any advice it gets a chance to manipulate, it would1012

always make it point towards the root. With probability qD the adversary gets to choose1013

all the advice on the path between the root and the treasure. Any other advice points1014

towards the root as well (either because it was correct to begin with or because it was set1015

by the adversary). Hence with probability qD the tree that the algorithm sees is the same1016

regardless of the position of the treasure. It follows from Observation 11 that the time to1017

find the treasure can only be linear in the number of leaves which is Ω(∆D). J1018

H.2 Probabilistic Following Algorithms1019

Recall that a Probabilistic Following (PF ) algorithm is specified by a listening parameter1020

λ ∈ (0, 1). At each step, the algorithm “listens” to the advice with probability λ and takes1021

a uniform random step otherwise. The first item in the next theorem states that if the noise1022

parameter is smaller than c/∆ for some small enough constant 0 < c < 1, then there exists1023

a listening parameter λ for which Algorithm PF achieves O(d) move complexity. Moreover,1024

this result holds also in the semi-adversarial model. Hence, together with Theorem 26,1025

it implies that in order to achieve efficient search, the noise parameter threshold for the1026

semi-adversarial model is Θ(1/∆).1027

I Theorem 27. 1. Assume that for every u, qu < 1/(10∆u). Then PF with parameter λ ∈1028

[0.7, 0.8] finds the treasure in less than 100d expected steps, even in the semi-adversarial1029

setting.1030

2. Consider the complete ∆-ary tree and assume that q > 10/∆. Then for any choice of1031

λ the hitting time of the treasure by PF is exponential in the depth of the tree, even1032

assuming the faulty advice is drawn at random.1033

Proof. Our plan is to show that the expected time to make one step in the correct direction1034

is O(1), from any starting node. Conditioning on the advice setting, we make use of the1035

Markov property to relate these elementary steps to the total travel time. The main delicate1036

point in the proof stems from dealing with two different sources of randomness. Namely the1037

randomness of the advice and that of the walk itself.1038

It will be convenient to picture the tree as rooted at the target node τ . For any node u in1039

the tree, we denote by u′ the parent of u with respect to the treasure. With this convention,1040

correct advice at a node u points at u′, while incorrect advice points at one of its children.1041

The fact the walk moves on a tree means that for a given advice setting, the expected (over1042

the walk) time it takes to reach u′ from u can be written conveniently as a product of a1043

variable involving the advice at u only and the advice on the set of u’s descendants (the two1044

being independent).1045

We denote by t(u) the time it takes to reach node u. Manipulating average symbols such1046

as E requires extra care. Indeed, there are two sources of randomness, the first being the1047
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randomness used in drawing the advice and the second being the randomness used in the1048

walk itself. We write E for averaging over the advice, while we use Eu to denote expectation1049

over the walk, conditioning on u being the starting node. As a remark, observe that Eu(t(v))1050

depends on the advice configuration, it is a random variable with respect to the advice, while1051

EEu(t(v)) really is just a number.1052

The following is the central lemma of this section.1053

I Lemma 28. Assume that for every vertex u, qu < 1/(10∆u), and λ ∈ [0.7, 0.8]. Then for1054

all nodes u, EEut(u′) ≤ 100. The result holds also in the semi-adversarial model.1055

Let us now see how we can conclude the proof of the first item in Theorem 27, given
the lemma. Consider a designated source σ. Let us denote by σ = ud, ud−1, . . . , u0 = τ the
nodes on the path from σ to τ . Let δi be the random variable indicating the time it takes
to reach ui−1 after ui has been visited for the first time. With these notations, the time to
reach τ from σ is precisely

∑d(σ,τ)
i=1 δi. Hence, the expected time to reach τ from σ is, by

linearity of expectation:
d(σ,τ)∑
i=1

E[Eσδi] .

Conditioning on the advice setting, the process is a Markov chain and we may write1056

Eσδi = Euit(ui−1).1057
1058

Taking expectations over the advice (E), under the assumptions of Lemma 28, it follows that1059

E(Eσδi) ≤ 100, for every i ∈ [d(σ, τ)]. And this immediately implies a bound of 100 ·d(σ, τ).1060

Proof of Lemma 28. We start with partitioning the nodes of the tree according to their
distance from the root τ . More precisely, for i = 1, 2, . . . , D, where D is the depth of the
tree, let

Li := {u ∈ T : d(u, τ) = i} .

The nodes in Li are referred to as level-i nodes. We treat the statement of the lemma1061

for nodes u ∈ Li as an induction hypothesis, with i being the induction parameter. The1062

induction goes backwards, meaning we assume the assumption holds at level i+ 1 and show1063

it holds at level i. The case of the maximal level (base case for the induction) is easy since,1064

at a leaf the walk can only go up and so if u is a leaf EEu(t(u′)) = 1 < 100.1065

Assume now that u ∈ Li. We first condition on the advice setting. A priori, Euτ(u′)1066

depends on the advice over the full tree, but in fact it is easy to see that only advice at1067

layers ≥ i matter. Recall from Markov Chain theory that an excursion to/from a point is1068

simply the part of the walk between two visits to the given point. We denote Lu the average1069

(over the walk only) length of an excursion from u to itself that does not go straight to u′1070

and we write Nu to denote the expected (over the walk only) number of excursions before1071

going to u′. We also refer to this number as a number of attempts. Note that Nu can be 01072

if the walk goes directly to u′ without any excursion. We decompose t(u′) in the following1073

standard way, using the Markov property1074

Eut(u′) = 1 + Lu ·Nu. (10)1075
1076

Indeed the expectation Eut(u′) can be seen as the expectation (over the walk) of 1+
∑T
i=1 Yi1077

where the Yi’s are the lengths of each excursion from u and T is the (random) number1078

of such excursions before hitting u′. The term 1+ accounts for the step from u to u′.1079

Note that {T ≥ t} is independent of Y1, . . . , Yt and so using Wald’s identity we have that1080
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Eut(u′) = 1 +EuT ·EuY1. The term EuT is equal to Nu (by definition) while EuY1 is equal1081

to Lu (by definition).1082

We now want to average equality (10), which is only an average over the walk, by taking1083

the expectation over all advice in layers ≥ i. To this aim, note that Lu can be written as1084

Lu = 1 +
∑

v 6=u′,v∼u
pu,vEvt(u),1085

1086

where we write u ∼ v when u and v are neighbors in the tree and pu,v is the probability to1087

go straight from u to v given the advice setting. Note that, by assumption on the model,1088

Evt(u) depends on the advice at layers ≥ i + 1 only, if we start at a node v ∈ Li+1, while1089

both pu,v and Nu depend only on the advice at layer = i of the tree. This is true also in1090

the semi-adversarial model. Hence when we average, we can first average over layers > i to1091

obtain, denoting E>i, the expectation over the layers > i,1092

E>iEut(u′) = 1 +

1 +
∑

v 6=u′,v∼u
pu,vE>iEvt(u)

Nu,1093

= 1 +

1 +
∑

v 6=u′,v∼u
pu,vEEvt(u)

Nu. (11)1094

1095

and using the fact that,1096 ∑
v 6=u′

pu,v ≤ 1, (12)1097

1098

together with the induction assumption at rank i+ 1, we obtain1099

E>iEut(u′) ≤ 1 + (1 + 100)Nu.1100
1101

From now on we replace 100 by a parameter κ > 0, for mere aesthetic reasons. Averaging1102

over the layer i of advice we obtain1103

EEut(u′) ≤ 1 + (1 + κ)ENu.1104
1105

It only remains to analyse the term ENu. If the advice at u is correct, which happens with1106

probability pu = 1 − qu, then the number of attempts follows a (shifted by 1) geometric1107

law with parameter λ+ (1−λ)
∆u

. In words, when the advice points to u′ which happens with1108

probability at most 1, the walker can go to the correct node either because she listens to1109

the advice, which happens with probability λ, or because she did not listen, but still took1110

the right edge, which happens with probability (1−λ)
∆u

. Similarly, when the advice points to1111

a node 6= u′, which happens with probability at most qu, then Nu follows a geometric law1112

(shifted by 1) with parameter (1−λ)
∆u

. The conclusion is that1113

ENu ≤

(
1

λ+ (1−λ)
∆u

− 1
)

+ qu

(
∆u

1− λ − 1
)

1114

≤ 1
λ
− 1 + qu∆u

1− λ (13)1115
1116

And so it follows that1117

EEut(u′) ≤ 1 + (1 + κ) ·
(

1
λ
− 1 + qu∆u

1− λ

)
1118

1119
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Hence if qu∆u < 0.1 and we choose λ ∈ [0.7, 0.8] (for instance, we made no attempt in1120

optimizing these constants), we see that ENu < 0.8. This is because1121

1
λ
− 1 + 0.1

1− λ ≤
10
7 − 1 + 0.1

1− 0.8 < 0.931122

Hence it follows that1123

EEut(u′) ≤ 1 + 0.93(1 + κ) < κ.1124
1125

The last inequality holds by choice of κ = 100. By our (backwards) induction, we have just1126

shown that, if q < 1
10∆ and we set λ ∈ [0.7, 0.8] then for all nodes u in the tree1127

EEut(u′) < 100.1128
1129

This concludes the proof of Lemma 28 and hence also of the first part of Theorem 27. J1130

Let us explain how the lower bound in the second part of Theorem 27 is derived in the1131

case that q∆ > 10. We assume we are in a complete ∆-ary tree under our usual uniform1132

noise model. With probability q there is fault at u and with probability 1 − 1
∆ the advice1133

does not point to u′. In this case, Nu follows a geometric law with parameter 1−λ
∆ . Hence1134

E(Nu) ≥ q∆
(

1− 1
∆

)
1

1− λ − 1 ≥
10(1− 1

∆ )
1− λ − 1 ≥ 10

(
1− 1

∆

)
− 1 ≥ 3,1135

1136

for any choice of λ, since ∆ ≥ 2. We proceed very similarly, by induction, and use Equality1137

(11) together with the previous bound on E(Nu) to obtain that for any node on layer i, u1138

with parent u′, EEut(u′) ≥ 1 + 3 minv∈Li+1 EEvt(v′), so in particular minu∈Li EEut(u′) ≥1139

1 + 3 minv∈Li+1 EEvt(v′). The expected hitting time of the target τ , even starting at one of1140

its children is therefore of order Ω(3D). J1141

I Remark. Note that the proof uses crucially the tree structure and does not extend to1142

general graphs straightforwardly. Specifically, on a tree there is a single path from σ to τ1143

and so the points ui are uniquely defined, they are not random. Moreover an excursion from1144

a node u at Layer i that does not visit it’s parent can only remain in layers ≥ i. This was1145

used through the fact that Evt(u) depends only on the advice at layers ≥ i, if we start at a1146

node v ∈ Li.1147
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