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When giant vesicles mimic red blood cell's dynamics: swinging of two-phase vesicles in shear flow

Red blood cells under shear flow present a specific swinging motion superimposed to a fluidlike tanktreading motion. Swinging is hypothesized to originate from periodic storage of shear energy in the cell membrane. Here we designed giant unilamellar vesicles with two lipid phases separated by a contact line, which swing and tanktread like red cells. We propose a model that quantitatively fits our data, finds the value of the contact-line tension and shows that swinging is due to the storage of elastic energy associated with the periodic modulation of the contact-line length during tanktreading. I.

INTRODUCTION

The dynamics of deformable microcapsules, such as giant unilamellar lipid vesicles (GUVs) [START_REF] Abkarian | Tank Treading and Unbinding of Deformable Vesicles in Shear Flow: Determination of the Lift Force[END_REF][START_REF] Vlahovska | Dynamics of a viscous vesicle in linear flows[END_REF] , polymer microcapsules [START_REF] Walter | Shear induced deformation of microcapsules: shape oscillations and membrane folding[END_REF] , elastic drops [START_REF] Erni | Deformation of single emulsion drops covered with a viscoelastic adsorbed protein layer in simple shear flow[END_REF] and red blood cells [START_REF] Abkarian | Swinging of Red Blood Cells under Shear Flow[END_REF] (RBCs) in suspension under shear flow is extensively studied because of its importance in proper blood circulation and drug delivery, the archetypal example being the RBC motion under shear flow. The coupling between the capsule elasticity and the suspending fluid, which depends on the constitutive mechanical properties displayed by microcapsules, is non-trivial and raises complex questions of non-linear physics and fluid structure interaction. The resulting richness of regimes of motion of these capsules is still not understood.

Prolate or oblate ellipsoidal capsules have two motions under shear flow known since the seventies, namely tumbling and tanktreading [START_REF] Goldsmith | Flow behavior of erythrocytes. I. Rotation and deformation in dilute suspensions[END_REF][START_REF] Fischer | Tank tread motion of red cell membranes in viscometric flow[END_REF][START_REF] Fischer | The red cell as a fluid droplet: tank tread-like motion of the human erythrocyte membrane in shear flow[END_REF] . They are observed when the capsule is suspended in a fluid of respectively low and high viscosity compared to that of the internal fluid. Tumbling is analogous to a rigid-ellipsoid motion with a non-stationary orientation in flow (Fig. 1a). Note that GUVs, because of their high membrane flexibility, present also a tumbling motion with strong time-dependent shape deformations, called trembling [START_REF] Deschamps | Phase Diagram of Single Vesicle Dynamical States in Shear Flow[END_REF] .

Tanktreading is a droplet-like motion, characterized by the rotation of the shell and the internal fluid of the capsule around its center of mass, while the capsule maintains a stationary orientation with respect to the flow direction (Fig. 1c). In the following, we call 'membrane' the capsule shell in reference to GUVs and RBCs. In 1982, Keller and Skalak 10 modeled the motion under shear flow of a fluid ellipsoid with a prescribed shape. They predicted both tumbling and tanktreading, and a 'tumbling to tanktreading' transition (T/TT transition) governed by two parameters, the viscosity contrast between the suspending fluid and the capsule inner fluid, and the ellipsoid aspect ratio.

Various other regimes of motion were recently discovered, such as swinging [START_REF] Abkarian | Swinging of Red Blood Cells under Shear Flow[END_REF] , superimposed to tanktreading, which has been reported for both RBCs, protein-coated drops and polymer capsules, and rolling [START_REF] Dupire | Full dynamics of a RBC in shear flow[END_REF] (Fig. 1b), kayaking [START_REF] Cordasco | Comparison of erythrocyte dynamics in shear flow under different stress-free configurations[END_REF] , flip-flopping [START_REF] Sinha | Dynamics of a single red blood cell in simple shear flow[END_REF] and chaotic motion (in oscillatory shear flow) [START_REF] Dupire | Chaotic dynamics of red blood cells in a sinusoidal flow[END_REF] which have been observed for RBCs. These new regimes of motion were explained by accounting for the shear elasticity of the membrane, in addition to the viscosity contrast and the aspect ratio. The specific role of shear elasticity is best illustrated by the example of swinging. In this regime, the inclination of the tanktreading capsule oscillates about a mean angle. The strain of a local membrane element on a capsule deformed under shear flow periodically varies as the element moves along the capsule during tanktreading and therefore, so does the capsule shear-elastic energy (Fig. 1d). Moreover, when the stress-free shape of the capsule (i.e. the three-dimensional geometry of the membrane in which there is no shear stress [START_REF] Fischer | Shape memory of human red blood cells[END_REF] ) is not spherical the membrane elements are not equivalent and the total shear strain and elastic energy [START_REF] Dupire | A simple model to understand the effect of membrane shear elasticity and stress-free shape on the motion of red blood cells in shear flow[END_REF] of the capsule membrane also periodically vary during tanktreading, as illustrated in Fig. 1d for a capsule with an ellipsoidal stress-free shape. The dynamics of the system then depends on two time-dependent variables, the orientation angle of the capsule with respect to the flow and the position of the membrane elements on the capsule surface. During tanktreading these two coupled variables synchronize, leading to the periodic variation of the orientation angle of the capsule observed in swinging [START_REF] Abkarian | Swinging of Red Blood Cells under Shear Flow[END_REF][START_REF] Skotheim | Red Blood Cells and Other Nonspherical Capsules in Shear Flow: Oscillatory Dynamics and the Tank-Treading-to-Tumbling Transition[END_REF] .

The key phenomenon generating a large variety of motions is therefore believed to be the capacity of a capsule to periodically store energy during its flow motion. In addition to very compelling 3D numerical simulations [START_REF] Cordasco | Comparison of erythrocyte dynamics in shear flow under different stress-free configurations[END_REF][START_REF] Sinha | Dynamics of a single red blood cell in simple shear flow[END_REF][START_REF] Peng | Erythrocyte responses in low-shear-rate flows: effects of non-biconcave stress-free state in the cytoskeleton[END_REF] , the validity of this hypothesis is based on the experimental observation that tanktreading capsules with a shear modulus swing, whereas purely viscous GUVs tanktread with a steady inclination [START_REF] Abkarian | Tank Treading and Unbinding of Deformable Vesicles in Shear Flow: Determination of the Lift Force[END_REF][START_REF] Mader | Dynamics of viscous vesicles in shear flow[END_REF] . Moreover, shear-energy storage also explains why the T/TT transition depends on the shear rate for RBCs and not for GUVs.

But so far, apart from polymer microcapsules for which swinging was incidentally reported 3 , RBCs are the only capsules combining shear-elasticity and non-spherical stress-free shape for which swinging and shear-rate induced T/TT transition was extensively experimentally, theoretically, and numerically reported.

Here, we consider GUVs whose membrane consists of two lipid phases separated by a contact line. These GUVs have prolate ellipsoidal shape under shear flow. When they tanktread the contact line rotates from the meridian zone of the GUV to its equatorial one. The length of the contact line therefore varies. As the energy of the contact line depends on its length, it is expected to periodically vary during tanktreading. This system is therefore a good candidate to exhibit swinging under shear flow and shear-rate induced T/TT transition. The aim of this work is to comfort the causality between storage energy and swinging by combining an experimental and theoretical work on designed-on-purpose two-phase GUVs, able to periodic store and tune their contact-line energy during the flow motion.

II. MATERIALS AND METHODS

A. GUV preparation Two-phase vesicles were prepared using the electroformation method at 60°C [START_REF] Staykova | Membrane flow patterns in multicomponent giant vesicles induced by alternating electric fields[END_REF] For certain GUVs, the surface areas of the two liquid-ordered and liquid-disordered phases were equal (50% L o / 50% L d ). For several GUVs, some vesiculation probably occurred and the membrane surface area of the two lipid phases was different, up to 30% L o / 70% L d .

Flow experiments: Vesicles were gently injected in a parallelepiped flow chamber with four optical faces (1×10×45 mm 3 ), let sediment, and observed using a microscope (LEICA) tilted at 90° with a ×20 objective and a camera Andor Neo sCMOS at 20 fps, as previously described [START_REF] Abkarian | Tank Treading and Unbinding of Deformable Vesicles in Shear Flow: Determination of the Lift Force[END_REF] . The flow was applied using a syringe pump (ProSense B.V model NE-1000) at shear rates ranging from 1 to 12 s -1 . We experimentally observed 10 different GUVs at various shear rates (from 3 to 11.5 s -1 ), among which 8 were in the tanktreading/swinging regime and whose motion was analyzed. Within this set of 8 vesicles, 4 were studied at varying shear rates (3 to 4 values). The geometric parameters (size, reduced volume and L o /L d partitioning), the capillary number, and the shear rates used for the 10 vesicles are listed in Table 1.

B. Image analysis.

In-house Matlab routines were developed to track the vesicles and extract their geometrical parameters. The shape of the vesicle projection in the shear plane was fitted by an ellipse. The long and short axis of the ellipse were identified: we determined their respective lengths (2a 1 and 2a 2 ) and the orientation of the long axis with respect to the flow direction, defined as the inclination angle . The projection of the phase separation line on the ellipse was identified:

we derived the length l of the contact line on the whole vesicle (considered as an ellipsoid of revolution around its long axis) and determined the phase angle . It is defined as the angle formed by the major axis of the ellipse and the bisector of the two segments each connecting the center of the ellipsoid to the contact line (figure 2b and Supplemental Material 21 ).

III. RESULTS AND DISCUSSION

A. Observations

A typical experiment is illustrated in Fig. 2. Without flow, GUVs rest on the bottom surface on the flow chamber and have a non-axisymmetric bilobed shape, each lobe consisting of L o and L d domains, respectively, separated by a contact line (Fig. 2a). The equilibrium shape of GUVs minimizes the total energy of their membrane resulting from the sum of bending energy (Helfrich energy), buoyancy, and contact-line energy.

Under low shear rate ( ), GUVs elongate and move on the surface along the flow direction.

When increases, they unbind and stabilize their position at a given distance from the substrate, where the lift force balances the vesicle buoyancy 1 . The shape deformation of GUVs depends on their reduced volume , a non-dimensional number defined as the ratio of the vesicle volume V to the volume of the sphere with the same surface area A:

, ( 1, = 1 for a sphere). The lower the reduced volume the higher the shape deformation. GUVs with high reduced volume ( ≥ 0.9) display a quasi-stationary shape tending to a prolate ellipsoid and tanktread as reported for single-phase GUVs 1 and RBCs [START_REF] Fischer | The red cell as a fluid droplet: tank tread-like motion of the human erythrocyte membrane in shear flow[END_REF][START_REF] Abkarian | Swinging of Red Blood Cells under Shear Flow[END_REF] .

The vesicle (GUV#1 in Table 1) shown in Figure 2c and in ref ( 22) is a typical one with an average reduced volume < > = 0.96 ±0.04. The rotation of the membrane at low (<10 s -1 ) is in the shear plane with a stable orbit. Noteworthy, the contact line remains in a plane perpendicular to the shear plane. At higher , the membrane movement is more complex with a transitory out-of-shear plane contribution as observed when increasing the shear rate to 11.5 s -1 (GUV #1, Fig. 2d and ref ( 23)). At intermediate reduced volume, GUVs strongly deform during tanktreading as shown for GUV#9 in Table 1: ≈ 0.8 (Fig. 2e and ref ( 24)). When the contact line passes in the meridian zone, the GUV looks like two adhered vesicles, and the contact line is shorter than for ellipsoidal GUVs. At lower reduced volume, GUVs tumble (see Fig. 2f and see Supplemental Material 25 , GUV #10 in Table 1: ≈ 0.7), thus avoiding the strong increase in the contact line that would be required when passing in the meridian zone of an elongated shape. Tumbling of GUVs whose internal fluid and suspending fluid have the same viscosity has never been previously experimentally observed.

B. Motion and shape analysis

The motion is characterized by four geometrical parameters (Fig. 2b), the inclination angle  between the GUV major axis and the flow direction, the phase angle  between the major axis and the bisector of the two segments each connecting the center of the ellipsoid to the contact line, the length of the contact line l between the two lipid phases, and the GUV flattening defined as f = (a 1 -a 2 )/a 1 , where a 1 and a 2 are the half-lengths of the long and short axis, respectively. Temporal evolutions of l and fare shown in Fig. 3a for a quasispheroid GUV (GUV #6 in Table 1). Here the GUV flows very close to the surface and an asymmetry in temporal evolution is observed. The origin of this asymmetry is not clear.

We hypothesize that it results from the dissymmetry between the Lo/Ld partitioning on the GUV combined with its very close vicinity to the wall. Indeed, this GUV being almost spherical experiences only a small unbinding force. Typically, GUVs swing (angle) and their swinging period is half that of tanktreading (angle), similarly to observations on RBCs [START_REF] Abkarian | Swinging of Red Blood Cells under Shear Flow[END_REF] . A significant periodic flattening (typically 20%) and contact-line length variation are observed at the swinging period. Another vesicle (GUV #3 in Table 1) is shown, see Supplemental Material 26 . The -effect on swinging and tanktreading is displayed in Fig. 3b-c by showing the evolution of  and versus the adimensioned time . Supplemental

Material 27 shows -dependence on real time, superimposed with the model fits (see below).

The amplitude of the oscillations on the -curves and the tanktreading period very significantly decrease with increasing shear rate. The phase relationships between f, and l are shown in Fig. 4a. f and l have a 180° phase shift: the maximal contact line, observed when it lies in the plane containing the long GUV axis, is reached for the minimal GUV elongation, thus contributing to limit the contact-line length and its associated elastic energy. l and  have a 90° phase shift. The -dependence of the tanktreading period and of the swinging amplitude for all analyzed GUVs (GUVs #1-8 in Table 1) are displayed in Fig. 4b. Both parameters vary linearly in -1 . All tanktreading periods fall on the same curve whereas the swinging amplitudes, more sensitive to the reduced volume and the partitioning between the lipid phases fall in the narrow shade region.

C. Model

We rely on the analytical model of Keller and Skalak (KS) and on its extension for RBCs [START_REF] Abkarian | Swinging of Red Blood Cells under Shear Flow[END_REF] Here we adapt this model to GUVs, taken as prolate ellipsoids of revolution (identical short axes a 2 and a 3 ) and divided in two phases and we introduce the contribution of the contactline energy. For the sake of simplicity, we describe the calculation when the vesicle displays a membrane of equal surface area between the two phases (50%/50% L o /L d ). The extension of the model for surface areas of different ratios between the two phases are described in Supplemental Material 28 . We write the balance of energy as Wp = Dv + P L , where Dv is the rate at which the work Wp is transferred by the external fluid on the GUV and P L is the time derivative of the line energy. P L = dE L /dt, where E L =  L • l() is the line energy,  L is the line tension, l() is the length of the elliptical separation line when the phase angle is equal to .

The value l() is derived from the Ramanujan approximation for the circumference of an ellipse :

 (1)
with 

(2)

The -derivative of l() is

The value of P L therefore writes as

Conservation of energy yields a second differential equation in complement to that derived by KS from the equilibrium of moments.

The two adimensioned coupled equations are

where is the adimensionned ratio with being the maximal value of and 7) that controls the nature of the motion. At low values the GUV tanktreads and swings whereas above a critical value it tumbles. For a given GUV geometry, the regime of motion is determined by the ratio .

V
The -behavior of and in both tanktreading and tumbling regimes are shown in Fig. 5.

The phase trajectories of  versus  are illustrated by their limit cycle in Fig. 6 for a GUV with 40% of the surface area covered by the L o phase. Corresponding Movies in Supplemental Material 29,30,31 display the evolution of vs  that led to the curves in Fig. 6.

Interestingly, at the tumbling-tanktreading transition, an intermittent regime is observed, similar to that reported at the tumbling-tanktreading transition of RBCs [START_REF] Abkarian | Swinging of Red Blood Cells under Shear Flow[END_REF][START_REF] Fischer | Shape memory of human red blood cells[END_REF][START_REF] Dupire | A simple model to understand the effect of membrane shear elasticity and stress-free shape on the motion of red blood cells in shear flow[END_REF] .

Finally, we numerically solved the equations to fit the motions of GUV #1 and GUV #7 in Table 1 under the 4 different shear rates experimentally studied. We used the average values of a 1 and a 2 measured on each GUV, and set a 2 = a 3 ; the viscosities of the dilute sucrose and glucose solutions,  i and  e , were taken identical and equal to 1. Model predictions and experiments are in good quantitative agreement concerning thedependence of the swinging period and inclination angle (Figs. 34and Supplemental Material 27 ), for GUVs #1 and #7, and Supplemental Material 26 for the GUV#3). Furthermore, the model fits the tumbling motion of GUV #10 (Fig. 2f) under a shear rate of 3 s -1 . By using a line tension of 100 pN (6.5 higher than for other vesicles), the model correctly predicts the observed tumbling period (5s) and the quasi-null oscillation of the angle  (see Supplemental Material [START_REF]See Supplemental Material [SuppNovember] for both experimental and theoretical temporal evolution of  and[END_REF] ). The neck shape of this GUV at the contact line indeed suggests a high value of the line tension.

A question also arises about the potential effect on swinging of the difference in bending energies between the two lipid phases [START_REF] Baumgart | Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension[END_REF] . For instance, 2D numerical simulations performed on two-component 2D-vesicles with a difference in bending energy between the lipid phases predicted a T/TT transition triggered by an increase in shear rate [START_REF] Sohn | Dynamics of multicomponent vesicles in a viscous fluid[END_REF][START_REF] Liu | Dynamics of a multicomponent vesicle in shear flow[END_REF] . In this model, however, the contact line being reduced to two points cannot drive an energy variation. As noticed in ref.

22, values of bending and line energy do not lie in the same range. Briefly, the variation of bending energy during tanktreading is of the order of , where is the bending energy of the lipid membrane [START_REF] Helfrich | Elastic Properties of Lipid Bilayers: Theory and Possible Experiments[END_REF] and , the variation ratio between the two lipid phase bending energy, is of the order of 0.2 22 . The variation of line energy is 2 , where the contact line radius is of the order of 10 -5 m, the variation rate of R during tanktreading, , and the line tension 10 -11 N. The line energy is therefore three orders of magnitude larger than the bending energy, thus showing that this latter parameter does not drive the observed GUV regimes of motion. It should however be noted that for GUVs with an equally distributed membrane surface area between the two phases, the bending energy does not change during tanktreading. Indeed, these GUVs present a central symmetry. For instance, when the DPPC-rich zone rotates, the membrane element at the front of this zone reaches a region on the GUV shape where the curvature is the same as that the membrane element at the rear of this zone just left. The bending energy is however important for the local continuous membrane geometry at the contact line. The difference in orders of magnitude between bending and line energy clearly appears in ref. 24, where tumbling is observed on extremely deflated deformable 2D-GUVs and the swinging is motion is mixed with shape variations, which is not experimentally observed in line-energy controlled experimental GUV motion.

IV. CONCLUSION

In conclusion we show that the two-phase GUVs tumble, swing and tanktread like RBCs due to their non-symmetric rest shape and ability to periodically store elastic energy in their contact line. By quantitatively fitting experimental data, our model supports the interpretation of RBC swinging motion, based on periodic elastic energy storage in the cell membrane with an asymmetric stress-free shape. The mean radius <r> is the average value of long and short axis lengths (2a 1 and 2a 2 , respectively) of the ellipse fitting the vesicle projection.

The flattening f characterizes the shape aspect ratio at maximal GUV elongation. The reduced volume is the ratio of the vesicle volume to the volume of a sphere with the same surface area. GUVs #1-9 were approximated by an ellipsoid of revolution, to calculate their volume and surface area. In the peculiar case of GUV #10 which looks like two adhered spheres (one in L o phase, the other one in L d phase), the vesicle could not be fitted by an ellipsoid : the volume and surface area were calculated by considering the sum of the 2 spheres, leading to an overestimation of the reduced volume. The L o /L d partitioning is the surface area percentages of the L o (non-fluorescent) and L d (fluorescent) phases.

The capillary number was calculated by using , the bending energy , r is the mean radius and is the shear rate. The regime of motion of the vesicles is either tanktreading/swinging (TT) or tumbling (T). ≈ 0.95) exhibiting tanktreading/swinging motion under a shear rate of 3.9 s -1 , with a mean inclination angle <> ≈ 30° (GUV #1 in Table 1). d) Same vesicle as in c) undergoing complex motion with out-ofplane orientational changes of the membrane under a higher shear rate of 11.5 s -1 . The lipid phases change hemispheres during tanktreading. e) A deflated vesicle with an intermediate reduced volume ( ≈ 0.8) strongly deforms during tanktreading under a shear rate of 3.9 s -1 (GUV #9 in Table 1). When the contact line is in the meridian zone the vesicle is no longer ellipsoidal but resembles two vesicles adhered together, each consisting of a lipid phase. When the contact line is in the equatorial zone the vesicle has an ellipsoidal shape. f) A highly deflated vesicle with a low reduced volume ( ≈ 0.7) tumbling under a shear rate of 3.9 s -1 (GUV #10 in Table 1). Scale bars: 20 µm. 2) under a shear rate of 3 s -1 (GUV #6 in Table 1). b-c) Phase () and inclination () angles as function of the adimensioned time for the vesicle shown in Fig. 2c, at three shear values (GUV #1 in Table 1). The solid lines are fits from Eqs. (6-7) using the vesicle shape parameters (a 1 =19.2 m, a 2 = a 3 =12 µm) and a line tension of 15 pN. 3a (GUV #6 in Table 1). Insets show the vesicle configurations at extremal l-values. b) Shear-rate dependence of the tanktreading period T and of the swinging amplitude  in Log-Log scale, for all the analyzed vesicles. Diamond symbols correspond to the 4 vesicles studied under several shear rates (one color per vesicle) whereas all other symbols correspond to vesicles observed under a single shear rate (see Table 1 for details). The thick solid lines are specific fits for two vesicles (GUV #1, purple diamonds and GUV #7, blue diamonds) calculated from the model using a line tension of 15 pN and the vesicle respective shape parameters. Slope -1 expected in the low-line-tension limit is indicated. The shaded region on the -plot is a guide to the eye: it contains the scattered data of all vesicles including the 2 fits at different shear rates with exhibit the same slope. Theoretical phase trajectories of  vs . Left: limit cycle for the tumbling motion (shear rate of 0.8 s -1 ), oscillates and  rotates; center: limit cycle of an intermittent regime at the tumbling-tanktreading transition (shear rate of 1.2 s -1 ); right: limit cycle for the swinging-tanktreading motion (shear rate of 6 s -1 ),  rotates and  oscillates. The corresponding animations of the temporal evolutions of  vs  are available in Supplemental Material29, 30 and 31. 
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  from a mixture of dioleoyl-phosphatidylcholine (DOPC), dipalmitoyl-phosphatidylcholine (DPPC) and cholesterol (Chol) in mass ratio 4:4:2 at a final concentration of 2 mg/mL in -DPPE) (1mg/ml) (5% in volume) was added to the mixture for fluorescence microscopy observation (all lipids from Avanti Polar Lipids). Vesicles were electroformed in 0.1 M sucrose solution and subsequently diluted in 0.105 to 0.2 M glucose solution to control vesicle deflation. At room temperature the ternary lipid mixture spontaneously forms two stable liquid-ordered (L o ) and liquid-disordered (L d ) phases separated by a contact line. Rh-DPPE preferentially partitions in the L d phase.

  to include in the KS model the energy periodically stored by the contact line of the GUV membrane. The KS model treats a capsule as a fluid ellipsoid of revolution delimited by a membrane enclosing a viscous liquid. The membrane elements are prescribed to rotate along elliptical trajectories parallel to the shear plane. KS established the equation of evolution of by stating that at equilibrium the total moment exerted by the external fluid on the capsule vanishes. In addition, the movement satisfies the conservation of energy, i.e. the rate of dissipation of energy in the capsule must equal the rate at which work is done by the external fluid on the capsule. KS calculated both rates assuming viscous energy dissipation in the capsule. In the case of RBCs, the AFV-SS 5 model added to this latter contribution that of the elastic power stored in the periodic local shear deformations of the membrane during tanktreading. Two coupled differential equations for d/dt and d/dt were then obtained, which allowed to numerically calculate the capsule motion.

  the vesicle volume, , , , , and are the viscosities of the suspending fluid and of the inner fluid, respectively, and f 1 , f 2 and f 3 are the geometrical factors defined by KS. When the viscosity of the external and the inner fluid are equal, and are only geometrical factors and the ratio represents the ratio of the maximal line energy to the fluid energy. Therefore, it clearly appears from (
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 2 Figure 2. a) Vesicle at rest on the flow chamber surface. b) Parameters measured to characterize vesicle motion: vesicle size and shape (a 1 ,a 2 ,a 3 ), orientation to flow (), phase angle (), contact line length (l). c) Typical vesicle of high reduced volume (mean radius <r> = 15.6 µm, mean flattening <f> = 0.3, reduced volume≈ 0.95) exhibiting tanktreading/swinging motion under a shear rate of 3.9 s -1 , with a mean inclination angle <> ≈ 30° (GUV #1 in Table1). d) Same vesicle as in c) undergoing complex motion with out-ofplane orientational changes of the membrane under a higher shear rate of 11.5 s -1 . The lipid phases change hemispheres during tanktreading. e) A deflated vesicle with an intermediate reduced volume ( ≈ 0.8) strongly deforms during tanktreading under a shear rate of 3.9 s -1 (GUV #9 in Table1). When the contact line is in the meridian zone the vesicle is no longer ellipsoidal but resembles two vesicles adhered together, each consisting of a lipid phase. When the contact line is in the equatorial zone the vesicle has an ellipsoidal shape. f) A highly deflated vesicle with a low reduced volume ( ≈ 0.7) tumbling under a shear rate of 3.9 s -1 (GUV #10 in Table1). Scale bars: 20 µm.

Figure 3 .

 3 Figure 3. a) Temporal evolution of , , f and l of a typical tranktreading/swinging vesicle (mean radius: <r> = 15.8 µm, <f> ≈ 0.2) under a shear rate of 3 s -1 (GUV #6 in Table1). b-c) Phase () and inclination () angles as function of the adimensioned time for the vesicle shown in Fig.2c, at three shear values (GUV #1 in Table1). The solid lines are fits from Eqs. (6-7) using the vesicle shape parameters (a 1 =19.2 m, a 2 = a 3 =12 µm) and a line tension of 15 pN.

Figure 4 .

 4 Figure 4. a) l-dependence of the flattening f and the inclination angle  for the vesicle shown in Fig.3a(GUV #6 in Table1). Insets show the vesicle configurations at extremal l-values. b)

Figure 5 .

 5 Figure5. Theoretical phase (top) and inclination (bottom) angles versus time for 3 shear rates calculated from the model using a line tension of 150 pN for a vesicle of flattening f = 0.5 and reduced volume ≈ 0.9. Left: tumbling motion, oscillates and  rotates; center: swingingtanktreading motion near the transition,  rotates and  oscillates in an asymmetric manner and with a large amplitude; right: swinging-tanktreading motion far from the transition,  rotates and  oscillates with a small amplitude. Note the difference in the form of the (t) curve near and close the tumbling/tanktreading transition.

Figure 6 .

 6 Figure6. Theoretical phase trajectories of  vs . Left: limit cycle for the tumbling motion (shear rate of 0.8 s -1 ), oscillates and  rotates; center: limit cycle of an intermittent regime
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  2 • 10 -3 Pa.s. All these parameters were determined with an uncertainty of approximately 10%. The line tension  L was the only adjustable parameter. It was set to 15 pN to correctly fit the 8 experiments (4 shear rates, two vesicles). It is in good agreement with experimental data reported in the literature for DOPC/DPPC/Chol (≈ 3 pN for 20% Chol 32 ) and with modeling 33 (4-35 pN).

Table 1 .

 1 Shape parameters of the 10 vesicles from the study, and the shear rates under which they were observed.

	GUV #	Mean radius	Flattening f	Reduced volume	L o /L d partitioning	Capillary number	Shear rate (s -1 )	Regime of
		<r>			(%/%)			motion
		(µm)						
	1	15.6	0.35	0.96	32/68	148/243/342/437	3.9/6.4/9/11.5	TT
	2	17.4	0.52	0.88	49/51	205/327/406	3.9/6.2/7.7	TT
	3	17	0.23	0.98	46/54	192	3.9	TT
	4	19.6	0.32	0.96	37/63	294	3.9	TT
	5	21	0.48	0.91	52/48	565	6.1	TT
	6	15.8	0.24	0.98	28/72	118	3	TT
	7	22	0.30	0.97	47/53	415/681/958/1224 3.9/6.4/9/11.5	TT
	8	24	0.34	0.96	43/57	539/884/1244/1590 3.9/6.4/9/11.5	TT
	9	21	0.62	0.82	38/62	361	3.9	TT
	10	NA	NA	< 0.71	53/47		3	T
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