
HAL Id: hal-01957847
https://hal.science/hal-01957847v1

Submitted on 16 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Effect of spectrin network elasticity on the shapes of
erythrocyte doublets

Masoud Hoore, François Yaya, Thomas Podgorski, Christian Wagner, Gerhard
Gompper, Dmitry A Fedosov

To cite this version:
Masoud Hoore, François Yaya, Thomas Podgorski, Christian Wagner, Gerhard Gompper, et al.. Effect
of spectrin network elasticity on the shapes of erythrocyte doublets. Soft Matter, 2018, 14 (30),
pp.6278-6289. �10.1039/c8sm00634b�. �hal-01957847�

https://hal.science/hal-01957847v1
https://hal.archives-ouvertes.fr


Journal Name

Effect of spectrin network elasticity on the shapes of
erythrocyte doublets†

Masoud Hoore,a François Yaya,b,c Thomas Podgorski,c Christian Wagner,b,d Gerhard
Gompper,a and Dmitry A. Fedosova‡

Red blood cell (RBC) aggregates play an important role in determining blood rheology. RBCs in
plasma or polymer solution interact attractively to form various shapes of RBC doublets, where
the attractive interactions can be varied by changing the solution conditions. A systematic numer-
ical study on RBC doublet formation is performed, which takes into account the shear elasticity of
the RBC membrane due to the spectrin cytoskeleton, in addition to the membrane bending rigid-
ity. RBC membranes are modeled by two-dimensional triangulated surfaces embedded into three
dimensions. The phase space of RBC doublet shapes in a wide range of adhesion strengths,
reduced volumes, and shear elasticities is obtained. The shear elasticity of the RBC membrane
changes the doublet phases significantly. Experimental images of RBC doublets in different solu-
tions show similar configurations. Furthermore, we show that rouleau formation is affected by the
doublet structure.

1 Introduction
In whole blood, red blood cells (RBCs) experience a pronounced
attractive interaction, which is mediated by plasma proteins such
as fibrinogen1,2. Similar attraction between RBCs is also ob-
served in solutions of dextran3–5 or other macromolecules. Such
attractive interaction leads to the formation of RBC aggregates,
in particular large rouleaux, which play an essential role in the
strong shear-thinning behavior of blood at low and moderate
shear rates6–8. Thus, the interaction of RBCs with each other and
with adhesive surfaces is of high interest to understand the rhe-
ology of blood and rouleau formation. The first step for studying
RBC assemblies into rouleaux is an aggregate of two RBCs, called
doublet. The formation and shape of RBC doublets is determined
by the competition between bending and shear elasticity, and the
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adhesion energy.

RBC membrane has a characteristic biconcave shape, which
can be well described by the Helfrich bending elasticity9,10 sim-
ilar to fluid vesicles, whose shape is determined by the bend-
ing free energy and volume and area conservation of a closed
membrane11,12. However, in addition to bending resistance, RBC
membranes possess a shear elasticity supplied by their spectrin
cytoskeletal network, which differentiates them from lipid vesi-
cles13–15.

The first theoretical studies16–18 of RBC doublets considered a
flat shape for the contact surface between RBCs to simplify the
analysis. Later, numerical studies have shown that two fluid vesi-
cles with bending rigidity and constant volume form a curved
contact surface19–21. Different shapes of vesicle doublets as a
function of their adhesion strength and bending rigidity were pre-
dicted. These shapes are also qualitatively consistent with those
obtained in several two-dimensional (2D) investigations22–24. In
a recent work25, various RBC doublet phases have been explored
depending on the dextran and fibrinogen concentration, which
modifies the attractive interaction between RBCs. The exper-
imental data have been mainly supported by two-dimensional
(2D) simulations25, and therefore, it remains unclear whether
the whole phase space of the system has been explored or not
and whether some other RBC doublet phases exist in practice.
Furthermore, another interesting question is how the shear elas-
ticity of RBC membrane affects different doublet phases, since
previous investigations19,20 have primarily focused on bending

+PVSOBM�/BNF�<ZFBS>�<WPM�> 1–12 | 1

Page 1 of 13 Soft Matter

So
ft
M
at
te
rA

cc
ep
te
d
M
an
us
cr
ip
t

Pu
bl

is
he

d 
on

 0
6 

Ju
ly

 2
01

8.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ite
 G

re
no

bl
e 

A
lp

es
 IN

P 
on

 7
/9

/2
01

8 
10

:4
2:

57
 A

M
. 

View Article Online
DOI: 10.1039/C8SM00634B



Fig. 1 Schematic of the two discretization models for the bending en-
ergy. The KN discretization 35 in Eq. (2) considers the bending between
each two triangles, while the GK discretization 32 in Eq. (3) represents
the bending of each vertex with respect to all of its linked vertices.

rigidity. Similar issues are important for the complexation of vesi-
cles with particles of similar size, such as colloidal particles or
other vesicles26, as well as for similar complexes of RBCs with
other micro-particles.

Here, we systematically study the phase space of RBC doublets
using simulations of high resolution triangulated membranes with
bending and shear elasticity in three dimensions (3D). Specifi-
cally, we focus on the effect of membrane shear elasticity in de-
termining different RBC doublet phases and find that a change
in RBC shear elasticity significantly modifies doublet phase space.
Furthermore, we explore the influence of RBC reduced volume on
doublet shapes. The various phases of RBC doublets, predicted
theoretically, are also compared with experimental results.

2 Methods & models

2.1 Membrane model

The RBC membrane is represented by a triangular mesh, as de-
scribed in detail in Refs.27–30. The important energies for RBC
doublets are the bending energy from lipid bilayer elasticity, shear
elasticity of the spectrin network, and the adhesive energy be-
tween the two RBCs. The bending energy for fluid membranes,
which do not possess a preferred radius of curvature, reads9,31–34

Ub =
1
2

kc

I

A
dA(c1 + c2)

2 +kg

I

A
dAc1c2, (1)

where kc, kg, c1, and c2 are the bending rigidity, Gaussian bending
modulus, and principal curvatures of the membrane, respectively.
The energy is integrated over the whole membrane area A en-
closing the volume V . The integral over the Gaussian curvature
K = c1c2 is constant for a fixed topology, due to the Gauss-Bonnet
theorem32,34.

The simplest discretization of the bending energy in Eq. (1)
has been proposed by Kantor & Nelson (KN)35 for every pair of

Table 1 Membrane properties used in simulations and related references.

Property (units) Value (variability)
number of vertices, N 3000
surface area, A (µm2) 134 28,29,44,45

volume, V (µm3) 94 28,29,44,45

effective diameter, Deff =
p

A/p (µm) 6.5
bending rigidity, kc/kBT 70 28,29

shear modulus, G (µN/m) 4.6 (2-12) 29,46–49

global area rigidity, kaD2
eff/kc 29,600 28,29

local area rigidity, klD2
eff/kc 603 28,29

global volume rigidity, kvD3
eff/kc 19,620 28,29

adjacent triangles,

UKN = Â
i, j

kb
�
1�ni jk ·ni jk0

�
, (2)

where kb is the bending constant, and ni jk is the unit normal
vector of the triangle with vertices i, j, and k (see Fig. 1). The
quantity kb is related to the bending rigidity kc as kc = kb

p
3/2

for a sphere in continuum limit28,32,36,37. Even though such dis-
cretized bending model for RBCs has been quite successful in pre-
dicting RBC behavior, including membrane fluctuations38, RBC
mechanical properties27–29, and flow dynamics39,40, it is not ac-
curate enough if the bending energy of the membrane dominates.
A similar conclusion has been also reached in a recent investiga-
tion41,42, where different discretizations of the bending energy
were tested.

A more accurate discretization for the bending energy has been
proposed by Gompper & Kroll (GK)32 as

UGK =
1
2

kc Â
i

1
si

 

Â
j(i)

si j r̂i j

!2

, (3)

where si =
1
4 Â j(i) si jri j, si j = ri j (cotqk + cotqk0)/2, ri j is the dis-

tance from vertex i to j, r̂i j is the unit vector pointing to vertex
i from j, j(i) are the vertices connected to vertex i by bonds, and
qk and qk0 are the angles opposite to the bond between vertex i
and j in triangles ik j and ik0 j (see Fig. 1). si and si j are the area
of each cell and the length of each bond, respectively, in the dual
lattice of the triangulated lattice of the membrane32, as shown
in Fig. 1. Different discretization models have been explained in
more detail in Refs.41–43.

The membrane elasticity due to the spectrin bonds is repre-
sented by a combination of the worm-like chain (WLC) and power
(POW) potentials, as described in Refs.28,29. The network model
of the membrane conserves its global surface area and volume
by harmonic constraint potentials with stiffnesses ka and kv, re-
spectively28,29. The local area of each triangle is also softly con-
strained by a harmonic potential with a stiffness kl

28,29. The
Young’s and shear moduli are derived from the WLC potential
and the area conservation potentials, as described in Refs.29,50,51.
Since our main interest is in final doublet configurations in equi-
librium, which are determined by a minimum of energies in-
volved, dynamic effects are not contributing and the effect of
membrane and fluid viscosities can be neglected. In simulations,
the motion of membranes is governed by Langevin dynamics52. It
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Fig. 2 Vesicle shapes from the two discretization schemes of the bending
energy. The elastic bond (spring) potential is turned off, so that no shear
elasticity is present. The standard biconcave shape of a RBC is main-
tained if the discretization is based on the GK scheme. The KN scheme
fails to keep the RBC biconcave shape (see Supplementary Movie S1).

is worth mentioning that our simulation approach includes ther-
mal fluctuations, which, however, are of minor importance for
doublet shapes. The membrane properties of RBCs are provided
in Table 1.

In order to test the performance of the two discretization
schemes for bending energy, we model the equilibrium shape of
a fluid vesicle with a reduced volume n = 3V/4pR3

s = 0.64, where
4pR2

s = A. For this value of reduced volume, the vesicle must at-
tain a biconcave shape53, which is also the equilibrium shape of
RBCs44. Here, A and V correspond to the membrane area and vol-
ume, respectively. Note that the shape of a vesicle is determined
by the bending energy and reduced volume11,12,53. By remov-
ing shear elasticity from the membrane model (i.e. omitting the
bond potential), we find that the KN discretization from Eq. (2)
does not preserve the initial biconcave shape of the membrane
(see Fig. 2 and Supplementary Movie S1), indicating that this
state does not remain the equilibrium point for the membrane. In
contrast, the GK discretization from Eq. (3) successfully keeps the
biconcave shape without the spectrin network elasticity, as shown
in Fig. 2 and Supplementary Movie S1. The shear elasticity of the
RBC membrane from spectrin network partially compensates the
inaccuracy of the KN model; however, the GK model is clearly
more accurate and is employed in this work.

2.2 Adhesion model
To represent aggregation between two RBCs, attractive interac-
tions between two membranes are introduced similar to other
models19,20,25,54 of interacting membranes. Note that such inter-
actions cannot be directly associated with any underlying mecha-
nism for RBC aggregation (e.g. depletion or bridging). Therefore,

Fig. 3 Analysis of the contact area and the approximation of adhesion
energy. The minimum adhesion energy for a vertex is obtained when it is
located at the head of an equilateral tetrahedron, one of whose faces is
the triangle of the other membrane vertices. The four closest neighbors
to this vertex are shown by different symbols with assigned numbers 1-4.
The closest neighbors are 3 vertices with distance s , the second closest
neighbors are again 3 vertices with approximately

p
2s away from this

vertex. Also 6 neighbors with
p

3s and 6 other with
p

5s distance are
the farthest neighbors, which affect the adhesion energy. Even further
neighbors have a negligible effect on the energy and are ignored. Thus,
the effective adhesion energy ẽ of one interacting vertex is equal to about
5.37e. In another configuration, where a vertex sits close to only one
vertex from the other membrane, the effective adhesion energy would be
approximately 4.1e.

this model constitutes an effective representation of the aggre-
gation between RBCs, which is characterized by the strength of
attractive interaction and contact area.

The attractive interaction between adjacent vertices of mem-
branes in contact is modeled by the Lennard-Jones (LJ) potential

ULJ(r) = 4e
⇣s

r

⌘12
�
⇣s

r

⌘6
�

, (4)

where e and s are the energy and characteristic length of the LJ
interaction. The LJ potential is cut off at rcut = 2.5s .

The contact interaction of two RBCs can be represented by the
adhesion free energy19,20

Eadh =�GAc, (5)

where G is the adhesion strength and Ac is the contact area. Pro-
viding that the adhesion is modeled by a pairwise interaction,
such as the LJ potential in Eq. (4), between membrane vertices,
the adhesion strength G can be related to the potential energy
e. If Nc vertices from one RBC interact with the vertices from
another RBC, the total adhesion energy is �Ncẽ, where ẽ is the
effective adhesion energy of one RBC vertex with the other RBC
vertices. ẽ can be calculated approximately by considering the
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Fig. 4 The ratio of the effective adhesion energy ẽ to the pairwise energy
e. This ratio depends weakly on the configuration of the two adhered
RBCs, as illustrated in Fig. 3. Simulations are conducted for the system
until it reaches equilibrium. The reported data are averaged over 250 un-
correlated points in simulations from the equilibrium states. On average,
ẽ/e = 4.23±0.03.

closest vertices to a vertex from another membrane, as illustrated
in Fig. 3. In a minimal energy state, a vertex sits on top of three
vertices in a tetrahedral configuration with equal distance s to
all of them. The adhesion energy of this vertex with the other
closest neighbors sums up to about �5.37e. Consequently, the
total adhesive energy, when Nc vertices participate in the adhe-
sion from each membrane, is equal to about �5.4Nce. However,
this high symmetry situation of course does not occur for all of
the vertices, resulting in a somewhat smaller adhesion energy.
As vertices of a membrane are homogeneously distributed on the
membrane, Nc/Ac = N/A, in which N and A are the total number
of vertices and total area of the RBC membrane. Thus, the adhe-
sion strength is directly proportional to the vertex density N/A,
i.e. G = Ncẽ/Ac = Nẽ/A. This implies that the adhesion strength
is proportional to the LJ parameter e via ẽ.

The reduced adhesion energy, g, is defined as the ratio of the
total possible adhesion energy (i.e. when Ac = A) to the bending
energy of a sphere,

g =
GA

8pkc
=

Nẽ
8pkc

. (6)

The ratio ẽ/e as a function of g and reduced volume n (n1 =

n2 = n) is presented in Fig. 4, which shows how the effective ad-
hesion energy ẽ is related to the pairwise LJ energy e. For dif-
ferent e values, the equilibrium distance between the two mem-
branes may change, leading to a different relation between e and
ẽ. This is the main reason for an increase in ẽ/e with decreas-
ing g. A very weak dependence of ẽ/e on the reduced volume
n can be due to the local curvature of contact. Additionally, for
large enough n , membranes in a doublet configuration are un-
der tension, which may contribute to the dependence of the ratio
ẽ/e on n . Finally, the amplitude of thermal fluctuations of a RBC
membrane is known to be spatially non-uniform along the sur-
face55,56, and to depend on membrane shape, local curvature,

and tension57. Membrane thermal fluctuations are included in
the model (see Supplementary Movie S2) and would effectively
introduce short-range repulsion between two membranes.

2.3 Experiments
Blood was obtained by finger pricking from healthy donors af-
ter giving an informed consent in compliance with the ethical
requirements of the Saarland University, Saarbrücken, Germany
(Ärztekammer des Saarlandes, approval number 24/12). RBCs
were washed twice with Phosphate Buffered Saline (PBS, 290
mOsm) following the standard procedure58. Then, RBCs were
resuspended in several solutions to obtain several doublet config-
urations. In order to have various adhesion energies4, we pre-
pared dextran solutions with different molecular weights:

• 40 kDa at a concentration of 10 mg/ml with an adhesion
energy close to 1 µJ/m2;

• 70 kDa at a concentration of 20 mg/ml with an adhesion
energy close to 4 µJ/m2;

• 500 kDa at a concentration of 10 mg/ml with an adhesion
energy close to 6 µJ/m2.

Fibrinogen was added with a concentration of 6 mg/ml to au-
tologous plasma as it does not induce spontaneous aggregation on
its own. A hypotonic solution of NaCl at 0.6% was also prepared
to increase RBC volume. To induce aggregation, dextran 70 kDa
was added with a concentration of 50 mg/ml into this solution.
The hematocrit level was kept at 0.5% in every sample. Such low
concentration of RBCs allows us to manipulate cells freely with
holographic optical tweezers. Then, cells were held at their edge
with four optical traps. RBCs were brought together to form dou-
blets and the traps were released, so that they can spontaneously
aggregate. As dextran is known to induce spontaneous aggrega-
tion59, we observe the formation of rouleaux over time. Finally,
RBCs were let to sediment for 30 mins and micro-photographs
were taken using a 60-fold objective. Morphologies of these ag-
gregates were characterized similarly to those in the simulations.

3 Doublet shapes
The theoretical adhesion strength G is related to dextran and fib-
rinogen concentrations in experiments59,60. RBC doublet shapes
are determined by the adhesion strength (G, or equivalently g),
the reduced volumes n1 and n2, and the elastic parameters such as
bending rigidity kc and shear elasticity G. The adhesion strength
of the RBC membranes is about 1µJ/m2 in plasma and about
10µJ/m2 in dextran solutions61, corresponding to g ⇡ 4 in plasma
and g ⇡ 40 in dextran. The RBC volume is also subject to change
in different solutions, and may also vary from one cell to the other.

Figure 5 shows doublet conformations, contact area, and bend-
ing energy for various n1 = n2 = n and g. The contact area Ac
is normalized by the RBC area A. The bending energy Eb is cal-
culated directly from simulations and normalized by the bending
energy 8pkc of a sphere,

eb =
Eb

8pkc
, (7)
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Fig. 5 RBC doublet configurations as a function of n1 = n2 = n and g with aligned and offset first point of contact. (a) Contour plots for the contact area
and the reduced bending energy for the aligned RBCs. (b) Contour plot for the difference between the free energy of the doublet and the free RBCs
(deformation energy). The change in free energy is normalized by the bending energy of a vesicle with bending modulus kc, 8pkc, and the colorbar
has a logarithmic scale. The black dots (•) in contour plots represent the values for which simulations have been conducted. (c) The configuration of a
doublet depends on the way the RBCs make their first contact. RBCs can make the first contact while they are in aligned or offset configurations. (d)
The difference between the free energy of the doublets in the aligned and offset cases. If Ealig �Eoff is positive, it means that the offset doublet has a
smaller free energy, so that it is a more favorable configuration. The phase diagrams of the (e) aligned and (f) offset cases are different in the region,
where Ealig �Eoff is positive. Various phases are distinguished by their cross-sectional views. The black dots (•) in the phase diagrams represent
performed simulations. Note that the phase boundaries are drawn schematically to guide the eye.

where eb denotes the reduced bending energy.
The contact area is more sensitive to the reduced adhesion

strength and bending energy is more sensitive to the reduced vol-
ume, see Fig. 5(a). Overall, as the reduced volumes decrease and
the adhesion strength increases, both contact area and membrane
bending energy increase.

The configurations both for the initially aligned and for offset
doublets (Fig. 5(c)) are depicted in Figs. 5(e) and (f). The phases
of RBC doublets for the initially aligned and offset configurations
match at high adhesion strengths or high reduced volumes. How-
ever, a mismatch of doublet phases is observed for low adhesion
strengths and low reduced volumes, see Figs. 5(d), (e), and (f).

This indicates the existence of several local minima in the free-
energy landscape, making the first point of contact important for
RBC doublets. Multiple local minima in the free-energy should
also exist for fluid vesicles, even though it has not been demon-
strated so far. In comparison to vesicles, RBCs also possess an
elastic spectrin network, which may have an anisotropic local pre-
stress. This additional property likely contributes to a complex en-
ergetic landscape for RBC doublets with several metastable states
or local minima.

Various phases can be distinguished, as illustrated in Figs. 5(e)
and (f). All observed shapes are categorized by their contact sur-
face and their non-adhered free surfaces, as follows:

+PVSOBM�/BNF�<ZFBS>�<WPM�> 1–12 | 5
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• Male-Female (M-F) phase: Both RBCs attain a cup shape
and plug into each other similar to the male and female ter-
minals of a socket. The M-F phase provides the highest con-
tact surface at the cost of bending energy, so that the total
energy is minimized.

• Sigmoid-Concave (Yin-Yang) phase: The RBCs make a sig-
moid contact area, which is different from the native sigmoid
(concave) shape of a RBC membrane. This condition occurs
at high adhesion strengths, since the bending free energy of
the RBCs increases substantially, but is compensated by the
decrease in the adhesion energy. Since the cross-sectional
view of the Sigmoid-Concave shape looks similar to the Yin-
Yang symbol, we also call it Yin-Yang phase.

• Sigmoid-Biconcave (S-B) phase: This phase is located be-
tween the Yin-Yang and M-F phases. The RBCs are attached
to each other in such a way that the concave part of one RBC
fills the convex part of the other. In other words, the contact
surface is sigmoid, while the free surface remains biconcave.

• Flat-Concave (F-C) phase: If both RBCs are swollen, the M-
F phase becomes unstable and both RBCs reconcile by mak-
ing a flat contact surface and keeping their free surfaces near
spherical. This phase appears at large reduced volumes.

• Flat-Biconcave (F-B) phase: This phase with a flat contact
area and remaining concavities at the free surfaces is ob-
tained for n1 = n2 ⇡ 0.3-0.4 and g . 8 when the RBCs align
with no offset. Figures 5(e) and (f) show that the F-B phase
shrinks to a very small region if the RBCs are initially in
contact with an offset. Thus, the F-B phase is less probable
to be seen under physiological conditions, where the offset
contact is far more probable than the aligned contact.

Although the F-B phase is the stable doublet configuration for the
aligned doublets, the bending energy at this state is not at a global
minimum. It can be seen from the free energy difference between
the aligned and offset configurations in Fig. 5(d). Under phys-
iological conditions (n ⇡ 0.64), the M-F phase can be observed
when the RBCs make the first contact in an aligned configuration,
which is unlikely to be observed experimentally.

Figure 6 illustrates various doublet shapes of two RBCs with
different reduced volumes for a fixed reduced adhesion energy
g = 8. Another phase, the sheath phase, appears here

• Sheath phase: If the reduced volume of one RBC is large,
and of the other is small, the former would swell to an ellip-
tical shape and the latter would bend to a cup shape. There-
fore, the best configuration for their adhesion occurs when
the inner cup of the latter RBC matches the swollen curva-
ture of the former RBC. This configuration corresponds to
the minimal free energy condition for almost all adhesion
strengths. Since most RBCs have a reduced volume in the
range 0.4 to 0.8, such phase does not occur under physiolog-
ical conditions.

In the case of unequal reduced volumes (see Fig. 6), the contact
area is roughly proportional to the inverse of the average of the

Fig. 6 RBC doublet configurations as a function of n1 and n2 at a constant
adhesion strength g = 8. (a) Contour plots show the contact area and
the reduced bending energy of the first RBC as a function of n1 and n2.
The black dots (•) represent the values for which simulations have been
performed. (b) The side and section views of some configurations are
shown in the phase diagram, omitting some shapes for more clarity. The
different phases are separated by different colors. The S-B phase occurs
in a narrow region between Yin-Yang and M-F phases. The membrane
is assumed to be stress-free in its biconcave shape with n = 0.64. The
phase boundaries are drawn schematically to guide the eye.

reduced volumes (Ac/A µ (n1 +n2)
�1) and varies from about 0 to

0.7. The reduced bending energy eb,1 of the first RBC decreases
with increasing n1, but is not very sensitive to a variation in the
reduced volume n2 of the second RBC.

In order to study the effect of the spectrin network’s shear elas-
ticity on the doublet phases, the membrane shear modulus G
is varied. Figure 7 shows the phase diagram together with the
contact area and reduced bending energy as a function of shear
modulus and adhesion strength for a constant reduced volume
of healthy RBCs n ⇡ 0.64. The shear modulus of healthy RBCs
lies in the range 2-12 µN/m29,46–49,62, which corresponds to the
reduced shear modulus µ = GA/8pkc of 35-215, provided that
the bending rigidity is 70 kBT . The phases obtained for very low
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Fig. 7 RBC doublet configurations as a function of spectrin network’s reduced shear modulus µ = GA/8pkc and reduced adhesion strength g at a
constant reduced volume n = 0.64. (a) Contour plots show the contact area and the reduced bending energy. The black dots (•) represent the values
for which simulations have been performed. (b) Dependence of the contact area on adhesion strength for different µ values. Discontinuity in the contact
area is observed when one or both RBCs loose their original biconcave shape. (c) Phase diagram of RBC doublets as a function of g and µ, where
different phases are separated by various colors. The phase boundaries are drawn schematically to guide the eye. The side and section views of some
configurations are shown, omitting some shapes for more clarity. The low shear moduli approximate vesicle doublets. The membrane is assumed to
be stress-free in its biconcave shape with n = 0.64.

shear moduli agree well with the numerical energy-minimization
study for vesicles19, where the contact area is flat for low adhe-
sion strengths and it buckles as the adhesion strength increases.
The F-B phase appears in a broader range of adhesion strengths
when the shear modulus is much lower than that for a healthy
RBC. Also, the F-C phase, which has never been detected for nor-
mal RBC reduced volumes of n ⇡ 0.64, appears at very low shear
moduli. On the other hand, at shear moduli of healthy RBCs, the
M-F and S-B phases are found at low adhesion strengths. If the
shear modulus is very high, the RBCs do not tend to form con-
tact area from their center. High shear modulus is relevant for
diseased RBCs, such as in malaria63.

The doublet phases are determined by the balance of defor-
mation energies and adhesion energy. The shear elasticity of the
membrane attributed to the spectrin network has a strong effect
on the doublet phases, as shown in Fig. 7. For vesicle doublets,
the effect of shear elasticity is absent since vesicles are made of
fluid membrane. Accordingly, the lower region of the phase di-
agram (µ ! 0) in Fig. 7 corresponds to the previous works on
doublets with the three phases F-C, F-B, and Sigmoid-Concave
(Yin-Yang)19,20,25,54, characterized by the contact surface only.
A distinct difference between our results and those from previous
studies on vesicles is that the F-B phase appears only if the shear

elasticity of the RBC spectrin network is small enough, as shown
in Fig. 7(c). Therefore, such phase cannot be observed for RBC
doublets, because they have significant shear elasticity.

Figure 7(b) shows that by increasing the adhesion strength,
the contact area exhibits two discontinuous jumps for a fixed µ.
The first jump in Ac at very low g . 1 occurs when the adhe-
sion interaction overcomes membrane thermal fluctuations and
cell diffusion. The second discontinuity in Ac manifests a transi-
tion when one or both RBCs loose their original biconcave shape
by forming suddenly a larger contact area in a doublet. For exam-
ple, it happens when F-B, S-B, and M-F shapes are first attained
for 1 < g < 10, such that a larger contact area is rapidly formed.
Interestingly, further transitions with increasing g (e.g. to the Yin-
Yang phase) are continuous, since the contact area is continuously
gained with an increase in adhesion strength. Thus, buckling out
of a membrane dimple and rapid formation of a larger area of
contact can be considered as signatures of discontinuous transi-
tion. An increase in shear elasticity generally delays this discon-
tinuous transition in terms of g and reduces the contact area, as
can be seen in Fig. 7(b) and Supplementary Movie S2. These re-
sults are qualitatively consistent with a discontinuity in Ac found
for vesicle doublets19.

Since shear elasticity of membranes has a significant effect on
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Fig. 8 Effect of stress-free shape of RBCs on doublet phases for n1 =
n2 = 0.64. (a) Contact area as a function of g for biconcave and near
spherical (with eccentricity 0.94) stress-free shapes. (b) The shapes of
RBC doublets for µ = 81, showing appreciable differences for the two
stress-free shapes. The boundaries between different shapes are drawn
schematically to guide the eye.

the doublet configurations, the stress-free shape of RBC might
also play an important role in determining the shape of the RBC
membrane and their doublet phases. Whether the spectrin net-
work of a RBC is stress-free in the biconcave or spherical shape
or something in-between is still under debate64–67. So far in this
work, the RBCs were stress-free at their biconcave shape. In or-
der to study the effect of the stress-free state of RBCs on doublet
phases, the stress-free biconcave shape is compared with a case
where the network is stress-free at a deflated sphere shape with
eccentricity 0.94. The change in the configuration of the doublets
is appreciable, as shown in Fig. 8(b). The most important differ-
ence between the two cases is the change of the S-B phase to the
M-F phase at small adhesion strengths. If the stress-free shape
of RBCs is close to a sphere, the change to the Yin-Yang phase
occurs at slightly lower adhesion strengths in comparison to the
biconcave stress-free shape, as shown in Fig. 8(b). In practice,
this small change cannot be detected experimentally, not only be-
cause of the lack of the imaging precision, but also because of the
natural variance in the mechanical properties of RBC membranes
and their reduced volumes68,69. As discussed above, the tran-
sition from original biconcave shape of both RBCs to a doublet
shape with a large contact area (e.g. F-B, S-B, M-F shapes) is dis-
continuous in Ac for the biconcave stress-free shape, see Figs. 7(b)
and 8(a). Fig. 8(a) also demonstrates that this transition is dis-
continuous in Ac for the stress-free shape of 0.94.

Strong changes in RBC shapes (e.g. for a Yin-Yang doublet)
likely lead to appreciable local in-plane deformations of the cell
membranes. At the contact area, it is intuitive to expect that RBC

Fig. 9 Effect of the local area constraint in the membrane model on a
Yin-Yang doublet for g ⇡ 85, µ = 80, and n1 = n2 = 0.64. (a) Bond strain
distributions from simulations with and without local area constraint. The
bond strain is defined as l/l0 � 1, where l is the length of a deformed
bond and l0 is its corresponding equilibrium length. (b) Distributions of
local triangular area strains. The area strain is defined as A/A0�1, where
A is the area of a deformed triangle in the spring network and A0 is its
imposed area at biconcave equilibrium shape. (c) Distribution of local
area strains on RBCs within a Yin-Yang doublet. The RBC membranes
show a compressive deformation (or negative area strains) at the contact
area and are stretched primarily at the free surfaces characterized by
positive area strains.

membranes are compressed due to adhesive interactions, while
the free surfaces are presumably subject to an area expansion.
These modes of deformation are mainly controlled by the area-
compression modulus of a membrane. The area-compression
modulus in our model is equal to 2G+kl+ka, where G is the shear
modulus and the other terms correspond to local and global area-
conservation constraints. Here, kl ⇡ G, while ka � G such that
the local area constraint leads to a rather slight enhancement of
the area-compression modulus. Therefore, under strong enough
deformations local area of a membrane should experience appre-
ciable deformation.

In order to elucidate local strains, local area changes, and the
role of the local area constraint, we present in Fig. 9 a com-
parison of local membrane deformations for a Yin-Yang doublet
(g ⇡ 85 and µ = 80) using a RBC model with and without the
local area constraint. Fig. 9(c) confirms that the membranes are
compressed at the contact area and expanded at the free surfaces.
This is also seen in the bimodal distributions of bond and local-
area strains in Figs. 9(a-b). Here, the bimodality in the local area
arises from the differences between adhered and free parts of the
membrane. The bimodality in the bond lengths is related to the
positive Poisson ratio of our elastic network model, which implies
that stretching in one direction is accompanied by a compression
in the orthogonal direction. The local strains remain approxi-
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Fig. 10 Comparison of experimental and simulated RBC doublet shapes determined by the adhesion strength, bending modulus, and the reduced
volume of RBCs. For simulations, the side and section views are presented for each case. The phases (a) Sigmoid-Biconcave, (b) Male-Female, (c)
Sigmoid-Concave (Yin-Yang), (d) Sheath, (e) Flat-Concave, and (f) Flat-Biconcave are shown. The Sheath, F-C, and F-B phases are not probable for
RBC doublets under physiological conditions.

mately within the range of [�0.3,0.3] and their absolute values are
slightly smaller for the case with the local area constraint in com-
parison to that without this constraint. However, in both cases
Yin-Yang doublets are observed and their shapes are visually in-
distinguishable. Thus, for the employed strength of the local area
constraint, it plays at most a secondary role in determining dou-
blet shapes for the range of adhesion strengths studied here.

4 Comparison with experiments

The experimental images of the different phases are compared
to the simulation results in Fig. 10. The F-B phase is not ob-
served in experiments and not predicted by simulations for the
physiological reduced volumes of RBCs. Both in simulations and
experiments, the M-F doublets form when the adhesion strength
is intermediate and the reduced volume is small. The Yin-Yang
phase appears when the adhesion strength is high. The S-B phase
is seen as a transition state between these two phases. The F-B
phase has not been observed in experiments. The F-C phase oc-
curs when both RBCs are swollen and the Sheath phase happens
when there is a significant difference in the reduced volumes of
the two RBCs. To see the F-C phase in experiments, the osmolal-
ity of the solution has to increase about two-fold. For increasing
reduced volume of RBCs in experiments, they were immersed in
hypotonic solution of NaCl.

At low shear rates, RBCs aggregate in stacks known as
rouleaux1,2. The rouleaux increase substantially the viscosity of
blood at low shear rates6–8. The nucleation of rouleaux starts
from RBC doublets. While some doublet structures allow for
large rouleaux formation, others prevent the formation of large
rouleaux. Among all the doublet phases, the M-F and S-B phases
let the RBCs to form large rouleaux with a straight (linear) struc-
ture. However, the Yin-Yang phase prevents long straight struc-
tures to appear. Thus, the size of rouleaux in a solution of RBCs
depends on their adhesion strength which is determined by the
concentration of different adhesive factors in the solution (e.g.
dextran, fibrinogen). Figure 11 shows several experimental and
simulated results of different rouleau structures. The shapes of
rouleaux for high adhesive strengths are very different, depend-
ing on the reduced volumes of the RBCs and the number of RBCs
in the rouleau. In contrast, the M-F and S-B phases should allow
the size of straight rouleau structures to increase with no limit.
Note that at high enough adhesive strengths, more complex RBC
aggregate structures, other than straight rouleaux, may appear70.

The limit for the rouleau nucleation can be explained by the
free energy of the whole system. Doublet formation changes the
free energy of the system by 2Edef �GAc. Edef is the deformation
energy of a RBC, mostly due to bending rigidity and shear elas-
ticity. In principle, it is always positive since any deviation from
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Fig. 11 Various rouleau phases in experiments and simulations. The doublet S-B and M-F phases impose no limit on the size of the rouleau. However,
the F-C rouleaux are strongly dependent on the number of interacting RBCs and their reduced volumes. The nucleation point of a F-C rouleau is a
Yin-Yang doublet.

the equilibrium biconcave shape of a RBC must have a higher
energy. Therefore, the adhesion energy GAc must be larger than
2Edef for doublet formation to be favorable. Addition of one more
RBC to the doublet to make a triplet aggregate of RBCs increases
the total free energy by DE+ = Edef �GAc +Eo

def, where Eo
def is the

additional deformation energy of the original aggregate, Edef is
the deformation energy of the newly added RBC to the original
aggregate and �GAc is the adhesion energy due to it. Assuming
that the other RBCs in the aggregate do not deform substantially
leads to Eo

def ⇡ 0; otherwise, the deformation and adhesion energy
of all RBCs must be considered in the rearranged configuration.
This rearranged configuration has definitely a higher energy for
the RBCs already in the aggregate, since they get away from their
equilibrium configuration. For S-B and M-F phases, addition of an
RBC to the aggregate adds a constant negative DE+ to the free en-
ergy so that the growth of the rouleau is energetically favorable.
DE+ is nearly constant since the contact area and curvature of the
newly added RBC is similar to the other RBCs in the aggregate.
On the contrary, DE+ grows as a new RBC is added to a Yin-Yang
doublet, because the contact area for the new RBC is less than the
contact area of a doublet, and the new RBC deforms much more
in order to fit to the concave shape of a rouleau. As a result, DE+

becomes positive at some point preventing more RBCs to adhere
to the aggregate. This limiting point occurs for larger cluster sizes
as the adhesion strength G increases.

5 Conclusion

A systematic study of RBC doublet formation has been performed.
The model employs a triangulated membrane with a polymerized
mesh as representation of the spectrin network. The simulation
results demonstrate various doublet phases, namely, the Male-
Female, Sigmoid-Biconcave, Yin-Yang, Sheath, Flat-Concave, and
Flat-Biconcave phases, with their stability determined by the ad-

hesion strength between two membranes and the reduced vol-
ume of each RBC. The Male-Female phase implies a curved con-
tact area of two RBCs similar to a female-male socket connec-
tion. The Sigmoid-Biconcave phase refers to the condition that
two RBCs make a sigmoid S-shape contact while they keep their
biconcave curvature. The Yin-Yang phase, then, refers to the same
condition, but when the free surfaces of RBCs swell or bend to a
concave form. The section view of the doublets in this phase looks
like Yin-Yang symbol. The Sheath phase occurs when one RBC is
swollen so that the other RBC makes a sheath by contacting it.
The Flat-Concave phase is referred to the flat contact area case
and occurs mostly when both RBCs are swollen. The predicted
phases are compared with the experimental images obtained from
optical imaging of RBCs in different solutions.

The RBC doublet phases are mainly defined by the interplay of
bending energy and adhesion energy, and are closely related to
the reduced volume of RBCs, which is a dimensionless ratio be-
tween the volume and area of RBCs. However, the shear elasticity
of the RBC membranes, due to the spectrin network beneath their
lipid bilayers, affects their doublet phases. At very low shear mod-
uli, the Flat-Biconcave shape appears at low adhesion strengths,
while this phase is never stable for healthy RBCs with normal
shear moduli. The very peculiar Flat-Concave phase at the nor-
mal reduced volumes of RBCs is also reported for very low shear
moduli. This shows that the spectrin network’s shear elasticity is
a key player in defining the RBC doublet phases, differentiating
them from previously studied fluid vesicle doublets.

Rouleau nucleation depends on how RBCs make doublets first.
Aggregation of RBCs always brings a rise in the bending free en-
ergy and a decrease in the adhesive energy. Depending on the
doublet shape, this pair of energy-changes determines whether
rouleau formation is allowed or not. As a result, at high adhe-
sion strengths, the doublets tend to prevent large stacks, since the
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Yin-Yang phase makes the positive change of the bending energy
so large that it cannot be compensated by the adhesion energy
related to the contact area of the membranes. At low and moder-
ate adhesion strengths, the Sigmoid-Biconcave and Male-Female
phases allow the growth of the rouleaux, since the addition of
a RBC to the aggregate does not change the shapes of the other
RBCs, which have been already adhered to the aggregate. These
results can be used for determining the adhesion strength and
membrane properties of healthy and diseased RBCs.
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