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Abstract
We develop a new semiclassical calculus in analytic regularity, and

we apply these techniques to the study of Berezin-Toeplitz quantization
in real-analytic regularity.

We provide asymptotic formulas for the Bergman projector and
Berezin-Toeplitz operators on a compact Kähler manifold. These ob-
jects depend on an integer N and we study, in the limit N → +∞,
situations in which one can control them up to an error O(e−cN ) for
some c > 0.

We develop a calculus of Toeplitz operators with real-analytic sym-
bols, which applies to Kähler manifolds with real-analytic metrics.
In particular, we prove that the Bergman kernel is controlled up to
O(e−cN ) on any real-analytic Kähler manifold as N → +∞. We also
prove that Toeplitz operators with analytic symbols can be composed
and inverted up to O(e−cN ). As an application, we study eigenfunc-
tion concentration for Toeplitz operators if both the manifold and the
symbol are real-analytic. In this case we prove exponential decay in
the classically forbidden region.

1 Introduction
Toeplitz quantization associates, to a real-valued function f on a Kähler
manifold M , a family of Toeplitz operators, which are self-adjoint linear op-
erators (TN (f))N≥1 acting on holomorphic sections over M . Examples of
Toeplitz operators are spin operators (where M = S2), which are indexed
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by the total spin N
2 ∈

1
2N. Toeplitz operators also include pseudodifferential

operators on Rn. In this paper we study exponential estimates for these op-
erators, that is, approximate expressions with O(e−cN ) remainder for some
c > 0.

The family of holomorphic section spaces in Toeplitz quantization is
described by a sequence of Bergman projectors (SN )N≥1 (also known as
Szegő projectors). The operators SN can be written as integral operators
(the integral kernels are sections of suitable bundles overM×M), and a first
step toward understanding Toeplitz quantization is the asymptotic study, in
the limit N → +∞, of the Bergman kernel.

We show (Theorem A) that the Bergman kernel admits an asymptotic
expansion in decreasing powers of N , up to an error O(e−cN ), as soon as
the Kähler manifold is compact and real-analytic. To study the Bergman
projector, as well as compositions of Toeplitz operators (Theorem B), it
is useful to interpret the N → +∞ limit as a semiclassical limit (with
semiclassical parameter ~ = 1

N ). We build new semiclassical tools in real-
analytic regularity (in particular, new analytic symbol classes, see Definition
3.3), which can be of more general use.

This study of the calculus of Toeplitz operators allows us to state results
concerning sequences of eigenfunctions of Toeplitz operators (TN (f))N≥1
for a real-analytic f . We prove the following (Theorem C): if (uN )N≥1 is a
sequence of normalised eigenfunctions with energy near E ∈ R, that is,

TN (f)uN = λNuN , λN →
N→+∞

E, ‖uN‖L2(M,L⊗N ) = 1,

and if V ⊂ M is an open set at positive distance from {x ∈ M,f(x) = E},
then

‖uN‖L2(V,L⊗N ) ≤ Ce−cN

for some C > 0, c > 0 independent on N . We say that (uN )N≥1 has an
exponential decay rate on V .

In [15], we provide an asymptotic expansion, with error O(e−cN ), for the
ground state of a Toeplitz operator TN (f), for f real-analytic and Morse.

1.1 Bergman kernels and Toeplitz operators

This article is devoted to the study of exponential estimates concerning
the Bergman kernel and Toeplitz operators on Kähler manifolds with real-
analytic data. In this subsection we quickly recall the framework of Toeplitz
operators, introduced in [5, 3]. We refer the reader to more detailed intro-
ductions [4, 9, 14].

Definition 1.1.
• A compact Kähler manifold (M,J, ω) is said to be quantizable when
the symplectic form ω has integer cohomology: there exists a unique
Hermitian line bundle (L, h) over M such that the curvature of h is
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−2iπω. This line bundle is called the prequantum line bundle over
(M,J, ω). The manifold (M,J, ω) is said to be real-analytic when ω
(or, equivalently, h) is real-analytic on the complex manifold (M,J).

• Let (M,J, ω) be a quantizable compact Kähler manifold with (L, h)
its prequantum bundle and let N ∈ N.

– The Hilbert space L2(M,L⊗N ) is the closure of C∞(M,L⊗N ),
the space of smooth sections of the N -th tensor power of L, for
the scalar product

〈u, v〉 =
∫
M
〈u(x), v(x)〉L⊗Nx

ω∧ dimC M

(dimCM)! .

– The Hardy space H0(M,L⊗N ) is the space of holomorphic sec-
tions of L⊗N . It is a finite-dimensional, closed subspace of L2(M,L⊗N ).

– The Bergman projector SN is the orthogonal projector from the
space L2(M,L⊗N ) to its subspace H0(M,L⊗N ).

– The contravariant Toeplitz operator associated with a symbol
f ∈ L∞(M,C) is defined as

TN (f) : H0(M,L⊗N )→ H0(M,L⊗N )
u 7→ SN (fu).

In a related way, one can define covariant Toeplitz operators, which
are kernel operators acting on H0(M,L⊗N ) (see Definition 4.1). We are
interested the Bergman projector and both types of Toeplitz operators in
the semiclassical limit N → +∞.

A particular motivation for the study of Toeplitz operators is the quan-
tization, on M = (S2)d, of polynomials in the coordinates (in the standard
immersion of S2 into R3). The operators obtained are spin operators, with
total spin N

2 . Tunnelling effects in spin systems, in the large spin limit, are
widely studied in the physics literature (see [37] for a review). This article
also aims at giving a mathematical ground to this study.

The Bergman kernel plays a role in many aspects of complex geometry
and complex algebraic geometry [44, 38] as well as random matrices [1, 26],
expanding the range of potential applications for Theorem A. Beyond the
statements of our main results, our new microlocal analytic tools, developed
in Section 3 may be used again in many different contexts, including trans-
fer operators and quantized symplectomorphisms. As a matter of fact, we
only deal with direct summation techniques, and the involved techniques of
resummation or resurgence might be used to further broaden the range of
applications of our tools.

We will use the following estimate on the operator ∂ acting on L2(M,L⊗N )
and the Bergman projector SN .
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Proposition 1.2. Let (M,ω, J) be a compact quantizable Kähler manifold
and (SN )N≥1 be the associated sequence of Bergman projectors. There exists
C > 0 such that, for every N ≥ 1 and u ∈ L2(M,L⊗N ), one has:

‖∂u‖L2 ≥ C‖u− SNu‖L2 . (1)

This estimate initially follows from the work of Kohn [27, 28]; it is widely
used in the asymptotic study of the Bergman kernel, where it is sometimes
named after Hörmander or Kodaira.

The Bergman projector SN admits a kernel, in a sense which we make
precise here. The space H0(M,L⊗N ) is finite-dimensional, so that it is
spanned by a Hilbert basis s1, . . . , sdN of holomorphic sections of L⊗N . The
following section of L⊗N � L

⊗N is the integral kernel of the Bergman pro-
jector:

SN (x, y) =
dN∑
i=1

si(x)⊗ si(y).

Here L is the complex conjugate bundle of L, and � stands for pointwise
direct product: L⊗N � L

⊗N is a bundle over M ×M . More generally, any
section of L⊗N � L

⊗N gives rise to an operator on L2(M,L⊗N ).

1.2 Statement of the main results

We begin with the definition of what will be the phase of the Bergman ker-
nel. We use the standard notion of holomorphic extensions of real-analytic
functions and manifolds, under a notation convention which is recalled in
detail in Section 2.3.

Definition 1.3. LetM be a real-analytic Kähler manifold. LetM = (M,ω,−J)
be the complex conjugate ofM : holomorphic data onM correspond to anti-
holomorphic data on M . The codiagonal {(x, x), x ∈ M} ⊂ M ×M is a
totally real submanifold.

In particular, there exists a neighbourhood U of the diagonal in M ×M
and a unique holomorphic section Ψ of L � L over U such that Ψ = 1 on
the diagonal. Its N -th tensor power ΨN is the unique holomorphic section
of L� L over U such that ΨN = 1 on the codiagonal.

It is well-known that the pointwise norm of Ψ decays away from the
codiagonal:

|Ψ(x, y)|h = e−
1
2 dist(x,y)2+O(dist(x,y)3).

In the general setting of a Kähler manifold with real-analytic data, it has
been conjectured by S. Zelditch that the Bergman kernel takes the following
form: for some c > 0, c′ > 0, for all (x, y) ∈M2,

SN (x, y) = ΨN (x, y)
cN∑
k=0

Nd−kak(x, y) +O(e−c′N ),
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where the ak are, in a neighbourhood of the diagonal inM×M , holomorphic
in the first variable and anti-holomorphic in the second variable, with

‖ak‖C0 ≤ CRkk!.

The well-behaviour of such sequences of functions when the sum
∑
N−kak

is computed up to the rank k = cN with c < e/2R is well described in [41]
and is the foundation for a theory of analytic pseudodifferential operators
and Fourier Integral Operators. Here, we rely on more specific function
classes. Without giving a precise definition at this stage let us call “analytic
symbols” well-controlled sequences of real-analytic functions. See Definition
3.3 about the analytic symbol spaces Sr,Rm (X) and the associated summation.
The introduction of these classes allows us to prove the conjecture.

Theorem A. Let M be a quantizable compact real-analytic Kähler mani-
fold of complex dimension d. There exists positive constants r,R,m, c, c′, C,
a neighbourhood U of the diagonal in M × M , and an analytic symbol
a ∈ Sr,Rm (U), holomorphic in the first variable, anti-holomorphic in the sec-
ond variable, such that the Bergman kernel SN on M satisfies, for each
x, y ∈M ×M and N ≥ 1:∥∥∥∥∥SN (x, y)−ΨN (x, y)

cN∑
k=0

Nd−kak(x, y)
∥∥∥∥∥
h⊗N

≤ Ce−c′N .

Equivalently, the operator with kernel ΨN (x, y)
∑cN
k=0N

d−kak(x, y) is ex-
ponentially close (in the L2 → L2 operator sense) to the Bergman projector.

Theorem A also appears in recent and independent work [40], where the
authors use Local Bergman kernels as developed in [2] to study locally the
Bergman kernel as an analytic Fourier Integral Operator. Here, we obtain
it as a byproduct of the next theorem about composition and inversion of
Toeplitz operators.

In order to study contravariant Toeplitz operators of Definition 1.1, as
well as the Bergman kernel itself, it is useful to consider covariant Toeplitz
operators [9]. With ΨN as above, and f : M ×M → C holomorphic near
the diagonal, we let

T covN (f)(x, y) = ΨN (x, y)
(
cN∑
k=0

Nd−kfk(x, y)
)
,

for some small c > 0; see Definition 4.1.

Theorem B. LetM be a quantizable compact real-analytic Kähler manifold.
Let f and g be analytic symbols on a neighbourhood U of the diagonal in
M ×M , which are holomorphic in the first variable and anti-holomorphic
in the second variable.
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Then there exists c′ > 0 and an analytic symbol f]g on the same neigh-
bourhood U , holomorphic in the first variable and anti-holomorphic in the
second variable, and such that

T covN (f)T covN (g) = T covN (f]g) +O(e−c′N ).
For any r,R,m large enough, the product ] is a continuous bilinear map
from Sr,Rm (U)× S2r,2R

m (U) to S2r,2R
m (U) (see Definition 3.3); the constant c′

depends only on r,R,m.
If the principal symbol of f does not vanish onM then there is an analytic

symbol f ]−1 such that, for some c′ > 0, one has
T covN (f)T covN (f ]−1) = SN +O(e−c′N ).

Given an analytic symbol f ∈ Sr0,R0
m0 (U) with non-vanishing subprincipal

symbol, there exists C > 0 such that for every r,R,m large enough (depend-
ing on f, r0, R0,m0), one has

‖f ]−1‖
Sr,Rm (U) ≤ C‖f‖Sr,Rm (U).

The stationary phase lemma allows one to prove relatively easily that
the product (f, g) 7→ f]g is continuous from Sr,Rm × Sr,Rm to SCr,CRCm for some
C > 0. Theorem B is stronger in that respect, since the analytic class for
f]g is the same as the one for g if f is in a significantly better class. We
conjecture that, as it is the case for pseudodifferential operators on Rd [6],
the ] product is a Banach algebra product in some analytic space, that is, is
actually continuous from Sr,Rm × Sr,Rm to Sr,Rm . This kind of results is subtler
than the general techniques of analytic microlocal analysis originating from
[41] allow for, and cannot be reached from equivalence of analytic quanti-
zations, for instance. Theorem B relies on the Wick property of Toeplitz
covariant quantization (Proposition 4.4): as in the Moyal product of pseu-
dodifferential operators, to compute the k-th term in f]g one differentiates
f or g at most k times.

The fact that f]g belongs to the same analytic class as g in Theorem B
is a key point in our proof of Theorem A.

As an application of composition and inversion properties, one can study
the concentration rate of eigenfunctions, in the general case (exponential
decay in the forbidden region) as well as in the particular case where the
principal symbol has a non-degenerate minimum.
Theorem C. Let M be a quantizable compact real-analytic Kähler mani-
fold. Let f be a real-analytic, real-valued function on M and E ∈ R. Let
(uN )N≥1 be a normalized sequence of (λN )N≥1-eigenstates of TN (f) with
λN →

N→+∞
E. Then, for every open set V at positive distance from {f = E}

there exist positive constants c, C such that, for every N ≥ 1, one has∫
V
‖uN (x)‖2h

ω∧n

n! (dx) ≤ Ce−cN .

We say informally that, in the forbidden region {f 6= E}, the sequence
(uN )N≥1 has an exponential decay rate.
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1.3 Exponential estimates in semiclassical analysis

Exact or approximate eigenstates of quantum Hamiltonians are often searched
for in the form of a Wentzel-Kramers-Brillouin (WKB) ansatz:

e
φ(x)
~ (a0(x) + ~a1(x) + ~2a2(x) + . . .),

where ~ is the Planck constant, and is very small at the observer’s scale.
In the formula above, <(φ) ≤ 0 so that this expression is extremely small
outside the set {<(φ) = 0} where it concentrates.

From this intuition, an interest developed towards decay rates for solu-
tions of PDEs with small parameters. The most used setting in the math-
ematical treatment of quantum mechanics is the Weyl calculus of pseudod-
ifferential operators [49]. Typical decay rates in this setting are of order
O(~∞). Indeed, the composition of two pseudodifferential operators (or,
more generally, Fourier Integral Operators) associated with smooth symbols
can only be expanded in powers of ~ up to an error O(~∞).

In the particular case of a Schrödinger operator P~ = −~2∆ + V where
V is a smooth function, one can obtain an Agmon estimate [18], which is
an O(e

φ(x)
~ ) pointwise control of eigenfunctions of P~ with eigenvalues close

to E. Here, φ < 0 on {V > E}. In this setting one can easily conjugate
P~ with multiplication operators of the form e−

φ
~ , which allows to prove

the control above. This conjugation property is not true for more general
pseudodifferential operators. Moreover, Agmon estimates yield exponential
decay in space variables, and give no information about the concentration
rate of the semiclassical Fourier transform, which is only known to decay at
O(~∞) speed outside zero.

In the setting of pseudodifferential operators on Rd with real-analytic
symbols, following analytic microlocal techniques [41], exponential decay
rates in phase space (that is, exponential decay of the FBI or Bargmann
transform) were obtained in [31, 32, 33, 35]. Exponential estimates in semi-
classical analysis have important applications in physics [12] where they
validate the WKB ansatz which, in turn, yields precise results on spectral
gaps or dynamics of quantum states (quantum tunnelling). Moreover, on the
mathematical level, these techniques can be used to study non-self-adjoint
perturbations [23, 24] and resonances [19, 42, 36, 43, 17].

Since exponential decay in phase space for pseudodifferential operators
is defined by means of the FBI or Bargmann transform, it seems natural to
formulate these questions in terms of Bargmann quantization, which then
generalises to Berezin-Toeplitz quantization on Kähler manifolds, where the
semiclassical parameter is the inverse of an integer: ~ = N−1. Yet, for
instance, the validity of the WKB ansatz for a Toeplitz operator, at the
bottom of a non-degenerate real-analytic well, was only performed when
the underlying manifold is C (see [45]), and some results were recently ob-
tained for non-self-adjoint perturbations of Toeplitz operators on complex
one-dimensional tori [39].
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The analysis of Toeplitz operators depends on the knowledge of the
Bergman projector, which encodes the geometrical data of the manifold
on which the quantization takes place. The original microlocal techniques
for the study of this projector [7, 47, 9] allow for a direct control of the
Bergman kernel up to O(N−∞), from which one can deduce O(N−∞) es-
timates for composition and eigenpairs of Toeplitz operators with smooth
symbols [30, 13, 14]. Based on analytic pseudodifferential techniques, local
Bergman kernels make it possible to show, under real-analyticity hypothe-
sis, exponential (that is, O(e−cN )) decay of the coherent states in Toeplitz
quantization [2].

There is a recent increase of activity in the topic of exponential estimates
in Toeplitz quantization: control of the Bergman kernel in real-analytic or
Gevrey regularity [20, 21, 22, 10], but also estimates for the localisation of
eigenfunctions of the form O(e−cNα) for C∞ or rougher symbols [48, 11, 29,
16].

Remark 1.4 (Gevrey case). The methods and symbol classes developed in
this paper can be easily applied to the Gevrey case. s-Gevrey symbol classes
are defined, and studied, by putting all factorials to the power s > 1. s-
Gevrey functions have almost holomorphic extensions with controlled error
near the real locus, so that all results in this paper should be valid in the
Gevrey case under the two following modifications:

• The summation of s-Gevrey symbols is performed up to k = cN
1
s .

• All O(e−c′N ) controls are replaced with O(e−c′N
1
s ).

For instance, we conjecture that the Bergman kernel on a quantizable com-
pact Gevrey Kähler manifold is known up to O(e−c′N

1
s ). Its kernel decays at

speed Ndim(M)e−( 1
2−ε)N dist(x,y)2 as long as dist(x, y) ≤ cN−

s−1
2s . This would

improve recent results [21].

1.4 Outline

In Section 2 we recall the basic properties of holomorphic extensions of real-
analytic functions. Then, in Section 3, we define analytic symbol classes for
sequences of functions (fk)k≥0 and we give a meaning to the sum

∑
N−kfk

up to exponential precision. These symbol classes are more precise than the
ones appearing in the literature since [41]. In Section 4 we show Theorems
A and B: the Bergman kernel on a compact quantizable real-analytic Kähler
manifold, and the composition of analytic covariant Toeplitz operators, are
known up to O(e−cN ) precision, in terms of analytic symbols, from which
we deduce, in Subsection 4.5, general exponential decay (Theorem C) in the
forbidden region, for covariant as well as contravariant Toeplitz operators
with analytic symbols.

In Sections 3 and those that follow, the fundamental tool is a version
in real-analytic regularity of the stationary phase lemma (Lemma 3.12).
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The various proofs in the second part have a common denominator: the
general strategy consists in applying the complex stationary phase lemma
and controlling the growth of the derivatives of the successive terms.

2 Holomorphic extensions
In this section we provide a general formalism for holomorphic extensions
of various real-analytic data, which we use throughout this paper. The con-
structions of holomorphic extensions of real-analytic functions and manifolds
is somewhat standard. We refer to [46] for details on these constructions.
In particular, we study in Subsection 2.4 a specific class of analytic func-
tion spaces, which is a prerequisite to the Definition 3.3 of analytic symbol
classes.

2.1 Combinatorial notations and inequalities

In this subsection we recall some basic combinatorial notation. Analytic
functions and analytic symbol spaces are defined using sequences which grow
as fast as a factorial (see Definitions 2.11 and 3.3) so that we will frequently
need to bound expressions involving binomial or multinomial coefficients.

Definition 2.1. Let 0 ≤ i ≤ j be integers. The associated binomial coeffi-
cient is (

j

i

)
=

j!
i!(j − i)!.

Let more generally (ik)1≤k≤n be a family of non-negative integers and
let j ≥

∑n
k=1 ik. The associated multinomial coefficient is(

j

i1, . . . , ik

)
=

j!
(j −

∑n
k=1 ik)!

∏n
k=1 ik!

Remark 2.2. An alternative definition of multinomial coefficient assumes
j = i1 + . . . + in, in which case one defines

( j
i1,...,in

)
=

j!
i1! . . . in!. The

definition we give contains this one, and is more consistent with the notation
for binomial coefficients.

Definition 2.3.
1. A polyindex (plural: polyindices) µ is an ordered family (µ1, . . . , µd)

of non-negative integers (the set of non-negative integers is denoted
by N0). The cardinal d of the family is called the dimension of the
polyindex (we will only consider the case where d is finite).

2. The norm |µ| of the polyindex µ = (µ1, . . . , µd) is defined as
∑d
i=1 µi.

3. The partial order ≤ on polyindices of same dimension is defined as
follows: ν ≤ µ when, for every 1 ≤ i ≤ d, one has νi ≤ µi.

9



4. The factorial µ! is defined as
∏d
i=1 µi!. Together with the partial order,

this allows to extend the notation for binomial coefficients. If ν ≤ µ,
then we define the associated binomial coefficient as(

µ

ν

)
= µ!
ν!(µ− ν)!

We state here a few useful inequalities about binomial coefficients.

Lemma 2.4. Let ν ≤ µ be polyindices. Then(
µ

ν

)
≤
(
|µ|
|ν|

)
.

Lemma 2.5. Let i ≤ j and 1 ≤ k ≤ l − 1 be integers. Then

(i+ k − 1)!(j + l − i− k − 1)!
i!k!(j − i)!(l − k)! ≤

(j + l − 2)!
j!(l − 1)! .

In particular, if a1, . . . , an are nonnegative integers and b1, . . . , bn are posi-
tive integers, with

∑n
i=1 ai = j and

∑n
i=1 bi = l, then

(a1 + b1 − 1)! . . . (an + bn − 1)!
a1!b1! . . . an!bn! ≤

(j + l − n)!
j!(l − n+ 1)!.

Proof. For the first part, let k′ = k − 1, then

(i+ k − 1)!(j + l − i− k − 1)!
i!k!(j − i)!(l − k)! = 1

k(l − k)

(
i+ k′

i

)(
j + l − 2− i− k′

j − i

)
.

Since 1 ≤ k ≤ l − 1 there holds 1
k(l−k) ≤

1
l−1 . Moreover, from Lemma 2.4,

one has (
i+ k′

i

)(
j + l − 2− i− k′

j − i

)
≤
(
j + l − 2

j

)
=

(j + l − 1)!
j!(l − 2)! .

Hence,
(i+ k − 1)!(j + l − i− k − 1)!

i!k!(j − i)!(l − k)! ≤
(j + l − 2)
j!(l − 1)! .

The second part is deduced from the first part by induction. Indeed, we
just proved that, denoting a′n−1 = an−1 + an and b′n−1 = bn−1 + bn − 1, one
has

(a1 + b1 − 1)! . . . (an + bn − 1)!
a1!b1! . . . an!bn!

≤
(a1 + b1 − 1)! . . . (an−2 + bn−2 − 1)!(a′n−1 + b′n−1 − 1)!

a1!b1! . . . an−2!bn−2!a′n−1!b′n−1! .
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Here, the sum of the ai’s has not changed but the sum of the bi’s has been
reduced by one. By induction,

(a1 + b1 − 1)! . . . (an + bn − 1)!
a1!b1! . . . an!bn! ≤

(j + l − n)!
j!(l − n+ 1)!.

Lemma 2.6. Let ` ≥ 2 and n ≥ 2 be integers. The set{
(i1, . . . , in) ∈ Nn

0 ,
n∑
k=1

ik = `, at least two of them are ≥ 1
}
.

is contained in the convex hull of all permutations of (`− 1, 1, 0, . . . , 0).

Proof. Let us call support of a tuple (i1, . . . , in) the number of its elements
which are non-zero. We will prove by induction on 2 ≤ k ≤ min(n, `) that
the convex hull S of the permutations of (`−1, 1, 0, . . . , 0) contain all tuples
of support k such that the sum of all elements is `.

For k = 2, we can indeed recover all elements of the form (`−x, x, 0, . . . , 0)
for all 1 ≤ x ≤ ` − 1 by a convex combination of (` − 1, 1, 0, . . . , 0) and
(1, `− 1, 0, . . . , 0).

We now proceed to the induction. Suppose that S contains all elements of
the form (i1, . . . , ik−1, 0, . . . , 0) and their permutations. Then, in particular,
it contains a0 = (`−k+ 2, 1, . . . , 1, 0, . . . , 0). For every 1 ≤ j ≤ k−2, S also
contains the image of a0 by the transposition (k, k − j), which we denote
by aj . Moreover, S contains ( `

k−1 , . . . ,
`

k−1 , 0, . . . , 0) and its permutations.
From the (aj)0≤j≤k−2 and ( `

k−1 , . . . ,
`

k−1 , 0, . . . , 0), one can form the convex
combination

`− k + 1
(`− k + 2)(k − 2)

k−2∑
j=0

aj + 1
`− k + 2

(
0, `

k − 1 , . . . ,
`

k − 1 , 0, . . . , 0
)

= (`− k + 1, 1, . . . , 1︸ ︷︷ ︸
k−1

, 0, . . . , 0).

In particular, S contains all permutations of (l−k+ 1, 1, . . . , 1, 0, . . . , 0).
Thus, S contains all elements of support k, since the k-uple (l− k, 0, . . . , 0)
and its permutations are the extremal points of the convex {

∑k
j=1 ij = `−k}).

This concludes the induction.

2.2 Extensions of real-analytic functions

The fundamental object that one is allowed to extend in a holomorphic way
is a real-analytic function.

Definition 2.7. Let f : U → E be a real-analytic function on an open
set U ∈ Rn, which takes values into a real or complex Banach space E. A
holomorphic extension of f is a couple (f̃ , Ũ), where Ũ is an open set of Cn

and f̃ : Ũ 7→ E ⊗ C, such that

11



• ∂f̃ = 0.

• U ⊂ Ũ ,

• f̃ |U = f

Naturally, two holomorphic extensions coincide on the connected com-
ponents of their intersections which intersect U since, on a connected open
set of Cd, a holomorphic function which vanishes on a real set vanishes
everywhere.

If E is a real Banach space then E ⊗ C is the complexification of E; if
E is complex to begin with then E ⊗ C = E.

The local expression of a real-analytic function as a convergent power
series gives a natural and non-ambiguous way to define a holomorphic ex-
tension.

2.3 Extensions of manifolds

Proposition 2.8 ([46]). Let M be a real-analytic manifold. There is a
complex manifold (M̃, Je) with boundary, such that M is a totally real sub-
manifold of M̃ . Then M̃ is called a holomorphic extension of M .

In this setting, “totally real” means that

∀x ∈M,TxM ∩ Je(TxM) = {0}.

The extension of real-analytic manifolds is naturally associated with an
extension of their real-analytic functions.

Proposition 2.9. Let f be a real-analytic function on a real-analytic man-
ifold M . Then there exists a holomorphic function f̃ on a holomorphic
extension M̃ of M such that f̃ |M = f .

In the body of this article we will frequently extend real-analytic func-
tions on holomorphic manifolds. We introduce a convenient notation to this
end, which is reminiscent of Definition 1.3. Locally, a real-analytic function
f on a complex manifold of dimension d can be written as

f : z 7→
∑

ν,ρ∈Nd0

cν,ρz
νzρ.

As the function f is not holomorphic, we specifically write f(z, z). There is
then a natural notion of an extension

f̃ : (z, w) 7→
∑

ν,ρ∈Nd0

cν,ρz
νwρ.

This function is holomorphic on a neighbourhood of 0 in C2d. It coincides
with f̃ , but the totally real manifold of interest is not {=(z) = 0} anymore
but rather {(z, w), w = z}.

12



Let M be a complex manifold; using the convention above let us treat
local charts for M and its holomorphic extension M̃ . A change of charts in
M is a biholomorphism φ which, in the convention above, depends only on
z as a function on M̃ . The extended biholomorphism φ̃ constructed in the
previous subsection can be written as

(z, w) 7→ (φ(z), φ(w)).

Gluing open sets along the charts φ (defined by φ(z) = φ(z)) yields a
manifold M , and there is a natural identification M 3 z 7→ z ∈ M , so that
M is simply M with reversed complex structure.

The expression of φ̃ above yields

M̃ = M ×M,

and M sits in M̃ as the totally real submanifold

{(z, w) ∈M ×M, z = w}.

This copy of M is said to be the codiagonal of M ×M .
Any real-analytic function onM can be extended as a holomorphic func-

tion in a neighbourhood of the codiagonal of M̃ . If the function was holo-
morphic (on a small open set ofM) to begin with, then its extension depends
only on the first variable (on a small open set of M ×M).

2.4 Analytic functional spaces

In this subsection we derive a few tools about the study of holomorphic
functions near a compact totally real set. We first fix a notion of convenient
open sets on which our analysis can take place.

Definition 2.10. A domain of Rd is an open, relatively compact set U with
piecewise smooth boundary.

Recall that a holomorphic function f near zero can be written as

f(z) =
∑
ν∈Nd0

fν

ν!z
ν .

Then, in particular fν = ∂νf(0). Since f is holomorphic, the sum above
converges for |z| sufficiently small. In other terms, there exists r > 0 and
C > 0 such that, for every ν ∈ Nd

0, one has

|fν | ≤ Cν!r|ν|.

Definition 2.11. For j ∈ N0 and f a function on a domain of Rd of class
Cj , we denote by ∇jf the function (∂αf(x))|α|=j , which maps U to R(j+d−1

d−1 ).
For n ∈ N and v ∈ Rn, we denote ‖v‖`1 =

∑n
j=1 |v1|+ . . .+ |vn|.

13



Let m ∈ N0 and r > 0. Let U be a domain in Rd. The space H(m, r, U)
is defined as the set of real-analytic functions on U such that there exists a
constant C satisfying, for every j ∈ N0,

sup
x∈U
‖∇jf(x)‖`1 ≤

Crjj!
(j + 1)m.

The space H(m, r, U) is a Banach space for the norm ‖ · ‖H(m,r,U) defined as
the smallest constant C such that the inequality above is true for every j.

Such functions can be extended to a neighbourhood of U in Cd, with
imaginary part bounded by r−1 (and by the distance to the boundary of
U). The spaces H(m, r, U) are compactly embedded in each other for the
lexicographic order on (r,−m): if either r < r′ or r = r′,m > m′, then

H(m, r, U) ⊂ H(m′, r′, U).

Introducing a parameter m will allow us to control polynomial quantities
which appear when one manipulates these holomorphic function spaces, us-
ing Lemmas 2.13 and 3.7. They correspond to a regularity condition at the
boundary of a maximal holomorphic extension: for instance, the function
x 7→ x log(x) belongs to H(1, 1, (1/2, 3/2)) but not to H(m, 1, (1/2, 3/2)) for
m > 1.

It will be useful in the course of this paper to consider various analytic
norms for the same function while maintaining a fixed norm. The definition
of the spaces H(m, r, U) immediately imply the following fact.

Proposition 2.12. Let m0 ∈ N0 and r0 > 0. Let U be a domain in Rd.
Let f ∈ H(m0, r0, U). Then, for all m ≥ m0, for all r ≥ r02m−m0, one has
f ∈ H(m, r, U) with

‖f‖H(m,r,U) ≤ ‖f‖H(m0,r0,U).

The following lemma will be used several times in what follows.

Lemma 2.13. Let d ∈ N0. There exists C > 0 such that, for anym ≥ max(d+2, 2(d+1)),
for any j ∈ N0, one has

j∑
i=0

min(i+ 1, j − i+ 1)d(j + 1)m

(i+ 1)m(j − i+ 1)m ≤ 2 + C
3m

4m .

We postpone the proof of this lemma until Section 3. More specifically,
this is a particular case of Lemma 3.7.

Analytic function classes form an algebra for m large enough, and non-
vanishing functions can be inverted.

Proposition 2.14. There exists C > 0 such that the following is true. Let
m ≥ 2. Let r > 0 and let U be a domain in Rn. Let f, g ∈ H(m, r, U). Then
fg ∈ H(m, r, U), and

‖fg‖H(m,r,U) ≤ C‖f‖H(m,r,U)‖g‖H(m,r,U).
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The constant C is universal.
If f is bounded away from zero on U , then f−1 ∈ H(m, r, U), with

‖f−1‖H(m,r,U) ≤
‖f‖H(m,r,U)
infU (|f |)2 .

Proof. Let f, g ∈ H(m, r, U) and j ∈ N0. Then

∑
|α|=j

|∂α(fg)| ≤
∑

|β+γ|=j

(
β + γ

β

)
|∂βf | |∂γg|

By Lemma 2.4, one has, for every β and γ such that |β + γ| = j,(
β + γ

β

)
≤
(
|β + γ|
|β|

)
=
(
j

|β|

)
.

Hence, ∑
|α|=j

|∂α(fg)| ≤
|j|∑
i=0

(
j

i

)
‖∇if‖`1‖∇|α|−ig‖`1 ,

so that, for any j ≥ 0, one has

‖∇j(fg)‖`1

≤ ‖f‖H(m,r,U)‖g‖H(m,r,U)
rjj!

(j + 1)m
j∑
i=0

(
j

i

)−1(
j

i

)
(j + 1)m

(i+ 1)m(j − i+ 1)m.

Hence,

‖∇j(fg)‖`1 ≤ ‖f‖H(m,r,U)‖g‖H(m,r,U)
rjj!

(j + 1)m
j∑
i=0

(j + 1)m

(i+ 1)m(j − i+ 1)m.

Let us use Lemma 2.13 with d = 0. If m ≥ 2, this quantity is bounded
independently of j and m, so that

‖∇j(fg)‖`1 ≤ C‖f‖H(m,r,U)‖g‖H(m,r,U)
rjj!

(j + 1)m.

This concludes the first part of the proof.
Let now f ∈ H(m, r, U) be bounded away from zero on U . We introduce

the modified product f · g = fg
C , for which H(m, r, U) is a Banach algebra.

First, |f |2 is real-valued and strictly positive; moreover

|f |2 = ff ∈ H(m, r, U)

and, by the property above,

‖|f |2‖H(m,r,U) ≤ C‖f‖2H(m,r,U).
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Let g = |f |2
2‖|f |2‖H(m,r,U)

. Then

‖1− g‖H(m,r,U) ≤ 1− infU (|f |2)
2‖|f |2‖H(m,r,U)

< 1.

In particular, g = 1 − (1 − g) so that, letting h be such that g · h = 1, one
has

h =
+∞∑
k=0

(1− g)·k,

where the power series converge because the · product induces a Banach
algebra structure on H(m, r, U).

Hence, one can control

‖h‖H(m,r,U) ≤
2‖|f |2‖H(m,r,U)

infU (|f |2) .

Now |f |−2 =
h

2C‖|f |2‖H(m,r,U)
so that

‖|f |−2‖H(m,r,U) ≤
1

C infU (|f |2).

We now turn to f−1 = f |f |−2, which is controlled as follows:

‖f−1‖H(m,r,U) ≤
‖f‖H(m,r,U)
infU (|f |2) .

This concludes the proof.

The spaces H(r,m,U) contain all holomorphic functions.

Proposition 2.15. Let d ∈ N. For every T > 0 we let P (0, T ) be the
polydisk of center 0 and of radius T in Cd.

Let f be a holomorphic, bounded function on P (0, 2T ), continuous up to
the boundary. Then

‖f‖H(−d,dT−1,P (0,T )) ≤ C sup
P (0,2T )

|f |.

Proof. The proof relies on the Cauchy formula. For all z ∈ P (0, T ) and
ν ∈ Nd

0, there holds

∂νf(z) = C

∫
|ξ1|=...=|ξd|=2T

ν!f(ξ)
(ξ1 − z1)ν1(ξ2 − z2)ν2 . . . (ξd − zd)νd

dξ.

As z ∈ P (0, r) and |ξ1| = . . . = |ξd| = 2T , for every 1 ≤ i ≤ d there holds
|ξi − zi| ≥ T , so that

sup
P (0,T )

|∂ν(f)| ≤ CT−|ν|ν! sup
P (0,2T )

|f |.
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In particular, since ν! ≤ |ν|!d|ν|, by summing over ν’s with same norm we
obtain

sup
x∈P (0,T )

‖∇jf(x)‖`1 ≤ C(j + 1)d(dT−1)jj!,

hence the claim.

3 Calculus of analytic symbols
In this section we define and study (formal) analytic symbols, which we
will show to be well suited to the study of stationary phases with complex,
real-analytic phases.

3.1 Analytic symbols

We begin with an explicit definition of Cj-seminorms on compact manifolds.

Definition 3.1. Let X be a compact manifold (with smooth boundary).
We fix a finite set (ρV )V ∈V of local charts on open sets V which cover X.

Let j ≥ 0. The Cj seminorm of a function f : X 7→ C which is continu-
ously differentiable j times is defined as

‖f‖Cj(X) = max
V ∈V

sup
x∈V

∑
|µ|=j

|∂µ(f ◦ ρV )(x)|.

This definition is adapted to the multiplication of two functions. The
Leibniz formula yields directly:

Proposition 3.2. Let X be a compact manifold (with smooth boundary)
with fixed local charts, and f, g ∈ Cj(X,R).

Then fg ∈ Cj(X,R) with

‖fg‖Cj(X) ≤
j∑
i=0

(
j

i

)
‖f‖Ci(X)‖g‖Cj−i(X).

Using the convention above, let us generalise Definition 2.11, in order to
define analytic symbols.

Definition 3.3. Let X be a compact manifold (with boundary), with a
fixed set of covering local charts.

Let r,R,m be positive real numbers. The space of analytic symbols
Sr,Rm (X) consists of sequences (ak)k≥0 of real-analytic functions on X, such
that there exists C ≥ 0 such that, for every j ≥ 0, k ≥ 0, one has

‖ak‖Cj(X) ≤ C
rjRk(j + k)!
(j + k + 1)m.

The norm of an element a ∈ Sr,Rm (X) is defined as the smallest C as
above; then Sr,Rm (X) is a Banach space.
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We are interested in symbols which have an expansion in increasing
powers of the semiclassical parameter. We will use the term “symbols” while,
in the usual semiclassical vocabulary, we are dealing with formal symbols to
which we associate classical symbols by a summation process in Proposition
3.6.

As for the analytic function classes H(m, r, U) of Definition 2.11, the
spaces Sr,Rm (X) are included in each other for a lexicographic order, and the
constants of injection are controlled as follows:

Proposition 3.4. Let X be a compact manifold (with boundary) with a fixed
finite set of covering charts. Let r0, R0,m0 positive. Let f ∈ Sr0,R0

m0 (X). For
every m ≥ m0, for every r ≥ r02m−m0 and R ≥ R02m−m0, one has f ∈ Sr,Rm
with

‖f‖
Sr,Rm (X) ≤ ‖f‖Sr0,R0

m0 (X).

The notion of sum of a formal series inN−1 is well-defined up toO(N−∞),
by a process known as Borel summation. In a similar but more explicit way,
formal series corresponding to analytic symbols can be summed up to an
exponentially small error.

Definition 3.5. LetX be a compact Riemannian manifold (with boundary)
and let f ∈ Sr,Rm (X). Let cR = e

3R . The summation of f is defined as

X × N 3 (x,N) 7→ f(N)(x) =
cRN∑
k=0

N−kfk(x).

Proposition 3.6. Let X be a compact Riemannian manifold with boundary
and let f ∈ Sr,Rm (X). Let cR = e

3R . Then

1. The function f(N) is bounded on X uniformly for N ∈ N.

2. For every 0 < c1 < cR, there exists c2 > 0 such that

sup
x∈X

∣∣∣∣∣∣
cRN∑
k=c1N

N−kfk(x)

∣∣∣∣∣∣ = O(e−c2N ).

Proof.
1. Since

sup
x∈X
|fk(x)| ≤ ‖f‖

Sr,Rm (X)R
kk!,

it remains to control
cRN∑
k=0

N−kRkk!.

In this series, the first term is 1, and the ratio between two consecutive
terms is

N−kRkk!
N−k+1Rk−1(k − 1)! =

Rk

N
≤ RcR = e

3 < 1.
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Hence,

sup
x∈X
|f(x,N)| ≤ ‖f‖

Sr,Rm (X)

cRN∑
k=0

(e/3)k ≤ ‖f‖
Sr,Rm (X)

3
3− e.

2. The claim reduces to a control on
cRN∑
k=c1N

N−kRkk!.

In this series, on which each term is smaller than (e/3)k, the first term
is controlled by

(e/3)c1N = exp(c1 log(e/3)N).

Hence the claim, with c2 = c1 log(e/3).

From the second point of Proposition 3.6, we see that the constant
cR = e

3R is quite arbitrary (using the Stirling formula to control factori-
als, one could in fact consider any constant smaller than e

R). We use it in
Definition 3.5 to avoid dealing with equivalence classes of sequences whose
difference is O(e−c′N ) for some c′, as in [41].

Before studying further the space Sr,Rm (X), let us prove a generalisation
of Lemma 2.13.

Lemma 3.7. Let d ∈ N and n ≥ 2. There exists C(n, d) > 0 such that, for
any m ≥ max(d+ 2, 2(d+ n− 1)), for any ` ∈ N0, one has

∑
0≤i1≤i2≤···≤in
i1+...+in=`

(in−1 + 1)d(`+ 1)m

(i1 + 1)m . . . (in + 1)m ≤ 1 + C
3m

4m .

This is indeed, up to a factor 2, a generalisation of Lemma 2.13 which
corresponds to the case n = 2.

Proof. The case ` = 1 is trivial, so we assume ` ≥ 2. The only term in the
sum such that in−1 = 0 is equal to 1; let us control the sum restricted on
{in−1 ≥ 1}. Let us first show that, if in−1 ≥ 1, then

(in−1 + 1)d(`+ 1)m

(i1 + 1)m . . . (in + 1)m ≤ (`+ 1)d
3m

4m. (2)

One has directly (in−1 + 1)d ≤ (`+ 1)d.
We are left with

(`+ 1)m

(i1 + 1)m . . . (in + 1)m,
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which is a symmetric expression of (i1, . . . , in), log-convex as soon as m ≥ 0,
and which we wish to bound on the symmetrised set{

(i1, . . . , in) ∈ Nn
0 ,

n∑
k=1

ik = `, at least two of them are ≥ 1
}
.

By Lemma 2.6, it is sufficient to control the quantity above at the per-
mutations of (` − 1, 1, 0, . . . , 0). At each of those points, since ` ≥ 2, one
has

(`+ 1)m

(i1 + 1)m . . . (in + 1)m =
(
`+ 1

2`

)m
≤

3m

4m.

We are now in position to prove the claim. Let us first restrict our
attention to {i1 ≥ `+1

3(n−1)}. There are less than (`+ 1)n−1 such terms (since
there are less than (` + 1)n−1 terms in total), and each of these terms is
smaller than

(`+ 1)d(`+ 1)m(
`+1

3(n−1)

)mn =
(`+ 1)d (3(n− 1))mn

(`+ 1)m(n−1) .

Hence, this sum is controlled by
(`+ 1)n+d−1 (3(n− 1))mn

(`+ 1)m(n−1)

We now consider the sum on {i1 ≤ `+1
3n−1 ≤ i2}. There are again less

than (`+ 1)n−1 such terms, each of them smaller than

(`+ 1)d(`+ 1)m(
`+1

3(n−1)

)m(n−1) =
(`+ 1)d (3(n− 1))m(n−1)

(`+ 1)m(n−2) .

Thus, this sum is smaller than

(`+ 1)n+d−1 (3(n− 1))m(n−1)

(`+ 1)m(n−2) .

Similarly, we are able to control the sum on {ik ≤ `+1
3(n−1) ≤ ik+1}, for

k ≤ n− 2, by
(`+ 1)n+d−1 (3(n− 1))m(n−k)

(`+ 1)m(n−k−1) .

If m ≥ 2(d + n − 1), then (` + 1)n+d−1+m ≤ (` + 1)3m/2, so that, for any
k ≤ n− 2, if `+ 1 ≥ 3n, one has

(`+ 1)n+d−1 (3(n− 1))m(n−k)

(`+ 1)m(n−k−1) ≤ (`+ 1)
3m
2

(
3(n− 1)
`+ 1

)m(n−k)

≤ (`+ 1)3m/2
(3(n− 1)

`+ 1

)2m

=
(

9(n− 1)2
√
`+ 1

)m
.
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Thus, for ` large enough (depending on n), this quantity is smaller than 3m
4m ;

for ` small we have a number of terms bounded by a function of n, each
term being smaller than C(n, d)3m

4m by (2).
It remains to control the sum restricted on {1 ≤ in−1 ≤ `+1

3(n−1)}. In this
case, in + 1 ≥ 2(`+1)

3 , so that the sum is smaller than

3m

2m
∑

0≤i1≤···≤in−1≤ `+1
3(n−1)

in−1≥1

(in−1 + 1)d

(i1 + 1)m(i2 + 1)m . . . (in−1 + 1)m

≤
3m

2m(ζ(m))n−2(ζ(m− d)− 1).

The Riemann zeta function is decreasing, and if m ≥ d+ 2, then

ζ(m− d) ≤ 1 + 3 · 2−(m−d),

so that the expression above is controlled by C(n, d)3m
4m . This concludes the

proof.

Analytic symbols behave well with respect to the Cauchy product, which
corresponds to the product of their summations.

Proposition 3.8. There exists C0 ∈ R and a function C : R2 7→ R such that
the following is true.

Let X be a compact Riemannian manifold (with boundary) and with a
fixed finite set of covering charts. Let r,R ≥ 0 andm ≥ 4. For a, b ∈ Sr,Rm (X),
let us define the Cauchy product of a and b as

(a ∗ b)k =
k∑
i=0

aibk−i.

1. The space Sr,Rm (X) is an algebra for this Cauchy product, that is,

‖a ∗ b‖
Sr,Rm
≤ C0‖a‖Sr,Rm ‖b‖Sr,Rm ,

Moreover, there exists c > 0 depending only on R such that as N tends
to infinity, one has

(a ∗ b)(N) = a(N)b(N) +O(e−cN ).

2. Let r0, R0,m0 positive and a ∈ Sr0,R0
m0 (X) with a0 nonvanishing. Then,

for every m large enough depending on a, for every r ≥ r02m−m0 and
R ≥ R02m−m0, the symbol a is invertible (for the Cauchy product) in
Sr,Rm (X), and its inverse a?−1 satisfies:

‖a∗−1‖
Sr,Rm (X) ≤ 2 min(|a0|)−4‖a‖3

S
r0,R0
m0

.
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Proof.
1. From Proposition 3.2, one has, for every 0 ≤ i ≤ k and j ≥ 0,

‖aibk−i‖Cj ≤
j∑
`=0

(
j

`

)
‖ai‖C`‖bk−i‖Cj−` .

In particular,

‖(a ∗ b)k‖Cj ≤ ‖a‖Sr,Rm ‖b‖Sr,Rm
rjRk(j + k)!
(j + k + 1)m

×
k∑
i=0

j∑
`=0

(
j + k

i+ `

)−1(
j

`

)
(j + k + 1)m

(i+ `+ 1)m(j + k − i− `+ 1)m.

Since, (
j

`

)
≤
(
j + i

`+ i

)
≤
(
j + k

`+ i

)
,

one has

‖(a ∗ b)k‖Cj ≤ ‖a‖Sr,Rm ‖b‖Sr,Rm
rjRk(j + k)!
(j + k + 1)m

×
k∑
i=0

j∑
`=0

(j + k + 1)m

(i+ `+ 1)m(j + k − i− `+ 1)m

≤ ‖a‖
Sr,Rm
‖b‖

Sr,Rm

rjRk(j + k)!
(j + k + 1)m

×
k+j∑
i′=0

min(i′ + 1, j + k − i′ + 1)(j + k + 1)m

(i′ + 1)m(j + k − i′ + 1)m ,

where i′ = i+ `. We are reduced to Lemma 2.13 with d = 1. If m ≥ 4,
this sum is smaller than a universal constant C independently of j, k,
so that

‖a ∗ b‖
Sr,Rm
≤ C‖a‖

Sr,Rm
‖b‖

Sr,Rm
.

Let us control the product of the associated analytic series. By Propo-
sition 3.6, for some c > 0 depending only on R, one has

a(N) =
eN
12R∑
k=0

N−kak +O(e−cN ),

and similar controls for b(N) and (a ∗ b)(N).

The first
eN

12R terms of the expansion in decreasing powers of (a∗b)(N)
and a(N)b(N) then coincide by definition of the Cauchy product. It
remains to control ∑

eN
12R≤i+j≤

eN
6R

N−(i+j)aibj .
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From
sup(|aibj |) ≤ CRi+ji!j! ≤ C(2R)i+j(i+ j)!,

one has, as in Proposition 3.6,∣∣∣∣∣∣∣
∑

eN
12R≤i+j≤

eN
6R

N−(i+j)aibj

∣∣∣∣∣∣∣ ≤
∑

eN
12R≤i+j≤

eN
6R

N−(i+j)(2R)i+j(i+j)! ≤ e−cN ,

hence the claim.

2. The unit element of the Cauchy product is (1, 0, 0, . . .), which belongs
to Sr,Rm (X). Let a ∈ Sr0,R0

m0 (X) be such that a0 does not vanish on X,
and let us try to find b such that (a∗b)0 = 1 and (a∗b)k = 0 whenever
k 6= 0.
The first condition yields b0 = a−1

0 , which is a function with real-
analytic regularity and same radius as a0, by Proposition 2.14, so that

‖b0‖Cj ≤ C0
rj0j!

(j + 1)m0
.

In particular, by Lemma 2.12, for all m ≥ m0, r ≥ r02m−m0 , one has

‖b0‖Cj ≤ C0
rjj!

(j + 1)m.

The coefficients bk are then determined by induction:

bk = a−1
0

k∑
i=1

aibk−i = b0

k∑
i=1

aibk−i.

Let us control ‖b‖
Sr,Rm (X) by ‖a‖

Sr,Rm (X) by induction, for some r,R,m
which will be chosen later.
We now proceed by induction on k. Suppose that, for all ` ≤ k − 1
and j ≥ 0, one has

‖b`‖Cj ≤ Cb
rjR`(j + `)!
(j + `+ 1)m,

We wish to prove the same control for ` = k. The constant Cb will be
chosen later.
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By induction hypothesis,

‖bk‖Cj ≤ C0Cb‖a‖Sr,Rm

j∑
j1=0

k∑
i=1

j−j1∑
j2=0

(
j

j1, j2

)
rj1j1!

(j1 + 1)m

×
rj2Ri(j2 + i)!rj−j1−j2Rk−i(j − j1 − j2 + k − i)!

(i+ j2 + 1)m(j − j1 − j2 + k − i+ 1)m

≤ CbC0‖a‖Sr,Rm
rjRk(j + k)!
(j + k + 1)m

j∑
j1=0

k∑
i=1

j−j1∑
j2=0

(
j

j1, j2

)(
j + k

j1, j2 + i

)−1

×
(j + k + 1)m

(j1 + 1)m(j2 + i+ 1)m(j − j1 − j2 + k − i+ 1)m.

Let us prove that, for every i, j, j1, j2, k in the range above, one has(
j + k

j1, j2 + i

)
≥
(

j

j1, j2

)
.

There holds(
j + 1

j1, j2 + 1

)
=
(

j

j1, j2

)
j + 1

j − j1 − j2
≥
(

j

j1, j2

)
,

so that (
j + k

j1, j2 + i

)
≥
(

j + i

j1, j2 + i

)
≥
(

j

j1, j2

)
.

Hence,

‖bk‖Cj ≤ CbC0‖a‖Sr,Rm
rjRk(j + k)!
(j + k + 1)m

×
j∑

j1=0

k∑
i=1

j−j1∑
j2=0

(j + k + 1)m

(j1 + 1)m(j2 + i+ 1)m(j − j1 − j2 + k − i+ 1)m

≤ CbC0‖a‖Sr,Rm
rjRk(j + k)!
(j + k + 1)m

×
∑

j1+i1+i2=j+k
i1≥1

min(i1 + 1, i2 + 1)(j + k + 1)m

(j1 + 1)m(i1 + 1)m(i2 + 1)m .

From Lemma 3.7 with n = 3 and d = 1, the sum

∑
j1+i1+i2=j+k

i1≥1

min(i1 + 1, i2 + 1)(j + k + 1)m

(j1 + 1)m(i1 + 1)m(i2 + 1)m
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is bounded independently of j and k for m ≥ 6. However this control

is not enough since it yields a constant in front of
rjRk(j + k)!
(j + k + 1)m which

is a priori CC0Cb‖a‖Sr,Rm ≥ Cb.
However, the only term in this expansion which contributes as 1 is
j1 = 0, i1 = k + j, i2 = 0, which corresponds to j1 = 0, i = k, j2 = j.
One can control this term independently of Cb since

|a−1
0 |‖ak‖Cj |b0| ≤ C

2
0‖a‖Sr0,R0

m0

rjRk(j + k)!
(j + k + 1)m.

The sum over all other terms is smaller than CCbC0‖a‖Sr,Rm (3/4)m for
some C, by Lemma 3.7.
We can conclude: if m is large with respect to ‖a‖

Sr,Rm
(which can be

done using Proposition 3.4 by setting r ≥ r02m−m0 and R ≥ R02m−m0)
and if Cb ≥ 2C2

0‖a‖Sr0,R0
m0

, where we recall from Proposition 2.14 that

C2
0 = min(|a0|)−4‖a‖2

S
r0,R0
m0

,

one has, by induction,

‖bk‖Cj ≤ Cb
rjRk(j + k)!
(j + k + 1)m.

This concludes the proof.

Remark 3.9. The method of proof for Proposition 3.8 will be used again
in Section 4. This method consists in an induction, in which quotients of
factorials must be bounded; this reduces the control by induction to Lemma
3.7. Constants which appear must be carefully chosen so that the induction
can proceed. In particular, given a fixed object in an analytic class, it will
be useful to change the parameters (typically m, r,R) in its control, while
maintaining a fixed norm.

The classes H(m, r, V ) of real-analytic functions introduced in Section 2
contain all holomorphic functions. In a similar manner, the symbol classes
Sr,Rm contain all classical analytic symbols in the sense of Sjöstrand [41].

Proposition 3.10. Let U be an open set of Cn and let a = (ak)k≥0 be a
sequence of bounded holomorphic functions on U such that there exists C > 0
and R > 0 satisfying, for all k ≥ 0,

sup
U
|ak| ≤ CRkk!.

Then for every V ⊂⊂ U there exists r > 0 such that a ∈ Sr,R0 (V ).
In particular, given an analytic symbol a and an analytic change of vari-

ables κ, then a ◦ κ is an analytic symbol.
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Proof. By Proposition 2.15, there exists C1 > 0 and r > 0 such that, for
every k ≥ 0, one has ak ∈ H(r, 0, V ) with

‖ak‖H(0,r,V ) ≤ C1 sup
U
|ak|.

In other terms, for every k ≥ 0, j ≥ 0, one has

‖ak‖Cj(V ) ≤ C1Cr
jRkj!k! ≤ C1Cr

jRk(j + k)!.

Hence a ∈ Sr,R0 (V ).
By a power series expansion, an analytic symbol a satisfies, on some

holomorphic extension U of its domain of definition,

sup
U
|ãk| ≤ CRkk!.

This control is not affected by application of the biholomorphism κ̃, so that

sup
κ̃−1(U)

|ãk ◦ κ̃| ≤ CRkk!.

By the lines above, a ◦ κ is an analytic symbol.

3.2 Complex stationary phase lemma

In this subsection we present the tools of stationary phase in the context of
real-analytic regularity, as developed by Sjöstrand [41]. We wish to study
integrals of the form ∫

Ω
eNΦ(x)a(x)dx,

as N → +∞. If Φ is purely imaginary, then by integration by parts, this
integral is O(N−∞) away from the points where dΦ vanishes. At such points,
if Φ is Morse, a change of variables leads to the usual case where Φ is
quadratic nondegenerate; then there is a full expansion of the integral in
decreasing powers of N . If Φ is real-valued, a similar analysis (Laplace
method) yields a related expansion.

On one hand, we wish to study such an integral, in the more general
case where iΦ is complex-valued. On the other hand we want to improve
the O(N−∞) estimates into O(e−cN ). This is done via a complex change of
variables; to this end we have to impose real-analytic regularity on Φ and a.

Let us introduce a notion of analytic phase, which generalises positive
phase functions as appearing in [41].

Definition 3.11. Let d, k ∈ N. Let Ω be a domain of Rd. Let Φ be a
real-analytic function on Ω×Rk. For each λ ∈ Rk we let Φλ = Φ(·, λ). Then
Φ is said to be an analytic phase on Ω under the following conditions.

• There exists an open set Ω̃ ⊂ Cd such that, for every λ ∈ Rk, the
function Φλ extends to a holomorphic function Φ̃λ on Ω̃.
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• For every λ ∈ Rk, there exists exactly one point x̃λ ∈ Ω̃ such that
dΦ̃λ(x̃λ) = 0; this critical point is non-degenerate, with Φ̃λ(x̃λ) = 0.

• One has x̃0 = 0 and moreover <Φ0 < 0 on Ω \ {0}.

Under the conditions of Definition 3.11, the function λ 7→ x̃λ is real-
analytic.

We now recall the stationary phase lemma in analytic regularity.

Proposition 3.12. [41, 25] Let Φ be an analytic phase on a domain Ω.
There exists c > 0, c′ > 0, C ′ > 0, a neighbourhood Λ ⊂ Rk of zero, and a
biholomorphism κ̃λ, with real-analytic dependence1 on λ ∈ Λ, such that the
associated Laplace operator ∆̃(λ) = κλ ◦∆ ◦κ−1

λ satisfies, for every function
aλ holomorphic on Ω̃:

∫
Ω
eNΦλaλ =

cN∑
k=0

(
k!N

d
2 +k

)−1
∆̃(λ)k(ãλJ−1

λ )(x̃λ) +Rλ(N),

where, uniformly in λ ∈ Λ,

|Rλ(N)| ≤ Ce−c′N sup
Ω̃
|ãλ|,

and Jλ is the Jacobian determinant associated with the change of variables.

4 Calculus of covariant Toeplitz operators
In this section we prove our three main theorems.

We begin in Subsection 4.1 with the definition, and the first properties,
of covariant Toeplitz operators. Then, in Subsections 4.2 to 4.4, we study
them. We prove that they can be composed (Proposition 4.7), and inverted
(Propositions 4.8 and 4.9), with a precise control on the analytic classes
involved. This allows us to prove Theorem A: see the beginning of Section
4.4 for a detailed proof strategy for Theorems A and B. To conclude, in
Subsection 4.5 we prove Theorem C.

Until the end of Section 4, M is a compact real-analytic quantizable
Kähler manifold of dimension d.

4.1 Covariant Toeplitz operators

Definition 4.1. Let U denote a small, smooth neighbourhood of the co-
diagonal in M × M ; for instance U = {(x, y) ∈ M × M, dist(x, y) < ε}
with ε small enough so that the section ΨN of Definition 1.3 is defined on

1By this we mean: a real-analytic function κ on U ×Λ, where U is a neighbourhood of
0 in Ω̃, holomorphic in the first variable, such that there exists σ with the same properties,
satisfying σ(κ(x, λ), λ) = κ(σ(x, λ), λ) = x for all (x, λ) ∈ U × Λ.
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a neighbourhood of U . The space T−,r,Rm (U) of covariant analytic Toeplitz
operators consists of operators with kernel

T covN (f) : (x, y) 7→ Nd1(x,y)∈UΨN (x, y)f(N)(x, y),

where f(N) is the summation of an analytic symbol f ∈ Sr,Rm (U), with f
holomorphic in the first variable and anti-holomorphic in the second variable.

Remark 4.2. Since ΨN is exponentially small near the boundary of U , by
Proposition 1.2, the image of a covariant Toeplitz operator is exponentially
close to its projection on H0(M,L⊗N ).

4.2 Study of an analytic phase

In this work, covariant Toeplitz operators of Definition 4.1 have the following
integral kernels:

T covN (f) : (x, y) 7→ ΨN (x, y)
(
cN∑
k=0

Nd−kfk(x, y)
)
.

The integral kernel of the composition of two covariant Toeplitz is of par-
ticular interest, so let us study its phase.

If f and g are analytic symbols, then T covN (f)T covN (g) has the following
kernel:

(x, z) 7→ ΨN (x, z)
∫
M
eN(2φ̃(x,y)−2φ(y)+2φ̃(y,z)−2φ̃(x,z))

×
(
cN∑
k=0

Nd−kfk(x, y)
) cN∑

j=0
Nd−jgj(y, z)

 dy.

We let Φ1 be the complex extension (with respect to the middle variable) of
the phase appearing in the last formula:

Φ1 : (x, y, w, z) 7→ 2φ̃(x,w)− 2φ̃(y, w) + 2φ̃(y, z)− 2φ̃(x, z).

We write Φ1(x, y, w, z) to indicate anti-holomorphic dependence on the two
last variables. In particular, Φ1 is holomorphic on the open set U × U of
M × M̃ ×M = Mx × (My ×Mw)×M z.

The fact that Φ1 is a well-behaved phase function is well-known; let us
state it in this real-analytic context.

Proposition 4.3. There exists a smooth neighbourhood U of

{(x, z) ∈M ×M,x = z}

such that function Φ1, on the open set

{(x, y, y, z), (x,w) ∈ U, (y, w) ∈ U, (x, z) ∈ U},
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is an analytic phase of (y, w), with parameter λ = (x, z). The critical point
is (x, z).

In particular, after a trivialisation of a tubular neighbourhood of

{(x, y, w, z) ∈M × M̃ ×M, (x, z) ∈ U, (y, w) = (x, z)}

in
{(x, y, w, z) ∈M × M̃ ×M, (x, z) ∈ U}

as a vector bundle over the former, the analytic phase Φ1 satisfies the as-
sumptions of Definition 3.11.

4.3 Composition of covariant Toeplitz operators

In this subsection we study the composition rules for operators with kernels
of the form

T covN (f)(x, y) = ΨN (x, y)
(
cN∑
k=0

Nd−kfk(x, y)
)
.

Here, for a small, smooth neighbourhood U of the diagonal in M × M ,
one has f ∈ Sr,Rm (U), and f is holomorphic in the first variable and anti-
holomorphic in the second variable.

Such operators can be formally composed, that is, there holds

T covN (f)T covN (g) = T covN (f]g) +O(N−∞)

where f]g is a classical symbol. This formal calculus satisfies a Wick rule
(Proposition 4.4). This allows us, in Proposition 4.7, to prove that, if f and
g are analytic symbols, then f]g is also an analytic symbol, so that one can
perform an analytic summation (as in Proposition 3.6), and the error in the
composition becoms O(e−cN ).

Proposition 4.4. (See also [8], Lemmes 2.33 and following) The compo-
sition of two covariant Toeplitz operators can be written as a formal series
in N−1. More precisely, if f and g are functions on a neighbourhood of the
diagonal in M ×M , holomorphic in the first variable, anti-holomorphic in
the second variable, then

T covN (f)T covN (g) = T covN (f]g) +O(N−∞),

where f]g is a formal series h ∼
∑
k≥0N

−k(f]g)k, holomorphic in the first
variable, anti-holomorphic in the second variable. The composition law can
be written as

(f]g)k = Bk(f, g),

where Bk is a bidifferential operator of degree at most k in f and at most k
in g.
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Since the thesis [8] is in French, we present a self-contained proof of this
fact in the appendix.

Remark 4.5. Proposition 4.4 is not a trivial consequence of the expression
of the phase Φ1. Indeed, the composition rule for f]g consists in finding,
for x, z fixed, a holomorphic change of variables (y, w) 7→ (v, v) such that
Φ1 = −v · v; then, if J denotes the Jacobian of this change of variables,

(f]g)k(x, z)

=
k∑

n=0

∂nv ∂
n
v

n!

(
k−n∑
l=0

fl(x,w(x, v, v, z))gk−n−l(y(x, v, v, z), z)J(x, v, v, z)
)
v=v=0

.

If the Morse change of variables can be split as (y, w) 7→ (v(y), v(w)), then
Proposition 4.4 follows immediately from the formula above: holomorphic
derivatives (in v) will only hit gk−n−l or J while anti-holomorphic derivatives
(in v) will only hit fl or J , so that both f and g are differentiated at most
k times.

In the model case where Φ1 is a quadratic form (such as on Bargmann
space), such a splitting is indeed true. However, the property Φ1 = −v(y)·v(w)
is, in dimension 1, equivalent to the easily checked identity

∂y∂w log(Φ1) = 0.

This property is false, for instance, if Φ1 represents the usual 2-sphere in the
stereographic projection. In this case,

Φ1 : (x, y, w, z) 7→ 2(log(1 + x · w) + log(1 + y · z)
− log(1 + y · w)− log(1 + x · z)).

Restricting to x = z = 0, we obtain

∂y∂w log(Φ1) = −2
(1 + y · w) log(1 + y · w) + 2y · w (log(1 + y · w) + 1)

((1 + y · w) log(1 + y · w))2 ,

which is obviously non-zero (in particular, it is equal to 1−log(2)
2 log2(2) at y = w = 1.)

Proposition 4.4 predicts that, when applying a stationary phase lemma
to Φ1 in order to study T covN (f)T covN (g), at order k, only derivatives of f
and g at order k will appear. However, in the stationary phase (Lemma
3.12), these derivatives appear in the form of an usual Laplace operator,
conjugated by a change of variables. Before proceeding further, let us prove
a technical lemma.

Lemma 4.6. Let U, V,Λ be domains in Cd containing 0. Let κλ be a biholo-
morphism from V to U ,with real-analytic dependence on λ ∈ Λ, and such
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that κλ(0) = 0 for all λ ∈ Λ. Let κ(λ, v) 7→ κλ(v), and suppose that there
exists Cκ, r0,m0 such that, for all j ∈ N0, one has

‖κ‖Cj(V×Λ) ≤ C
rj0j!

(j + 1)m0
.

Then the following is true for all m ≥ m0, r ≥ 8r02m−m0.
Let f be a real-analytic function on U ×Λ, and suppose that there exists

Cf and k ≥ 0 such that

‖f‖Cj(U×Λ) ≤ Cf
rj(j + k)!

(j + k + 1)m.

Let n ≤ k and i ≤ 2n; let ∇iv denote the i-th gradient (as in Definition 2.11)
over the first set of variables, acting on V × Λ; then

g 7→ (λ 7→ ∇ivg(κλ(v), λ)v=0)

is a differential operator of degree i, from functions on U × Λ to vector-
valued functions on Λ. Let (∇iκ)[≤n] denote the truncation of this differential
operator to a differential operator of degree less than n.

Then, with
γ = 4Cr,

one has, for every j ≥ 0,

‖(∇iκ)[≤n]f‖`1(Cj(Λ)) ≤ id+1jd+1γiCf
rj+i

(i+ j + l + 1)m

×
{

(i+ j + k)! if i ≤ n
max((n+ j + k)!(i− n)!, (j + k)!i!) otherwise.

Proof. Let us make explicit the operator (∇iκ)[≤n]. Given a polyindex µ with
|µ| = i, the Faà di Bruno formula states:

∂µv (f(κλ(v), λ))v=0 =
∑

P∈Π({1,...,i})
f |P |(0, λ)

∏
E∈P

(∂Eκλ)(0),

where the sum runs among all partitions P = {E1, . . . , E|P |} of {1, . . . , i}.
When considering the operator (∇iκ)[≤n], we only need to consider par-

titions P such that |P | ≤ n. If the sizes |E1| = s1, . . . , |E|P || = s|P | of the
elements of P are fixed, the number of possible partitions is simply

i!
(|P |)!s1! . . . s|P |!

.

Then, since there are less than id polyindices µ with |µ| = i, one has, for
all ρ ∈ Nd

0 with |ρ| = j, by differentiation of the Faà di Bruno formula and
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Proposition 3.2,

‖∂ρ((∇iκ)[≤n]f)‖`1 ≤

id
min(n,i)∑
|P |=1

∑
e0+...+e|P |=j
s1+...+s|P |=|P |

j!
e0!e1! . . . e|P |!

i!
(|P |)!s1! . . . s|P |!

‖f‖C|P |+e0

|P |∏
i=1
‖κ‖Csi+ei .

Here κ denotes the real-analytic function (λ, v) 7→ κλ(v).
In particular, since there are less than jd polyindices ρ such that |ρ| = j,

one has

‖∂ρ((∇iκ)[≤n]f)‖`1 ≤ idjd

×
min(n,i)∑
|P |=1

∑
e0+...+e|P |=j
s1+...+s|P |=|P |

j!
e0!e1! . . . e|P |!

i!
(|P |)!s1! . . . s|P |!

‖f‖C|P |+e0

|P |∏
i=1
‖κ‖Csi+ei .

(3)
Since, for all j ≥ 0, one has

‖κ‖Cj(V×Λ) ≤ C
rj0j!

(j + 1)m0
,

by Lemma 2.12, for all m ≥ m0, r ≥ 8r02m−m0 , one has

‖κ‖Cj ≤ C
(r/8)jj!
(j + 1)m.

In particular, if j ≥ 1, there holds

‖κ‖Cj ≤ C
(r/4)j(j − 1)!

jm
j

(
j

j + 1

)m
2−j ≤ C (r/4)j(j − 1)!

jm
,

since
j

(
j

j + 1

)m
2−j ≤ j2−j ≤ 1.

Let us suppose further that

‖f‖Cj(U×Λ) ≤ Cf
rjRl(j + l)!
(j + l + 1)m.

Then, the contribution of one term in the sum (3) is

j!
e0!e1! . . . e|P |!

i!
(|P |)!s1! . . . s|P |!

‖f‖C|P |+e0

|P |∏
i=1
‖κ‖Csi+ei

≤ CfC |P |
r|P |+e0(r/4)i+j−e0Rl(|P |+ e0 + l)!i!
(|P |+ e0 + l + 1)m(|P |)!s1! . . . s|P |!

×
j!(s1 + e1 − 1)! . . . (s|P | + e|P | − 1)!

e0!e1! . . . e|P |!(s1 + e1)m . . . (s|P | + e|P |)m
.
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As e0 + . . . + e|P | = j and s1 + . . . + s|P | = i, and since, as soon as x ≥ 0,
y ≥ 0, there holds

(1 + x)(1 + y) = 1 + x+ y + xy ≥ 1 + x+ y,

one has

(|P |+ e0 + l + 1)m(s1 + e1)m . . . (s|P | + e|P |)m

≥ (|P |+ j + i+ l − |P |+ 1)m = (j + i+ l + 1)m,

so that one can simplify

CfC
|P | r

|P |+e0(r/4)i+j−e0Rl(|P |+ e0 + l)!i!
(|P |+ e0 + l + 1)m(|P |)!s1! . . . s|P |!

×
j!(s1 + e1 − 1)! . . . (s|P | + e|P | − 1)!

e0!e1! . . . e|P |!(s1 + e1)m . . . (s|P | + e|P |)m

≤ CfC |P |
r|P |+e0(r/4)i+j−e0Rl(|P |+ e0 + l)!

(j + i+ l + 1)m

×
i!j!(s1 + e1 − 1)! . . . (s|P | + e|P | − 1)!

e0!(|P |)!s1! . . . s|P |!e1! . . . e|P |!
.

By Lemma 2.5, one has

(s1 + e1 − 1)! . . . (s|P | + e|P | − 1)!
s1! . . . s|P |!e1! . . . e|P |!

≤
(i− |P |+ j − e0)!

(i− |P |+ 1)!(j − e0)!.

Hence, the contribution of one term in the sum (3) is smaller than

CfC
|P | i!

(|P |)!(i− |P |+ 1)!

×
r|P |+e0(r/4)i+j−e0Rl(|P |+ e0 + l)!j!(i− |P |+ j − e0)!

(j + i+ l + 1)me0!(j − e0)! .

As (i− |P |+ j − e0)! ≤ (j − e0)!(i− |P |)!2i+j−e0 and i! ≤ 2i(|P |)!(i− |P |)!,
we control each term in the sum (3) with

Cf2e0−jC |P |ri
rj+|P |Rl(|P |+ e0 + l)!

(j + i+ l + 1)m
j!(i− |P |)!

e0!

≤ Cf2e0−j(Cr)i
rj+iRl(|P |+ e0 + l)!

(j + i+ l + 1)m
j!(i− |P |)!

e0! .

There are
( i
|P |
)
≤ 2i choices for positive s1, . . . , s|P | such that their sum

is i; similarly, there are
(j−e0+|P |

|P |
)
≤ 2j−e0+|P | choices for non-negative
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e1, . . . , e|P | such that their sum is j − e0. Hence

‖(∇iκ)[≤n]f‖`1(Cj)

≤ idjd
min(n,i)∑
|P |=1

j∑
e0=0

2j+|P |−e02iCf2e0−j(Cr)i
rj+iRl(|P |+ e0 + l)!

(j + i+ l + 1)m
j!(i− |P |)!

e0!

≤ idjd
min(n,i)∑
|P |=1

j∑
e0=0

Cf (4Cr)i
rj+iRl(|P |+ e0 + l)!

(j + i+ l + 1)m
j!(i− |P |)!

e0! .

The terms in the sum above are increasing with respect to e0, so that

‖∇ivf(x, κ(x, v, z))v=0‖`1(Cj)

≤ idjd+1
min(n,i)∑
|P |=1

Cf (4Cr)i
rj+iRl(|P |+ j + l)!

(i+ j + l + 1)m (i− |P |)!.

Observe that the quantity in the sum above is log-convex with respect to
|P | as it is a product of factorials, so that

‖(∇iκ)[≤n]f‖`1(Cj)

≤ id+1jd+1Cf
rj+iRl

(i+ j + l + 1)m(4Cr)i max((n+ j + l)!(i− n)! , (j + l)!i!)

if i ≥ n, and

‖(∇iκ)[≤n]f‖`1(Cj) ≤ id+1jd+1Cf
rj+iRl

(i+ j + l + 1)m(4Cr)i(i+ j + l)!

if i ≤ n. This concludes the proof, with γ = 4Cr.

We are in position to prove the first part of Theorem B, which does not
use the structure of the Bergman kernel. Let us prove that the composition
of two covariant Toeplitz operators with analytic symbols also admits an
analytic symbol, up to an exponentially small error.

Proposition 4.7. There exists a small neighbourhood U of the diagonal in
M×M , and constants C,m0, r0 such that, for everym ≥ m0, r ≥ r0, R ≥ Cr3,
there exists c′ > 0 such that, for every f ∈ Sr,Rm (U) and g ∈ S2r,2R

m (U), holo-
morphic in the first variable, anti-holomorphic in the second variable, there
exists f]g ∈ S2r,2R

m (U) with the same properties, such that

‖T covN (f)T covN (g)− T covN (f]g)‖L2 7→L2 ≤ Ce−c′N‖g‖
S2r,2R
m (U)‖f‖Sr,Rm (U).

Moreover
‖f]g‖

S2r,2R
m (U) ≤ C‖g‖S2r,2R

m (U)‖f‖Sr,Rm (U).
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Proof. The kernel of T covN (f)T covN (g) can be written as

(x, z) 7→ ΨN (x, z)
∫
y∈M

eNΦ1(x,y,y,z)
(
cN∑
k=0

Nd−kfk(x, y)
)

×

 cN∑
j=0

Nd−jgj(y, z)

dy.

Here, and until the end of the proof, we write fk(x, y) to indicate that
fk is holomorphic in the first variable and anti-holomorphic in the second
variable. We similarly write gj(y, z).

Since Φ1 is an analytic phase (Proposition 4.3), let us apply the station-
ary phase lemma (Proposition 3.12). There exists a biholomorphism on a
neighbourhood of x in M̃ , of the form

κ(x,z) : (y, y) 7→ v(x, y, y, z),

with holomorphic dependence on (x, z) (that is, holomorphic in x and anti-
holomorphic in z), in which the phase Φ1 can be written as −|v|2. In par-
ticular,

v(x, x, z, z) = 0.

Let J denote the Jacobian of this change of variables. Then

T covN (f)T covN (g)(x, z) =

ΨN (x, z)
...∑

k,j,n=0
Nd−k−j−n∆n

v

n! (fk(x, y(x, v, z))gj(y(x, v, z), z)J(x, v, z))v=0

+ . . .

We will make sense of this sum later on; that is, prove that one can sum
until k, j and n are equal to cN , up to an exponentially small error. For the
moment, let us treat this formula in decreasing powers of N . Writing

T covN (f)T covN (g)(x, z) = T covN (f]g)(x, z) = ΨN (x, z)
···∑
k=0

Nd−k(f]g)k(x, z)+. . .

the symbol f]g must be holomorphic in the first variable, anti-holomorphic
in the second variable, and such that

(f]g)k(x, z) =
k∑

n=0

∆n
v

n!

(
k−n∑
l=0

fl(x, y(x, v, z))gk−n−l(y(x, v, z), z)J(x, v, z)
)
v=0

.

Here the Laplace operator acts on v.
The proof proceeds now in two steps. In the first step, we write a control

of the formal symbol f]g using the analytic symbol structure of f and g and
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Lemma 4.6. This control involves a complicated quotient of factorials as well
as a rational expression similar to the one appearing in Lemma 3.7. The
second step is a control the quotients of factorials, thus reducing the proof
that f]g ∈ S2r,2R

m to Lemma 3.7. It is then standard [41, 34] to check that, if
f, g, f]g are analytic symbols then one can perform an analytic summation
to prove that

T covN (f)T covN (g) = T covN (f]g) +O(e−cN ).

First step.
We wish to control ‖(f]g)k‖Cj(U), which amounts to control, for each

0 ≤ n ≤ k, 0 ≤ l ≤ k − n, the Cj-norm of

(x, z) 7→ ∆n
v (fl(x, y(x, v, z))gk−n−l(y(x, v, z), z)J(x, v, z))v=0 .

This bidifferential operator acting on fl and gk−n−l coincides, up to a multi-
plicative factor, with the operator Bn considered in Proposition 4.4. Indeed,
if f = f0 and g = g0, then

(f]g)k(x, z) =
∆k
v

k! (f0(x, y(x, v, z))g0(y(x, v, z))J(x, v, z))v=0 = Bk(f0, g0),

where (Bk)k≥0 is the sequence of bidifferential operators appearing in Propo-
sition 4.4. In particular, when expanding

∆n
v (fl(x, y(x, v, z))gk−n−l(y(x, v, z), z)J(x, v, z))v=0 ,

using the Leibniz and Faà di Bruno formulas, no derivative of fl and gk−n−l
of order greater than n will appear. Let us write this expansion.

Until the end of the proof, Cj or analytic norms of functions are implicitly
on the domain U or U × U .

For every n ∈ N0, by the multinomial formula, there holds

∆n
v =

( 2d∑
i=1

∂2

∂v2
j

)n
=

∑
µ∈N2d

0
|µ|=n

n!
µ! ∂

2µ
v .

Applying the generalised Leibniz rule twice, one has then

∆n
v (fl(x, y(x, v, z))gk−n−l(y(x, v, z), z)J(x, v, z))v=0

=
∑
|µ|=n

ν1+ν2≤2µ

n!(2µ)!
µ!ν1!ν2!(2µ− ν1 − ν2)! ∂

ν1
v fl(x, y(x, v, z))v=0

× ∂ν2
v gk−n−l(y(x, v, z), z)v=0∂

2µ−ν1−ν2
v Jv=0.

By Proposition 4.4, in the formula above one can replace ∂ν1
v f(x, y(x, v, z))v=0

by its truncation into a differential operator of degree less than n, applied on
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f , which we denote (∂ν1
κ )[≤n]f(x, z) (similarly as in Lemma 4.6). Similarly

one can replace ∂ν2
v g(y(x, v, z), z)v=0 by (∂ν2

κ )[≤n]g(x, z). Then

∆n
v (fl(x, y(x, v, z))gk−n−l(y(x, v, z), z)J(x, v, z))v=0

=
∑
|µ|=n

ν1+ν2≤2µ

n!(2µ)!
µ!ν1!ν2!(2µ− ν1 − ν2)! (∂ν1

κ )[≤n]fl(x, z)

× (∂ν2
κ )[≤n]gk−n−l(x, z)∂2µ−ν1−ν2

v Jv=0,

with, by Lemma 2.4,

n!µ1!
ν1!ν2!(2µ− ν1 − ν2)! =

n!
µ!

(2µ)!
ν1!(2µ− ν1)!

(2µ− ν1)!
ν2!(2µ− ν1 − ν2)!

≤
n!
µ!

(2n)!
|ν1|!(2n− |ν1|)!

(2n− |ν1|)!
|ν2|!(2n− |ν1| − |ν2|)!

=
n!
µ!

(
2n

|ν1|, |ν2|

)
≤ (2d)n

(
2n

|ν1|, |ν2|

)
.

Moreover, applying Proposition 3.2 twice,

‖(∂ν1
κ )[≤n]fl(x, z)(∂ν2

κ )[≤n]gk−n−l(x, z)∂2µ−ν1−ν2
v Jv=0‖Cj

≤
∑

j1+j2≤j

(
j

j1, j2

)
‖(∂ν1

κ )[≤n]fl(x, z)‖Cj1

× ‖(∂ν2
κ )[≤n]gk−n−l(x, z)‖Cj2‖∂2µ−ν1−ν2

v Jv=0‖Cj−j1−j2 .

In particular, using the notation (∇jκ)[≤n] as introduced in Lemma 4.6, one
has

‖n!Bn(fl, gk−n−l)‖Cj
= ‖∆n

v (fl(x, y(x, v, z))gk−n−l(y(x, v, z), z)J(x, v, z))v=0‖Cj

≤ (2d)n
∑

j1+j2≤j
i1+i2≤2n

(
j

j1, j2

)(
2n
i1, i2

)
‖(∇i1κ )[≤n]fl(x, z)‖`1(Cj1 )

× ‖(∇i2κ )[≤n]gk−n−l(x, z)‖`1(Cj2 )‖∇2n−i1−i2
v J‖`1(Cj−j1−j2 ).

By Lemma 4.6, for some γr depending linearly on r (but independent of
R,m), one has

‖(∇i1κ )[≤n]fl(x, z)‖`1(Cj1 )

≤ id+1
1 jd+1

1 ‖f‖
Sr,Rm

γi1r
rj1+i1Rl

(i1 + j1 + l + 1)mA(i1, j1, l, n),
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and

‖(∇i2κ )[≤n]gk−n−l(x, z)‖`1(Cj2 )

≤ id+1
2 jd+1

2 ‖g‖
S2r,2R
m

γi2r
(2r)j2+i2(2R)k−n−l

(i2 + j2 + l + 1)m A(i2, j2, k − n− l, n),

where

A(i, j, l, n) =
{

(i+ j + l)! if i ≤ n,
max((n+ j + l)!(i− n)!, (j + l)!i!) otherwise,

The real-analytic function J belongs to some fixed analytic space, so
that there exists r0,m0 such that.

‖J‖Cj ≤ CJ
rj0j!

(j + 1)m0
,

If r ≥ 2r02m−m0 , by Proposition 2.12, one has

‖J‖Cj ≤ CJ
(r/2)jj!
(j + 1)m,

hence

‖(f]g)k‖Cj ≤

CJ‖f‖Sr,Rm ‖g‖S2r,2R
m

(2r)j(2R)k(j + k)!
(k + j + 1)m

k∑
n=0

(
γrr

2

R

)n k−n∑
l=0

∑
i1+i2≤2n

∑
j1+j2≤j

(2n)!j!A(i1, j1, l, n)A(i2, j2, k − l, n)(2n+ j − j1 − j2 − i1 − i2)!
22n+j−j1−j2−i1−i22j1+i1+li1!i2!j1!j2!(2n− i1 − i2)!(j − j1 − j2)!n!(k + j)!

id1i
d
2j
d
1j
d
2(k + j + 1)m

(j1 + i1 + l + 1)m(j2 + i2 + k − n− l + 1)m(j + 2n− i1 − i2 − j1 − j2 + 1)m.

Second step.
Let us control the quotient of factorials above. There holds

(2n+ j − j1 − j2 − i1 − i2)!
22n+j−j1−j2−i1−i2(j − j1 − j2)!(2n− i1 − i2)! =

(2n+j−j1−j2−i1−i2
j−j1−j2

)
22n+j−j1−j2−i1−i2 ≤ 1.

Thus, the middle line in the control on ‖(f]g)k‖Cj is smaller than

(2n)!j!A(i1, j1, l, n)A(i2, j2, k − l, n)
2j1+i1+li1!i2!j1!j2!n!(k + j)! .

Let us prove that, if i1 ≤ 2n, i2 ≤ 2n, 0 ≤ l ≤ k − n, j1 + j2 ≤ j, then

(2n)!j!A(i1, j1, l, n)A(i2, j2, k − l, n)
2j1+i1+li1!i2!j1!j2!n!(k + j)! ≤ 4n.
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For the moment, let us focus on the i1 ≤ n, i2 ≤ n case. As i1 ≥ 0 one has
1

2i1 ≤ 1 and it remains to control

(2n)!j!(j1 + i1 + l)!(j2 + i2 + k − n− l)!
2j1+li1!i2!j1!j2!n!(k + j)! .

This expression is increasing with respect to i1 and i2, so that we only need
to control the i1 = i2 = n case, which is

(2n)!j!(j1 + n+ l)!(j2 + k − l)!
2j1+l(n!)3j1!j2!(k + j)!

Moreover, the expression above is log-convex with respect to l, so that
we only need to control the l = 0 and l = k − n case.

If l = 0 we are left with
(2n)!j!(j1 + n)!(k + j2)!

2j1(n!)3j1!j2!(k + j)! = 2n
(

2n
n

)(j1+n
n

)
2j1+n

(k+j+j2
j2

)(k+j+j2
j

) ≤ 4n
(k+j+j2

j2

)(k+j+j2
j

).
To conclude, j is closer from

k + j + j2

2 than j2 since j ≥ j2, so that
(k+j+j2

j2
)

(k+j+j2
j ) ≤ 1, hence the claim.
If l = k − n, one has

(2n)!j!(j1 + k)!(j2 + n)!
2j1+k−n(n!)3j1!j2!(k + j)! = 2n

(
2n
n

)(j1+k
k

)
2j1+k

(j2+n
n

)(j+k
k

) ≤ 4n.

We now consider the case i1 ≥ n or i2 ≥ n. We need to replace (i1 + j1 + l)!
with either (j1 + l)!i1! or (j1 + l + n)!(i1 − n)!. One has

(j1 + l)!i1!
i1! = (j1 + l)! ≤

(j1 + l + n)!
n!

(j1 + l + n)!(i1 − n)!
i1! ≤

(j1 + l + n)!i1!
i1!n! =

(j1 + l + n)!
n! .

The same inequalities apply with i1, j1 replaced with i2, j2. Hence, in all
cases, we are left with

(2n)!j!(j1 + n+ l)!(j2 + k − l)!
2j1+l(n!)3j1!j2!(k + j)! ,

which we just proved to be smaller than 4n.
This yields

‖(f]g)k‖Cj ≤

CJ‖f‖Sr,Rm ‖g‖S2r,2R
m

(2r)j(2R)k(j + k)!
(k + j + 1)m

k∑
n=0

(
4γrr2

R

)n k−n∑
l=0

n∑
i1,i2=0

∑
j1+j2≤j

(k + j + 1)mid1id2jd1jd2
(j1 + i1 + l + 1)m(j2 + i2 + k − n− l + 1)m(j + 2n− i1 − i2 − j1 − j2 + 1)m.
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We are almost in position to apply Lemma 3.7; since

(k + j + n+ 1)m ≥ (k + j + 1)m,

one has

‖(f]g)k‖Cj ≤

CJ‖f‖Sr,Rm ‖g‖S2r,2R
m

(2r)j(2R)k(j + k)!
(k + j + 1)m

k∑
n=0

(
4γrr2

R

)n k−n∑
l=0

n∑
i1,i2=0

∑
j1+j2≤j

id1i
d
2j
d
1j
d
2(k + j + n+ 1)m

(j1 + i1 + l + 1)m(j2 + i2 + k − n− l + 1)m(j + 2n− i1 − i2 − j1 − j2 + 1)m.

Applying Lemma 3.7 yields, for m large enough depending on d,

‖(f]g)k‖Cj ≤ CJ‖f‖Sr,Rm ‖g‖S2r,2R
m

(2r)j(2R)k(j + k)!
(k + j + 1)m

k∑
n=0

(
4γrr2

R

)n
.

As long as R ≥ 4γrr2, which is possible if R is chosen large enough since γr
depends only on r, one can conclude:

‖(f]g)k‖Cj ≤ 2mCJ‖f‖Sr,Rm ‖g‖S2r,2R
m

(2r)j(2R)k(j + k)!
(k + j + 1)m .

At this stage, we are almost done with the proof: we obtained that
the formal series which corresponds, in the C∞ class, to the composition
T covN (f)T covN (g), belongs to the same analytic symbol class than g.

This concludes the proof.

4.4 Inversion of covariant Toeplitz operators and the Bergman
kernel

In this subsection we prove Theorem A as well as the second part of Theorem
B. To do so, we first show in Proposition 4.8, as a reciprocal to Proposition
4.7, that if f and h are analytic symbols of covariant Toeplitz operators with
f0 non-vanishing, then there exists an analytic symbol g such that

T covN (f)T covN (g) = T covN (h) +O(e−cN ).

We then prove in Proposition 4.9 that, under the same hypotheses, T covN (f),
whose image is almost contained inH0(M,L⊗N ) by Remark 4.2, is invertible
on this space up to an exponentially small error. Thus, one can conclude
that, on H0(M,L⊗N ), there holds

T covN (g) = T covN (h)(T covN (f))−1 +O(e−cN ).

This allows us to prove Theorem A, since by setting h = f one recovers that
the Bergman kernel can be written as T covN (f)(T covN (f))−1 = TN (a). Then,
the second part of Theorem B follows from Proposition 4.8 by setting h = a.

Following the lines of Proposition 4.7, let us try to construct inverses for
analytic symbols.
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Proposition 4.8. Let U denote a small neighbourhood of the diagonal in
M×M and let f, h ∈ Sr0,R0

m0 (U) be analytic symbols, holomorphic in the first
variable and anti-holomorphic in the second variable, for some r0, R0,m0.
Suppose that the principal symbol f0 of f is bounded away from zero on U .

Then there exists r,R,m as well as g ∈ Sr,Rm (U), holomorphic in the first
variable, anti-holomorphic in the second variable, such that

T covN (f)T covN (g) = T covN (h) +O(e−cN ).

Proof. Recalling the proof of Proposition 4.7, let us recover g from f and
h = f]g. By definition of hk, one has

gk(x, z)f0(x, z)J(x, x, z, z) = hk(x, z)

−
k∑

n=0

∆n
v

n!

 k−n∑
l=0

l+n>0

fl(x, y(x, v, z))gk−n−l(y(x, v, z), z)J(x, v, z)


v=0

. (4)

As f0 is bounded away from zero, this indeed defines gk by induction. Let
us try to control g in an analytic space.

We first letm large enough, and r ≥ 2r02m−m0 as well as R ≥ 2R02m−m0 .
Then, by Lemma 3.4, there exist Cf , Ch, CJ independent ofm, r,R such that,
for every k ≥ 0, j ≥ 0,

‖fk‖Cj(U) ≤ Cf
(r/2)j(R/2)k(j + k)!

(j + k + 1)m

‖hk‖Cj(U) ≤ Ch
rjrk(j + k)!
(j + k + 1)m

‖J‖Cj(U×U) ≤ CJ
(r/2)jj!
(j + 1)m.

Here J denotes again the Jacobian in the change of variables corresponding
to the Morse lemma for the phase Φ1.

We first note that

g0(x, z) = f0(x, z)−1h0(x, z)J(x, x, z, z),

so that, by Lemma 2.14, there exists C0 such that, for every r ≥ 2r02m−m0

and R ≥ 2R02m−m0 , for every j ≥ 0,

‖g0‖Cj(U) ≤ C0
rjj!

(j + 1)m.

Let us prove by induction on l ≥ 1 that, for some fixed Cg,m, r,R, for
every j ≥ 0, one has

‖gl‖Cj ≤ Cg
rjRl(j + l)!
(j + l + 1)m.
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Over the course of the induction, we will fix the values of Cg,m, r,R.
Suppose that a control above is true for indices up to l = k − 1. Then,

from the recursive formula (4), if we repeated the proof of Proposition 4.7,
we would obtain

‖gk‖Cj ≤ C(Ch + CgCfCJ)
rjRk(j + k)!
(j + k + 1)m.

This is not enough, as the constant C(Ch +CgCfCJ) appearing here might
be greater than Cg. However, as we will see, the constant can be made
arbitrarily small by choosing Cg large enough, as well as m large enough,
depending on f , and R/r2 large enough.

Let C1 = C‖(f0J)−1‖H(m,r,U) where C is the constant appearing in
Proposition 2.14.

There holds
Ch ≤

Cg
4C1

if Cg is large enough with respect to Ch, Cf , CJ , C0. It remains to estimate
the second term on the right-hand side of (4).

Let us isolate the n = 0, l = k term in (4). This term is −g0Jfk, and the
Sr,Rm (U)-norm of g0Jf is again smaller than Cg

4C1
if Cg is large enough with

respect to CfC0CJ .
Repeating the proof of Proposition 4.7, the n = 0, l < k terms in (4) are

bounded in Cj-norm by

CCJCfCg
rjRk(j + k)!
(j + k + 1)m

×
k−1∑
l=1

∑
j1+j2≤j

(j + k + 1)m

(j1 + l + 1)m(j2 + k − l + 1)m(j − j1 − j2 + 1)m.

By Lemma 3.7, since no term in the sum

∑
1≤l≤k−1
j1+j2≤j

(j + k + 1)m

(j1 + l + 1)m(j2 + k − l + 1)m(j − j1 − j2 + 1)m

=
∑

i1+i2+i3=j+k
i1≥1
i2≥1

(j + k + 1)m

(i1 + 1)m(i2 + 1)m(i3 + 1)m

contribute as 1, by Lemma 3.7 (with d = 0 and n = 3), this sum is smaller
than C(3/4)m for some C > 0. Hence, ifm is large enough, this contribution
is also smaller than Cg

4C1
. Now m is fixed.

It remains to control the n ≥ 1 terms in (4). From the proof of Propo-
sition 4.7, their sum is smaller than

CCJCfCg

k∑
n=1

rjRk(j + k)!
(j + k + 1)m

(
4γrr2

R

)n
.
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As long as R/r2 is large enough with respect to γrCJCf , (which is possible
if R is large enough since γr = Cr for some fixed C), this is again smaller
than Cg

4C1
.

In conclusion,

‖gkf0J‖Cj ≤
Cg

C1

rjRk(j + k)!
(j + k + 1)m.

In particular, by Lemma 2.14, and since ‖(f0J)−1‖H(m,r,U) = C1/C, one has

‖gk‖Cj = ‖gkf0J(f0J)−1‖Cj ≤ Cg
rjR

k(j + k)!
(j + k + 1)m.

This concludes the induction.
Once the formal series g is controlled in an analytic symbol space, the

composition TN (g)TN (f) coincides with TN (h) up to an exponentially small
error as in the end of the proof of Proposition 4.7, hence the claim.

Proposition 4.9. Let f be a function on U , holomorphic with respect to the
first variable, anti-holomorphic with respect to the second variable. If f is
nonvanishing then SNT covN (f) has an inverse on H0(M,L⊗N ), with operator
norm bounded independently of N .

Proof. One can invert SNT covN (f) by a formal covariant symbol, that is, up
to an O(N−K) error for any fixed K. In particular, there exists an operator
AN on H0(M,L⊗N ) such that ANSNT covN (f) = SN +O(N−1), and such that
the operator norm of AN is bounded independently on N .

Since ANSNT covN (f) is invertible on H0(M,L⊗N ), so is SNT covN (f), and
the operator norm of this inverse is ‖AN‖L2→L2(1 + O(N−1)), which is
bounded independently on N , hence the claim.

Let us now conclude the proofs of Theorems A and B.
Let U be a small neighbourhood of the diagonal in M ×M and let f be

any function on U bounded away from zero, holomorphic in the first variable,
anti-holomorphic in the second variable. From Proposition 4.8 there exists
an analytic symbol a with the same properties, such that

T covN (f)T covN (a) = T covN (f) +O(e−cN ). (5)

Let AN = (SNT covN (f))−1 on H0(M,L⊗N ); we know from Proposition
4.9 that AN is well-defined and bounded independently on N . Then, for
any u ∈ H0(M,L⊗N ), one has

T covN (a)u = u+O(e−cN ).

Indeed, one can write u = ANv and apply the adjoint of (5) to v.
Moreover, by Remark 4.2, there holds

(I − SN )T covN (a) = O(e−cN ).
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To conclude, one has T covN (a) = SN +O(e−cN ). In other terms,

SN (x, y) = ΨN (x, y)
cN∑
k=0

Nd−kak(x, y) +O(e−cN ).

This concludes the proof of Theorem A.
Let us complete the proof of Theorem B. Its first part is Proposition

4.7. For the second part, we apply Proposition 4.8 with h = a, the symbol
of the Bergman kernel.

We remark that, from this proof, a may depend on f , but necessarily
a coincides with the formal symbol of the Bergman kernel, so that it is
uniquely defined.

Remark 4.10 (Normalised covariant Toeplitz operators). Let T covN (a) de-
note the approximate Bergman kernel constructed in the previous propo-
sition. Once the symbol a is known, one can study, as in the proof of
Proposition 4.4, normalised covariant Toeplitz operators, of the form

ΨN (x, y)
(
cN∑
k=0

N−kak(x, y)
)(

cN∑
k=0

Nd−kfk(x, y)
)
.

Under this convention, the operator associated with the function f = 1 is
SN +O(e−cN ), as in contravariant Toeplitz quantization.

Propositions 4.7 and 4.8 can be adapted to normalised covariant Toeplitz
operators, for which the algebra product is

(f, g) 7→ ((f ∗ a)](g ∗ a)) ∗ a∗−1.

For instance, since the Cauchy product is continuous on each symbol class,
there holds, for m large enough, r > 2m and R > Cr3,

‖((f ∗ a)](g ∗ a)) ∗ a∗−1‖
S2r,2R
m (U) ≤ Ca‖f‖Sr,Rm (U)‖g‖S2r,2R

m (U).

To conclude this section, we prove that analytic contravariant Toeplitz
opeartors are contained within analytic covariant Toeplitz operators.

Proposition 4.11. Let f be a real-analytic function on M . There exists an
analytic symbol g and c > 0 such that

TN (f) = T covN (g) +O(e−cN ).

Proof. Recall from Theorem A that there exists an analytic symbol a such
that

SN = T covN (a) +O(e−cN ).
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Letting f̃ be a holomorphic extension of f , the kernel of TN (f) = SNfSN
is then

(x, z) 7→

ΨN (x, z)
∫
y∈M

e−NΦ1(x,y,y,z)
cN∑
k,j=0

N2d−k−jak(x, y)aj(y, z)f̃(y, y)dy

+O(e−cN ).

One can then repeat the proof of Proposition 4.7 with J replaced with
(x, y, y, z) 7→ J(x, y, y, z)f̃(y, y). This yields an analytic symbol g such that

gk(x, z) =
k∑

n=0

∆̃n
v

n!

(
k−n∑
l=0

al(x, y(x, v, z)ak−n−l(y(x, v, z), z)

× J(x, (y, y)(x, v, z), z)f̃((y, y)(x, v, z))
)
v=0

,

that is,
T covN (g) = SNfSN +O(e−cN ).

4.5 Exponential decay of low-energy states

Since covariant analytic Toeplitz operators form an algebra up to expo-
nentially small error terms (Theorem B), and since contravariant Toeplitz
operators are a subset of covariant analytic Toeplitz operators (Proposition
4.11), one can study exponential localisation for eigenfunctions of contravari-
ant analytic Toeplitz operators. In this subsection we prove Theorem C.

Let f be a real-analytic, real-valued fnuction on M , let E ∈ R and let
(uN )N≥1 be a normalized family of eigenstates of TN (h) with eigenvalue
λN = E + o(1). Let V be an open set at positive distance from {f = E}.
Let a ∈ C∞(M,R+) be such that supp(a) ∩ {f = E} = ∅ and a = 1 on V .
The function a is of course not real-analytic; we will nevertheless prove that

TN (a)uN = O(e−cN ).

This implies Theorem C, since∫
V
|uN |2 = 〈uN ,1V uN 〉 ≤ 〈uN , auN 〉 = 〈uN , TN (a)uN 〉 = O(e−cN ).

Let W be an open set of M such that

supp(a) ⊂⊂W ⊂⊂ {f 6= E}.
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On W , the function b− E is bounded away from zero. Let us consider,
on a neighbourhood of diag(W ) in M ×M , the analytic covariant symbol
g which is such that T covN (g) is the analytic inverse (on this neighbourhood)
of TN (f − λ(N)). This symbol is well-defined: one can check that the
construction of an inverse symbol in Proposition 4.8 only relies on local
properties. The function f −λ(N) might not be a classical analytic symbol,
since we made no assumption on the eigenvalue λ(N). However, for every t
close to E one can define the microlocal inverse gt of f − t near W , in an
analytic class independent of t, so that we define the microlocal inverse of
TN (f − λ(N)) as the operator with kernel

T covN (g) : (x, y) 7→ ΨN (x, y)gλ(N)(N)(x, y).

We arbitrarily cut off g outside a neighbourhood of diag(W1), where
W ⊂⊂ W1 ⊂⊂ {f 6= E} so that T covN (g) is a well-defined operator. Let us
prove that, for some c > 0 small, one has

TN (a)T covN (g)TN (f − λN ) = TN (a) +O(e−cN ).

By construction, uniformly on x ∈W1 and z ∈M , one has∫
y∈M

T covN (g)(x, y)TN (f − λN )(y, z) = SN (x, z) +O(e−cN ).

In particular, since TN (a) is bounded by O(e−cN ) on W × (M \W1), for
x ∈W one has∫

y1∈M,y2∈M
TN (a)(x, y1)T covN (g)(y1, y2)TN (f)(y2, z)

=
∫
y1∈W1,y2∈M

TN (a)(x, y1)T covN (g)(y1, y2)TN (f − λN )(y2, z) +O(e−cN )

=
∫
y1∈W1

TN (a)(x, y1)SN (y1, z) +O(e−cN )

=
∫
y1∈M

TN (a)(x, y1)SN (y1, z) +O(e−cN ) = TN (a)(x, z) +O(e−cN ).

Moreover, uniformly on (x /∈W, y ∈M) there holds TN (a)(x, y1) = O(e−cN )
so that, finally,

TN (a)T covN (g)TN (f − λN ) = TN (a) +O(e−cN ).

In particular,

0 = TN (a)T covN (g)TN (f − λ(N))uN = TN (a)uN +O(e−cN ),

which concludes the proof.
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A The Wick rule
Here we present a self-contained proof of Proposition 4.4.

It is well-known (see [9], Theorem 2) that there exists an invertible formal
series a of functions defined on a neighbourhood of the diagonal in M ×M ,
holomorphic in the first variable and anti-holomorphic in the second variable,
which correspond to the Bergman kernel, that is, such that

T covN (a) = SN +O(N−∞).

In Theorem A, we prove that a is in fact an analytic symbol; but for the
moment, it is sufficient to know that a exists as a formal series.

Let us deform covariant Toeplitz operators by this formal symbol a, into
normalised covariant Toeplitz operators of the form T covN (f ∗ a). Here ∗
denotes the Cauchy product of symbols (Proposition 3.8). Since in this case
f and g are simply holomorphic functions one has f ∗a = fa and g ∗a = ga.

We will first prove our claim for this modified quantization: that is, there
exists a sequence of bidifferential operators (Ck)k≥0 acting on functions on a
neighbourhood of the diagonal inM×M , such that, given two such functions
f and g, if we let

f]g =
+∞∑
k=0

N−kCk(f, g) +O(N−∞),

then
T covN ((f]g) ∗ a) = T covN (fa)T covN (ga) +O(N−∞).

Moreover, Ck is of order at most k in each of its arguments. Then, we will
relate the coefficients Ck with the coefficients Bk in the initial claim.

The claim is easier to prove for the coefficients Ck because normalised
covariant Toeplitz quantization follows the Wick rule. Indeed, if the func-
tion f , near a point x0, depends only on the first variable (that is, the
restriction of f to the diagonal is, near this point, a holomorphic function
on M), then the kernel T covN (af)(x, y), for x close to x0, can be written as
f(x)T covN (a)(x, y) = f(x)SN (x, y) + O(N−∞). In particular, for x close to
x0 the Wick rule holds:

T covN (af)T covN (ag)(x, y) = T covN (afg)(x, y) +O(N−∞),

since by Remark 4.2 the kernel of T covN (ag) is almost holomorphic in the first
variable, up to an O(N−∞) error. Thus, locally where f depends only on
the first variable, there holds

∀k ≥ 1, Ck(f, g) = 0.
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More generally, we wish to compute

N2dΨN (x, z)
∫
M

exp(NΦ1(x, y, y, z))(fa)(N)(x, y)(ga)(N)(y, z)dy,

where we recall that

Φ1(x, y, w, z) = −2φ̃(x,w) + 2φ̃(y, w)− 2φ̃(y, z) + 2φ̃(x, z).

Here, we write (fa)(N)(x, y) to indicate that fa is holomorphic in the first
variable and anti-holomorphic in the second variable. Similarly, we write
Φ1(x, y, w, z) to indicate that Φ1 is a function onMx×M̃y,w×Mz, holomor-
phic in its two first arguments and anti-holomorphic in the third argument;
we integrate over M which is the subset of M̃ such that w = y.

First of all, let us prove a Schur test: operator with kernels of the form

(x, z) 7→ N2d
∫
M

exp(NΦ1(x, y, y, z))b(x, y, y, z)dy

are bounded from L2(M,L⊗N ) to itself independently on N ; in particu-
lar, successive integration by parts on (y, y), which will introduce negative
powers of N in the symbol, will lead to a control of the operator.

Since for any (x, z) ∈ U one has |ΨN (x, z)| ≤ e−cN dist(x,z)2 , then there
exists C > 0 such that, for any analytic symbol b on U × U , there holds

N2d sup
x

∫
M

∣∣∣∣ΨN (x, z)
∫
M

exp(NΦ1(x, y, y, z))b(N)(x, y, y, z)dy
∣∣∣∣ dz

≤N2d sup
U×U
|b(N)| sup

x

∫
M

∫
M
|ΨN (x, y)||ΨN (y, z)|dydz

≤ sup
U×U
|b(N)|N2d sup

x

∫
M×M

e−Nc dist(x,y)2−Ncdist(y,z)2dydz

≤C sup
U×U
|b(N)|.

In particular, by the Schur test, the operator with the kernel above is
bounded independently on N .

As ∂yΦ1 vanishes in a non-degenerate way at w = z, one can write

f(x,w) = f(x, z)− ∂yΦ1 · F1(x, z, y, w).

Thus,

N2dΨN (x, z)
∫
M
eNΦ1(x,y,y,z)(fa)(N)(x, y)(ga)(N)(y, z)dy

= N2dΨN (x, z)f(x, z)
(∫

M
eNΦ1(x,y,y,z)a(N)(x, y)(ga)(N)(y, z)dy

+N−1
∫
M
eNΦ1(x,y,y,z)a(N)(x, y)∂M [F1(x, z, y, y)(ga)(N)(y, z)] dy

)
.
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The first term in the right-hand side above is equal to

f(x, z)
∫
M
T covN (a)(x, y)T covN (ga)(y, z)dy = f(x, z)T covN (ga)(x, z) +O(N−∞),

since T covN (a) = SN +O(N−∞).
In the second line, which is of order N−1 by a Schur test, derivatives of

g of order at most 1 appear. This remainder can be written as

N2d−1ΨN (x, z)
∫
M
eNΦ1(x,y,y,z)a(N)(x, y) [∂yF1(x, z, y, y)] (ga)(N)(y, z)dy

+N2d−1ΨN (x, z)
∫
M
eNΦ1(x,y,y,z)a(N)(x, y)F1(x, z, y, y)[∂y(ga)(N)(y, z)dy.

We recover the initial expression, where f has been replaced with either F1
or ∂yF1, and g has potentially been differentiated once. Thus, by induction,
the coefficient Ck(f, g) only differentiates at most k times on g. By duality,
Ck(f, g) only differentiates at most k times on f .

Let us now relate the coefficients Ck and Bk. Let a∗−1 denote the inverse
of a for the Cauchy product. One has

T covN (f)T covN (g) = T covN ((fa∗−1) ∗ a)T covN ((ga∗−1) ∗ a) +O(N−∞)
= T covN ((Ck(f, g))k≥0 ∗ a) +O(N−∞),

so that the coefficients Bk in the initial claim are recovered as

Bk(f, g) =
∑

j+l+m≤k
ajCk−j−l−m(fa∗−1

l , ga∗−1
m ),

thus Bk itself differentiates at most k times on f and at most k times on g.
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