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Finite state transducers for
modular Mobius number systems

Martin Delacourt! and Petr Kurka2

! Laboratoire d’Informatique Fondamentale de Marseille, 39 rue Joliot Curie,
F-13453 Marseille Cedex, France.
2 Center for Theoretical Study, Academy of Sciences and Charles University in
Prague, Jilskd 1, CZ-11000 Praha 1, Czechia.

Abstract. Modular Mébius number systems consist of Mdbius trans-
formations with integer coefficients and unit determinant. We show that
in any modular Mobius number system, the computation of a Mdobius
transformation with integer coefficients can be performed by a finite state
transducer and has linear time complexity. As a byproduct we show that
every modular M&bius number system has the expansion subshift of finite

type.
Keywords: exact real algorithms, expansion subshift, absorptions, emissions.

1 Introduction

In an unpublished but influential manuscript, Gosper [1] shows that continued
fractions can be used for arithmetical algorithms, provided they are redundant.
Based on these ideas, exact real arithmetical algorithms have been devel-
oped in Vuillemin [15], Kornerup and Matula [4] or Potts [13]. These algorithms
perform a sequence of input absorptions and output emissions and update
their inner state, which may be a (2 X 2)-matrix in the case of a Mobius trans-
formation or a (2 x 4)-matrix in the case of binary operations like addition or
multiplication.

Using the concepts and methods of symbolic dynamics, exact real arithmetic
has been generalized in the theory of M&bius number systems (MNS) intro-
duced in Kirka [6] and developed in Kirka and Kazda [10]. Mébius number sys-
tems represent real numbers by infinite words from a one-sided expansion sub-
shift. The letters of the alphabet stand for real orientation-preserving Mobius
transformations and the concatenation of letters corresponds to the composition
of transformations. In Kurka [7] we have investigated MNS in which rational
numbers have periodic or preperiodic expansions and in Kurka [9] we have char-
acterized MNS whose expansion subshifts are of finite type or sofic.

The time complexity of the unary exact real algorithm which computes a
Mobius transformation depends on the growth of its inner state matrices during
the computation. Heckmann [2] analyzes this process in positional number sys-
tems and proves the Law of big numbers (not to be confused with the Law of



large numbers), saying that the norm of the state matrix after n absorptions or
emissions is at least of the order /2 for r-ary positional systems. This implies
that the bit size of the state matrices grows at least linearly, and arithmetical
operations have quadratic time complexity. In Kurka [8] we have shown that in a
general MNS the growth of the state matrices can be slower and we conjectured
that the state matrices can even remain bounded. In the present paper we show
that this is the case for modular MNS, i.e., MNS whose transformations have
integer coefficients and unit determinant. It follows that the unary algorithm
can be realized by a finite state transducer and has linear time complexity. This
generalizes the results of Raney [14] and complements the results of Koneény [3],
who proves (in a slightly different context), that the only differentiable functions
computable by finite state transducers are Mébius transformations.

2 Mbobius transformations

The extended real line R = R U {oc} can be regarded as a projective space,
i.e., the space of one-dimensional subspaces of the two-dimensional vector space.
On R we have homogeneous coordinates = = (z9,z1) € R?\ {(0,0)} with
equality = y iff det(z,y) = 2oy1 — 2190 = 0. We regard z € R as a column

vector, and write it usually as = 3% = xo/x1, for example co = 1/0. The

stereographic projection h(z) = (iz + 1)/(z + i) maps R to the unit circle
0D = {2z € C: |z] = 1} in the complex plane, and the upper half-plane
U={ze€C: $(z) > 0} conformally to the unit disc D = {z € C: |z| < 1}.

A real orientation-preserving Md&bius transformation (MT) is a self-
map of R of the form

ar+b  azo+ bz
cx+d  ecxo+dr’

M(a,b,c,d) (:L') =

where a,b,c,d € R and det(M, p.c,q)) = ad — be > 0. Mébius transformations
form a group and act also on the upper half-plane U: If z € U then M(z) € U
as well. On D := DU ID we get disc Mobius transformations defined by
M(a,b,c,d)(z) =ho M(a,b,c,d) © h_l(z) = (az + 6)/(5’2 + a)) where o = (a’ + d) +
(b—c)i, B = (b+c)+ (a—d)i. The circle derivation of M = M, .4 at z € R
is defined by

(ad —be) - (zg+aF) _ det(M) - ||z]|?
(azo +bx1)? + (cxo +dw1)2  ||M(2)|]2
The expansion interval of an MT is V(M) = {x ¢ R: (M~Y)*(x) > 1}. If
M = Ro = M(cos @ sin &, — sin & cos ) 18 a rotation, then M*(x) =1 and V(M) is
empty. Otherwise V(M) is a proper set interval.

M*(z) = [M'(h(z))| =

3 Intervals

A set interval is an open connected subset of R. A proper set interval is a
nonempty set interval properly included in R. We represent proper set intervals



by (2 x 2)-matrices whose columns are their left and right endpoints. The stere-
ographic projection applied to x = % € R gives h(z) = sin2a — icos2a =
e'(22=3) 50 it doubles the angles. Matrices with columns z = :(S:i.%, Y= %
where 0 < a < 27, a < 8 < a + 7 therefore represent all proper intervals. Since
det(z,y) = rssin(a— B) < 0, we define matrix intervals as (2 x 2)-matrices with
negative determinant and write them as pairs I = (3%, ) of their left and right
endpoints (1) = 32, v(I) = £. The set of matrix intervals is therefore
I(R) = {(3%, 52) € GL(R,2) : zoy1 — z1y0 < 0}.

1’ Y1
We define the size and the length of an interval (z,y) by

ToYo+T1y1 X -Y
zoy1 — x1yo  det(x,y)’

sz(z,y) =
|(z,y)| S t (2, y)
= — 4 — arctans .

z,y 5 rctansz(z, y

For ¢ = Isina ) — zz;‘;g we get sz(x,y) = —cot(f — a) = tan(B — a — §),
so |(z,y)] = (B8 — a)/m, provided 0 < 8 — & < 7. The length |I| € (0,1) of T
is an increasing function of the size sz(I) € (—oo,+00) of I. A matrix interval
I = (z,y) defines an open set interval by z € I < det(x, z)-det(z,y) > 0, and a

closed set interval z € T < det(x,z) - det(z,y) > 0. If [ = (Lsina snby ey

rcosa’ scosf

z = Lsiny eliffeithera<y<Pora+nm<vy<p+n If I,J are intervals,

tcosy
then I C J iff (I) € J and r(I) € J. In this case sz(I) < sz(J). When we
transform intervals, we work with the matrix representations of MT rather than
with the transformations themselves. Mobius transformations are represented by
matrices

M(R) = {M(a,b,c,d) S GL(R, 2) : ad — be > 0}

which act on vectors € R? by = > Mx. Two matrices represent the same MT if
one is a nonzero multiple of the other and the matrix multiplication corresponds
to the composition of MT. If M € M(R) and I € I(R), then M is the interval
which represents the M-image of the set interval of .

4 Rational intervals

Denote by Z the set of integers and by Q = {z € Z*\ {2} : gcd(z) = 1} the
set of (homogeneous coordinates of) rational numbers which we understand as a
subset of R. Here ged(x) is the greatest common divisor of o and 27. The norm

of a vector x € Q is ||z|| = /22 + 22. Denote by
M(Z) = {M € GL(Z,2) : ged(M) = 1, det(M) > 0},
I(Z) = {I € GL(Z,2) : ged(I) = 1, det(I) < 0}.

The norm of a matrix M, p..q) € GL(Z,2) is ||M|| = Va? + b? + ¢ + d?. We
have ||[MN|| < |[M|| - ||N|| for M, N € M(Z).



Lemma 1 If I € I(Z) is an interval, then

V2| det(X) -sz(I)| < ||I]| < 2-|det(I)| - max{|sz(I)|,1}.

Proof. Let I = (2,2). Then 2 - |det(I) - sz(I)| = 2|ab + cd| < ||I||2, and we
get the first inequality. To prove the second inequality, we show that in all
cases max{|al,|b|, |¢|, |d|} < |det(I)| - max{|sz(I)|,1}. If @ = 0 or d = 0 then
0 # |bc] = |det(I)| and |det(I) - sz(I)| is either |cd| or |ab| and the claim is
satisfied. If b = 0 or ¢ = 0 then 0 # |ad| = | det(I)| and |det(]) - sz(I)] is either
|ed] or |ab| and the claim is satisfied. If sgn(ab) - sgn(cd) > 0 then

la] - [b] + |ef - |d| = |ab + cd| = |sz(I) - det(I)],

and the claim is satisfied. If sgn(ad) - sgn(cd) < 0 then sgn(ad) - sgn(bc) =
sgn(abed) = sgn(ab) - sgn(ed) < 0 and |al - |d| + 10| - |¢| = |ad — be| = | det(T)], so
the claim is satisfied. O

Lemma 2 IfI € 1(Z), sz(I) <0 and x € INQ, then ||I|| < /5 - ||z|| - | det(I)]
and |sz(I)| < g||$||2 - | det(I)].

Proof. Let © = % el = (%,%), and set o = fdet(%,g) = pc—aq, f =
— det(%, g) = ¢b— pd, so sgn(a - B) > 0. Replacing z by :—Z if necessary, we can
assume that o > 0 and B > 0. Since sz(I) < 0 and sz(2, %) = 0, either 0 & I
or oo ¢ I. Assume first oo ¢ I, so cd = — det(%, %) -det(%, %) > 0. Since q # 0,
a=(pc—a)/q, b= (pd+p)/q, and — det(I) = (ad+ Sc)/q = (ald|+Blc])/|q], so
a, B, d|, |c| are bounded by |g| - | det(I)|. It follows that |a| and |b| are bounded
by (|p] +1)-|det(1)], so [|[I]|* < 2(¢*+ p*+2|p| + 1) - det(I)?. Similarly if 0 & I,
then ab = — det(%, %)~det(%, g) >0.Sincep # 0, c = (ag+a«)/p, d = (¢b— ) /p,
and —det(I) = (ab + Ba)/p = (a|b| + Blal)/|p|, so «, B, |al, |b] are bounded by
|p| - |det(I)]. Tt follows that |¢| and |d| are bounded by (|g| + 1) - |det(I)], so
1] < 2(p* + ¢* + 2|q| + 1) - det(I)%. In both cases [|I]|> < 5 - ||x||? - det(I)2.
Similarly we show that |sz(I)| < 2||z||? - | det(I)]. 0

5 Subshifts

For a finite alphabet A denote by A* :=J,,~, A™ the set of finite words. Denote
A the empty word : A® = {A\}. The length of a word u = wug ... um_1 € A™ is
|u| = m. We denote by AN the Cantor space of infinite words with the metric
d(u,v) = 27k where k = min{i > 0 : u; # v;}. We say that v € A* is a
subword of u € A* U AY and write v C u, if v = Ufg) = Wieo . Uje1 for some
0 < i < j < |ul. The cylinder of u € A™ is the set [u] = {v € AV : vy ,) = u}.
The shift map o : AY — AN is defined by o(u); = u; ;. A subshift is a
nonempty set X C AN which is closed and o-invariant, i.e., o(X) C X. If D C A*
then ¥p = {z € AN : Vu C z,u € D} is the subshift (provided it is nonempty)
with forbidden words D. Any subshift can be obtained in this way. A subshift



is uniquely determined by its language £(X) = {u € A* : Jz € X u C z}.
Denote by £(X) = L(X) N A™.

A labelled graph over an alphabet A is a structure G = (V, E, s,t, £), where
V = |G| is the set of vertices, E is the set of edges, s,t : E — V are the source
and target maps, and ¢ : E — A is a labeling function. The subshift of G consists
of all labels of all paths of G. A subshift is sofic, if it is the subshift of a finite
labelled graph. A subshift X is of finite type (SFT) of order p, if its forbidden
words have length at most p, i.e., if X = Xp for some set D C AP. In this case
u € AY belongs to X iff all subwords of u of length p belong to £(X) (see Lind
and Marcus [11] or Kurka [5]).

A finite state transducer is a finite state automaton with a read only
input tape in an alphabet A and a write only output tape in an alphabet B. It

is given by a finite labelled graph G with edges ¢ a—/b> r, where a € AU {\} is an
input letter and b € B U {\} is an output letter. We say that the transducer is
deterministic on a subshift X € AN if for each q € V and u € X there exists a
unique v = Fg(u) € BY such that u/v is the label of an infinite path with source
q. Such a transducer determines a continuous mapping Fg : X — BY. For any
finite state transducer, the computation of Fg has linear time complexity.

6 Mobius number systems

A Mobius iterative system over an alphabet A is a map F : A* x R — R
or a family of orientation-preserving Mobius transformations (F, : R — R),eca-
satisfying F,, = F, o F,, and F) = Id. An open almost-cover is a system
of open intervals W = {W, : a € A} indexed by the alphabet A, such that
Usea Wa = R.IF W, N W, = 0 for a # b, then we say that W is an open
partition. We denote by E(W) = {L(W,),r(W,) : a € A} the set of endpoints

of W.

Definition 1 A Mdébius number system over an alphabet A is a pair (F, W)
where F : A* xR — R is a Mébius iterative system and W = {W, : a € A} is an
almost-cover, such that W, C V(Fy) for each a € A. The interval cylinder of
u € AL is Wy, = Wy NEFy Wy, N - ‘NFyu ., Wu,, - The expansion subshift Sy
is defined by Syy = {u € AN : Vk >0, W,y 7 0}. We denote by Ly = L(Sw)
the language of Sy and by L}, = L™ (Sw).

For wv € Lyy we have W,,,, = W,,NF,W,. Given a MNS (F, W), we construct
nondeterministically the expansion u € Syy of © = 2y € R as follows: Choose
ug with © € W,,,, choose u; with z; = Fu_o1 (z9) € Wy,, choose uy with zy =
Fu_ll(acl) € W,,, etc. Then =z € Wu[o,m for each n, so W, is the set of points
which have expansion wu.

Theorem 2 (Kurka and Kazda [10]) If (F, W) is a MNS over A, then there

exists a continuous map D : Syy — R such that for each u € Syy and v € Ly,

Fug oy (1) = P(u), {P(u)} = ﬂ Wy P([0] N SW) = W,
n>0

lim
n— o0



Here i is the imaginary unit. In fact we have &(u) = lim, o F; (z) for each

Ufo,n)
z € U, and h(P(u)) = limp 00 Fug.y (z) for each z € D. If (F,W) is an MNS
then lim,, o max{|Wy| : u € L},} = 0. This is an immediate consequence of

the uniform continuity of @ : Sy — R.

~

Definition 3 We say that a MNS (F,W) over A is an integer MNS if its
transformations have integer entries and its intervals have rational endpoints,
i.e., if F, € M(Z) and W, € I(Z) for each a € A. We say that an integer MNS
is modular, if all its transformations have unit determinant det(Fy) = 1.

7 Sofic Mobius number systems

Definition 4 Let (F,W) be an MNS over an alphabet A. An open partition
V ={V,: p € B} is an SFT refinement of W, if the following two conditions
are satisfied for each a € A, p,q € B:

1. IfV,N W, # 0 then V,, C W,

2. If V, CW, and Vy N F; 1V, # 0 then V, C F;'V,.

In this case we say that (F,W,V) is a sofic M6bius number system. The
base graph Gy vy of (F,W,V) is an A-labelled graph whose set of vertices are
letters of B and whose labelled edges are p & q if F,Vy; €V, C W,. Denote by
C={(p.a) eBxA: V, CW,} and Sov) C CV the SFT of order two with
transitions (p,a) — (¢,b) iff p & q.

Theorem 5 (Kurka [9]) If (F,WV) is an MNS, then Sy is a sofic subshift iff
there exists an SFT refinement )V of W. In this case Syy is the subshift of the base
graph Gow,vy and we have a factor map 7 : Spy vy — Sw given by m(p,a) = a.

Theorem 6 (Kurka [9], Theorem 16) Each modular MNS has a sofic ex-
pansion subshift.

An example of a modular MNS has been studied by Raney [14], Niqui [12]
and Kurka [9]. Its alphabet is A = {0,1, 2,3}, the transformations are

FQ(.Z')

and the intervals are Wy = (0,1), W1 = (1,00), Wy = (o0, —1), W3 = (—1,0).
Since Fy(0,00) = W, for a = 0,1 and Fy,(c0,0) = W, for a = 2, 3, the expansion
subshift is a union of two full subshifts which code respectively nonnegative and
nonpositive real numbers: Sy, = {0, 1} U {2, 3}, The system is closely related
to continued fractions. Each u € {0,1} can be written as u = 1%0%192 .
where ag > 0 and a,, > 0 for n > 0. Then u is the expansion of the continued
fraction [ag, a1, az, .. ], i.e.,

= HL:E’ Fi(z)=xz+1, Fa(x) =2 — 1, F3(z) = :c

1—2a

®(u) = [ag, ar,az,...] = ag+1/(ar +1/(az + - -.

If ap, = oo for some n > 0, then &(u) = [ag,...,an—1] is a finite continued
fraction.
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Fig.1. A modular MNS.

In Figure 1 we show a variant of this system with larger cylinder intervals
W, = V(F,). Figure 1 bottom left shows the graphs of the circle derivations
(F;1)*(x) together with the cylinder intervals W,. In Figure 1 right we can
see the values Fl,(0) of the disc MT F, at zero. The curves between F,(0) are
constructed as follows. For each MT M there exists a family (M"),cg of MT
such that M? = Id, M' = M, and M"+5 = M"M?. Each value F,(0) is joined
to Flua(0) by the curve (ﬁuﬁ;(o))ogrg- The labels u € A* at F,(0) are written
in the direction of the tangent vectors ﬁ: (0). The SFT partition of the system
has 8 intervals shown in Figure 2 left. The base graph can be seen in Figure 2
right. The expansion subshift Syy is a SFT of order 4. with 20 forbidden words
03, 12, 21, 30, 020, 131, 202, 313, 0220, 0232, 0233, 1322, 1323, 1331, 2002, 2010,
2011, 3100, 3101, 3113.

Theorem 7 If (F,W,V) is a modular system, then m : Spyvy — Sw is an
isomorphism, so Syy is an SFT.

Proof. We show that if (p,u) € Spy,yy, then p € BY is determined by u € AN.

For 0 <n <m we have V},, CW,,, and F,, V,, ., CV,,, s0
Fu[n,m)vpm < Fu[n,nL—l)‘/pmfl c---C Funvpn+1 € Vo,
Fu[n,m)%m < Fu[n,mfl)Wumyfl n---n Fun Wun+1 n Wun - Wu[n,m)'

It follows that 0 # Fu, . Vb, € Vp, N W, .,
D(0™(u)), 80 {Zn} = Nysn Wapym) - If @ is irrational, then there exists m > n
such that Wy, N EV) = 0, so there exists exactly one p, € B with V,, N

is nonempty. Denote by z,, =

[n,m)

n,m)
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Fig. 2. The SFT partition and the base graph of a modular system from Figure 1.

Wup, oy 7 0. Assume that z,, is rational. For each m > n we have

Ty = P(0™ (u)) = Fu_[nl (xn) € Wy, € V(Fy,,),

m)
and [[@m|[?/|[zm41|* = llom|?/I1FL L (@m)l? = (F)* (@m) = 1, s0 |[zm|| <
[|Zm||. Moreover, if x,, € W, , then ||x,11|| < ||zm|| Since ||z,||*> € N, the
set {m >n: x,, € W, } is finite and there exists m > n such that either z;, =
L(W,,,) for all k > m, or xp = r(W,,) for all & > m. Since z,, = u[n,m(xk) €
W C Fu[n,k)W—uk7 we get &, = l'(Wu[n,k)) for all £ > m in the former case and
Ty = r(Wu[n,k)) for all kK > m in the latter case. It follows that there exists k > m
such that Wy, ., NE(V) = 0, so there exists a unique p, with V, "Wy, ., # 0.
This means that p,, is uniquely determined by w. Since Fy,, ,Vp, € Vp,_,, the
letter p,,—1 is uniquely determined by p, and the prefix p( ) of p is uniquely
determined by p,. O

Theorem 8 Assume that (F,W,V) is a modular MNS and for u € Ly, denote
by P(u) C B* the set of paths with label u.

1. There exists 7 > 0 such that the set {pj ) : p € P(u)} is a singleton for
each n > r and each finite word u € L3),.

2. There exists s > 0 such that P(u) has at most s elements for each u € Lyy.
3. The map 7~ ' : Sy — Sow,v) can be computed by a finite state transducer.

Proof. The existence of constants r, s follows from Theorem 7 by a compactness
argument. We define a finite state transducer for 7—! as follows. Its vertices are
sets X C B™, where 0 < n < r. The labelled edges are

X peB™: pou_1) €X, po—1 G pat X CB", n<r,
X peB : bpp,_g €X, proa S pp1} HXCB.

Then u/p is the label of a path with the source B iff p is a prefix of a path whose
label is u. O



In Table 2 left we show the computation of 7=1(u) on input word u = 00133.
For each n > 0 we give the set P(uyg)) of all paths p € B"*! with label ujg ).

8 Arithmetical algorithms

Definition 9 The unary graph for an integer sofic MNS (F, W, V) is a labelled
graph whose vertices are (X, p), where X € M(Z) and p € B. Its labelled edges
are
absorption: (X,p) Y2 (XF,,q) if F,Vy, CV, C W,
emission: (X, p) M° (Fb_lX,p) if XV, CW.

The labels of paths are concatenations of the labels of their edges. They have
the form w/v where u € Lyy is an input word and v € Lyy is an output word.

Proposition 10 If (X, p) “/¥ (Y,q) is a path in the unary graph, then
Y =F'XF,, F,V, CV,nW,, XFE,V, CW,.

Proof. Since Wy = R and Fy = Id, the statement holds for the absorption and
emission edges. Assume by induction that the statement holds for a path with
label u/v. If (X, p) “/¥ (Y, q) “2 (Z,r) then Z = YF, = F;' X Fyo, F,V, CV, C
Wa, 80 Fuo Ve C FV, CV,NW,NEW, =V, N Wy, and X F,,V, C XF,V, C
W, so the statement holds for (X,p) “/¥ (Z,r). If (X,p) “/% (Y,q) 2 (Z,q)
then Z = F; 'Y = F;' XF,. From F;'XF,V, = YV, C W, we get XF,V, C
F,Wy, and therefore X F,,V, C W, N F,Wy = Wyp,. Moreover, F,,V; C V, N Wy,
so the statement holds for (X, p) /% (Z,q). O

procedure unary;
input: M € M(Z), (p,u) € S(W,V) U L(WJ;);
output: v € Sy U Lwy;
variables X € M(Z) (state), n,m € N (input and output pointers);
begin
X :=M;n:=0; m:=0;
while n < |u| repeat
if Va € A, XV, € W, then begin
X = XFy,;n:=n+1; end,;
else begin
Um = a, where XV, C W, and XV, Z W}, for all b < a;
X :=F'X; m:=m+1; end;
end;

Table 1. The unary algorithm.



10

n[P(0013330.,,)) n|m|jout X XVp, |input
1]00, 01, 12, 13, 24, ofofo] [2,1,L,2] |(5,%)][0
2|000, 001, 012, 013, 124, o1 1| [2,1,-1,1] |(3,7) 10
3|0017, 0120, 0121, 0[2 3,0,—1,1] | (§,%) (050
0132, 0133, 20| [3,0,01 |(%35)10
4/00176, 00177, 13 [3,0,-3,1] |(§,=p)0 21
5/001764, 001765, 213 2| [3,0,-2,1] |(3,2p)]1
001776, 001777, 204 2| [1,1,-2,1] |(3,2)]1
6|0017653, 0017764, 205 2 | [-1,2,-2,1] |(2, )[1
0017765, 0017776, 206 [-3,3,-2,1] (2, 2)[1 4 7
0017777, 3|6 [_37 0,-2, _1] (%7 —ll) T3
Table 2. The computation of a path p = 0017 = 7~ *(001333) = 7~ '(u) (left) and the

computation of v = 010222 = O/ (p, u) on the input matrix M(z) = (22 4+ 1)/(z + 2)
and the input path 0 L0315 737 by the unary algorithm (right). The third
column gives the values v, on emission steps and the empty word on absorption steps.
The last column gives the vertex p, on emission steps and the edge pn “% pn+1 on
absorption steps.

We consider a deterministic unary algorithm given in Table 1, which com-
putes a path in the unary graph. Its input is a matrix M € M(Z) and either a
finite path (p,u) € Loy,y) or an infinite path (p,u) € Spy,yy. We assume that
the alphabet A is linearly ordered. At each step, the algorithm performs the
first possible emission if there is one, and an absorption if there is no emission
applicable. For an infinite input path, the algorithm computes an output word
v € Syy such that u/v is the label of a path in the unary graph with source
(M, pp). An example of the computation of the unary algorithm is given in Ta-
ble 2 right. We are going to prove that for a modular system (F, W, V), the norm
of the state matrix X remains bounded during the computation of the unary
algorithm. To do so, we define some constants and prove several lemmas. Set

By =max{V5-||z||: 2 € EW)}, Bi =max{l,|sz(F, 'W;)|: be A}

Dy = min{| det(V},)| : p € B}, Dy = max{|det(V,)| : p € B},
G =max{L ||V, ' FoVoll : p = ¢}, H =max{vDy,||V,||: p€B},
B = max{DBy, 2B}, Co = max{B?D?G? /2Dy, B1}

Lemma 3 1. If (X,p) 2 (XF,,q), then sa(XF,V,) < s2(XV,).
2. If (X, p) M8 (F, X, p), then 0 > s2(XV},) < sz(F, ' XV,) < By.

Proof. The first claim follows from X F,V, C XV,. To prove the second claim,
note that for each M € M(Z) we have sz(V(M)) < 0, so sz(W},,) < 0 for each b €
AT (X, p) 28 (Fy X, p) is an emission edge, then XV, C W, so sz2(XV,) < 0.
Since Fb_lXVp - Fb_lwb, we get, sz(Fb_lXVp) < Bj. Since Fb_1 is an expansion
on W, we get sz(XV,) < sz(F; ' XV,,). 0



11

Lemma 4 If (X,p) /2 (X F,,q) is an absorption performed by the unary algo-
rithm and sz(XV,) < Bi, then || XV,|| < BD1det(X), [sz2(XV,)| < Cpdet(X)
and |sz(X F,V,)| < Cp det(X).

Proof. We distinguish two cases. If 0 < sz(XV},) < By, then by Lemma 1 we have
[|XVp|l < 2|det(XV,)| - max{1,|sz(XV,)|} < 2B1Dqdet(X). If sz2(XV,) < 0,
then we use the fact that XV}, is not contained in any W,, so it must contain a
point from £(W). By Lemma 2, || XV,|| < By-|det(XV,)| < BoD; det(X). Thus
in both cases we have || XV,|| < BD; det(X). It follows || XF,V,|| < || XV} -
[V, ' FoVgl| < BD1G - det(X). By Lemma 1 we get

[s2(X V)| < IXVpI2/2 det(XV,)| < 2% det(X) < Cpdet(X), and similarly
[s2(XF,Vy)| < Z21% det(X) < Cp det(X). 0

Lemma 5 Fvery infinite path computed by the unary algorithm contains an
infinite number of emissions.

Proof. Assume by contradiction that there exists an infinite path of absorptions

with vertices (X, pn) and label u/\, where u € Syy. Since Fy,, .V, C Wy,

[0,n) " Pn 0,n)

and lim,, |WU[M)| =0, we get lim, |X0FU[M)Vpn| = 0 by the continuity
of Xy, and therefore lim,,_, SZ(XoFu[Om,) Vp.) = —oo. This is in a contradiction
with Lemma 4. O

Theorem 11 For a modular MNS (F,W,V) there exists a constant C > 0
such that for every input matrix M € M(Z), the unary algorithm computes a
continuous function O : Spy vy — Sw with POy (p,u) = MP(u), and the state
matriz X satisfies || X|| < C - max{||M||?, det(M)?} during the computation.

Proof. Let (X,,,pn) be the vertices of the infinite path with source (Xo,po) =
(M, po). If s2(X,Vp,) > Codet(M), then (X,,,p,) is an absorption vertex by
Lemma 3 and sz(X,41V),.,) < s2(X,V}, ). If s2(X,V,,) < —Cpdet(M), then
(Xn,pn) is an emission vertex by Lemma 4, and sz2(X,41Vj, ;) > sz2(X,V},).

Thus there exists m, such that for all n > m we have |sz(X,,V}, )| < Codet(M)

while for n < m we have |sz2(X,V,,)| < [sz(MV,,)] < %. By Lemma 1

we get either || X, V,. || < 2D1Codet(M)? in the former case and || X, V,, || <
%’?HMW in the latter case. Taking C' = max{2H D1Co, H3D1/Dy} we get

1]l < [1X Vo, ] [V ] < € - max{|| M][?, det (M)}

for all n, so the algorithm can be realized by a finite state transducer. By
Lemma 5, for each (p,u) € Sy, there exists a unique v = Op(p,u) such
that u/v is the label of an infinite path with source (M, po). For each m there
exists n such that ujg ,)/vjo,m) is the label of a finite path with source (M, po),
0 # Fugy Vo, S Wy and ) # MFy, V,, € Wy, - The intersection

Ny Fugoy Vou € Ny Way,,,, is nonempty by compactness and has zero diame-

0,n)’

ter, so it contains the unique point @(u). The intersection (1, MFEy, , Vp, C

(N W,y 18 @ nonempty singleton which contains both M (®(u)) and @(v), so
M(P(u)) = P(v). O
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Corollary 12 If (F,W,V) is a modular MNS, then for each M € M(Z) there
exists a finite state transducer which computes a continuous function Wy : Syy —
Sy which satisfies PV = MP.

Proof. Using Theorems 8 and 11 we get Wy = Oy o 1.

A disadvantage of modular systems is that they are not redundant. As shown
in Kurka [7], the cylinder intervals of a modular system contain neither 0 nor
00, 80 they cannot form a cover but only an almost-cover. In Kurka [8] we
argue that in some redundant MNS, the unary algorithm has asymtotically linear
time complexity. The norm of the state matrix remains small most of the time,
although fluctuations to larger values occur sporadically.
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