Responsive viscoelastic giant lipid vesicles filled with a poly(N-isopropylacrylamide) artificial cytoskeleton
Résumé
Responsive giant lipid vesicles filled with aqueous PolyNipam sol (SFV) or gel (GFV) were prepared by ultra-violet polymerisation performed in situ. Upon crossing the lower critical transition temperature of PolyNipam, SFVs and GFVs undergo a significant change of their structural and mechanical properties or a drastic volume transition, respectively. Rheometric and micropipette experiments show that both internal viscosity of SFVs and internal shear modulus of GFVs are tunable over several orders of magnitude and lie in the range observed for living cells. Moreover, the vesicle membrane is strongly bound to the internal polymer medium, making these systems interesting for mimicking the basic mechanical behaviour of passive living cells.