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INTRODUCTION

Gradual typing is typically viewed as a means to combine the agility of dynamic languages, like Python and Ruby, with the reliability of static languages, like OCaml and Scala [START_REF] Siek | Gradual Typing for Functional Languages[END_REF]. But static and dynamic are merely relative notions, and several researchers have explored a more relativistic view. For example, [START_REF] Disney | Gradual information flow typing[END_REF] and [START_REF] Fennell | Gradual Security Typing with References[END_REF] develop languages where only information-flow security properties are enforced using both dynamic and static checking; Bañados [START_REF] Schwerter | A Theory of Gradual Effect Systems[END_REF][START_REF] Schwerter | Gradual Type-and-Effect Systems[END_REF] develop a language where only computational effect capabilities are gradualized; [START_REF] Lehmann | Gradual Refinement Types[END_REF] gradualize only the logical assertions of refinement types; and Jafery and Dunfield [2017] gradualize only refinements of sum types. In each of these cases, the "fully-dynamic" corner of the gradual language is not dynamic by typical standards, but rather simply typed. Nonetheless, each language supports migration toward a richer typing discipline that subsumes simple typing.

This paper revisits gradual information-flow security typing, with a particular focus on the strong information-flow guarantees that security types have historically implied. We describe a new language, GSL Ref , that introduces a type-driven conception of gradual security. Unlike most prior work, GSL Ref supports the same static, type-based reasoning about information-flow for gradually-typed programs as SSL Ref , its purely static counterpart. To explain this innovation, we review the power of static security types and then show what it means to preserve type-based reasoning power in a gradual language.

Static security typing. Consider a program that processes employee data: 1 let age = 31 let salary = 58000 let intToString : Int → String = ... let print : String → Unit = ... print ( intToString ( salary ))

The program is well-typed, but it has a significant error that simple types do not catch: if salaries are confidential and printing is publicly observable, then this program leaks confidential data.

Information-flow security typing lets a programmer statically classify program entities according to a lattice of security labels [START_REF] Denning | A Lattice Model of Secure Information Flow[END_REF]] and rely on type-checking to prevent information leaks. One exemplar security lattice, which we use as a running example, is the U.S. Dept of Defense classification scheme: Unclassified ≼ Confidential ≼ Secret ≼ Top Secret, which we simplify to ⊥ ≼ L ≼ H ≼ ⊤, denoting minimum, low, high, and maximum security respectively [START_REF] Zdancewic | Programming Languages for Information Security[END_REF]]. To inform static type checking, each type constructor is statically annotated with a security label (e.g. Int L ); source program values are also annotated to unambiguously determine their static security (e.g. 58000 H has type Int H ). Security label ordering induces a natural subtyping relation (e.g. Int L <: Int H and Int H → L String L <: Int L → H String H ), which denotes security-respecting substitutability. An attacker or observer at level ℓ o can discriminate values that have security level at most ℓ o . Armed with security types and subtyping, an information-flow security type system statically ensures that high-confidence data may not flow directly or indirectly to low-confidence channels [START_REF] Volpano | A Sound Type System for Secure Flow Analysis[END_REF].

In the example above, if we annotate the salary as high-security data (of type Int H ), and specify that print takes a low-security argument (of type String L ), then our operational intuition tells us that the program cannot satisfy these directives: it should be rejected. Before the type system can confirm our intuitions, though, we must determine the security levels of every type in the program. In SSL Ref , our static language, this means that every type and value must be annotated. While security label inference and polymorphism [START_REF] Myers | Protecting Privacy using the Decentralized Label Model[END_REF] can reduce this burden, one cannot experiment with some security levels without first determining all security levels. Once all security types are assigned, the static type system forbids passing a high-security value to a function that expects a low-security argument, so the type checker rejects the program. GSL Ref conservatively extends this model to support incremental and localized adoption of security types.

Security types induce free noninterference theorems. The employee data example demonstrates a simple security leak, where high-security data flows directly to a low-security channel. But security types must also contend with sophisticated leaks, where low-security variables may change control-flow through high-security code and mutable state can enable implicit security leaks [START_REF] Denning | A Lattice Model of Secure Information Flow[END_REF]]. To combat this, information-flow security languages enforce a general property called noninterference, which guarantees that high-security inputs do not affect low-security results [START_REF] Goguen | Security Policies and Security Models[END_REF]. Noninterference clearly subsumes our simple security leak, but it also prevents implicit and control-based leaks, where an attacker attempts to use low-security inputs and outputs to learn about high-security data. 1 Adapted from [START_REF] Disney | Gradual information flow typing[END_REF].

In security-typed languages, higher-order security types denote modular guarantees about noninterference [START_REF] Heintze | The SLam Calculus: Programming with Secrecy and Integrity[END_REF]. In particular, they use Reynold's theory of parametricity [START_REF] Reynolds | Types, Abstraction and Parametric Polymorphism[END_REF]] to ensure that a typing judgment dictates how replacing inputs can affect the resulting output [START_REF] Abadi | A Core Calculus of Dependency[END_REF]. For example, consider a hypothetical function:

let mix : Int L → L Int H → L Int L = fun pub priv = > ...
At first sight, it appears to "mix" its arguments pub and priv to produce some result. However, the security annotations on its type guarantee that the integer result cannot leak information about priv, no matter what value is given to pub. The key to this result is how the relevant typing judgment is interpreted. The body of the mix function, t, must satisfy the typing judgment pub : Int L , priv : Int H ⊢ t : Int L . To endow this judgment with meaning, a logical relation-based semantic model is defined directly in terms of the language's dynamic semantics. According to this semantic typing judgment, changing the value of priv has no effect on the final value of t. This guarantee holds even if mix uses mutable state [START_REF] Zdancewic | Programming Languages for Information Security[END_REF]]. The end result is that an attacker with no direct access to a high-security channel cannot manipulate the value of pub to uncover the value of priv, even by modifying mix's implementation.

In a static security language, these noninterference guarantees follow from the type structure of the language. No runtime checks are required, and the security labels applied to values and types are simply static annotations. 2 In essence, static security types induce free theorems about the noninterference behaviors of computations, just as parametric polymorphic types induce free theorems about data abstraction [START_REF] Wadler | Theorems for Free![END_REF]]. Free noninterference theorems provide enormous benefits to programmers. First, they support modular reasoning about noninterference: a programmer who implements a higher-order function with type (Int L → L Int H → L Int L ) → L Bool H knows that the function's body can safely call its argument with high-security data as the second argument: the provided function cannot leak that data. Second, type-based reasoning is compositional: the syntactic typing rules precisely specify how the security properties of subprograms (e.g. a function-typed expression and a potential argument) compose to determine security properties of a larger program (e.g. via function application). Finally, this reasoning is static: one need not reason directly about operational behavior or data flow to understand security. That reasoning was done once-and-for-all in the type-driven noninterference proof. Instead, type structure guides reasoning. These properties are especially useful for partial programs like software libraries. Below we show that GSL Ref preserves these advantages while introducing new flexibility by dynamically enforcing some type guarantees.

Relaxing security typing. Like any static type discipline, security typing has its downsides. As discussed above, security typing cannot be checked until all types are given a security level, through ascription, polymorphism, or inference. One cannot incrementally add security levels and observe the consequences. In addition, verifying noninterference is in general undecidable, so static security checking is necessarily conservative, and as a result programmers must sometimes refactor perfectly safe and clear code simply to appease the type checker.

To address these shortcomings, researchers have explored ways to combine static and dynamic security checking. These approaches can be classified roughly as hybrid or gradual. Hybrid approaches, e.g. [START_REF] Buiras | HLIO: mixing static and dynamic typing for information-flow control in Haskell[END_REF][START_REF] Chandra | Fine-Grained Information Flow Analysis and Enforcement in a Java Virtual Machine[END_REF][START_REF] Shroff | Dynamic Dependency Monitoring to Secure Information Flow[END_REF][START_REF] Zheng | Dynamic Security Labels and Noninterference[END_REF], blend various static analysis and runtime monitoring techniques to make analyses more precise, to incorporate dynamically-defined policies, and to target safe executions rather than just safe programs. Gradual approaches [START_REF] Disney | Gradual information flow typing[END_REF]Fennell andThiemann 2013, 2016], inspired by gradual typing, focus on type systems for static analysis and add the extra goal of enabling seamless incremental evolution from programs with no information-flow control whatsoever to programs with security-type based static enforcement, while fulfilling the goals of hybrid approaches.

To clearly understand the contribution of the present work, it is important to clarify that the prior work in this space, hybrid and gradual alike, take a check-driven approach to analysis: the core of the security model is based on associating a security level to each value in a program and managing security levels using two distinct operations: security upgrades and checks. A security upgrade elevates a value's security label, e.g. (Int H !)5 L -→ 5 H . A security check signals an error if the checked label is not at least as high as the value's tag, e.g. (Int H ?)5 L -→ 5 L , but (Int L ?)5 H -→ error. Upgrades and checks have different dynamic behavior, but with help from static typing, gradual security languages combine them into type-based upcasts and downcasts, e.g. (Int L )t, which checks t if L is lower than t's static security and upgrades t otherwise. This approach easily detects direct flows of high-security values to low-security channels, but preventing implicit flows through control transfer requires extra care, including prophylactic upgrades to program values [START_REF] Chandra | Fine-Grained Information Flow Analysis and Enforcement in a Java Virtual Machine[END_REF] and policies to restrict upgrades [START_REF] Fennell | Gradual Security Typing with References[END_REF]]. As we will see, our development similarly requires careful treatment of assignments.

Check-driven approaches break free theorems. Dynamic security casts give flexibility to programmers, but fundamentally cripple the ability to reason statically using security types. In particular, if security downcasts are added to the language, although noninterference is still preserved, static type judgments no longer imply free theorems about security of programs, as was discussed above. As a result, programmers must reason about the dynamic semantics-dynamic labels, dynamic upgrades, and dynamic checks-to uncover which values do not interfere with one another. In particular, a function's type no longer denotes noninterference properties about its arguments and results. For example, consider the function:

let mix : Int L → L Int H → L Int L = fun pub priv = > if pub < (Int L )priv then 1 L else 2 L
This program is statically accepted by languages that only check for compatibility of base types [START_REF] Disney | Gradual information flow typing[END_REF][START_REF] Fennell | Gradual Security Typing with References[END_REF]. The type of mix, while fully static, does not guarantee that mix never reveals information about its second argument. Rather, the type merely guarantees that the second argument's security level is at most H and the result is at most L. But upper-bounds on security labels do not suffice to make definitive assertions about the noninterference behavior of this function. 3 Indeed, the program mix 1 L 5 L successfully reduces to 1 L . In order to avoid such behavior, the programmer must explicitly upgrade the dynamic security level of the value passed as second argument at each call site. Alternatively, one can upgrade mix to its own type, thereby forcing the second argument to be upgraded before executing the function body (and hence preventing any information leak about that argument). This highlights the fact that types alone do not denote noninterference properties: the two versions of the mix function behave differently although they have the same type.

This phenomenon, that adding dynamic checking to a static system may weaken type-based reasoning principles, is not unique to security typing. Prior work on cast calculi with parametric polymorphism observes that adding runtime type tests to System F preserves type safety-i.e. that programs do not crash-but sacrifices type soundness-i.e. that polymorphic types denote strong data abstraction guarantees via parametricity [Ahmed et al. 2011, § 5.1].

Contribution: type-driven gradual security typing. Modular, compositional, and type-based reasoning are hallmark benefits of type systems. Thus, to facilitate the seamless transition toward static security typing, the typing judgment of a gradual type system should imply the same semantic invariants that its fully-static counterpart does. To that end, this paper presents GSL Ref , a type-driven gradual security language that extends a static security type discipline with gradual security labels and corresponding notions of gradual type precision and consistent subtyping. To secure GSL Ref programs, one just adds static security labels: dynamic checks arise automatically and implicitly, as needed to enforce the noninterference guarantees denoted by static types.

Unlike most prior work, GSL Ref 's static security types denote the same noninterference guarantees as its fully static counterpart language SSL Ref . As such, GSL Ref 's security types enable modular and compositional type-based reasoning about noninterference, just like the fully static SSL Ref , whereas security types in most prior gradual languages do not. GSL Ref 's type system supports reasoning about termination-insensitive noninterference because it is sound with respect to a security logical relation defined directly in terms of type structure. This result is standard for a purely-static security language [START_REF] Heintze | The SLam Calculus: Programming with Secrecy and Integrity[END_REF]], but novel for a gradual security language with imprecise types supported by dynamic checks. In fact the dynamics are guided by the needs of the noninterference proof.

To summarize, this work makes the following contributions:

• We present GSL Ref , a gradual security language that supports seamless transition between simply-typed and security-typed programming. Security typing annotations alone drive the balance between static and dynamic information flow checking. (Sec. 4) • We prove that GSL Ref 's type discipline enforces termination-insensitive noninterference: GSL Ref 's types reflect strong information-flow invariants that hold even in code that contains gradually-typed subexpressions. (Sec. 5) • We prove the static gradual criteria of [START_REF] Siek | Refined Criteria for Gradual Typing[END_REF]. Interestingly, in order to ensure noninterference in presence of references (and hence implicit flows through the heap), GSL Ref sacrifices the dynamic gradual guarantee. • We contribute more generally to the foundations of gradual typing for advanced type disciplines. We find that GSL Ref 's security invariants require separate consideration of syntactic type safety and semantic type soundness, each of which constrains the design of the gradual language. • This work also represents a particularly challenging application of the Abstracting Gradual Typing (AGT) methodology [START_REF] Garcia | Abstracting Gradual Typing[END_REF]. AGT is a framework that uses abstract interpretation [START_REF] Cousot | Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints[END_REF] at the type level to systematically construct graduallytyped languages from pre-existing statically typed ones. We report on our experience with a number of important considerations that complement the original presentation of AGT.

In addition, we highlight the limitation of AGT when applied to semantically-rich type disciplines. (Sec. 6)

Before diving into the development of GSL Ref , Sec. 2 informally introduces the type-driven approach to gradual security typing through examples. Then, Sec. 3 presents SSL Ref , the fully-static security type language from which GSL Ref is derived. Supplementary definitions can be found in the Appendix. Complete definitions, as well as the proofs of all the results stated in the paper, can be found in the companion technical report [START_REF] Toro | Type-Driven Gradual Security with References: Complete Definitions and Proofs[END_REF]]. An interactive executable model of GSL Ref is available online at https://pleiad.cl/gradual-security/.

If the security annotations are as intended, however, then the runtime error must be due to some behavioral bug in the program (e.g. the programmer might have intended to print the employee's age instead).

Reasoning with imprecision. The gradual type checker statically enforces the invariants it can, deferring checks to runtime when the static type information is insufficient. Rather than introducing dynamic casts, as in the check-driven approach, our type-driven approach to gradual security typing builds on foundations laid by prior research on gradual typing. [START_REF] Siek | Gradual Typing for Functional Languages[END_REF] observe similar difficulties as in the check-driven approach when trying to use subtyping to combine dynamic and simple type checking. This inspired gradual typing, which extends static types with an unknown type to form gradual types, relating them to one another using consistency and precision relations [START_REF] Siek | Refined Criteria for Gradual Typing[END_REF]. Since these notions are conceptually orthogonal to subtyping, they blend well with pre-existing subtyping disciplines [START_REF] Siek | Gradual typing for objects[END_REF]. Our type-driven approach adapts these concepts to gradual security and its natural notion of subtyping.

In this model, the unknown label ? represents imprecise security information. Precision ⊑ is a partial order from more-precise labels to less-precise labels: static security labels are perfectly precise, e.g. H ⊑ H, while ? denotes utter imprecision, e.g. H ⊑ ?. Precision extends covariantly to security types, e.g. Int H → Int L ⊑ Int ? → Int ? , in contrast to subtyping.

The ordering on security labels ≼ consequently extends to consistent ordering ≼ on gradual labels. Consistent ordering preserves every order relation among precise labels (e.g. ⊥ ≼ ⊤ and ⊤ ̸ ≼ ⊥), but mathematically, it is not an ordering relation (e.g. both ? ≼ ⊤ and ⊤ ≼ ?). Rather, it reflects consistent reasoning in the face of imprecise information: since we do not know what label ? represents, either static order is plausible. Consistent ordering induces an analogous notion of consistent subtyping, e.g. Int ⊤ ≲ Int ? and Int ? ≲ Int ⊥ , which is not transitive, e.g. Int ⊤ ̸ ≲ Int ⊥ , so it is not a subtyping relation, but embodies imprecise reasoning about static subtyping [START_REF] Siek | Gradual typing for objects[END_REF]]. An attacker or observer at level ℓ o can now also observe values that have unknown security levels, as long as the dynamic security information about the value is observable at ℓ o . This is formally explained in Section 5.

Flexibility. As we have seen, GSL Ref lets programmers write statically secure programs by first writing the simply-typed version and progressively adding labels. But gradual typing also provides flexibility, so that safe programs that veer from the static type discipline can strategically revert to dynamic checking. GSL Ref 's type-driven approach provides this flexibility. Consider an example adapted from [START_REF] Fennell | Gradual Security Typing with References[END_REF]. 4 The second argument now has statically unknown security. This definition is accepted statically because the function might respect the static security invariants of its clients. Consider two such clients, which only differ in the security level of the second argument:

mix 1 L 5 H Client 1 mix 1 L 5 L Client 2
Both type check because the security level of the second argument is consistent with the expected, unknown level. Client 2 returns 1 L without incident, because its second argument is public, so applying mix does not leak private information. Client 1, however, signals a runtime security error: the function's intended result would implicitly leak information from a private input, but the impending leak is trapped and reported. Treating static security levels as precise requirements rather than upper-bounds, and supporting imprecision, provides the same flexibility as the checkdriven approach, as demonstrated in the reporting example above. The key difference is that dynamicity manifests as imprecision in a function's static type, so precise types can preserve their static security interpretation. The interaction between types of different precision is transparently guarded by implicit runtime checks.

If we changed the type signature of mix to Int L → L Int H → L Int ? , making the return type imprecise, then the definition would type check as well. Nonetheless, GSL Ref 's dynamic enforcement ensures that the returned value could never leak to a public channel, be it a variable or a heap location, because the result is dynamically secured.

The type-driven model lets programmers use type ascriptions to impose static security guarantees on code that is built from imprecisely typed components. Gradual typing automatically introduces dynamic checks to soundly enforce these invariants. Consider a function called smix that has a fully static signature but is implemented using the imprecisely-typed mix function: let mix : Int L → L Int ? → L Int L = fun pub priv = > if pub < priv then 1 L else 2 L let smix : Int L → L Int H → L Int L = fun pub priv = > mix pub priv Type-based reasoning about noninterference dictates that smix cannot reveal any information about its second argument (regardless of the actual security label of the second argument). For instance, consider the clients:

smix 1 L 5 H Client 1 smix 1 L 5 L Client 2
In GSL Ref , both clients type check, but both fail at runtime! Client 2 fails because smix's type dictates a strong noninterference property, independent of the client's dynamic security levels. To see why, observe that smix accepts as second argument any integer value that has a security level no higher than H. When 5 L is substituted in the body of smix, its runtime security information is upgraded to H. This new security level in turn strengthens the confidentiality of the value returned by mix, which contradicts the static return type of mix (L), hence resulting in a runtime error. This behavior preserves local type-based reasoning about the behavior of components, regardless of how they are composed.

To summarize, in GSL Ref different gradual security types denote different security guarantees. Most importantly, the flexibility introduced by imprecise security types cannot be abused to violate the type-based noninterference guarantees imposed by static security types.

References and implicit flows. In the presence of mutable references, information-flow security faces the classic problem of implicit flows through the heap [START_REF] Denning | A Lattice Model of Secure Information Flow[END_REF]]. Consider the following program, adapted from [START_REF] Austin | Efficient purely-dynamic information flow analysis[END_REF]: This program attempts to downgrade the security of it's input. A static security type system easily rejects it because the first branch of the first conditional (line 4) assigns a low-security reference under a high-security boolean condition. Indeed, in GSL Ref this program is statically rejected as well. This program is tricky for dynamic information flow monitors, however, and has inspired many approaches, e.g. [START_REF] Austin | Efficient purely-dynamic information flow analysis[END_REF], 2010, 2012;Hedin and Sabelfeld 2012a]. Since gradual security typing includes both static and dynamic security checking, GSL Ref must also address the challenge of dynamically detecting implicit flows. Consider the same program as above but with some imprecise annotations: This gradually-typed variant type checks because the reference bound to y now has an unknown security level. But if x is bound to true H at runtime, then the program fails with an error at the assignment on line 4, because it cannot replace the contents of a reference in a manner that violates the security context H imposed by the conditional expression x. This restriction, and its motivation, is analogous to the "no-sensitive-upgrade" approach of [START_REF] Austin | Efficient purely-dynamic information flow analysis[END_REF]. Now suppose we make y's type have unknown static security but force its initial contents to have high security, i.e.: Then at runtime the assignment on line 4 succeeds because the assignment on line 2 already refined y's dynamic security to H, which satisfies the security context. Now if x is false H then this program fails at the assignment on line 5, because z's security level violates the dynamic security context introduced by branching on the contents of y.

To sum up, GSL Ref ensures termination-insensitive noninterference, gradually, even in the presence of references.

STATIC SECURITY TYPING WITH REFERENCES

This section introduces SSL Ref , a higher-order static security-typed language with references, which serves as the static extreme of our gradual language. The language is a straightforward adaptation of prior information-flow security typing disciplines [START_REF] Fennell | Gradual Security Typing with References[END_REF][START_REF] Heintze | The SLam Calculus: Programming with Secrecy and Integrity[END_REF][START_REF] Zdancewic | Programming Languages for Information Security[END_REF]. The most significant novelties include a syntax-directed type system and a dynamic semantics that tracks security levels but performs no security checks: the type system alone guarantees noninterference.

Syntax. Fig. 1 presents the syntax of SSL Ref , at heart a simply-typed higher-order language with references: it includes booleans, functions, unit, mutable references, and type ascription. Each value and type constructor is annotated with a security label ℓ ∈ Label with partial order ≼, where ⊤ and ⊥ denote the greatest and least labels respectively. Function abstractions, and their corresponding types, are annotated with an additional security label called the latent security effect: we explain its static semantics below. Two forms arise only at runtime (highlighted in gray): mutable locations o and a protection term prot ℓ (t), which restricts the security effects of its subterm t.

o : S ∈ Σ Γ; Σ; ℓ c ⊢ o ℓ : Ref ℓ S (S λ) Γ, x : S 1 ; Σ; ℓ ′ ⊢ t : S 2 Γ; Σ; ℓ c ⊢ (λ ℓ ′ x : S 1 .t) ℓ : S 1 ℓ ′ -→ ℓ S 2 (S prot) Γ; Σ; ℓ c ≺ ℓ ⊢ t : S Γ; Σ; ℓ c ⊢ prot ℓ (t) : S ≺ ℓ (S ⊕) Γ; Σ; ℓ c ⊢ t 1 : Bool ℓ 1 Γ; Σ; ℓ c ⊢ t 2 : Bool ℓ 2 Γ; Σ; ℓ c ⊢ t 1 ⊕ t 2 : Bool (ℓ 1 ≺ ℓ 2 ) (S app) Γ; Σ; ℓ c ⊢ t 1 : S 11 ℓ ′ -→ ℓ S 12 Γ; Σ; ℓ c ⊢ t 2 : S 2 S 2 <: S 11 ℓ c ≺ ℓ ≼ ℓ ′ Γ; Σ; ℓ c ⊢ t 1 t 2 : S 12 ≺ ℓ (S if) Γ; Σ; ℓ c ⊢ t : Bool ℓ Γ; Σ; ℓ c ≺ ℓ ⊢ t i : S i Γ; Σ; ℓ c ⊢ if t then t 1 else t 2 : (S 1 <: S 2 ) ≺ ℓ (S asgn) Γ; Σ; ℓ c ⊢ t 1 : Ref ℓ S 1 Γ; Σ; ℓ c ⊢ t 2 : S 2 S 2 <: S 1 ℓ c ≺ ℓ ≼ label(S
Statics. Fig. 1 also presents the type system of SSL Ref , which is technically a type-and-effect system [START_REF] Gifford | Integrating functional and imperative programming[END_REF]]. The judgment Γ; Σ; ℓ c ⊢ t : S says that the term t has type S under type environment Γ, store type Σ, and security effect ℓ c ∈ Label. A type environment Γ is a finite map from variables to types. A store type Σ is a finite map from locations to types. The security effect, sometimes called the program counter label [START_REF] Denning | A Lattice Model of Secure Information Flow[END_REF]], is a security label that denotes the least security level of those references that a given term may allocate or mutate [START_REF] Heintze | The SLam Calculus: Programming with Secrecy and Integrity[END_REF]]. The security effect prevents high-security computations-e.g. the branch of an if expression that is chosen based on a high-security Boolean-from leaking information by assigning to low-security references. An SSL Ref source program t is well-typed if •; •; ⊥ ⊢ t : S.

• Rule (Sx) and rule (So) type variable and location references as usual. Simple values are also typed as usual, but their types inherit their labels from the values themselves (Sb/Su). • Rule (Sλ) annotates the type of a function with the latent security effect of its body, as is standard for type-and-effect systems. The greatest (i.e. best) security effect can be inferred from the function body, but for simplicity this type system consults an explicit annotation ℓ ′ .

• Rule (Sprot) imposes a lower bound ℓ on the security effect of the subterm t. This restriction is captured by stamping the label ℓ onto the type [START_REF] Heintze | The SLam Calculus: Programming with Secrecy and Integrity[END_REF]]-e.g.

Bool ℓ ≺ ℓ ′ = Bool (ℓ ≺ ℓ ′ )
, where ℓ ≺ ℓ ′ represents the least upper-bound, or join, of security levels ℓ and ℓ ′ . • Rule (S ⊕) types Boolean operations, yielding a result with the join of the operand security levels. • Rule (Sapp) is mostly standard, but also enforces security restrictions. First, to prevent mutation-based security leaks, the operator's latent effect ℓ ′ must upper-bound its security level as well as the latent security effect of the entire expression. Both restrictions are captured with a single label comparison in the premise. Second, to prevent value-based security leaks, the security level of the entire expression must upper-bound the level ℓ of the operator-this is done by stamping label ℓ onto the type. Rule (Sapp) also appeals to the subtyping relation induced by ordering the security labels. Subtyping is driven by security labels: it is invariant on reference types, covariant on security labels, and contravariant on latent effects [START_REF] Pottier | Information Flow Inference for ML[END_REF]:

ℓ ≼ ℓ ′ Bool ℓ <: Bool ℓ ′ ℓ ≼ ℓ ′ Unit ℓ <: Unit ℓ ′ ℓ ≼ ℓ ′ Ref ℓ S <: Ref ℓ ′ S S ′ 1 <: S 1 S 2 <: S ′ 2 ℓ 1 ≼ ℓ ′ 1 ℓ ′ 2 ≼ ℓ 2 S 1 ℓ 2 -→ ℓ 1 S 2 <: S ′ 1 ℓ ′ 2 -→ ℓ ′ 1 S ′ 2
• Rule (Sif) incorporates the standard structure for a subtype discipline: the type of the expression involves the subtyping join <: of its branches. To protect against explicit information flows, the expression type is stamped to incorporate the security level ℓ of the predicate. Additionally, to prevent effect-based leaks, each branch is type checked with a security effect that incorporates the security level of the predicate. 5• Rules (Sref) and (Sasgn), which perform write effects, are constrained by the security effect of the typing judgment to prevent leaks through the store. Rule (Sref) honors the effect discipline by requiring the current security effect to lower-bound the security level of the stored value. The resulting reference has least security ⊥ because it is newly minted and cannot leak information: the type of the stored content is known and its security level prevents further prying. Rule (Sasgn) ensures that the security level of the location and current security effect lowerbound the assigned value. The result of assignment has ⊥ security because unit cannot leak information. Rule (Sderef) stamps the security level of the reference onto the resulting type. • Finally, Rule (S::) is typical for ascription, requiring the ascribed type to be a supertype of the subterm's type.

Dynamics. With fully static security typing, programs execute on a standard runtime with no additional security-enforcing machinery. Type safety-well-typed terms do not get stuckis guaranteed by the underlying run-of-the-mill simple type discipline. However, to establish the soundness of security typing-high-security computations have no effect on low-security observations-one must characterize computations and their resulting values with respect to their security levels. To this end, the SSL Ref dynamic semantics explicitly tracks security labels as programs evaluate, but never checks them. The noninterference proof demonstrates that no such -→t 2 | µ 2 says that a term t 1 and store µ 1 step to t 2 and µ 2 respectively, in security effect ℓ c . Reduction of terms is specified using term frames f :

t | µ ℓ c -→ t | µ Notion of Reduction b 1ℓ 1 ⊕ b 2ℓ 2 | µ ℓ c -→ (b 1 ⊕ b 2 ) (ℓ 1 ≺ ℓ 2 ) | µ (λ ℓ ′ x : S.t) ℓ v | µ ℓ c -→ prot ℓ ([v/x]t) | µ if true ℓ then t 1 else t 2 | µ ℓ c -→ prot ℓ (t 1 ) | µ if false ℓ then t 1 else t 2 | µ ℓ c -→ prot ℓ (t 2 ) | µ prot ℓ (v) | µ ℓ c -→ v ≺ ℓ | µ ref S v | µ ℓ c -→ o ⊥ | µ [o → v ≺ ℓ c ] where o dom(µ ) !o ℓ | µ ℓ c -→ v ≺ ℓ | µ where µ (o) = v o ℓ :=v | µ ℓ c -→ unit ⊥ | µ [o → v ≺ ℓ c ≺ ℓ] v :: S | µ ℓ c -→ v ≺ label(S) | µ t | µ ℓ c -→ t | µ Reduction (R→) t 1 | µ 1 ℓ c -→ t 2 | µ 2 t 1 | µ 1 ℓ c -→ t 2 | µ 2 (Rf ) t 1 | µ 1 ℓ c -→ t 2 | µ 2 f [t 1 ] | µ 1 ℓ c -→ f [t 2 ] | µ 2 (Rprot) t 1 | µ 1 ℓ c ≺ ℓ -→ t 2 | µ 2 prot ℓ (t 1 ) | µ 1 ℓ c -→ prot ℓ (t 2 ) | µ 2
f ::= □ ⊕ t | v ⊕ □ | □ t | v □ | □ :: S | if □ then t else t | !□ | □:=t | v:=□ | ref S □
The core semantics is typical, so we focus on tracking security. The runtime security effect ℓ c , which reflects its static counterpart, affects the security level of reads from and writes to the store, as well as the security level of values returned from high-security contexts to low-security ones.

Protection terms prot ℓ (t) control the current program counter label. Apart from prot, all expressions propagate the current program counter to subterms. Rule (Rprot) upgrades ℓ c for the dynamic extent of t. The resulting value is stamped with the protected label ℓ, in case the contents leak information to a context that lacks the confidentiality of ℓ. Values are stamped much like types:

r ℓ ≺ ℓ ′ = r (ℓ ≺ ℓ ′ )
. Protection terms do not exist in source programs: they are introduced by control operations, i.e. function calls and conditionals. The intuition is that calling a function or destructing a Boolean of security level ℓ may leak information about the identity of the function or Boolean respectively. As such, the context of the resulting computation should communicate (via mutation) only with reference cells that have high-enough security, and the result of the computation is classified as well. 6 Function calls ignore the operator's latent effect ℓ ′ , which promises the type system that the ensuing computation will not violate the stated confidentiality. However the operator's security label determines the confidentiality of the ensuing computation.

When stored, a value inherits confidentiality from both the current security effect and the location itself. This behavior tracks both the confidentiality of the location and the induced security effect.

Properties. SSL Ref is type safe: we establish this result via a standard progress and preservation argument [START_REF] Toro | Type-Driven Gradual Security with References: Complete Definitions and Proofs[END_REF]. Since the runtime semantics includes no security checks, progress mirrors the corresponding argument for the underlying simple type discipline. To prove preservation, we must show that after each reduction step the resulting term still has the same security according to the typing rules of Fig. 1, modulo subtyping.

Proposition 3.1 (Type Safety). If •; Σ; ℓ c ⊢ t : S then either • t is a value v • for any store µ such that Σ ⊢ µ and any ℓ ′ c ≼ ℓ c , we have t | µ ℓ ′ c -→ t ′ | µ ′ and •; Σ ′ ; ℓ c ⊢ t ′ : S ′ for some S ′ <: S, and some Σ ′ ⊇ Σ such that Σ ′ ⊢ µ ′ .
The store typing judgment Σ ⊢ µ holds if and only if dom(µ) = dom(Σ) and

•; Σ; ℓ c ⊢ µ(o) : Σ(o) for all o ∈ dom(µ), ℓ c ∈ Label.
The most important property of a security-typed language like SSL Ref is the soundness of security typing, i.e. that well-typed programs have no forbidden information flows. We formally state and prove noninterference using step-indexed logical relations (see the companion technical report [START_REF] Toro | Type-Driven Gradual Security with References: Complete Definitions and Proofs[END_REF]).We do not include the definitions of the logical relations and noninterference statement here because proving that SSL Ref is secure is not the main focus of this work, and the full treatment of noninterference for the gradual language (Sec. 5) subsumes them.

GSL Ref : TYPE-DRIVEN GRADUAL SECURITY TYPING

This section presents the static and dynamic semantics of GSL Ref , and addresses its type safety and gradual guarantees. We show that GSL Ref enforces noninterference in Sec. 5.

The reader might (understandably!) wonder how some of the definitions presented in this section were conceived. This section largely appeals to intuition to justify these definitions, but in practice they were obtained by following the Abstracting Gradual Typing methodology [START_REF] Garcia | Abstracting Gradual Typing[END_REF], which exploits principles of abstract interpretation [START_REF] Cousot | Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints[END_REF] to systematically derive a gradual language from a static one. In fact, this work can be seen as a particularly challenging case study for AGT-which has led us to identify the limits of the AGT approach when applied to disciplines where type safety (i.e. "well-typed terms do not get stuck") does not imply type soundness (i.e. "well-typed terms do not leak"). The gradual language obtained by a straightforward application of AGT is type safe, but does not ensure noninterference because of subtle interactions between security typing imprecision and heap-based flows. We discuss the key elements, pitfalls, and discoveries of this systematic derivation process in Sec. 6.

To aid the reader, Fig. 3 indicates where important terms, operations and relations are presented, along with their notation.

Static semantics

Fig. 4 presents the syntax and static semantics of GSL Ref . 7 A gradual security label g ∈ GLabel is either a static label ℓ or the unknown label ?, which represents any label whatsoever. Each value and gradual type constructor is now annotated with a gradual security label. F 5 Transitivity (ε on labels)

• ≼ P 21 The typing judgment Γ; Σ; g c ⊢ t : U says that the term t has gradual type U under type environment Γ, store environment Σ, and gradual security effect g c . The typing rules are analogous to the static typing rules presented in Fig. 1 except that security labels, types, type functions and predicates are all replaced by their gradual counterparts. For instance, static label ordering ≼ is replaced with consistent label ordering ≼ :

? ≼ g g ≼ ? ℓ 1 ≼ ℓ 2 ℓ 1 ≼ ℓ 2
Intuitively, if consistent label ordering between two gradual labels holds, then it means that the static relation holds for some static labels represented by the gradual labels. It is always plausible in the presence of ?, since the unknown label represents any label. Similarly, subtyping is lifted to consistent subtyping ≲, whose definition is analogous to static subtyping, but using consistent label ordering:

g ≼ g ′ Bool g ≲ Bool g ′ g ≼ g ′ Unit g ≲ Unit g ′ g ≼ g ′ U 1 ≲ U 2 U 2 ≲ U 1 Ref g U 1 ≲ Ref g ′ U 2 U ′ 1 ≲ U 1 U 2 ≲ U ′ 2 g 1 ≼ g ′ 1 g ′ 2 ≼ g 2 U 1 g 2 -→ g 1 U 2 ≲ U ′ 1 g ′ 2 -→ g ′ 1 U ′ U ::= Bool g | U g -→ g U | Ref g U | Unit g (gradual types) g ::= ℓ | ? (gradual labels) b ::= true | false (Booleans) r ::= b | (λ g x : U .t) | unit | o (base values) v ::= r g | x (values) t ::= v | t t | t ⊕ t | if t then t else t | ref U t |!t | t:=t | prot g (t) | t :: U (terms) ⊕ ::= ∧ | ∨ (operations) (U x) x : U ∈ Γ Γ; Σ; g c ⊢ x : U (U b) Γ; Σ; g c ⊢ b g : Bool g (U u) Γ; Σ; g c ⊢ unit g : Unit g (U o) o : U ∈ Σ Γ; Σ; g c ⊢ o g : Ref g U (U λ) Γ, x : U 1 ; Σ; g ′ ⊢ t : U 2 Γ; Σ; g c ⊢ (λ g ′ x : U 1 .t) g : U 1 g ′ -→ g U 2 (U prot) Γ; Σ; g c ≺ g ⊢ t : U Γ; Σ; g c ⊢ prot g (t) : U ≺ g (U ⊕) Γ; Σ; g c ⊢ t 1 : Bool g 1 Γ; Σ; g c ⊢ t 2 : Bool g 2 Γ; Σ; g c ⊢ t 1 ⊕ t 2 : Bool (g 1 ≺ g 2 ) (U app) Γ; Σ; g c ⊢ t 1 : U 11 g ′ -→ g U 12 Γ; Σ; g c ⊢ t 2 : U 2 U 2 ≲ U 11 ‰ g ≺ g c ≼ g ′ Γ; Σ; g c ⊢ t 1 t 2 : U 12 ≺ g (U if) Γ; Σ; g c ⊢ t : Bool g Γ; Σ; g c ≺ g ⊢ t 1 : U 1 Γ; Σ; g c ≺ g ⊢ t 2 : U 2 Γ; Σ; g c ⊢ if t then t 1 else t 2 : (U 1 <: U 2 ) ≺ g (U asgn) Γ; Σ; g c ⊢ t 1 : Ref g U 1 Γ; Σ; g c ⊢ t 2 : U 2 U 2 ≲ U 1 Â g ≺ g c ≼ label(U 1 ) Γ; Σ; g c ⊢ t 1 :=t 2 : Unit ⊥ (U ref) Γ; Σ; g c ⊢ t : U ′ U ′ ≲ U g c ≼ label(U ) Γ; Σ; g c ⊢ ref U t : Ref ⊥ U (U deref) Γ; Σ; g c ⊢ t : Ref g U Γ; Σ; g c ⊢ !t : U ≺ g (U ::) Γ; Σ; g c ⊢ t : U 1 U 1 ≲ U 2 Γ; Σ; g c ⊢ t :: U 2 : U 2 Fig. 4. GSL Ref : Static Semantics
The label join and meet operators are replaced with consistent join and consistent meet respectively:

⊤ ≺ ? = ? ≺ ⊤ = ⊤ g ≺ ? = ? ≺ g = ? if g ⊤ ℓ 1 ≺ ℓ 2 = ℓ 1 ≺ ℓ 2 ⊥ ≺ ? = ? ≺ ⊥ = ⊥ g ≺ ? = ? ≺ g = ? if g ⊥ ℓ 1 ≺ ℓ 2 = ℓ 1 ≺ ℓ 2
These operators recover precise label information when the unknown label interacts with the relevant boundary element (⊤ for ≺ , and ⊥ for ≺ ), otherwise the result is always unknown. Intuitively, this is because any label ℓ joined (resp. met) with ⊤ (resp. ⊥), yields ⊤ (resp. ⊥), so imprecise arguments do not perturb the results. But when the relevant boundary is not involved, then varying ℓ can vary the results, a possibility that is captured by using the unknown label as result.

The join operators for subtyping and label ordering are replaced with consistent join <: and consistent label join ≺ respectively:

Bool g <: Bool g ′ = Bool (g ≺ g ′ )
Unit g <:

Unit g ′ = Unit (g ≺ g ′ ) Ref g U <: Ref g ′ U ′ = Ref (g ≺ g ′ ) U ⊓ U ′ (U 11 g ′ 1 -→ g 1 U 12 ) <: (U 21 g ′ 2 -→ g 2 U 22 ) = (U 11 <: U 21 ) g ′ 1 ≺ g ′ 2 -→ (g 1 ≺ g 2 ) (U 12 <: U 22 ) U <: U undefined otherwise
The consistent subtyping meet operator is defined dually (definition in Appendix A.4). Consistent subtyping join appeals to a gradual meet operator ⊓ on the referent types. This gradual meet arises because static subtyping is invariant for the contents of references, so static subtype join is only defined for references with equal referent types. The gradual meet operator can be understood as the gradual counterpart of a static type equality partial function equate (i.e. equate(S, S) = S, undefined otherwise) [START_REF] Garcia | Abstracting Gradual Typing[END_REF]. Intuitively, if the ⊓ of two gradual entities is defined, then it means that they are possibly equal. For instance, H ⊓ L is undefined, but H ⊓ ? = H. Formally:

g ⊓ g =g g ⊓ ? = ? ⊓ g =g Bool g ⊓ Bool g ′ =Bool g⊓g ′ Unit g ⊓ Unit g ′ =Unit g⊓g ′ Ref g U ⊓ Ref g ′ U ′ =Ref g⊓g ′ U ⊓ U ′ U 1 g 2 -→ g 1 U 2 ⊓ U ′ 1 g ′ 2 -→ g ′ 1 U ′ 2 =(U 1 ⊓ U ′ 1 ) g 2 ⊓g ′ 2 -→ g 1 ⊓g ′ 1 (U 2 ⊓ U ′ 2 )
Finally, The SSL Ref rules (Sapp) and (Sasgn) from Fig. 1 have compound premises that combine both label join and label ordering, e.g. ℓ c ≺ ℓ ≼ ℓ ′ . One subtlety we discovered while applying the AGT methodology is that these premises lose precision when lifted compositionally: simply replacing join with consistent join and label ordering with consistent label ordering yields different results than when lifted in aggregate; we discuss this further in Sec. 6. Therefore rules (U app) and (U asgn) use the consistent bounding predicate,which is defined algorithmically as: Â

g 1 ≺ g 2 ≼ g 3 ⇐⇒ g 1 ≼ g 3 ∧ g 2 ≼ g 3 .
Technically, we could have used this definition to split each premise, but treating the predicate atomically matters when we consider the dynamic semantics.

Dynamic semantics

To present the dynamic semantics of GSL Ref , we first define a reduction relation for an internal language GSL ε Ref that directly mirrors GSL Ref , except that all terms are augmented with some evidence information that justifies why the term is well-typed according to the gradual type system. During reduction steps, units of evidence are combined to form new evidence that supports type preservation between a term and its contractum. If the combination succeeds, reduction goes on; if the combination fails, a runtime error is raised. We first explain what evidence is, then how GSL Ref programs are elaborated with evidence information into GSL ε Ref , and finally how evidence is combined, yielding the GSL ε Ref reduction rules.

Evidence for consistent judgments. Evidence captures why a consistent judgment holds. To explain this concept, we begin with consistent judgments about security labels, then consider the more complex consistent judgments about types.

We use the metavariable ε to range over evidence, and write ε ⊢ g 1 ≼ g 2 to say that evidence ε supports the plausibility that g 1 ≼ g 2 holds.

For instance, consider the consistent ordering judgment ? ≼ L. Even though the unknown label generally denotes any security label, consistent ordering insists that this ? can only denote labels that are bounded from above by L. Furthermore, this consistent ordering judgment yields no additional information about the right-hand side, which is already precise. We capture this learned information by representing evidence as a pair of static label intervals, noted ⟨ı 1 , ı 2 ⟩, where

ı = [ℓ, ℓ ′ ]. If ⟨ı 1 , ı 2 ⟩ ⊢ g 1 ≼ g 2
then ı 1 and ı 2 represent inferred range restrictions for g 1 and g 2 respectively. Therefore,

⟨[⊥, L], [L, L]⟩ ⊢ ? ≼ L
By analogous reasoning, the consistent judgment H ≼ ? is initially justified by the evidence ⟨[H, H], [H, ⊤]⟩, gaining precision about the right-hand side. Interval precision is defined as containment over intervals, i.e.

[ℓ 1 , ℓ 2 ] ⊑ [ℓ ′ 1 , ℓ ′ 2 ] if and only if ℓ ′ 1 ≼ ℓ 1 and ℓ 2 ≼ ℓ ′ 2 . Precision between interval pairs ⟨ı 1 , ı 2 ⟩ ⊑ ⟨ı ′ 1 , ı ′ 2
⟩ is defined pointwise. We represent evidence as pairs of intervals, rather than pairs of labels, essentially because pairs of labels are not precise enough to support gradual security. The formal rationale is involved, so we defer it to Sec. 6. For some intuition, though, consider the program true ? :: Bool H :: Bool ? :: Bool L . Evaluating it ultimately involves combining evidence for three consecutive judgments:8 ε 1 ⊢ ? ≼ H, ε 2 ⊢ H ≼ ?, and ε 3 ⊢ ? ≼ L. The program should fail at runtime because an H security value should not be coerceable to L, so these three evidences should not compose. Unfortunately, pairs of labels are not precise enough to ensure this: they forget the intermediate step through H. In contrast, pairs of label intervals retain enough precision to warrant the expected runtime failure.

To justify consistent judgments about types like consistent subtyping, we lift label evidence to type evidence ε by naturally lifting intervals to types: type constructors are now marked with label intervals instead of labels. For instance:

⟨Bool [⊥,L] , Bool [L,L] ⟩ ⊢ Bool ? ≲ Bool L
The syntax of evidence is as follows:

E ∈ GEType, ı ∈ Interval, ε ∈ Evidence ı ::= ⟨ℓ, ℓ⟩ (intervals) E ::= Bool ı | E ı -→ ı E | Ref ı E | Unit ı (type evidences) ε ::= ⟨E, E⟩ | ⟨ı, ı⟩ (evidences) 
Note that we use the same metavariable ε to represent both label evidence and type evidence, since which kind of evidence is meant is always clear from the context.

Terms with evidence. Each well-typed term of GSL Ref is recursively elaborated into a GSL ε

Ref

term by decorating it with evidence for the consistent judgments used to establish its well-typedness.

The syntax of GSL ε Ref terms follows:

t ::= v | εt @ ε εt | εt ⊕ εt | if εt then εt else εt | ref U ε εt | !εt | εt := ε εt | prot ε g εg(εt) | εt (terms) r ::= b | (λ g x : U .t) | unit | o (base values) u ::= r g | x (raw values) v ::= u | εu (values)
During reduction, the actual type of a subterm may evolve to a consistent subtype of the staticallydetermined type. For this reason, each term is augmented with evidence for their immediate subredexes (i.e. all subterms that have to be reduced to a value for computation to proceed), justifying why the subterms are consistent subtypes of the types demanded statically by the outer term constructor. For instance, in the term ε 1 t 1 ⊕ ε 2 t 2 , ε 1 justifies t 1 being a consistent subtype of Bool g 1 , the type deduced during type checking. In particular, t 1 could be such a consistent subtype because it is a value that was ascribed type Bool g 1 using an explicit ascription. In fact, GSL Ref ascriptions are represented simply as evidence-augmented terms εt in GSL ε

Ref : the evidence ε holds all the computationally-relevant information about consistent subtyping. For instance, the GSL Ref term (10 L ::

Int ? ) :: Int H is translated to ε 2 (ε 1 10 L ), where ε 1 ⊢ Int L ≲ Int ? and ε 2 ⊢ Int ? ≲ Int H .
Note that in addition, some terms carry extra evidences that are needed during reduction to justify type preservation. A conditional if ε 1 t 1 then ε 2 t 2 else ε 3 t 3 carries evidences ε 2 and ε 3 that justify that the type of each branch t 2 and t 3 is a consistent subtype of the type of the conditional expression. For instance, if U 2 and U 3 are the types of t 2 and t 3 respectively, then

ε 2 ⊢ Â U 2 <: U 2 <: U 3 ,
where  U 1 <: U 2 <: U 3 is the consistent lifting of the ternary static judgment T 1 <: T 2 <: T 3 . Similarly, a protection term prot ε 1 g 1 ε 2 g 2 (ε 3 t) carries a security effect g 2 (and its evidence ε 2 ), which represents the security effect of the subterm t; specifically, g 2 is the join of g 1 and the current security effect.

Values are either raw values u or evidence-augmented raw values εu. The latter correspond to ascribed values v :: U in GSL Ref : the evidence ε confirms that the u's type is a consistent subtype of the ascribed type U .

Several terms-applications, references, assignment, and protection-have evidence in addition to that of their subterms. This extra evidence supports the consistent label ordering judgments of their corresponding typing rule, which relate to the current latent effect label. For instance, in the term ref U ε ′ εt, the evidence ε ′ supports the consistent label ordering judgment g c ≼ label(U ). For uniformity, we overload the metavariable ε to denote both label and type evidence, since the difference is always clear from the context. Evidence attached to subterms is type evidence, and evidence attached to the security effect or to an expression symbol (@, ref, := , or prot) is label evidence.

Introducing evidence. Fig. 5 presents rules for elaborating GSL Ref source terms to evidenceaugmented GSL ε

Ref terms. This elaboration is akin to a cast insertion translation [START_REF] Siek | Gradual Typing for Functional Languages[END_REF], but simpler because it inserts evidence uniformly [START_REF] Garcia | Abstracting Gradual Typing[END_REF]. Basically, each consistent label and type judgment in Fig. 4 is replaced by an evidence-computing partial function called an initial evidence operator (I). An initial evidence operator computes the most precise evidence that can be deduced from a given judgment. For instance, given a consistent label ordering judgment g 1 ≼ g 2 , the initial evidence for it is computed as follows:

I g 1 ≼ g 2 = intr(bounds(g 1 ), bounds(g 2 )) Γ; Σ; g c ⊢ t t ′ : U (T x) Γ(x) = U Γ; Σ; g c ⊢ x x : U (T b) Γ; Σ; g c ⊢ b g b g : Bool g (T u) Γ; Σ; g c ⊢ unit g unit g : Unit g (T λ) Γ; Σ; g ′ ⊢ t t ′ : U 2 Γ; Σ; g c ⊢ (λ g ′ x : U 1 .t) g (λ g ′ x : U 1 .t ′ ) g : U 1 g ′ -→ g U 2 (T ⊕) Γ; Σ; g c ⊢ t 1 t ′ 1 : Bool g 1 Γ; Σ; g c ⊢ t 2 t ′ 2 : Bool g 2 ε 1 = I ⟳ Bool g 1 ε 2 = I ⟳ Bool g 2 Γ; Σ; g c ⊢ t 1 ⊕ t 2 ε 1 t ′ 1 ⊕ ε 2 t ′ 2 : Bool g 1 ≺ g 2 (T app) Γ; Σ; g c ⊢ t 1 t ′ 1 : U 11 g ′ -→ g U 12 Γ; Σ; g c ⊢ t 2 t ′ 2 : U 2 ε 1 = I ⟳ U 11 g ′ -→ g U 12 ε 2 = I U 2 ≲ U 11 ε 3 = I ‰ g c ≺ g ≼ g ′ Γ; Σ; g c ⊢ t 1 t 2 ε 1 t ′ 1 @ ε 3 ε 2 t ′ 2 : U 12 ≺ g (T if) Γ; Σ; g c ⊢ t 1 t ′ 1 : Bool g g ′ c = g c ≺ g Γ; Σ; g ′ c ⊢ t 2 t ′ 2 : U 2 Γ; Σ; g ′ c ⊢ t 3 t ′ 3 : U 3 ε 1 = I ⟳ Bool g ε 2 = I Â U 2 <: U 2 <: U 3 ε 3 = I Â U 3 <: U 2 <: U 3 Γ; Σ; g c ⊢ if t 1 then t 2 else t 3 if ε 1 t 1 then ε 2 t 2 else ε 3 t 3 : (U 2 <: U 3 ) ≺ g (T assgn) Γ; Σ; g c ⊢ t 1 t ′ 1 : Ref g U 1 Γ; Σ; g c ⊢ t 2 t ′ 2 : U 2 ε 1 = I ⟳ Ref g U 1 ε 2 = I U 2 ≲ U 1 ε 3 = I Â g c ≺ g ≼ label(U 1 ) Γ; Σ; g c ⊢ t 1 :=t 2 ε 1 t ′ 1 := ε 3 ε 2 t ′ 2 : Unit ⊥ (T ref) Γ; Σ; g c ⊢ t t ′ : U ′ ε 1 = I U ′ ≲ U ε 2 = I g c ≼ label(U ) Γ; Σ; g c ⊢ ref U t ref U ε 2 ε 1 t ′ : Ref ⊥ U (T deref) Γ; Σ; g c ⊢ t t ′ : Ref g U ε = I ⟳ Ref g U Γ; Σ; g c ⊢ !t !εt ′ : U ≺ g (T ::) Γ; Σ; g c ⊢ t t ′ : U 1 ε = I U 1 ≲ U 2 Γ; Σ; g c ⊢ t :: U 2 εt ′ : U 2
where I ⟳ g = I g ≼ g and

I ⟳ U = I U ≲ U Fig. 5. GSL Ref : elaboration to GSL ε Ref terms
The bounds function produces the label interval that corresponds to a given gradual label, i.e. bounds(?) = [⊥, ⊤] and bounds(ℓ) = [ℓ, ℓ]. The interior operator intr computes the smallest subintervals of its arguments that include all plausible orderings.9 Given two intervals ı 1 and ı 2 , intr(ı 1 , ı 2 ) yields the greatest pair of sub-intervals ⟨ı ′ 1 , ı ′ 2 ⟩ ⊑ ⟨ı 1 , ı 2 ⟩ such that each label ℓ 1 in the interval ı ′ 1 is less than some label ℓ 1 in ı ′ 2 , and each label in ı ′ 2 is greater than some label in ı ′ 1 . Formally:

intr

([ℓ 11 , ℓ 12 ], [ℓ 21 , ℓ 22 ]) = ⟨[ℓ 11 , ℓ 12 ≺ ℓ 22 ], [ℓ 11 ≺ ℓ 21 , ℓ 22 ]⟩
This operation only changes the upper-bound of the lower interval and the lower-bound of the upper interval. The resulting intervals are well-defined because we only use this operator in I after consistent label ordering is already known to hold. Similarly, the initial evidence of a consistent judgment  g 1 ≺ g 2 ≼ g 3 is computed as

I Â g 1 ≺ g 2 ≼ g 3 = intr(bounds(g 1 ) ≺ bounds(g 2 ), bounds(g 3 ))
This definition uses join of intervals, defined as

[ℓ 1 , ℓ 2 ] ≺ [ℓ ′ 1 , ℓ ′ 2 ] = [ℓ 1 ≺ ℓ ′ 1 , ℓ 2 ≺ ℓ ′ 2 ].
For instance, the initial evidence for consistent judgment ' ? ≺ H ≼ ? is:

I ' ? ≺ H ≼ ? =intr(bounds(?) ≺ bounds(H), bounds(?)) =intr([H, ⊤], [⊥, ⊤]) =⟨[H, ⊤], [H, ⊤]⟩
A generalized definition of I, considering any consistent bounding judgment can be found in Fig. 28. The definition of I extends naturally to compute the initial evidence for consistent subtyping judgments (the complete definition can be found in Fig. 29). For instance, in the (Tif) rule, I Â U 2 <: U 2 <: U 3 computes the initial evidence for the consistent lifting of the fact that the type of the first branch is a subtype of the type of the entire conditional expression.

Rule (T ::) recursively translates the subterm t, and the consistent subtyping judgment U 1 <: U 2 from (S ::) is replaced with I U 1 ≲ U 2 , which computes evidence ε for consistent subtyping. This evidence is eventually placed next to the translated term t ′ . The ascription itself is erased because it does not affect the results of the computation.

Rule (T app) works similarly. Since t 1 is not constrained by a consistent subtyping judgment, the rule generates evidence for reflexive consistent subtyping: that the type is a consistent subtype of itself, I ⟳ U 11 g ′ -→ g U 12 . This seemingly vacuous evidence evolves nontrivially as a program reduces. Evidence for the judgment ‰ g c ≺ g ≼ g ′ is computed as I ‰ g c ≺ g ≼ g ′ , and placed next to the @ symbol, since it does not logically belong to any subterm.

The rest of the translation rules are analogous: each term is translated recursively, judgments are replaced by functions that determine the corresponding initial evidence, and the evidence for reflexive consistent subtyping I ⟳ <: is associated to otherwise unconstrained types. 

Bool ? ε 1 = I ⟳ Ref ? Bool H = ⟨Ref [⊥,⊤] Bool [H,H] , Ref [⊥,⊤] Bool [H,H] ⟩ ε 2 = I Bool ? ≲ Bool H = ⟨Bool [⊥,H] , Bool [H,H] ⟩ ε 3 = I ' L ≺ ? ≼ H = ⟨[L, H], [H, H]⟩ Γ; .; L ⊢ x:=true ? ε 1 x := ε 3 ε 2 true ? : Unit ⊥
Evolving evidence. During reduction, evidence for consistent judgments must be combined to justify each reduction step. This combination is realized by two operators: consistent transitivity for label ordering and consistent join monotonicity.

The consistent transitivity operator • ≼ attempts to combine evidence for g 1 ≼ g 2 and g 2 ≼ g 3 to produce evidence for g 1 ≼ g 3 . Since ≼ is not in general transitive, • ≼ is partial, giving rise to runtime errors. For instance, both H ≼ ? and ? ≼ L hold, but can they be combined to deduce that H ≼ L? Of course not, otherwise high-confidence data could flow to low-confidence positions. To understand this failure of consistent transitivity, consider the initial evidence for these judgments, ⟨[H, H], [H, ⊤]⟩ and ⟨[⊥, L], [L, L]⟩. They cannot be combined because "they do not meet in the middle", i.e. the middle intervals [H, ⊤] and [⊥, L] share no labels in common, which would justify transitivity. This intuition is formalized as follows:

⟨ı 1 , ı 21 ⟩ • ≼ ⟨ı 22 , ı 3 ⟩ = △ ≼ (ı 1 , ı 21 ⊓ ı 22 , ı 3 ) where [ℓ 1 , ℓ 2 ] ⊓ [ℓ ′ 1 , ℓ ′ 2 ] = [ℓ 1 ≺ ℓ ′ 1 , ℓ 2 ≺ ℓ ′ 2 ] if ℓ 1 ≺ ℓ ′ 1 ≼ ℓ 2 ≺ ℓ ′ 2 and △ ≼ ([ℓ 1 , ℓ 2 ], [ℓ ′ 1 , ℓ ′ 2 ], [ℓ ′′ 1 , ℓ ′′ 2 ]) = ⟨[ℓ 1 , ℓ 2 ≺ ℓ ′ 2 ≺ ℓ ′′ 2 ], [ℓ 1 ≺ ℓ ′ 1 ≺ ℓ ′′ 1 , ℓ ′′ 2 ]⟩ if ℓ 1 ≼ ℓ ′ 2 , ℓ ′ 1 ≼ ℓ ′′ 2 , ℓ 1 ≼ ℓ ′′ 2
The meet operator ⊓ denotes the intersection of two intervals. Given three intervals ı 1 , ı 2 , ı 3 , the △ ≼ operator calculates, if possible, a pair of intervals ⟨ı ′ 1 , ı ′ 3 ⟩ ⊑ ⟨ı 1 , ı 3 ⟩ such that transitivity of label ordering through elements of ı 2 is always plausible. Both operators are undefined if their side conditions do not hold.

The consistent join monotonicity operator ≺ reflects another facet of reasoning about consistent ordering relationships. Recall from Fig. 2 that during reduction, labels are sometimes joined, either for stamping values or for augmenting the security effect. Similarly, in GSL ε

Ref evidence must be combined to support new consistent judgments that involve these joined labels. Consistent join monotonicity combines evidence for g 1 ≼ g 2 and g 3 ≼ g 4 to produce evidence for Â

g 1 ≺ g 3 ≼ g 2 ≺ g 4 , the consistent lifting of the static judgment ℓ 1 ≺ ℓ 3 ≼ ℓ 2 ≺ ℓ 4 . ⟨ı 1 , ı 2 ⟩ ≺ ⟨ı ′ 1 , ı ′ 2 ⟩ = ⟨ı 1 ≺ ı ′ 1 , ı 2 ≺ ı ′ 2 ⟩
In contrast to consistent transitivity, this operator is total.

Lifting these label operators to types is direct, albeit verbose, and can be found in Appendix A.6. These type operators inherit properties from the label operators, e.g. consistent transitivity of subtyping • <: is partial just like consistent transitivity of label ordering.

Reduction rules. Fig. 6 presents reduction semantics for GSL ε

Ref . Reduction operates on configurations C, which consist of a term and a store, and a security effect. Specifically,

t 1 | µ 1 ε g c -→ t 2 | µ 2
denotes the reduction of term t 1 in store µ 1 to term t 2 in store µ 2 under security effect g c ; the label evidence ε confirms that the runtime security effect is a sublabel of the label that was used statically to type check the original term (and is preserved by reduction).

The semantics is defined using two notions of reduction, -→ and -→ <: . The rules directly mirror the rules of SSL Ref (Fig. 2), except that they also manage evidence at subexpression borders and combine evidence as needed to justify the preserved typing of the contractum. If evidence fails to combine, the program ends with an error.

A word about notation: to select evidences for sub-components of types, we use evidence inversion functions [START_REF] Garcia | Abstracting Gradual Typing[END_REF]. For instance, given a function type evidence ε, idom(ε) (resp. icod(ε)) retrieves the type evidence of the domain (resp. co-domain). Similarly, ilat retrieves latent effect evidence from the evidence for a function type, and iref performs likewise for reference types. Finally, given type evidence ε, ilbl(ε) yields the corresponding label evidence.

We now describe each reduction rule in turn.

• Rule (r 1) reduces a binary operation by joining the evidence of both operands to confirm that type preservation holds. • Rule (r 2) reduces a protected value by stamping the security effect of the prot on the value and joining both evidences accordingly. We stamp g 1 on the value to prevent it from leaking

ε g c -→ : C × (C ∪ { error }) (r 1) ε 1 (b 1 ) g 1 ⊕ ε 2 (b 2 ) g 2 | µ ε g c -→ (ε 1 ≺ ε 2 )(b 1 ⊕ b 2 ) (g 1 ≺ g 2 ) | µ (r 2) prot ε 1 g 1 ε 2 g 2 (ε 3 u) | µ ε g c -→ (ε 3 ≺ ε 1 )(u ≺ g 1 ) | µ (r 3) ε 1 (λ g ′ x : U .t) g @ ε 3 ε 2 u | µ ε g c -→ ® prot ilbl(ε 1 )g ε ′ 1 g ′ 1 (icod(ε 1 )([ε ′ 2 u/x]t)) | µ error if ε ′ 1 or ε ′ 2 are not defined where: ε ′ 1 = (ε ≺ ilbl(ε 1 )) • ≼ ε 3 • ≼ ilat(ε 1 ) ε ′ 2 = ε 2 • <: idom(ε 1 ) g ′ 1 = (g c ≺ g) (r 4) if ε 1 b g 1 then t 2 else t 3 | µ ε g c -→ ® prot ilbl(ε 1 )g 1 ε ′ g ′ (ε 2 t 2 ) | µ if b = true prot ilbl(ε 1 )g 1 ε ′ g ′ (ε 3 t 3 ) | µ if b = false
where:

ε ′ = ε ≺ ilbl(ε 1 ) g ′ = g c ≺ g 1 (r 5) ref U ε 2 ε 1 u | µ ε g c -→ o ⊥ | µ [o → ε ′ (u ≺ g c )] error if (ε • ≼ ε 2 ) is not defined where: o dom(µ ) ε ′ = ε 1 ≺ (ε • ≼ ε 2 ) (r 6) !ε 1 o g | µ ε g c -→ prot ilbl(ε 1 )g ε ′ g ′ (iref (ε 1 )v)
where:

µ (o) = v ε ′ = ε ≺ ilbl(ε 1 ) g ′ = g c ≺ g (r 7) ε 1 o g := ε 3 ε 2 u | µ ε g c -→ unit ⊥ | µ [o → ε ′ (u ≺ (g c ≺ g))]
error if ε ′ is not defined, or ε ⌊≤⌋ ilbl(ε ′′ )does not hold where: information to the current context when g 1 is more confidential than the current security effect g c . Note that g 2 -which represents the join between g 1 and the current security effect g c -is not used in this rule; it is used during reduction of the protected subterm. • Rule (r 3) reduces a function application either to a protected body or to an error. The term reduces to an error if consistent transitivity fails to justify that the type of the actual argument is a consistent subtype of the formal argument type. This prevents an evident invalid information flow from the actual argument to the formal argument. Also, to prevent implicit flows via the store, an error is signaled if consistent transitivity fails to confirm that the latent effect of the function is greater than both the current security effect and that of the function. If the function application is valid, then the body is protected at the security level of the function. Label g ′ 1 represents the security effect that is used to reduce the body, where ε ′ 1 confirms that g ′ 1 is no more confidential than the latent effect g ′ . • Similarly, rule (r 4) reduces a conditional expression by protecting the chosen branch. The resulting prot term is constructed using the dynamic information of the conditional. • Rule (r 5) reduces a reference term to a fresh location. To prevent invalid implicit flows, the current security effect is stamped on the stored value. The term reduces to an error if consistent transitivity fails to confirm that the current security effect is lower than the statically-determined security level of the reference content U . • Rule (r 6) reduces a dereference term. In the dynamic semantics of SSL Ref , dereferencing a store location causes the actual security of the location to be stamped on the resulting value.

µ (o) = ε ′′ u ′ ε ′ = (ε 2 • <: iref (ε 1 )) ≺ ((ε ≺ ilbl(ε 1 )) • ≼ ε 3 • ≼ ilbl(iref (ε 1 ))) ε 1 (ε 2 u) -→ <: ® (ε 2 • <: ε 1 )u error if not defined -→ <: : EvTerm × (EvTerm ∪ { error })
Here, the term reduces instead to a protected expression, which is equivalent but simplifies the proofs. • Rule (r 7) is critical to ensuring noninterference. It can reduce to an error, and thereby preventing either implicit or explicit invalid flows, for three reasons: (1) the security level of the stored value should be no more confidential than the staticallydetermined security level of the reference content (explicit flow).

(2) both the current security effect and the actual security level of the reference should be no more confidential than the static security level of the reference content (implicit flow).

(3) the evidence of the current security effect must denote possible labels that are necessarily lower than those denoted by the evidence of the stored value (implicit flow). The third condition above, highlighted in gray in Fig. 6, is expressed with the lower-bound comparison operator ⌊≤⌋ between evidences:

⟨[ℓ 1 , ℓ 2 ], [ℓ 3 , ℓ 4 ]⟩ ⌊≤⌋ ⟨[ℓ ′ 1 , ℓ ′ 2 ], [ℓ ′ 3 , ℓ ′ 4 ]⟩ ⇐⇒ ℓ 3 ≼ ℓ ′ 3
This check is necessary to ensure noninterference, and as explained in Sec. 6.3, it arises not from the type preservation argument, but from the noninterference argument. In Sec. 4.3 we illustrate each of these three scenarios. The -→ <: reduction rule uses consistent transitivity to combine, if possible, strings of evidence that accumulate on a raw value. It fails with a runtime error if the evidence cannot be combined. Sec. 4.3 presents an example of such a reduction.

Finally, contextual term reduction is specified using term frames f and evidence frames h:

f ::= h[ε[]] h ::= □ ⊕ εt | εu ⊕ □ | □ @ ε εt | εu @ ε □ | ε □ | if □ then εt else εt | !□ | □ := ε εt | εu := ε □ | ref U ε □
The reduction rules for frames are presented in Fig. 7. Rule (Rf ) reduces under term frames. Rule (R-→) reduces a term to either a term or error, using -→ from Fig. 6. Similarly Rules (Rh) and (Rproth) reduce the subterm using the evidence-combining reduction -→ <: . Rule (Rprot) allows the protected subterm to step under a higher security level, which may be a sublabel of the one determined statically. Finally, rules (Rf err) and (Rproterr) propagate errors when the subterm reduces to an error, and rules (Rherr) and (Rprotherr) propagate errors when evidence fails to combine.

(R-→) t | µ ε g c -→ r r ∈ C ∪ { error } t | µ ε g c -→ r (Rf ) t | µ ε g c -→ t ′ | µ ′ f [t] | µ ε g c -→ f [t ′ ] | µ ′ (Rprot) t | µ ε ′ g ′ c -→ t ′ | µ ′ prot ε 1 g 1 ε ′ g ′ c (εt) | µ ε g c -→ prot ε 1 g 1 ε ′ g ′ c (εt ′ ) | µ ′ (Rh) εv -→ <: ε ′ u h[εv] | µ ε g c -→ h[ε ′ u] | µ (Rproth) εv -→ <: ε ′ u prot ε 1 g 1 ε ′ g ′ c (εv) | µ ε g c -→ prot ε 1 g 1 ε ′ g ′ c (ε ′ u) | µ (Rf err) t | µ ε g c -→ error f [t] | µ ε g c -→ error (Rherr) εv -→ <: error h[εv] | µ ε g c -→ error (Rproterr) t | µ ε ′ g ′ c -→ error prot ε 1 g 1 ε ′ g ′ c (εt) | µ ε g c -→ error (Rprotherr) εv -→ <: error prot ε 1 g 1 ε ′ g ′ c (εv) | µ ε g c -→ error

Examples of Reduction

To illustrate the runtime semantics of GSL Ref we first illustrate the three scenarios for which an assignment can fail, as per Rule (r 7).

(1) Consider the following program, which attempts to assign a high-confidentiality value into a low-confidentiality reference, and its translation (under security effect ⊥): [ℓ, ℓ] as ℓ, ⟨ı, ı⟩ as ⟨ı⟩, and _ for irrelevant evidence, we have: The conditional reduces to the first branch under a security effect H.

⊥ ⊢ ref Int L 20 L :=(10 H :: Int ? ) t : Unit ⊥ Abbreviating [⊥, ⊤] as ?,
t _⊥ -→ * ε 1 o ⊥ := _ ε 2 10 H where ε 1 = ⟨Ref ⊥ Int L ⟩ ⊢ Ref ⊥ Int L ≲ Ref ⊥ Int L , ε 2 = ⟨Int H , Int [H,⊤] ⟩ ⊢ Int H ≲ Int ? . Then as (ε 2 • <: iref (ε 1 )) = ⟨Int H , Int [H,⊤] ⟩ • <: ⟨Int L ⟩ is
t _⊥ -→ * prot _H ε 1 H(_(ε 2 o ⊥ := ε 3 _10 L ))
where

ε 1 = ⟨H, [H, ⊤]⟩ ⊢ Â ⊥ ≺ H ≼ ⊥ ≺ ? and ε 2 = ⟨Ref ⊥ Int L ⟩ ⊢ Ref ⊥ Int L ≲ Ref ⊥ Int L . Also,
because the static security effect of the assignment is ?, we have

ε 3 = ⟨[⊥, L], L⟩ ⊢ ' ? ≺ ⊥ ≼ L.
Then as Suppose as well that µ(o) = ε 2 0 ? , where ilbl(ε 2 ) = ⟨[⊥, ⊤], [⊥, ⊤]⟩ ⊢ ? ≼ ? (i.e. the stored number and heap cell have not acquired any security commitments yet). If x is true H , then the first branch is taken:

((ε 1 ≺ ilbl(ε 2 )) • ≼ ε 3 • ≼ ilbl(iref (ε 2 ))) = ⟨H, [H, ⊤]⟩ • ≼ ⟨[⊥, L], L⟩ • ≼ ⟨L⟩
t _⊥ -→ * prot _H ε 1 H(_(_o ⊥ := _ _10 H ))
where

ε 1 = ⟨H, [H, ⊤]⟩ ⊢ Â ⊥ ≺ H ≼ ⊥ ≺ ?. Since ε 1 ⌊≤⌋ ilbl(ε 2 )
is not defined, because H / ≼ ⊥, the program reduces to an error. The problem is that if x were changed to false H , then the unchanged imprecisely labeled contents of o could be treated as low-security and thereby used to leak information about x, using for instance a test of !o that conditionally assigns to some other low-security reference (for more see the example of Sec. 2, and Sec. 6.3). 

⟨?⟩(⟨L⟩pub < ⟨?⟩priv) then ⟨L⟩1 L else ⟨L⟩2 L )) L ) L smix = ⟨L → [H, ⊤] → L, L → H → L⟩mix ⟨H → L⟩(⟨L → H → L⟩smix @ ⟨[L,⊤]⟩ ⟨L⟩1 L ) @ ⟨[L,⊤]⟩ ⟨L, H⟩5 L
A trace of the program is given in Fig. 8. As before, we abbreviate [⊥, ⊤] as ?, [ℓ, ℓ] as ℓ, and ⟨ı, ı⟩ as ⟨ı⟩. We omit the security effect of the reduction, which is always ⟨⊥⟩⊥, as well as the heap, since the program is pure. The program fails as expected because low-security evidence is attached to the conditional term by a static ascription, which fails to combine with the high-security evidence of the value produced by the conditional. In other words, reduction fails to prove that H ≼ L.

GSL Ref : Safety and Graduality

GSL Ref satisfies a standard type safety property, whose proofs are in the companion technical report [START_REF] Toro | Type-Driven Gradual Security with References: Complete Definitions and Proofs[END_REF]]. More precisely, type safety is formulated for the evidence-augmented language GSL ε Ref , and hence appeals to a corresponding typing judgment. As expected, this typing judgment, denoted Γ; Σ; εg c ⊢ t : U , is based on the GSL Ref typing judgment. 11 The only difference is that the security effect g c is enriched with evidence ε. This evidence accounts for how the runtime security effect can evolve to (consistently) lower levels than the security effect originally determined by the type system. 10 For brevity, we only show the labels of base types, and omit latent effect annotations on pure functions. 11 The full definition of the GSL ε

Ref type system can be found in Appendix A.4; the (straightforward) theorem that elaboration preserves typing is in the companion technical report [START_REF] Toro | Type-Driven Gradual Security with References: Complete Definitions and Proofs[END_REF] . Second, the two typing judgments are smoothly connected in that each well-typed GSL Ref program (thus each SSL Ref one) preserves well-typing as its security information is made less precise, a property known as the static gradual guarantee [START_REF] Siek | Refined Criteria for Gradual Typing[END_REF]. Precision orders the static information content of gradual type or labels from most to least. Type and label precision are defined as follows: Definition 4.3 (Type and label precision).

⟨H → L⟩( ⟨L → H → L⟩⟨L → [H, ⊤] → L, L → H → L⟩mix @ ⟨[L,⊤]⟩ ⟨L⟩1 L ) @ ⟨[L,⊤]⟩ ⟨L, H⟩5 L -→⟨H → L⟩( ⟨L → [H, ⊤] → L, L → H → L⟩mix @ ⟨[L,⊤]⟩ ⟨L⟩1 L ) @ ⟨[L,⊤]⟩ ⟨L, H⟩5 L -→⟨H → L⟩( prot ⟨L⟩L ϕ ′ (⟨[H, ⊤] → L, H → L⟩u) ) @ ⟨[L,⊤]⟩ ⟨L, H⟩5 L where u = (λpriv : ?.⟨[⊥, L], L⟩(if ⟨?⟩(⟨L⟩⟨L⟩1 L < ⟨?⟩priv) then ⟨L⟩1 L else ⟨L⟩2 L )) L and ϕ ′ = ⟨L, ⊤⟩L -→ ⟨H → L⟩(⟨[H, ⊤] → L, H → L⟩u) @ ⟨[L,⊤]⟩ ⟨L, H⟩5 L -→ ⟨[H, ⊤] → L, H → L⟩u @ ⟨[L,⊤]⟩ ⟨L, H⟩5 L -→prot ⟨L⟩L ϕ ′ (⟨L⟩⟨[⊥, L], L⟩(if ⟨?⟩( ⟨L⟩⟨L⟩1 L < ⟨?⟩⟨L, [H, ⊤]⟩5 L ) then ⟨L⟩1 L else ⟨L⟩2 L )) -→prot ⟨L⟩L ϕ ′ (⟨L⟩⟨[⊥, L], L⟩(if ⟨?⟩(⟨L⟩1 L < ⟨?⟩⟨L, [H, ⊤]⟩5 L ) then ⟨L⟩1 L else ⟨L⟩2 L )) -→prot ⟨L⟩L ϕ ′ (⟨L⟩⟨[⊥, L], L⟩(if ⟨?⟩( ⟨L⟩1 L < ⟨L, [H, ⊤]⟩5 L ) then ⟨L⟩1 L else ⟨L⟩2 L )) -→prot ⟨L⟩L ϕ ′ (⟨L⟩⟨[⊥, L], L⟩(if ⟨?⟩(⟨L, [H, ⊤]⟩true L ) then ⟨L⟩1 L else ⟨L⟩2 L )) -→prot ⟨L⟩L ϕ ′ (⟨L⟩⟨[⊥, L], L⟩( if (⟨L, [H, ⊤]⟩true L ) then ⟨L⟩1 L else ⟨L⟩2 L )) -→prot ⟨L⟩L ϕ ′ (⟨L⟩⟨[⊥, L], L⟩ prot ⟨L,[H,⊤]⟩L ϕ ′ (⟨L⟩1 L ) ) -→prot ⟨L⟩L ϕ ′ (⟨L⟩ ⟨[⊥, L], L⟩⟨L, [H, ⊤]⟩1 L ) -→error ⟨L, [H, ⊤]⟩ • ≼ ⟨[⊥, L], L⟩ is undefined
• t is a value v • t | µ ε g c -→ error • t | µ ε g c -→ t ′ | µ ′ and •; Σ ′ ; εg c ⊢ t ′ : U for some Σ ′ ⊇ Σ such that Σ ′ ⊢ µ ′ Additionally,
g ⊑ ? g ⊑ g g 1 ⊑ g 2 Bool g 1 ⊑ Bool g 2 g 1 ⊑ g 2 Unit g 1 ⊑ Unit g 2 U 11 ⊑ U 21 U 12 ⊑ U 22 g 11 ⊑ g 21 g 12 ⊑ g 22 U 11 g 12 -→ g 11 U 12 ⊑ U 21 g 22 -→ g 21 U 22 g 1 ⊑ g 2 U 1 ⊑ U 2 Ref g 1 U 1 ⊑ Ref g 2 U 2
Type and label precision are naturally lifted to term precision. Proposition 4.4 (Static gradual guarantee). Suppose g c1 ⊑ g c2 and

t 1 ⊑ t 2 . If •; •; g c1 ⊢ t 1 : U 1 then •; •; g c2 ⊢ t 2 : U 2 where U 1 ⊑ U 2 .
This guarantee is best understood in reverse: if a simply-typed program (where all security labels are ?) has a security-typed counterpart (where all security labels are precise), then GSL Ref statically accepts every intermediate security typing of that program: type checking is continuous with respect to security precision, so security information can be added in any order and at any rate [START_REF] Siek | Refined Criteria for Gradual Typing[END_REF]. [START_REF] Siek | Refined Criteria for Gradual Typing[END_REF] also present a dynamic gradual guarantee, which relates the execution behavior of programs that only differ in their precision. Specifically, if a program takes a step, then the same program with less precise (or fewer) type annotations also takes a step, i.e. reducing precision does not introduce new runtime errors. The formal statement of the guarantee can be found in the companion technical report [START_REF] Toro | Type-Driven Gradual Security with References: Complete Definitions and Proofs[END_REF]. Unfortunately, we have uncovered a tension between the dynamic gradual guarantee and noninterference. To ensure noninterference, the dynamic semantics of GSL Ref includes a specific runtime check (highlighted in gray in Fig. 6) which breaks the dynamic gradual guarantee. Dually, without this check, GSL Ref satisfies the dynamic gradual guarantee, but does not enforce noninterference for all programs. We discuss this subtlety in more detail in Sec. 6.3.

Nevertheless, an interesting conservative extension result holds for the dynamic semantics. Specifically, static GSL Ref terms never produce errors at runtime. 

= I ℓ c ≼ ℓ ′ c . If •; Σ; εℓ c ⊢ t : U , then either t is a value, or t | µ s ε ℓ c -→ t ′ s | µ ′ s , with t ′ ∈ StaticTerm and µ ′ ∈ StaticStore.

Prototype Implementation

We have implemented GSL Ref in an interactive prototype available online at: https://pleiad.cl/gradual-security/. The implementation, realized in Scala, supports all of GSL Ref plus let-bindings. Given a source program, it either shows the result of the elaboration to GSL ε Ref , or reports a static type error. If the source program is well-typed, the evidence-augmented term can be explored interactively, either collapsing or expanding premises of its well-typedness, including evidences. The user can then reduce the term step by step, similarly to PLT Redex's trace facility. At each step, the full typing derivation of the term can again be explored. The reduction shows how evidences are combined by consistent subtyping transitivity, eventually ending up in a value or a runtime security error.

All examples presented in this paper are available as pre-loaded source examples.

GSL Ref : NONINTERFERENCE

This section establishes the type soundness of GSL Ref , i.e. that gradual security types ensure noninterference. Noninterference formalizes the intuition that low-security observers of a computation cannot detect changes in high-security inputs. Therefore noninterference inherently reflects a relationship between different runs of the same program with different inputs. We establish noninterference for GSL Ref using logical relations [START_REF] Heintze | The SLam Calculus: Programming with Secrecy and Integrity[END_REF][START_REF] Zdancewic | Programming Languages for Information Security[END_REF]. More precisely, because general references introduce nontermination, we apply step-indexed relations [START_REF] Ahmed | Semantics of Types for Mutable State[END_REF]]. As standard, we focus on termination-insensitive noninterference: interference between two executions is only acknowledged when both terminate in values that are observably different. In line with prior work on gradual security [START_REF] Disney | Gradual information flow typing[END_REF][START_REF] Fennell | Gradual Security Typing with References[END_REF], we consider runtime check errors to be akin to non-termination, because in principle the semantics could deal with errors by diverging and directly reporting the error through a secure channel.

Observing values. The security type of a value dictates both an observation protocol and the clearance required to observe it. Consider a value ⊢ v : U 1 → g U 2 , and an observer with security level ℓ o : Can ℓ o observe the value? If so, what observations can it make? First, ℓ o cannot make any observations if its security level does not subsume that of the function (g / ≼ ℓ o ). If clearance is granted (g ≼ ℓ o ), then ℓ o may make observations in accordance with the structure of v's type: it may construct another value v ′ : U 1 and apply it to the function; the observations that ℓ o can make of the result are then dictated by the type U 2 ≺ g. The predicate obsVal ℓ o , defined formally below, intuitively captures what it means for a value v of type U to be observable at ℓ o : ℓ o must be consistently greater than the security label of U . To account for the gradual security setting, we need to extend this intuitive notion in two ways. First, observation must deal with the potential for values to carry type ascriptions, such as v = true H :: Bool ? . An observer at security level L must not observe the underlying high-security value. The key intuition is that the observation should ultimately be equivalent to applying the source language context if □ :: Bool L then true L else false L to the value, thereby asserting credentials and then using them. Doing so would trigger a runtime check error, which amounts to a non-observation. In GSL ε

Ref , v would be represented as an evidence value εtrue H , where ε confirms that Bool H ≲ Bool ? . We capture the observability of the underlying value by defining the notion of observable evidence at a given observation level. Then, an evidence value v = εu is observable if its label evidence (ilbl(ε)) is observable.

Definition 5.1 (Observable evidence). Suppose observation level ℓ o and an evidence judgment ε ⊢ g ≼ g ′ for some g and g ′ . For the evidence ε to be observable at ℓ o , it must be possible to confirm g ≼ ℓ o using consistent transitivity of label ordering through g ′ . Formally:

obsEv g ′ ℓ o (ε) ⇐⇒ ε • ≼ I g ′ ≼ ℓ o is defined
Second, observation must account for dynamic security effect clearance: observation leaks a value from its context, so the observer must have the proper credentials. Recall that execution happens under a dynamic security effect g that, at runtime, can be consistently lower than the security effect originally determined by the type system. Therefore the dynamic security effect is accompanied by evidence ε that confirms that g ≼ g ′ , where g ′ is the static security effect. Observation is allowed if such evidence is observable, i.e. g ≼ ℓ o .

Adding these two refinements of observability to the original notion of observable value yields the following definition. Definition 5.2 (Observable value). Given an observation level ℓ o , we define that a value v, typed as U , is observable as:

obsVal U ℓ o (v) ⇐⇒ g ≼ ℓ o ∧ Ä (v = ε 1 u) =⇒ obsEv g ℓ o (ilbl(ε 1 )) ä where g = label(U )
Security logical relations. We define logical relations between both computations and values in Figs. 9 and 10. The notions of related values and related computations are mutually recursive, as explained below. Note that the logical relations are only defined for pairs of GSL ε

Ref terms that have the same type U , so simple type safety ensures that the behaviors dictated by U will produce defined behavior (including runtime error). To make the relations well-defined in the presence of nontermination, we index them on the number of steps k that the observer ℓ o may take. If no inequivalent observations are made after k steps, the terms are deemed equivalent. Ultimately we require that ℓ o observes equivalence for any arbitrary number of steps, which implies that nonterminating computations also respect the noninterference guarantees. This is the essence of step-indexing [START_REF] Ahmed | Semantics of Types for Mutable State[END_REF]].

The definition of related values is presented in Fig. 9. We use notation ĝi to denote the evidenceaugmented security context ε i g i . The notation Σ;

g c ⊢ ⟨ ĝ1 , v 1 , µ 1 ⟩ ≈ k ℓ o ⟨ ĝ2 , v 2 , µ 2 ⟩ : U
indicates that the triple of security context ĝ1 , value v 1 and store µ 1 , is related to the triple of dynamic security context ĝ2 , value v 2 and store µ 2 at type U for k steps under store typing Σ and static security context g c when observed at the security level ℓ o . For two such triples to be related, four conditions must be satisfied:

(1) The security effects must be related under security effect g c , meaning they denote execution contexts that are either both above ℓ o (high-security), or both below (low-security). Formally, two security effects are related if their underlying evidences are either both observable or both not observable:

g c ⊢ε 1 g 1 ≈ ℓ o ε 2 g 2 ⇐⇒ (obsEv g c ℓ o (ε 1 ) ∧ obsEv g c ℓ o (ε 2 )) ∨ (¬obsEv g c ℓ o (ε 1 ) ∧ ¬obsEv g c ℓ o (ε 2 ))
where

ε i ⊢ g i ≼ g c .
(2) The stores must be related for k steps under store typing Σ, notation Σ ⊢µ 1 ≈ k ℓ o µ 2 . This means that, for locations that are common to both stores,12 the stored values are related at j < k steps. Formally:

Σ ⊢µ 1 ≈ k ℓ o µ 2 ⇐⇒ ∀g c , ĝi , ε i ⊢ g i ≼ g c , g c ⊢ ĝ1 ≈ ℓ o ĝ2 , j < k, Σ ⊢ µ i , ∀o ∈ dom(µ 1 ) ∩ dom(µ 2 ), Σ; g c ⊢ ⟨ ĝ1 , µ 1 (o), µ 1 ⟩ ≈ j ℓ o ⟨ ĝ2 , µ 2 (o), µ 2 ⟩ : Σ(U )
In particular, stored values must be related at all related security effects ĝ1 , ĝ2 . This generality is necessary because all reference operations involve stamping the current security effect (and its evidence) onto the stored value, and doing so must preserve relatedness. For instance, two runs of a program can update a store location with different values under a high-security effect because both will be stamped high-security, and thus indistinguishable by a low-security observer ℓ o .

(3) The values must both have the same type U under an empty type environment and valid store type. ( 4) The values must be either both observable or both not observable. If the values are not observable, they are deemed equivalent. If they are observable, then they must be related at their specific type, as specified by the auxiliary relation obsRel The definition of related computations is presented in Fig. 10. First, two triples of security effect, term, and store are related computations for k steps at type U if the security effects and the stores are related, as defined previously. Second, the terms must have type U under any observationally higher security effect ĝ′ . 13 We say ĝ′ = ε ′ g ′ is observationally higher than

Σ;g c U k ,ℓ o , defined by case analysis on U . If U is either Bool g , Unit g or Ref g U ′ , two values are related simply if their raw values Σ; g c ⊢ ⟨ ĝ1 , v 1 , µ 1 ⟩ ≈ k ℓ o ⟨ ĝ2 , v 2 , µ 2 ⟩ : U ⇐⇒ g c ⊢ ĝ1 ≈ ℓ o ĝ2 ∧ Σ ⊢ µ 1 ≈ k ℓ o µ 2 ∧ •; Σ; ĝi ⊢ v i : U ∧ (obsVal U ℓ o (v i ) ∨ ¬obsVal U ℓ o (v i )) ∧ (obsVal U ℓ o (v i ) ∧ obsEv g ′ i ℓ o (ε i )) =⇒ obsRel Σ,g c ,U k ,ℓ o ( ĝ1 , v 1 , µ 1 , ĝ2 , v 2 , µ 2 ) obsRel Σ,g c ,U k ,ℓ o ( ĝ1 , v 1 , µ 1 , ĝ2 , v 2 , µ 2 ) ⇐⇒ rval(v 1 ) = rval(v 2 ) if U ∈ {Bool g , Unit g , Ref g U ′ } obsRel Σ,g c ,U 1 g 32 -→ g 31 U 2 k ,ℓ o ( ĝ1 , v 1 , µ 1 , ĝ2 , v 2 , µ 2 ) ⇐⇒ ∀j ≤ k, ∀U ′ = U ′ 1 g ′ 32 -→ g ′ 31 U ′ 2 , ∀U ′′ 1 , ∀g ′ c , ∀ ĝ′ i = ε ′ i g ′ i , where ε ′ i ⊢ g ′ i ≼ g ′ c , s.t. ĝi ≤ ℓ o ĝ′ i , ε 11 ⊢ U 1 g 32 -→ g 31 U 2 ≲ U ′ , ε 12 ⊢ U ′′ 1 ≲ U ′ 1 , and ε 3i ⊢ Â g ′ c ≺ g ′ 31 ≼ g ′ 32 , we have: ∀v ′ i , µ ′ i , Σ ′ ,Σ ⊆ Σ ′ ,Σ ′ ; g c ⊢ ⟨ ĝ1 , v ′ 1 , µ ′ 1 ⟩ ≈ j ℓ o ⟨ ĝ2 , v ′ 2 , µ ′ 2 ⟩ : U ′′ 1 , dom(µ i ) ⊆ dom(µ ′ i ), Σ ′ ; g c ⊢ ⟨ ĝ1 , (ε 11 v 1 @ ε 31 ε 12 v ′ 1 ), µ ′ 1 ⟩ ≈ j ℓ o ⟨ ĝ2 , (ε 11 v 2 @ ε 32 ε 12 v ′ 2 ), µ ′ 2 ⟩ : C(U ′ 2 ≺ g ′ 31 ) Fig. 9. Related values Σ; g c ⊢ ⟨ ĝ1 , t 1 , µ 1 ⟩ ≈ k ℓ o ⟨ ĝ2 , t 2 , µ 2 ⟩ : C(U ) ⇐⇒ g c ⊢ ĝ1 ≈ ℓ o ĝ2 ∧ Σ ⊢µ 1 ≈ k ℓ o µ 2 ∧ ∀ ĝ′ i , s.t. ĝi ≤ ℓ o ĝ′ i and 
•; Σ; ĝ′ i ⊢ t i : U , ∀j < k, t i | µ i ĝ′ i -→ j t ′ i | µ ′ i =⇒ ∃Σ ′ , Σ ⊆ Σ ′ Σ ′ ⊢µ ′ 1 ≈ k -j ℓ o µ ′ 2 ∧ ((irred(t ′ 1 ) ∧ irred(t ′ 2 )) =⇒ Σ ′ ; g c ⊢ ⟨ ĝ1 , t ′ 1 , µ ′ 1 ⟩ ≈ k -j ℓ o ⟨ ĝ2 , t ′ 2 , µ ′ 2 ⟩ : U )
ĝ = εg, notation ĝ ≤ ℓ o ĝ′ if ¬obsEv g c ℓ o (ε) ⇒ ¬obsEv g ′ c ℓ o (ε ′ ), where ε ⊢ g ≼ g c and ε ′ ⊢ g ′ ≼ g ′ c .
For instance, in the static language it is the case that for any ℓ,

H ≤ ℓ o H ≺ ℓ, because by monotonicity of the join H / ≼ ℓ o ⇒ H ≺ ℓ / ≼ ℓ o .
Additionally, for any j < k, if both terms can be reduced for at least j steps under security effect ĝ′ i , then the resulting stores should be related for the remaining kj steps. Finally, if the resulting terms are irreducible, they must be related values for the remaining kj steps at type U , as defined previously. The logical relation relates computations that do not terminate as long as the stores are also related after k steps.

Noninterference. Armed with these logical relations, we can state a semantics-driven notion of noninterference, and prove that well-typed terms of the internal language are sound with respect to it. The judgment Γ; Σ; ĝ |= t : U says that term t is semantically well-typed, meaning that it respects the security protocol U for all observers, substitutions, stores, and steps [START_REF] Ahmed | Semantics of Types for Mutable State[END_REF]].

Definition 5.3 (Semantic Security Typing).

Γ; Σ;

ĝ |= t : U ⇐⇒ ∀ ℓ o ∈ Label, k ≥ 0, ρ 1 , ρ 2 ∈ Subst and µ 1 , µ 2 ∈ Store, ∀g c , ĝ = εg, ε ⊢ g ≼ g c , such that Σ ⊢ µ i and Γ; Σ; g c ⊢ ⟨ ĝ, ρ 1 , µ 1 ⟩ ≈ k ℓ o ⟨ ĝ, ρ 2 , µ 2 ⟩ , we haveΣ; g c ⊢ ⟨ ĝ, ρ 1 (t), µ 1 ⟩ ≈ k ℓ o ⟨ ĝ, ρ 2 (t), µ 2 ⟩ : C(U )
The definition above appeals to a notion of related substitutions. Indeed, the term t may have free variables, indicating "input parameters". The term is semantically well-typed if applying related substitutions (and stores) yields related computations at type U , for any number of steps k, and for any observer ℓ o . Two substitutions are related if they map each variable in the term to related closed values:

Definition 5.4 (Related substitutions). Tuples ⟨ ĝ1 , ρ 1 , µ 1 ⟩ and ⟨ ĝ2 , ρ 2 , µ 2 ⟩ are related on k steps under Γ, Σ and g c , notation Γ; Σ; g c ⊢ ⟨ ĝ1 , ρ 1 , µ 1 ⟩ ≈ k ℓ o ⟨ ĝ2 , ρ 2 , µ 2 ⟩, if ρ i |= Γ, Σ ⊢µ 1 ≈ k ℓ o µ 2 and ∀x ∈ dom(Γ).Σ; g c ⊢ ⟨ ĝ1 , ρ 1 (x), µ 1 ⟩ ≈ k ℓ o ⟨ ĝ2 , ρ 2 (x), µ 2 ⟩ : Γ(x)
Note that because a low-security observer equates all high-security values, the actual substitutions and stores can be wildly different, up to the strictures that the logical relation imposes on their types.

Finally, Security Type Soundness says that the syntactic type system enforces noninterference.

Proposition 5.5 (Security Type Soundness). Γ; Σ;

ĝ ⊢ t : U =⇒ Γ; Σ; ĝ |= t : U 6 DERIVING GSL Ref WITH AGT (ALMOST)
So far the presentation of GSL Ref has focused on describing the language as it is and its properties, without explaining how it came to be designed that way. Several definitions in both the static and dynamic semantics may seem to come out of nowhere, and hard to accept without further justification. This work originated in part from our desire to apply the Abstracting Gradual Typing (AGT) methodology [START_REF] Garcia | Abstracting Gradual Typing[END_REF]] in a challenging setting. Indeed, AGT has been shown to be effective in different contexts: records and subtyping [START_REF] Garcia | Abstracting Gradual Typing[END_REF], static semantics of gradual effects [START_REF] Schwerter | A Theory of Gradual Effect Systems[END_REF], 2016], gradual unions [START_REF] Toro | A Gradual Interpretation of Union Types[END_REF], as well as refinement types [START_REF] Lehmann | Gradual Refinement Types[END_REF] and set-theoretic types [START_REF] Castagna | Gradual Typing with Union and Intersection Types[END_REF]. But AGT has never been applied to a type discipline that denotes a relational property over multiple executions.

Therefore, we have systematically derived GSL Ref from SSL Ref using AGT. This methodology, which starts from considering gradual types as abstractions of static types, drove the entire design of GSL Ref . The abstract interpretation framework of AGT provides definitions-semantically-defined notions-which may be hard to implement directly. From these definitions, we devise equivalent algorithmic characterizations-easily implementable, but hard to convincingly justify informally. AGT also explains how to derive the dynamic semantics of a gradual language based on the type safety argument of the static language. In Sec. 4 we try to convey guiding intuitions, but in this section we show how the definitions are not driven by intuition, but rather formally justified by AGT. Each algorithmic characterization from Sec. 4 is equivalent to its semantic definition, obtained using AGT and presented hereafter. These equivalences are proven in the companion technical report [START_REF] Toro | Type-Driven Gradual Security with References: Complete Definitions and Proofs[END_REF].

Before diving into the subtleties of applying AGT to security typing, we quickly describe the main elements of the AGT approach as spelled out by [START_REF] Garcia | Abstracting Gradual Typing[END_REF]: its inputs, steps, and outputs.

AGT in a nutshell. The AGT methodology proposes to derive the static and dynamic semantics of a gradual language in the following manner:

(1) Deriving the statics.

(a) Start from a language with a fully-static typing discipline, including the particulars of its type safety proof. (b) Define the syntax of gradual types, and give them meaning via a concretization function, which maps gradual types to sets of static types; then define the corresponding most precise abstraction function, forming a Galois connection. (c) Lift type predicates and functions used in the type system of the static language through the Galois connection to obtain the gradual type system. (2) Deriving the dynamics.

(a) Define the structure of evidence for consistent judgments, which represents justification for why such a judgment holds; this representation depends on a Galois connection-usually the same as the one used for deriving the static semantics. (b) Reduce gradual programs by reducing gradual typing derivations decorated with evidence, mirroring reasoning steps of the static language's type safety proof, hence exploiting the correspondence between proof normalization and term reduction [START_REF] Howard | The formulae-as-types notion of construction[END_REF]].

Therefore, the "inputs" to AGT are only the static language, and the Galois connection(s) that give meaning to gradual types and evidences. As "output", one obtains the static and dynamic semantics of the gradual language, together with the guarantee that it is type safe, is a conservative extension of the static discipline, and satisfies the gradual guarantees.

Note that, as alluded to above, in order to achieve an implementation one must also provide algorithmic characterizations of the operators obtained through the abstract interpretation framework. Often these algorithms can be calculated by induction on types, but sometimes it requires trial-and-error. In any case, the AI-based definition provides the baseline against which to formally validate such characterizations.

Applying AGT to security typing. As mentioned above, applying AGT ensures by construction that the derived gradual language is type safe and satisfies the gradual guarantees. In prior work, we applied AGT to a pure language with security typing, and found the resulting language to satisfy noninterference [START_REF] Garcia | Deriving a Simple Gradual Security Language[END_REF]. However, in this work, where the languages support mutable references, applying AGT to SSL Ref yielded a gradual language that violates noninterference! By applying AGT, we surely obtained a gradual language that was type safe and satisfied the gradual guarantees, but unfortunately, the crucial semantic property of security types was broken. In brief, we had to apply two refinements. The first was proposed in the AGT methodology, though not needed in prior work. The second is novel, but conflicts with the dynamic gradual guarantee.

This section reports on these wrinkles and refinements so that future efforts to apply AGT to rich type disciplines can build on our experience. In particular:

• Sec. 6.1 sets up the basics to derive the static semantics of GSL Ref with AGT, which was a successful endeavor. In the process, we identified one subtlety (about compositional lifting) that is worth highlighting. • Sec. 6.2 explains the AGT approach to deriving the dynamic semantics of the gradual language.

Here, we discover that evidence must use a more precise abstraction than the one used in the static semantics. While this possibility is briefly mentioned in [START_REF] Garcia | Abstracting Gradual Typing[END_REF], it was not necessary in other applications of AGT.

• Sec. 6.3 discusses a crucial point related to enforcing noninterference in the presence of references, and hence potential implicit flows. This observation led us to add an extra check to GSL Ref 's dynamic semantics. The check ensures noninterference, but breaks the dynamic gradual guarantee.

Deriving the Statics

Following the AGT approach, we give meaning to gradual security labels directly in terms of the original static security labels. The driving intuition is that the unknown label ? represents any label whatsoever, while a gradual label ℓ represents a single static security label. We formalize this with a concretization function.

Definition 6.1 (Label Concretization). γ : GLabel → P(Label) γ (ℓ) = { ℓ } γ (?) = Label
Concretization immediately induces the notion of precision, which orders the static information content of gradual labels from most to least:

Definition 6.2 (Label Precision). g 1 ⊑ g 2 if and only if γ (g 1 ) ⊆ γ (g 2 ).
In order to exploit AGT to gradualize SSL Ref , we also require an abstraction function to precisely summarize a set of static labels as a single gradual label (round hats Û

x denote sets of x):

Definition 6.3 (Label Abstraction). α : P(Label)⇀GLabel: α({ ℓ }) = ℓ α(∅) is undefined α( Û ℓ) = ? otherwise
The γ and α functions are tightly connected by two properties that together form a Galois connection [START_REF] Cousot | Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints[END_REF]. Proposition 6.4 (α is Sound and Optimal).

If Û ℓ ∅ then, (i) Û ℓ ⊆ γ (α( Û ℓ)). (ii) If Û ℓ ⊆ γ (g) then α( Û ℓ) ⊑ g.
Soundness (i) means that α always produces a gradual label whose concretization over-approximates the original set. Optimality (ii) means that α always yields the best (i.e. least) sound approximation that gradual labels can represent. The meaning of gradual security types is derived from the meaning of gradual security labels. Therefore, we naturally define a Galois connection for gradual security types (see Appendix A.4.1).

Lifting predicates and functions. Following AGT, we exploit the Galois connections to lift all predicates and functions over labels and types from SSL Ref to obtain the definition of their counterparts in GSL Ref . In essence, each gradual entity (label, type) represents some set of static entities, so a consistent predicate holds among gradual entities so long as the underlying static predicate could plausibly hold. For instance, consistent ordering on gradual labels is defined as follows:

Definition 6.5 (Consistent label ordering). g 1 ≼ g 2 ⇐⇒ ℓ 1 ≼ ℓ 2 for some (ℓ 1 , ℓ 2 ) ∈ γ (g 1 ) × γ (g 2 ).
Consistent ordering conservatively extends static label ordering because each static label, when treated as a gradual label, concretizes to a singleton set that contains only itself; conservative extension is central to the concept of graduality [START_REF] Siek | Refined Criteria for Gradual Typing[END_REF]]. On the other hand, consistent ordering holds universally for the unknown label ?, since it concretizes to all possible static labels.

Similarly, the join of two gradual labels is defined by lifting static label join:

Definition 6.6 (Gradual label join). g 1 ≺ g 2 = α({ ℓ 1 ≺ ℓ 2 | (ℓ 1 , ℓ 2 ) ∈ γ (g 1 ) × γ (g 2 ) })
The gradual join of two gradual labels is the best abstraction of the set of all plausible static joins. For more insight, recall its equational characterization in Sec. 4: the unknown label disappears when joined with ⊤, while it otherwise survives all joins. This is an emergent property of lifting: we did not anticipate it.

Compositional vs. aggregate lifting. One unanticipated subtlety observed in Sec. 4 involves the compound premises of the (Sapp) and (Sref) rules, such as ℓ c ≺ ℓ ≼ ℓ ′ . One might be tempted to lift this premise compositionally as g c ≺ g ≼ g ′ . But [START_REF] Garcia | Abstracting Gradual Typing[END_REF] explicitly warn against blindly lifting static predicates compositionally: compositional lifting must be proven (for instance, they show that lifting their subtyping premises compositionally yields the same result as lifting them aggregately). Here it matters! Consider the definition induced by AGT:

Definition 6.7 (Consistent bounding). Â g 1 ≺ g 2 ≼ g 3 ⇐⇒ ℓ 1 ≺ ℓ 2 ≼ ℓ 3 for some (ℓ 1 , ℓ 2 , ℓ 3 ) ∈ γ (g 1 ) × γ (g 2 ) × γ (g 3 )
This definition is not equivalent to compositional lifting. For instance, the relation H ≺ ? ≼ L holds, but we know that no static label ℓ satisfies H ≺ ℓ ≼ L (because H ≺ ℓ must be at least as high as H).14 In fact, precise lifting becomes critical when we reason about combining such lattice relations in the dynamic semantics. To the best of our knowledge, this is the first instance of aggregate lifting affecting the application of AGT. et al. [2016] derive the dynamic semantics of a gradual language by reduction of gradual typing derivations (augmented with evidence), thereby exploiting the correspondence between proof normalization and term reduction [START_REF] Howard | The formulae-as-types notion of construction[END_REF]]. This approach, which directly exploits the proof of syntactic type safety for the static language (SSL Ref in our case), provides the direct runtime semantics of gradual programs, instead of the usual approach by translation to some internal cast calculus [START_REF] Siek | Gradual Typing for Functional Languages[END_REF].

Deriving the Dynamics

Garcia

Since writing down reduction rules over (two-dimensional) derivation trees is unwieldy, [START_REF] Garcia | Abstracting Gradual Typing[END_REF] use intrinsically-typed terms [START_REF] Church | A Formulation of the Simple Theory of Types[END_REF]] as a convenient flat notation for derivation trees. Intrinsic terms are heavy notationally because they carry all type annotations, yielding to reduction rules that are hard to read. To alleviate this burden, we have chosen to present the dynamic semantics by reducing evidence-augmented terms, which are more lightweight notationally, and establish a more direct connection with the traditional translational approach. The counterpart of this choice is that we had to present a translation from source GSL Ref terms to evidence-augmented GSL ε

Ref terms. Apart from this cosmetic difference, the central approach to reduction is the same: evidence is combined during reduction, producing either new evidence to support the plausibility of the contractum, or a runtime error if no evidence remains, thereby refuting type safety.

In essence, GSL ε

Ref terms are intrinsic terms from which computationally irrelevant static annotations have been erased. Proofs of theorems about GSL Ref 's dynamic semantics need these annotations, so they use intrinsic terms. The companion technical report formalizes the relationship between intrinsic terms and evidence-augmented terms by giving a translation from intrinsic terms to evidence-augmented terms [START_REF] Toro | Type-Driven Gradual Security with References: Complete Definitions and Proofs[END_REF]]. We show that, intrinsic terms can always be erased to GSL ε

Ref terms, and that the process can be reversed for well-typed GSL 

D = o : S ∈ Σ •; Σ; ℓ c ⊢ o ℓ : Ref ℓ S D 1 •; Σ; ℓ c ⊢ v : S 2 S 2 <: S ℓ c ≺ ℓ ≼ label(S) •; Σ; ℓ c ⊢ o ℓ :=v : Unit ⊥
The relevant reduction rule (Fig. 2) follows:

o ℓ :=v | µ ℓ ′ c -→ unit ⊥ | µ[o → v ≺ ℓ ′ c ≺ ℓ].
The fact that D reduces to

•; Σ; ℓ c ⊢ unit ⊥ : Unit ⊥ is immediate, but we must also prove that the stored value v ≺ ℓ ′ c ≺ ℓ respects the store type, i.e. S 2 ≺ ℓ ′ c ≺ ℓ <: S. Since •; Σ; ℓ c ⊢ v : S 2 and S 2 <: S, it suffices to show that ℓ ′ c ≺ ℓ ≼ label(S)
. We do so as follows. Since ≺ is monotone with respect to ≼ in both arguments, we can combine ℓ ′ c ≼ ℓ c (assumed in the statement of preservation) and

ℓ ≼ ℓ (deduced by ≼ reflexivity) to deduce ℓ ′ c ≺ ℓ ≼ ℓ c ≺ ℓ.
Finally, since ≼ is transitive, we combine the above with the ℓ c ≺ ℓ ≼ label(S) to deduce ℓ ′ c ≺ ℓ ≼ label(S). To recap, this "reduction" applies reasoning steps with a computational flavor: it composes ≼ relations to deduce new ones, using both join monotonicity and order transitivity.

In the gradual setting, transitivity of ordering of gradual labels does not always hold: e.g. H ≼ ? and ? ≼ L but H ̸ ≼ L. As such, transitivity of consistent ordering is plausible but not definite, so we have to check. How? Here is the key intuition: recall that a consistent judgment like H ≼ ? means that ℓ 1 ≼ ℓ 2 holds for some pair of labels (ℓ 1 , ℓ 2 ) drawn from the concretizations γ (H) = { H } and γ (?) = Label respectively. We do not know which pair, so we must consider all plausible ones, i.e. { (H, H), (H, ⊤) }: the rest are surely wrong so we discard them. Similarly, the plausible pairs for ? ≼ ⊤ are { (ℓ, ⊤) | ℓ ≼ ⊤ }. Now, given these two sets of plausible orderings, is transitivity plausible? Yes, because two plausible deductions arise: 1) H ≼ H and H ≼ ⊤ implies H ≼ ⊤; and 2) H ≼ ⊤ and ⊤ ≼ ⊤ implies H ≼ ⊤. When collected, the deduced pairings collapse to the singular expected result: { (H, ⊤) }. If we replay the same reasoning for H ≼ ? and ? ≼ L, however, we deduce ∅, which means that transitivity is not plausible: it has been refuted. An analogous process applies for join monotonicity, as well as transitivity of consistent subtyping, yielding sets of pairs of candidate subtypings.

In both of the above deductions, we reason imprecisely yet still deduce definite results: a single possibility in one, and none in the other. But in general, imprecision begets imprecision. The main source of complication is that static safety arguments deduce ordering relationships by interleaving transitivity and monotonicity arguments, so corresponding consistent deductions must mirror them. Furthermore, it would be especially burdensome to explicitly track sets of pairs of labels at runtime, let alone the sets of pairs of types that arise when reasoning about consistent subtyping. This is where AGT suggests to use an abstraction of the possible static candidates, evidence. Evidence of a consistent judgment is a pair of abstractions of sets of static entities that justify a consistent judgment. Which abstraction to use turns out to be a crucial decision in order to preserve noninterference, as discussed next.

Problems with evidence as gradual labels. The "natural" abstraction of sets of labels are gradual labels, as used in the static semantics. In fact, [START_REF] Garcia | Abstracting Gradual Typing[END_REF] use the same abstraction to represent both runtime evidence and static gradual types; we initially followed suit. However, the first major subtlety we uncovered while deriving GSL Ref 's dynamic semantics is that using gradual labels (and consequently, gradual types) for evidence yields a design that achieves both type safety and the gradual criteria, but violates noninterference! This problem manifested in two parts of the noninterference proof. First, the noninterference proof relies on the associativity of consistent transitivity. 15 However, consistent transitivity of label ordering is not associative if gradual labels are used to represent evidence. Recall the program true ? :: Bool H :: Bool ? :: Bool L , introduced in Sec. 4.2, which we expect to fail at runtime, and which ultimately involves combining three consistent label ordering judgments: ε 1 ⊢ ? ≼ H, ε 2 ⊢ H ≼ ?, and ε 3 ⊢ ? ≼ L. If we use a pair of gradual labels to represent evidence, eventually we have to calculate

(ε 1 • <: ε 2 ) • <: ε 3 . But ε 1 = ⟨?, H⟩, ε 2 = ⟨H, ?⟩, and ε 3 = ⟨?, L⟩, then ε 1 • ≼ ε 2 = ⟨?, ?⟩ and ⟨?, ?⟩ • ≼ ε 3 = ⟨?, L⟩, so no runtime error is produced. Note that ε 1 • <: (ε 2 • <: ε 3 ) fails as expected, because ε 2 • <: ε 3 is not defined, but
this is not the composition order that arises at runtime.

Second, the proof of noninterference relies on the observational completeness of the consistent join operator:

Lemma 6.8. Suppose ε 1 ⊢ g ′ 1 ≼ g 1 and ε 2 ⊢ g ′ 2 ≼ g 2 such that ε 1 ≺ ε 2 ⊢ Â g ′ 1 ≺ g ′ 2 ≼ g 1 ≺ g 2 .
Then (¬obsEv

g 1 ℓ o (ε 1 ) ∨ ¬obsEv g 2 ℓ o (ε 2 )) ⇐⇒ ¬obsEv g 1 ≺ g 2 ℓ o (ε 1 ≺ ε 2 ).
The analogous static lemma, i.e. (¬obsEv

ℓ 1 ℓ o (ℓ 1 ) ∨ ¬obsEv ℓ 2 ℓ o (ℓ 2 )) ⇐⇒ ¬obsEv ℓ 1 ≺ ℓ 2 ℓ o (ℓ 1 ≺ ℓ 2 ),
holds trivially by the very definition of the join, but this property fails to hold in the presence of the unknown label. Suppose ε ′ 1 ⊢ H ≼ ? and ε ′ 2 ⊢ ? ≼ ?. If we use a pair of gradual labels to represent evidence, then ε

′ 1 = ⟨H, ?⟩, ε ′ 2 = ⟨?, ?⟩, and ε ′ 1 ≺ ε ′ 2 = ⟨?, ?⟩ losing information about H . But ¬obsEv ?
L (⟨H, ?⟩) and obsEv ? L (⟨?, ?⟩), therefore invalidating the lemma.

Representing evidence as intervals. These observations forced us to seek a more precise abstraction whose composition (through consistent transitivity) is associative and preserves the observational completeness of consistent join. Since it suffices to know whether the upper-and lower-bounds of the plausible static labels overlap to deduce the plausibility of consistent ordering, intervals seem to be a fitting abstraction. 16 Indeed, this abstraction is sufficiently precise to guarantee the desired properties. [START_REF] Siek | Threesomes, with and without blame[END_REF]. We conjecture that associativity may be a fundamentally desirable property, and intend to pursue this question. 16 One could design a gradual security language that uses label intervals instead of gradual labels right from the start, including in the static semantics. While this would unify the abstractions used in the statics and dynamics, it would yield a gradual type system that rejects more secure programs than GSL Ref does. For instance, the program (if false L :: ? then 1 H else 2 L ) :: L, is accepted and runs without errors in GSL Ref . But if we use intervals in the static semantics, then the security level of the conditional expression which boils down to the join between ?, H and L, would be [L, H], therefore the program would be rejected statically. Applying a ? ascription to 1 H would fix this program. Definition 6.9 (Interval Concretization). γ ı : Interval → P(Label), where

Interval = {[ℓ 1 , ℓ 2 ] ∈ Label 2 | ℓ 1 ≼ ℓ 2 } γ ı ([ℓ 1 , ℓ 2 ]) = {ℓ | ℓ ∈ Label, ℓ 1 ≼ ℓ ≼ ℓ 2 }.
Definition 6.10 (Interval Abstraction). α ı :

P(Label) → Interval α ı (∅) is undefined α ı ({ ℓ i }) = [ ≺ ℓ i , ≺ ℓ i ] otherwise
With evidence based on intervals, (ε

1 • ≼ ε 2 ) • ≼ ε 3 and ε 1 • ≼ (ε 2 • ≼ ε 3 ) are equivalent. Back to the example, now ε 1 = ⟨[⊥, H], [H, H]⟩, ε 2 = ⟨[H, H], [H, ⊤]⟩ and ε 3 = ⟨[⊥, L], [L, L]⟩, then ε 1 • ≼ ε 2 = ⟨[⊥, H], [H, ⊤]⟩. Because ⟨[⊥, H], [H, ⊤]⟩ • ≼ ε 3 is undefined,
a runtime error is raised, avoiding the breach of noninterference. Also, the observational-monotonicity of the join is preserved.

Now ε ′ 1 = ⟨[H, H], [H, ⊤]⟩ and ε ′ 2 = ⟨[⊥, ⊤], [⊥, ⊤]⟩, then ε ′ 1 ≺ ε ′ 2 = ⟨[H, ⊤], [H, ⊤]⟩ and now ¬obsEv ? L (⟨[H, ⊤], [H, ⊤]⟩) as expected.
Lifting consistent lattice relations. We now explain how the definitions of consistent transitivity and join monotonicity are semantically justified. As discussed in Sec. 6.1, premises such as ℓ c ≺ ℓ ≼ ℓ ′ must be lifted as aggregates. In fact, such a judgment is likely the consequence of similar deductions from earlier reduction steps. For instance ℓ must be some lattice expression F (ℓ i ) comprising joins (and meets) of source program labels ℓ i . Therefore, to mirror static type safety reasoning steps at runtime, and catch inconsistencies if they arise, we must generalize each ordering premise in a derivation and consider it as some lattice relation F 1 (ℓ i ) ≼ F 2 (ℓ j ). The notion of evidence must consequently account for the plausibility of consistent lattice relations:

⟨ı 1 , ı 2 ⟩ ⊢ Â F 1 (g i ) ≼ F 2 (g j )
The definitions of consistent join monotonicity and consistent transitivity then follow directly from AGT by consistent lifting.

Definition 6.11 (Consistent transitivity for label ordering).

• ≼ : Interval 2 × Interval 2 ⇀ Interval 2 ⟨ı 1 , ı 21 ⟩ • ≼ ⟨ı 22 , ı 3 ⟩ = α 2 ı ({⟨ℓ 1 , ℓ 3 ⟩ ∈ γ 2 ı (⟨ı 1 , ı 3 ⟩) | ∃ℓ ∈ γ ı (ı 21 ) ∩ γ ı (ı 22 ).ℓ 1 ≼ ℓ ∧ ℓ ≼ ℓ 3 })
Consistent transitivity produces evidence for all plausible instances of consistent ordering that can be deduced using transitivity from the plausible instances of ordering represented by the two inputs. By design, α 2 ı (∅) is undefined, so consistent transitivity is also undefined if no plausible pairings remain to support a deduction. Definition 6.12 (Consistent join monotonicity).

≺ : Interval 2 × Interval 2 ⇀ Interval 2 ε 1 ≺ ε 2 = α 2 ı ({⟨ℓ 1 , ℓ 2 ⟩) | ∃⟨ℓ 11 , ℓ 12 ⟩ ∈ γ 2 ı (ε 1 ), ⟨ℓ 21 , ℓ 22 ⟩ ∈ γ 2 ı (ε 2 ).ℓ 1 = ℓ 11 ≺ ℓ 21 , ℓ 2 = ℓ 12 ≺ ℓ 22 , ℓ 1 ≼ ℓ 2 })
Consistent join monotonicity is analogous, but note that due to lattice and interval properties, consistent join monotonicity is really a total function. Also, the ℓ 1 ≼ ℓ 2 condition is superfluous; we present the definition in this form to preserve the general structure of consistent deduction definitions.

The algorithmic characterizations from Sec. 4.2 are equivalent to the above definitions. More importantly, we can prove that these operators indeed yield valid evidence for the combined consistent judgments. Proposition 6.13. Suppose

ε 1 ⊢ Â F 11 (g i ) ≼ F 12 (g j ) and ε 2 ⊢ Â F 21 (g i ) ≼ F 22 (g j ) Then ε 1 ≺ ε 2 ⊢ Â F 11 (g i ) ≺ F 21 (g i ) ≼ F 12 (g j ) ≺ F 22 (g j ) Proposition 6.14. Suppose ε 1 ⊢ Â F 1 (g i ) ≼ F 2 (g j ) and ε 2 ⊢ Â F 2 (g j ) ≼ F 3 (g k ). If ε 1 • ≼ ε 2 is defined, then ε 1 • ≼ ε 2 ⊢ Â F 1 (g i ) ≼ F 3 (g k )
From labels to types. Finally, in addition to reasoning about consistent label ordering, the dynamic semantics must track and check the plausibility of consistent subtyping. Since (consistent) subtyping is induced by (consistent) ordering, the reasoning in question arises by lifting the same constructions to gradual security types, consistent subtyping, and consistent subtyping join and meet.

Just as we extend gradual labels g to gradual security types U (e.g. Int g ) in the source language, so do we extend label intervals ı point-wise to type intervals E (e.g. Int ı ) and corresponding notions of evidence for consistent subtyping ε (e.g. ⟨Int ı 1 , Int ı 2 ⟩), which represent sets of pairs of candidates for plausible subtyping. We introduce evidence judgments ε ⊢ U 1 ≲ U 2 to associate runtime evidence with particular consistent subtyping judgments. The entire development mirrors the one for labels, and does not convey any new insights (see Appendix D.1).

Policing Dynamic Heap Updates

Although adopting label intervals for evidence of consistent label judgments addressed some aspects of the noninterference proof, this refinement alone is not sufficient.

To illustrate the remaining problem, recall the example of implicit flows from Sec. 2, in particular the second version of the example, which has some missing static annotations. This program is accepted statically and also runs without errors: if x is true H then the program reduces to true L , and if x is false H it reduces to false L : a clear breach of noninterference! To understand the problem, consider what happens for the different values of x. When x is true H the assignment in line 4 under security effect H is valid, because H ≼ ?. In that moment we know that the security level of the content of y, must be higher than H. But when x is false H , in line 5 we assume that the security level of the content of y is lower than L. In other words, under supposedly-related executions we get contradictory evidence for y. Notice that in the assignment at line 4, the judgment H ≼ ? holds, but so does its negation H / ≼ ?. To preserve noninterference, we must ensure that its negation never holds.

To recover noninterference, we add an extra check to the assignment reduction rule (r 7) from Fig. 6:

ε 1 o g := ε 3 ε 2 u | µ ε g c -→ ® unit ⊥ | µ[o → ε ′ (u ≺ (g c ≺ g))] error if ε ′ is not defined, or ε ⌊≤⌋ ilbl(ε ′′ ) does not hold where µ(o) = ε ′′ u ′ .
The highlighted check ensures that if the security effect is not observable, then the content of the heap to be replaced must also be not observable. 17 This concept is formalized in the following lemma, which is used in the noninterference proof:

Lemma 6.15. Consider ε 1 ⊢ g ′ 1 ≼ g 1 and ε 2 ⊢ g ′ 2 ≼ g 2 . Then (¬obsEv g 1 ℓ o (ε 1 ) ∧ ε 1 ⌊≤⌋ ε 2 ) ⇒ ¬obsEv g 2 ℓ o (ε 2 ).
With the additional check, if x is true H , the program fails at runtime, preserving noninterference. The necessity of the check shows up in the noninterference proof for the if case. When two computations have related non-observable conditionals, the booleans can be different. This may lead to two related computations that reduce different branches under a high-security context. At that point, we must enforce that those different executions only write high-security values to the heap. In other words, as long as both executions reduce under high-security contexts, their executions can desynchronize only on private information. Formally, the following lemma should hold: Lemma 6.16.

Consider •; Σ; εg c ⊢ t : U , g ′ c and µ such that, ε ⊢ g c ≼ g ′ c , ¬obsEv g ′ c ℓ o (ε) and Σ ⊢ µ, and ∀k > 0, such that t | µ ε g c -→ k t ′ | µ ′ , (1) ∀o ∈ dom(µ ′ )\ dom(µ), ¬obsVal U ℓ o (µ ′ (o)). (2) ∀o ∈ dom(µ ′ ) ∩ dom(µ) where µ ′ (o) µ(o), (a) ¬obsVal U ℓ o (µ(o)), and (b) ¬obsVal U ℓ o (µ ′ (o)).
Without the additional check in rule (r 7), we cannot prove (2.a): before updating a reference, the current content should be non observable. And as we can see in the example above, without the check, the reference before the assignment would be observable, hence breaking the Lemma.

In its current formulation [START_REF] Garcia | Abstracting Gradual Typing[END_REF], AGT derives the dynamic semantics of the gradual language from the type safety argument of the static language. Here, we are facing a typing discipline in which type safety does not imply type soundness (i.e. noninterference), and hence, the methodology falls short of naturally preserving that property. This suggests that extending AGT to ensure type soundness of the derived gradual language might require adapting the conceptual framework to take the purely static type soundness proof as a source of design insight.

Noninterference vs. Dynamic gradual guarantee. Although the extra check above allows GSL Ref to ensure noninterference, it sacrifices the dynamic gradual guarantee. Recall that this guarantee says that removing a static security annotation cannot introduce new runtime errors.

Consider the following example:

fun x : Bool H = > let y : Ref Bool H = ref true H if x then y := false H else unit
The program is accepted statically and runs without error as it does not break noninterference. If we remove the type annotations on line 2:

fun x : Bool H = > let y : Ref Bool ? = ref true ? if x then y := false H else unit
then the program is conservatively rejected at runtime, because of the additional check for assignments. This behavior violates the dynamic gradual guarantee. 18To sum up, if decreasing the precision of a type annotation results in performing an assignment to a reference whose content now has an unknown security label, and that assignment occurs under a non-public security effect, a runtime error can be raised, whereas the more precise program did not fail. More precisely, even in such situations, a runtime error will only be raised if the dynamic security information about the stored value up to the point of the actual assignment is lower than the current security effect. For instance, in our example above, if we modify the security level of the boolean in line 2 to H (leaving the type of y as it is), then the program performs a valid assignment on a reference whose content has a statically-unknown security level, but dynamically H; therefore no runtime error is raised. Unfortunately, beyond pure and read-only programs, it seems impossible to provide any useful syntactic characterization of the programs for which the dynamic gradual guarantee holds, because both the current security effect and the accumulated evidence about a given value are essentially dynamic information.

RELATED WORK

Static and dynamic information-flow control techniques have been extensively studied in the literature. The area is too vast to exhaustively review here: we refer to [Hedin and Sabelfeld 2012b;[START_REF] Russo | Dynamic vs. Static Flow-Sensitive Security Analysis[END_REF][START_REF] Sabelfeld | Language-Based Information-Flow Security[END_REF] for broad overviews of the area. This section first focuses on security type systems, as well as some specific approaches to dynamic information flow control, given the static-to-dynamic spectrum that gradual security typing covers. We also discuss existing proposals that combine static and dynamic checking. Finally we relate our work to other efforts to gradualize advanced type disciplines.

Static information flow control. [START_REF] Volpano | A Sound Type System for Secure Flow Analysis[END_REF] present one of the first type systems for information flow analysis, developed for a first-order imperative language with conditionals and loops. They present and formalize the first soundness result for a security-typed language, namely that altering the initial values of locations cannot affect resulting values of locations with a lesser security level.

Subsequently, [START_REF] Heintze | The SLam Calculus: Programming with Secrecy and Integrity[END_REF] present a security-typed higher-order language called the Secure Lambda Calculus (SLam). SLam is a functional language extended with sums, products, and recursion, that supports both confidentiality and its dual notion, integrity [START_REF] Kenneth | Integrity considerations for secure computer systems[END_REF]. They introduce the prot expression, which we also use, to increase the ambient security level for the dynamic extent of evaluating a term. The noninterference proof for SLam is also based on logical relations. The authors extend SLam with concurrency and references. They prove that the resulting language is type safe, but they do not prove noninterference, deemed too problematic in a concurrent setting. SSL Ref is also a higher-order language with references, but it does not support sums, products, recursion and concurrency. We prove noninterference for both GSL Ref and SSL Ref . Extending GSL Ref to richer types and concurrency is a challenge worth addressing in future work.

To consolidate different related efforts, [START_REF] Abadi | A Core Calculus of Dependency[END_REF] develop the Dependency Core Calculus (DCC), an extension of the lambda calculus that tracks dependencies such as security, partial evaluation, program slicing and call-tracking. In particular, they show that different languages such as SLam can be translated to DCC. They present a semantic model of DCC that helps to provide a simple proof of noninterference. It would be interesting to study the application of AGT to DCC, to provide a general account of gradual dependency tracking.

JFlow [START_REF] Andrew | JFlow: Practical mostly-static information flow control[END_REF][START_REF] Myers | A decentralized model for information flow control[END_REF], which later evolved into Jif [START_REF] Myers | Protecting Privacy using the Decentralized Label Model[END_REF], is a practical extension of the Java language that protects both confidentiality and integrity of sensitive data. Jif supports statically-checked information flow annotations, a decentralized label model with principals, automatic label inference, and security label polymorphism, all integrated with object-oriented features like class inheritance, as well as exceptions, among other features. Jif supports runtime label tests that can be used to encode explicit security casts, although such casts break type-based reasoning about noninterference. Scaling up GSL Ref to cover the feature set of Jif would open the door to a practical implementation of gradual security typing. [START_REF] Zdancewic | Programming Languages for Information Security[END_REF] proposes λ S EC , a simple security language similar to SLam, and proves noninterference using logical relations. He then extends the language with references, yielding λ S EC RE F , which was the starting point for our design of SSL Ref . Unlike SSL Ref , the operational semantics of λ S EC RE F includes additional checks to control whether it is safe to assign to references; the type system then makes these checks redundant. In SSL Ref , we omit these checks, and the runtime only tracks security levels. The runtime checks needed in the gradual setting arise as evidence combination. Also, Zdancewic does not prove noninterference for λ S EC RE F directly, but instead by a CPS translation to a lower-level imperative language with explicit continuations, for which noninterference is established [START_REF] Zdancewic | Secure information flow and CPS[END_REF]. This setting permits studying information flow with concurrency and as such could be a judicious starting point to study the interaction of gradual security typing and concurrency.

Much work on static information flow analysis focuses on declassification, which is the limited, intentional, and controlled release of confidential information. Declassification is outside the scope of this work, though a very interesting perspective for future work; we refer to [START_REF] Sabelfeld | Declassification: Dimensions and principles[END_REF] for an introductory survey.

An important distinction in information flow analysis is whether an analysis is flow-sensitive, i.e. whether memory cells are allowed to store values of different security levels at different times. [START_REF] Hunt | On Flow-Sensitive Security Types[END_REF] explore families of sound flow-sensitive type systems, indexed by the choice of the security lattice. In particular, they show that every program typeable in a flow-sensitive static type system can be translated to an equivalent program typeable in a flow-insensitive type system. SSL Ref is a flow-insensitive purely static analysis; GSL Ref inherits flow-insensitivity for its static semantics. However, at runtime the security level of references is allowed to vary (through evidence composition) within the bounds imposed by the static type of the reference. This means that a reference that is created with an unknown security label can store values of any security level at different times. This leads us to sharing challenges faced by dynamic information-flow control techniques, discussed hereafter.

Dynamic information flow control. [START_REF] Russo | Dynamic vs. Static Flow-Sensitive Security Analysis[END_REF] show that static mechanisms can be more precise than dynamic ones about certain kinds of information flows. Indeed, noninterference can be characterized as a 2-safety property, meaning that it can only be refuted by observing two different executions of the same program with different inputs. This makes it particularly challenging for dynamic information flow control, which traditionally makes decisions based on a single execution. Most work on dynamic information flow analysis therefore monitors a 1-safety property that conservatively approximates noninterference, but has the advantage of being observable in a single execution. Such approximations necessarily introduce false alarms, especially when mutable references are involved.

To avoid implicit leaks through the heap in a purely dynamic information-flow analysis, [START_REF] Austin | Efficient purely-dynamic information flow analysis[END_REF] introduce a no-sensitive-upgrade check to prevent implicit security leaks through partially-leaked data, i.e. data produced from updates to public heap data that depend on private information. We adapt this approach to GSL Ref , imposing an extra check when assigning to references. Subsequently, [START_REF] Austin | Permissive dynamic information flow analysis[END_REF] propose a more permissive analysis, where partially-leaked data is allowed, but carefully tracked to ensure that it is upgraded before being used in conditional tests. This allows programmers to iteratively add security upgrades to partially-leak data only when needed, through multiple executions of a program.

Later, [START_REF] Austin | Multiple Facets for Dynamic Information Flow[END_REF] introduce a completely different approach: faceted execution, which simulates multiple executions of a program for different security levels in a single run. A faceted execution yields a faceted value, which in a traditional two-point lattice is a pair of a public and a private value. This novel approach enables a characterization of noninterference as a 1safety property, without introducing false alarms. It does however raise questions regarding how to efficiently implement such faceted executions, especially in the presence of complex security lattices. Faceted execution was recently extended to support dynamic information flow with exceptions, declassification and clearance [START_REF] Austin | Multiple Facets for Dynamic Information Flow with Exceptions[END_REF]]. It would be interesting to explore whether basing GSL Ref on faceted execution might yield a gradual security language that fully respects the dynamic gradual guarantee, by avoiding the extra runtime check in assignments. [START_REF] Stefan | Flexible dynamic information flow control in the presence of exceptions[END_REF] present a dynamic information-flow control system called LIO. Contrary to most approaches to dynamic information flow, LIO does not modify the underlying language runtime semantics, being implemented as a Haskell library. LIO supports both mutable references and exceptions. Exceptions are used to recover from security monitor failures, preserving both confidentiality and integrity. The possibility of securely recovering from runtime security exceptions is an interesting perspective to study in the context of gradual security typing. More generally, recovering from runtime type errors raises a number of questions about the metatheory of gradual typing, because doing so can directly affect the dynamic gradual guarantee as well as type-based reasoning (e.g. it becomes possible to encode explicit type tests).

Hybrid information flow control. To resolve the tension between flexibility and soundness of flow-sensitive analyses, [START_REF] Russo | Dynamic vs. Static Flow-Sensitive Security Analysis[END_REF] propose a general hybrid approach, in which a static effect analysis is used to dynamically upgrade the security level of variables of untaken branches of conditionals, thereby preventing implicit leaks through the heap. This hybrid approach is developed on top of a (first-order) imperative language. [START_REF] Moore | Static analysis for efficient hybrid information-flow control[END_REF] later show how to implement this hybrid approach more efficiently using additional static analyses.

A variety of hybrid information-flow control systems have been investigated, whose designs combine static and dynamic techniques that buttress one another to balance permissiveness and efficiency. Note that although gradual typing also combines static and dynamic techniques, hybrid approaches differ essentially from gradual ones. The key specificity of gradual typing is to smoothly support the continuum between static and dynamic checking based on the (programmer-controlled) precision of type annotations [START_REF] Siek | Gradual Typing for Functional Languages[END_REF][START_REF] Siek | Refined Criteria for Gradual Typing[END_REF]]. This central notion of type precision is absent from hybrid approaches, in which the balance between static and dynamic checking is often driven by other concerns-such as the (un)decidability of a static predicate [START_REF] Knowles | Hybrid type checking[END_REF], or the need to pre-compute information for enhancing runtime checking. [START_REF] Chandra | Fine-Grained Information Flow Analysis and Enforcement in a Java Virtual Machine[END_REF] implement hybrid security information flow control for the Java Virtual Machine. The operational semantics permits policies to change during execution. To prevent invalid implicit flows through the heap, they perform a static analysis of effects similar to [START_REF] Russo | Dynamic vs. Static Flow-Sensitive Security Analysis[END_REF]. Information about conditionals is gathered ahead of execution, then used to update labels at runtime, as if all branching alternatives had been taken. They also statically determine when the current security effect can be lowered again after a conditional. Performing an effect analysis statically to drive runtime monitoring is appealing as it could obviate the extra assignment check in GSL Ref that compromised the dynamic gradual guarantee. However, in the setting of a higher-order imperative language, the effect analysis could easily become too conservative or too demanding for programmers. Combining gradual security and gradual effects [START_REF] Schwerter | Gradual Type-and-Effect Systems[END_REF]] may temper this issue, but represents a considerable challenge in itself. [START_REF] Shroff | Dynamic Dependency Monitoring to Secure Information Flow[END_REF] present a dynamic information flow system based on runtime tracking of indirect dependencies between program points, allowing a lazier, hence more flexible, detection of implicit flows. In particular, they track indirect dependency between dereference points and branching points. They present two languages, one that captures dependencies statically, and one that uses multiple executions of a program to record dependencies. This is yet another approach to runtime tracking that is worth considering in order to achieve a more flexible gradual security language that fully respects the dynamic gradual guarantee.

Hybrid approaches can also support programmer-controlled flexibility. [START_REF] Buiras | HLIO: mixing static and dynamic typing for information-flow control in Haskell[END_REF] propose Hybrid LIO (HLIO), a flexible monadic information-flow control library for Haskell. HLIO is not gradual in the sense that it does not include an unknown security label; instead, HLIO provides a primitive to explicitly and selectively defer label-ordering checks to runtime. Their approach to defer static typing constraints to runtime can even be exploited to postpone type checks beyond security label constraints, opening the door to hybrid type checking in Haskell. In contrast, as a gradual security language, GSL Ref supports a notion of unknown security information and implicitly mediates the interactions between static and dynamic security checking.

Gradual security typing. Most directly related to our proposal is prior work on gradual security typing, which combines static and dynamic checking with the express intent of supporting a smooth migration between both checking disciplines by introducing a dynamic (i.e. statically unknown) security label. [START_REF] Disney | Gradual information flow typing[END_REF] and [START_REF] Fennell | Gradual Security Typing with References[END_REF] pioneered what we describe in Sec. 1 as a check-driven approach to gradual security typing, starting from dynamic checking. Both develop notions of blame tracking and prove blame theorems for their semantics. It is important to recall that these approaches, while dubbed "gradual", are based on explicit security casts, and are therefore more akin to cast calculi than to gradual languages. In particular, this means that these languages do not respect the gradual guarantees by design, including the static one, because changing the precision of type annotations requires adding/removing explicit casts. Additionally, as discussed in the introduction, both proposals break type-based reasoning about noninterference.

Recently, [START_REF] Fennell | LJGS: Gradual Security Types for Object-Oriented Languages[END_REF] extend their prior work on gradual security typing with references to the object-oriented setting, in a language called LJGS. Like Jif, LJGS performs local inference of security labels, and supports polymorphic security signatures. Local variables in LJGS are typed in a flow-sensitive manner, whereas both SSL Ref and GSL Ref are flow insensitive regarding security levels. Although LJGS is based on explicit casts like prior work, its semantics differ in important ways. For instance, recall the example given in Sec. 1:

let mix : Int L → L Int H → L Int L = fun pub priv = > if pub < (Int L ⇐ Int H )priv then 1 L else 2 L mix 1 L 5 L
This example does not type check in LJGS because the target type of a security cast cannot be less secure than the source type. The only way to write this example is to go through the dynamic security level explicitly:

let mix : Int L → L Int H → L Int L = fun pub priv = > if pub < (Int L ⇐ Int ? ) (Int ? ⇐ Int H ) priv then 1 L else 2 L mix 1 L 5 L
This well-typed program fails at runtime because (Int ? ⇐ Int H ) upgrades 5 L to 5 H , but (Int L ⇐ Int ? )5 H is not defined. This approach to upgrade the security level of values that are cast to the dynamic label using the statically-determined source label seems to restore type-based reasoning about noninterference in LJGS. Interestingly, the change in semantics in LGJS is solely motivated by the design goal to avoid having to dynamically track security labels of statically-typed program fragments, so the relation with type-based reasoning appears to be accidental.

Similar to the approach of [START_REF] Russo | Dynamic vs. Static Flow-Sensitive Security Analysis[END_REF] and [START_REF] Shroff | Dynamic Dependency Monitoring to Secure Information Flow[END_REF] discussed above, LJGS relies on a side-effect analysis to tracks the updated variables in method bodies. More precisely, when typing a method, LJGS generates a set of constraints that represent the information flow dependencies between parameters and return values, as well as two sets of effects: a local effect that lists the variables modified in branches of a conditional, used to update local variables of untaken branches; and a global effect that records the security types whose fields may be updated with sensitive information. This type analysis and constraint/effect inference is facilitated by the fact that classes in LJGS are not first-class entities, i.e. all class definitions are top-level and known ahead-of-time. This means in particular that at every call site, one statically knows the precise inferred constraints and effects of methods (modulo a standard subsumption criteria to account for subtyping). In a setting with higher-order types, this information would be more complex to track. Additionally, the inferred global effect of a method is insufficient information per se for the dynamic information flow control part of LJGS. Therefore, LJGS also appeals to an external effect analysis (left opaque) to obtain precise information about heap write effects.

Gradualizing expressive typing disciplines. Since the initial formulation of gradual typing [START_REF] Siek | Gradual Typing for Functional Languages[END_REF], there has been many efforts to gradualize advanced typing disciplines, like typestates [START_REF] Garcia | Foundations of Typestate-Oriented Programming[END_REF][START_REF] Wolff | Gradual Typestate[END_REF], ownership types [START_REF] Sergey | Gradual Ownership Types[END_REF], annotated type systems [START_REF] Thiemann | Gradual Typing for Annotated Type Systems[END_REF], effects [START_REF] Schwerter | A Theory of Gradual Effect Systems[END_REF], 2016;[START_REF] Toro | Customizable Gradual Polymorphic Effects for Scala[END_REF], refinement types [Jafery and Dunfield 2017; Lehmann and Tanter 2017], parametric polymorphism [START_REF] Ahmed | Theorems for free for free: parametricity, with and without types[END_REF][START_REF] Igarashi | On polymorphic gradual typing[END_REF], and the security type systems discussed above, among others.

Since the formulation of the refined criteria for gradually-typed languages [START_REF] Siek | Refined Criteria for Gradual Typing[END_REF]], however, only refinement types [Jafery and Dunfield 2017; Lehmann and Tanter 2017] have been shown to fully respect such guarantees. This work contributes to the general research agenda of gradual typing disciplines by explicitly attempting to achieve both the gradual guarantees and a rich semantic property, like noninterference. Indeed, noninterference is not implied by type safety; in contrast, soundness of refinement types directly follows from type safety. We have shown that GSL Ref does respect the static gradual guarantee (as opposed to other gradual security type systems); but GSL Ref must sacrifice the dynamic gradual guarantee due to a modification of the runtime semantics that is necessary to enforce noninterference in the presence of mutable references.

Initial work on gradual parametricity [START_REF] Igarashi | On polymorphic gradual typing[END_REF]] also suggests that parametricity may be incompatible with the dynamic gradual guarantee, unless one is willing to tweak the type precision relation; even then, the dynamic gradual guarantee is left as a conjecture. [START_REF] Ahmed | Theorems for free for free: parametricity, with and without types[END_REF] prove parametricity for a polymorphic cast calculus-not a source language-and also leave the gradual guarantees as an open question. Therefore, further work is needed to fully understand if and how the gradual guarantees can be reconciled with rich semantic typing disciplines, and if additional design criteria for such gradual languages should be devised.

CONCLUSION

We develop a novel, type-driven approach to gradual security typing, in which gradual security types provide strong security invariants, while admitting flexible programming idioms. This is the first work to address the gradualization of a rich typing discipline in which type safety does not imply type soundness, while pursuing the most elaborate formulation of criteria for gradually-typed languages [START_REF] Siek | Refined Criteria for Gradual Typing[END_REF], and preserving type-based reasoning principles. This means that the amount of static checking is entirely driven by the precision of static security annotations, and that programmers can reason modularly about the noninterference guarantees of program fragments by just looking at types.

Using the AGT methodology [START_REF] Garcia | Abstracting Gradual Typing[END_REF] to derive the gradual security language GSL Ref , this work sheds light on key semantic issues in the design of gradual languages. AGT was central in our endeavor to separate the elements of the design that follow by systematically following the methodology from those that require careful consideration. In particular, we identify a tension between the smooth continuum on the static-to-dynamic spectrum that the gradual guarantees mandate, and the semantic property of noninterference, which manifests in GSL Ref because of mutable references. This tension also raises interesting questions for the principled design of gradually-typed languages, whenever the semantics of types has a relational flavor. In particular, while we have addressed noninterference, relational parametricity remains to be addressed. Overall, this work suggests that it might be necessary to extend AGT to integrate the purely static type soundness proof-as opposed to only the type safety proof-as a source for the design of the dynamic semantics of a gradual language.

Within the context of gradual security typing, our work leaves open the question of whether it is possible to reconcile both noninterference and the dynamic gradual guarantee. Specifically, it would be informative to study whether other approaches to sound dynamic information flow control could help us recover the dynamic gradual guarantee. We believe that there might be an inherent incompatibility between the strictness required to enforce a hyper-property like noninterference, and the optimistic flexibility dictated by the dynamic gradual guarantee.

Another interesting track for future work is to explore a "pay-as-you-go" [START_REF] Siek | Gradual Typing for Functional Languages[END_REF]] semantics, which only introduces runtime checks for imprecisely-typed expressions, as well as scaling the security discipline to other language-based security features such as integrity, flow sensitivity and declassification. Additionally, we want to explore the applicability of [START_REF] Garcia | Principal Type Schemes for Gradual Programs[END_REF]'s approach to type inference in gradual languages to address security label inference [START_REF] Pottier | Information Flow Inference for ML[END_REF] in GSL Ref . 

S ::= Bool ℓ | S ℓ -→ ℓ S | Ref ℓ S | Unit ℓ (types) b ::= true | false (Booleans) r ::= b | λ ℓ x : S.t | unit | o (raw values) v ::= r ℓ (values) t ::= v | t t | t ⊕ t | if t then t else t ref S t | !t | t:=t | t :: S | prot ℓ (t) (terms) ⊕ ::= ∧ | ∨ (operations) Fig. 11. SSL Ref : Syntax (Sx) x : S ∈ Γ Γ; Σ; ℓ c ⊢ x : S (Sb) Γ; Σ; ℓ c ⊢ b ℓ : Bool ℓ (Su) Γ; Σ; ℓ c ⊢ unit ℓ : Unit ℓ (Sl) o : S ∈ Σ Γ; Σ; ℓ c ⊢ o ℓ : Ref ℓ S (Sλ) Γ, x : S 1 ; Σ; ℓ ′ ⊢ t : S 2 Γ; Σ; ℓ c ⊢ (λ ℓ ′ x : S 1 .t) ℓ : S 1 ℓ ′ -→ ℓ S 2 (Sprot) Γ; Σ; ℓ c ≺ ℓ ⊢ t : S Γ; Σ; ℓ c ⊢ prot ℓ (t) : S ≺ ℓ (S⊕) Γ; Σ; ℓ c ⊢ t 1 : Bool ℓ 1 Γ; Σ; ℓ c ⊢ t 2 : Bool ℓ 2 Γ; Σ; ℓ c ⊢ t 1 ⊕ t 2 : Bool (ℓ 1 ≺ ℓ 2 ) (Sapp) Γ; Σ; ℓ c ⊢ t 1 : S 11 ℓ ′ -→ ℓ S 12 Γ; Σ; ℓ c ⊢ t 2 : S 2 S 2 <: S 11 ℓ c ≺ ℓ ≼ ℓ ′ Γ; Σ; ℓ c ⊢ t 1 t 2 : S 12 ≺ ℓ (Sif) Γ; Σ; ℓ c ⊢ t : Bool ℓ Γ; Σ; ℓ c ≺ ℓ ⊢ t i : S i Γ; Σ; ℓ c ⊢ if t then t 1 else t 2 : (S 1 <: S 2 ) ≺ ℓ (Sref) Γ; Σ; ℓ c ⊢ t : S ′ S ′ <: S ℓ c ≼ label(S) Γ; Σ; ℓ c ⊢ ref S t : Ref ⊥ S (Sderef) Γ; Σ; ℓ c ⊢ t : Ref ℓ S Γ; Σ; ℓ c ⊢ !t : S ≺ ℓ (Sasgn) Γ; Σ; ℓ c ⊢ t 1 : Ref ℓ S 1 Γ; Σ; ℓ c ⊢ t 2 : S 2 S 2 <: S 1 ℓ c ≺ ℓ ≼ label(S 1 ) Γ; Σ; ℓ c ⊢ t 1 := t 2 : Unit ⊥ (S::) Γ; Σ; ℓ c ⊢ t : S 1 S 1 <: S 2 Γ; Σ; ℓ c ⊢ t :: S 2 : S 2 S <: S ℓ ≼ ℓ ′ Bool ℓ <: Bool ℓ ′ ℓ ≼ ℓ ′ Unit ℓ <: Unit ℓ ′ S ′ 1 <: S 1 S 2 <: S ′ 2 ℓ 1 ≼ ℓ ′ 1 ℓ ′ 2 ≼ ℓ 2 S 1 ℓ 2 -→ ℓ 1 S 2 <: S ′ 1 ℓ ′ 2 -→ ℓ ′ 1 S ′ 2 ℓ ≼ ℓ ′ Ref ℓ S <: Ref ℓ ′ S

A.1 SSL Ref : Static semantics

In this section we present the full definition of the static semantics of SSL Ref . Figure 11 presents the syntax of SSL Ref . Figure 12 presents the complete static semantics of SSL Ref , where the join between types and labels is defined as follows

Bool ℓ ≺ ℓ ′ = Bool (ℓ ≺ ℓ ′ ) (S 1 ℓ c -→ ℓ S 2 ) ≺ ℓ ′ = S 1 ℓ c -→ (ℓ ≺ ℓ ′ ) S 2 Ref ℓ S ≺ ℓ ′ = Ref (ℓ ≺ ℓ ′ ) S
Figure 13 presents the join and meet type functions. 

S <: S, S <: S <: : Type × Type ⇀ Type Bool ℓ <: Bool ℓ ′ = Bool (ℓ ≺ ℓ ′ ) (S 11 ℓ c -→ ℓ S 12 ) <: (S 21 ℓ ′ c -→ ℓ ′ S 22 ) = (S 11 <: S 21 ) ℓ c ≺ ℓ ′ c -→ (ℓ ≺ ℓ ′ ) (S 12 <: S 22 ) Ref ℓ S <: Ref ℓ ′ S = Ref (ℓ ≺ ℓ ′ ) S S <: S undefined otherwise <: : Type × Type ⇀ Type Bool ℓ <: Bool ℓ ′ = Bool (ℓ ≺ ℓ ′ ) (S 11 ℓ c -→ ℓ S 12 ) <: (S 21 ℓ ′ c -→ ℓ ′ S 22 ) = (S 11 <: S 21 ) ℓ c ≺ ℓ ′ c -→ (ℓ ≺ ℓ ′ ) (S 12 <: S 22 ) Ref ℓ S <: Ref ℓ ′ S = Ref (ℓ ≺ ℓ ′ ) S S <: S undefined otherwise

valid({ Bool

ℓ i }) valid({ S i1 }) valid({ S i2 }) valid({ S i1 ℓ c i -→ ℓ i S i2 }) valid({ S i }) valid({ Ref ℓ i S i }) valid({ Unit ℓ i }) A.2 SSL Ref : Dynamic semantics
In this section we present in Figure 14 the full definition of the dynamic semantics of SSL Ref .

A.3 SSL Ref : Noninterference definitions

In this section we present definitions and properties of noninterference for SSL Ref . Figure 15 presents the full definition of step-indexed logical relations. The proofs can be found in Appendix B.4.

Definition A.2. Let ρ be a substitution, Γ and Σ a type substitutions. We say that substitution ρ satisfy environment Γ and Σ, written ρ |= Γ; Σ, if and only if dom(ρ) = Γ and ∀x ∈ dom(Γ), ∀ℓ c , Γ; Σ; ℓ c ⊢ ρ(x) : S ′ , where S ′ <: Γ(x). 

Definition A.3 (Related substitutions). Tuples ⟨ℓ 1 , ρ 1 , µ 1 ⟩ and ⟨ℓ 2 , ρ 2 , µ 2 ⟩ are related on k steps, notation Γ; Σ ⊢ ⟨ℓ 1 , ρ 1 , µ 1 ⟩ ≈ k ℓ o ⟨ℓ 2 , ρ 2 , µ 2 ⟩, if ρ i |= Γ; Σ, Σ ⊢ µ 1 ≈ k ℓ o t | µ ℓ c -→ t | µ Notion of Reduction b 1ℓ 1 ⊕ b 2ℓ 2 | µ ℓ c -→ (b 1 ⊕ b 2 ) (ℓ 1 ≺ ℓ 2 ) | µ (λ ℓ ′ x : S.t) ℓ v | µ ℓ c -→ prot ℓ ([v/x]t) | µ if true ℓ then t 1 else t 2 | µ ℓ c -→ prot ℓ (t 1 ) | µ if false ℓ then t 1 else t 2 | µ ℓ c -→ prot ℓ (t 2 ) | µ prot ℓ (v) | µ ℓ c -→ v ≺ ℓ | µ ref S v | µ ℓ c -→ o ⊥ | µ [o → v ≺ ℓ c ] where o dom(µ ) !o ℓ | µ ℓ c -→ v ≺ ℓ | µ where µ (o) = v o ℓ :=v | µ ℓ c -→ unit ⊥ | µ [o → v ≺ ℓ c ≺ ℓ] v :: S | µ ℓ c -→ v ≺ label(S) | µ t | µ ℓ c -→ t | µ Reduction (R→) t 1 | µ 1 ℓ c -→ t 2 | µ 2 t 1 | µ 1 ℓ c -→ t 2 | µ 2 (Rf ) t 1 | µ 1 ℓ c -→ t 2 | µ 2 f [t 1 ] | µ 1 ℓ c -→ f [t 2 ] | µ 2 (Rprot) t 1 | µ 1 ℓ c ≺ ℓ -→ t 2 | µ 2 prot ℓ (t 1 ) | µ 1 ℓ c -→ prot ℓ (t 2 ) | µ 2
∀x ∈ Γ.Σ ⊢ ⟨ℓ 1 , ρ 1 (x), µ 1 ⟩ ≈ k ℓ o ⟨ℓ 2 , ρ 2 (x), µ 2 ⟩ : Γ(x)
Definition A.4 (Semantic Security Typing). 12) by lifting labels, types, predicates, and functions to their gradual counterparts. We also present some additional definitions needed in gradualizing SSL Ref which are not included in the paper. Finally we present some example typing derivations in Figure 19.

Γ; Σ; ℓ c |= t : S ⇐⇒ ∀ ℓ o ∈ Label, k ≥ 0, ρ 1 , ρ 2 ∈ Subst and µ 1 , µ 2 ∈ Store such that Σ ⊢ µ i and Γ; Σ ⊢ ⟨ℓ c , ρ 1 , µ 1 ⟩ ≈ k ℓ o ⟨ℓ c , ρ 2 , µ 2 ⟩ , we have Σ ⊢ ⟨ℓ c , ρ 1 (t), µ 1 ⟩ ≈ k ℓ o ⟨ℓ c , ρ 2 (t), µ 2 ⟩ : C(S) Proposition A.5 (Security Type Soundness). If Γ; Σ; ℓ c ⊢ t : S ′ i =⇒ ∀S, S ′ i <: S, Γ; Σ; ℓ c |= t : S Σ ⊢ ⟨ℓ 1 , v 1 , µ 1 ⟩ ≈ k ℓ o ⟨ℓ 2 , v 2 , µ 2 ⟩ : S ⇐⇒ ℓ 1 ≈ ℓ o ℓ 2 ∧ Σ ⊢ µ 1 ≈ k ℓ o µ 2 ∧ Σ; ℓ i ⊢ v i : S ′ i , S ′ i <: S, ∧ Ä obs ℓ o (ℓ i , S) =⇒ obsRel Σ,S k ,ℓ o (ℓ 1 , v 1 , µ 1 , ℓ 2 , , v 2 , µ 2 ) ä obsRel Σ,S k ,ℓ o (ℓ 1 , v 1 , µ 1 , ℓ 2 , v 2 , µ 2 ) ⇐⇒ (rval(v 1 ) = rval(v 2 )) if S ∈ {Bool g , Unit g , Ref g S ′ } obsRel Σ,S 1 ℓ ′ -→ ℓ S 2 k ,ℓ o (ℓ 1 , v 1 , µ 1 , ℓ 2 , v 2 , µ 2 ) ⇐⇒ ∀j ≤ k. ∀Σ ⊆ Σ ′ , Σ ′ ⊢ ⟨ℓ 1 , v ′ 1 , µ ′ 1 ⟩ ≈ j ℓ o ⟨ℓ 2 , v ′ 2 , µ ′ 2 ⟩ : S 1 , Σ ′ ⊢ ⟨ℓ 1 , v 1 v ′ 1 , µ ′ 1 ⟩ ≈ j ℓ o ⟨ℓ 2 , v 2 v ′ 2 , µ ′ 2 ⟩ : C(S 2 ≺ g) Σ ⊢ ⟨ℓ 1 , t 1 , µ 1 ⟩ ≈ k ℓ o ⟨ℓ 2 , t 2 , µ 2 ⟩ : C(S) ⇐⇒ ℓ 1 ≈ ℓ o ℓ 2 ∧ Σ ⊢ µ 1 ≈ k ℓ o µ 2 ∧ Σ; ℓ i ⊢ t i : S ′ i , S ′ i <: S, ∀j < k t i | µ i ℓ i -→ j t ′ i | µ ′ i =⇒ Σ ⊆ Σ ′ , Σ ′ ⊢ µ ′ 1 ≈ k -j ℓ o µ ′ 2 ∧ (irred(t ′ i ) =⇒ Σ ′ ⊢ ⟨ℓ 1 , t ′ 1 , µ ′ 1 ⟩ ≈ k -j ℓ o ⟨ℓ 2 , t ′ 2 , µ ′ 2 ⟩ : S) Σ ⊢ µ 1 ≈ k ℓ o µ 2 ⇐⇒ Σ ⊢ µ i ∧ ∀ℓ i , ℓ 1 ≈ ℓ o ℓ 2 , j < k, ∀o ∈ dom(µ 1 ) ∩ dom(µ 2 ) Σ ⊢ ⟨ℓ 1 , µ 1 (o), µ 1 ⟩ ≈ j ℓ o ⟨ℓ 2 , µ 2 (o), µ 2 ⟩ : Σ(o) ℓ 1 ≈ ℓ o ℓ 2 ⇐⇒ obs ℓ o (ℓ i ) ∨ ¬obs ℓ o (ℓ i ) µ 1 µ 2 ⇐⇒ dom(µ 1 ) ⊆ dom(µ 2 ) obs ℓ o (ℓ, S) ⇐⇒ obs ℓ o (ℓ) ∧ obs ℓ o (label(S)) obs ℓ o (ℓ) ⇐⇒ ℓ ≼ ℓ o Fig. 15. Security logical relations g, g c , g r ∈ GLabel, U ∈ GType, x ∈ Var, b ∈ Bool, ⊕ ∈ BoolOp l ∈ Loc, t ∈ GTerm, r ∈ RawValue v ∈ Value Γ ∈ Var fin ⇀ GType, Σ ∈ Loc fin ⇀ GType U ::= Bool g | U g c -→ g U | Ref g U | Unit g (gradual types) g ::= ℓ | ? (gradual labels) b ::= true | false (Booleans) r ::= b | λ g c x : U .t | unit | o (base values) v ::= r g (values) t ::= v | t t | t ⊕ t | if t then t else t (terms) ref U t | !t | t:=t | prot g (t) ⊕ ::= ∧ | ∨ (operations) Fig. 16. GSL Ref : Syntax Γ; Σ; g ⊢ t : U (U x) x : U ∈ Γ Γ; Σ; g c ⊢ x : U (U b) Γ; Σ; g c ⊢ b g : Bool g (U u) Γ; Σ; g c ⊢ unit g : Unit g (U o) o : U ∈ Σ Γ; Σ; g c ⊢ o g : Ref g U (U λ) Γ, x : U 1 ; Σ; g ′ c ⊢ t : U 2 Γ; Σ; g c ⊢ (λ g ′ c x : U 1 .t) g : U 1 g ′ c -→ g U 2 (U prot) Γ; Σ; g c ≺ g ⊢ t : U Γ; Σ; g c ⊢ prot g (t) : U ≺ g (U ⊕) Γ; Σ; g c ⊢ t 1 : Bool g 1 Γ; Σ; g c ⊢ t 2 : Bool g 2 Γ; Σ; g c ⊢ t 1 ⊕ t 2 : Bool (g 1 ≺ g 2 ) (U app) Γ; Σ; g c ⊢ t 1 : U 11 g ′ c -→ g U 12 Γ; Σ; g c ⊢ t 2 : U 2 U 2 ≲ U 11 ‰ g ≺ g c ≼ g ′ c Γ; Σ; g c ⊢ t 1 t 2 : U 12 ≺ g (U if) Γ; Σ; g c ⊢ t : Bool g Γ; Σ; g c ≺ g ⊢ t 1 : U 1 Γ; Σ; g c ≺ g ⊢ t 2 : U 2 Γ; Σ; g c ⊢ if t then t 1 else t 2 : (U 1 <: U 2 ) ≺ g (U ::) Γ; Σ; g c ⊢ t : U 1 U 1 ≲ U 2 Γ; Σ; g c ⊢ t :: U 2 : U 2 (U ref) Γ; Σ; g c ⊢ t : U ′ U ′ ≲ U g c ≼ label(U ) Γ; Σ; g c ⊢ ref U t : Ref ⊥ U (U deref) Γ; Σ; g c ⊢ t : Ref g U Γ; Σ; g c ⊢ !t : U ≺ g (U asgn) Γ; Σ; g c ⊢ t 1 : Ref g U 1 Γ; Σ; g c ⊢ t 2 : U 2 U 2 ≲ U 1 Â g ≺ g c ≼ label(U 1 ) Γ; Σ; g c ⊢ t 1 :=t 2 : Unit ⊥

A.4.1 Additional Definitions.

Definition A.6 (Type Concretization). γ S : GType → P(Type)

γ S (Bool g ) = { Bool ℓ | ℓ ∈ γ (g) } γ S (U 1 g ′ -→ g U 2 ) = γ S (U 1 ) γ (g ′ ) -→ γ (g) γ S (U 2 ) γ S (Unit g ) = { Unit ℓ | ℓ ∈ γ (g) } γ S (Ref g U ) = { Ref ℓ S | ℓ ∈ γ (g), S ∈ γ S (U ) }
Type concretization induces notions of precision and abstraction.

Definition A.7 (Type Precision). U 1 ⊑ U 2 , if and only if γ S (U 1 ) ⊆ γ S (U 2 ).

Definition A.8 (Type Abstraction). α S : P(Type) → GType

α S ({ Bool ℓ i }) = Bool α ({ ℓ i }) α S ({ Unit ℓ i }) = Unit α ({ ℓ i }) α S ({ S i1 ℓ ′ i -→ ℓ i S i2 }) = α S ({ S i1 }) α ({ ℓ ′ i }) -→ α ({ ℓ i }) α S ({ S i2 }) α S ({ Ref ℓ i S i }) = Ref α ({ ℓ i }) α S ({ S i }) α S ( Û S) is undefined otherwise
Proposition A.9 (α S is Sound and Optimal). Assuming Û S valid:

(i) Û S ⊆ γ S (α S ( Û S)) (ii) If Û S ⊆ γ S (U ) then α S ( Û S) ⊑ U . Definition A.10 (Gradual label meet). g 1 ≺ g 2 = α({ ℓ 1 ≺ ℓ 2 | (ℓ 1 , ℓ 2 ) ∈ γ (g 1 ) × γ (g 2 ) }).
Algorithmically: 

⊥ ≺ ? = ? ≺ ⊥ = ⊥ g ≺ ? = ? ≺ g = ? if g ⊥ ℓ 1 ≺ ℓ 2 = ℓ 1 ≺ ℓ 2 U <: U , U <: U <: : Type × Type ⇀ Type Bool g <: Bool g ′ = Bool (g ≺ g ′ ) (U 11 g c -→ g U 12 ) <: (U 21 g ′ c -→ g ′U 22 ) = (U 11 <: U 21 ) g c ≺ g ′ c -→ (g ≺ g ′ ) (U 12 <: U 22 ) Ref g U <: Ref g ′ U ′ = Ref (g ≺ g ′ ) U ⊓ U ′ U <: U undefined otherwise <: : Type × Type ⇀ Type Bool g <: Bool g ′ = Bool (g ≺ g ′ ) (U 11 g c -→ g U 12 ) <: (U 21 g ′ c -→ g ′U 22 ) = (U 11 <: U 21 ) g c ≺ g ′ c -→ (g ≺ g ′ ) (U 12 <: U 22 ) Ref g U <: Ref g ′ U ′ = Ref (g ≺ g ′ ) U ⊓ U ′ U <: U undefined otherwise
g 1 ≺ g 2 = α({ ℓ 1 ≺ ℓ 2 | (ℓ 1 , ℓ 2 ) ∈ γ (g 1 ) × γ (g 2 ) }) Algorithmically: ⊤ ≺ ? = ? ≺ ⊤ = ⊤ g ≺ ? = ? ≺ g = ? if g ⊤ ℓ 1 ≺ ℓ 2 = ℓ 1 ≺ ℓ 2 Definition A.12 (Label Meet). g 1 ⊓ g 2 = α(γ (g 1 ) ∩ γ (g 2 )). Algorithmically: g ⊓ g = g g ⊓ ? = ? ⊓ g = g Definition A.13 (Type Meet). U 1 ⊓ U 2 = α S (γ S (U 1 ) ∩ γ S (U 2 )). Algorithmically: g ⊓ g ′ Bool g ⊓ Bool g ′ g ⊓ g ′ Unit g ⊓ Unit g ′ g ⊓ g ′ U 1 ⊓ U 2 Ref g U 1 ⊓ Ref g ′ U 2 U 1 ⊓ U ′ 1 U 2 ⊓ U ′ 2 g 1 ⊓ g ′ 1 g 2 ⊓ g ′ 2 U 1 g 2 -→ g 1 U 2 ⊓ U ′ 1 g ′ 2 -→ g ′ 1 U ′ 2
Also, we introduce a function label, which yields the security label of a given type:

label : GType → Label label(Bool g ) = g label(Unit g ) = g label(U 1 → g U 2 ) = g label(Ref g U ) = g
Definition A.14 (Type Precision (inductive definition)).

g 1 ⊑ g 2 Bool g 1 ⊑ Bool g 2 g 1 ⊑ g 2 Unit g 1 ⊑ Unit g 2 U 11 ⊑ U 21 U 12 ⊑ U 22 g 1 ⊑ g 2 g c1 ⊑ g c2 U 11 g c 1 -→ g 1 U 12 ⊑ U 21 g c 2 -→ g 2 U 22 g 1 ⊑ g 2 U 1 ⊑ U 2 Ref g 1 U 1 ⊑ Ref g 2 U 2
Definition A.15 (Consistent label ordering (inductive definition)).

? ≼ g g ≼ ?

ℓ 1 ≼ ℓ 2 ℓ 1 ≼ ℓ 2
Definition A.16 (Consistent subtyping (inductive definition)). Ref .

g ≼ g ′ Bool g ≲ Bool g ′ g ≼ g ′ Unit g ≲ Unit g ′ g ≼ g ′ U 1 ≲ U 2 U 2 ≲ U 1 Ref g U 1 ≲ Ref g ′ U 2 U ′ 1 ≲ U 1 U 2 ≲ U ′ 2 g 1 ≼ g ′ 1 g ′ 2 ≼ g 2 U 1 g 2 -→ g 1 U 2 ≲ U ′ 1 g ′ 2 -→ g ′ 1 U ′ 2 A.5 GSL ε Ref :
Int ? .(if pub < priv then 1 L else 2 L ) :: Int L ) L : Int ? ⊤ -→ L Int L •; .; L ⊢ (λ ⊤ pub : Int L .(λ ⊤ priv : Int ? .(if pub < priv then 1 L else 2 L ) :: Int L ) L ) L : Int L ⊤ -→ L Int ? ⊤ -→ L Int L D •; .; L ⊢ mix 1 L : Int ? ⊤ -→ L Int L •; .; L ⊢ 5 L : Int L Int L ≲ Int ? •; .; L ⊢ (mix 1 L ) 5 L : Int L D •; .; L ⊢ mix 1 L : Int ? ⊤ -→ L Int L •; .; L ⊢ 5 H : Int H Int H ≲ Int ? •; .; L ⊢ (mix 1 L ) 5 H : Int L D •; .; L ⊢ mix ′ 1 L : Int H ⊤ -→ L Int L •; .; L ⊢ 5 L : Int L Int L ≲ Int H •; .; L ⊢ (mix ′ 1 L ) 5 L : Int L D •; .; L ⊢ mix ′ 1 L : Int H ⊤ -→ L Int L •; .; L ⊢ 5 H : Int H Int H ≲ Int H •; .; L ⊢ (mix ′ 1 L ) 5 H : Int L Fig. 19. GSL Ref : Example typing derivations t ::= v | εt @ ε εt | εt ⊕ εt | if εt then εt else εt | ref U ε εt | !εt | εt := ε εt | prot ε g εg(εt) | εt r ::= b | (λ g x .t) | unit | o u ::= r g | x v ::= u | εu

We extend the syntax of GSL ε

Ref with frames defined as follows:

f ::= h[ε] h ::= □ ⊕ et | ev ⊕ □ | □ @ ε et | ev @ ε □ | ε □ | if □ then et else et | !□ | □ := ε et | ev := ε □ | ref U ε □
We present the complete dynamic semantics in Figure 22, and the evaluation frames and reduction in Figure 23. Auxiliary functions for evidence for labels is presented in Figure 24. Auxiliary functions for evidence for types is shown in Figure 25, and the inversion functions for evidence in Figure 26. 

x : U ∈ Γ Γ; Σ; εg c ⊢ x : U (Ib) Γ; Σ; εg c ⊢ b g : Bool g (Iu) Γ; Σ; εg c ⊢ unit g : Unit g (Il) o : U ∈ Σ Γ; Σ; εg c ⊢ o g : Ref g U (Iλ) Γ, x : U 1 ; Σ; ε ′ g ′ ⊢ t : U 2 ε ′ = I ⟳ ≼ (g ′ ) Γ; Σ; εg c ⊢ (λ g ′ x : U 1 .t) g : U 1 g ′ -→ g U 2 (Iprot) Γ; Σ; ε ′ g ′ c ⊢ t : U ′ ε 1 ⊢ U ′ ≲ U ε 2 ⊢ g ′ ≼ g Γ; Σ; εg c ⊢ prot ε 2 g ′ ε ′ g ′ c (ε 1 t) : U ≺ g (Iε) Γ; Σ; εg c ⊢ t : U 1 ε 1 ⊢ U 1 ≲ U 2 Γ; Σ; εg c ⊢ ε 1 t : U 2 (Iapp) Γ; Σ; εg c ⊢ t i : U i ε 1 ⊢ U 1 ≲ U 11 g ′ -→ g U 12 ε 2 ⊢ U 2 ≲ U 11 ε 3 ⊢ ‰ g ′ c ≺ g ≼ g ′ Γ; Σ; εg c ⊢ ε 1 t 1 @ ε 3 ε 2 t 2 : U 12 ≺ g (Iif) Γ; Σ; εg c ⊢ t 1 : U 1 ε 1 ⊢ U 1 ≲ Bool g ε ′ g ′ c = (ε ≺ ilbl(ε 1 ))(g c ≺ g) Γ; Σ; ε ′ g ′ c ⊢ t 2 : U 2 ε 2 ⊢ U 2 ≲ U 2 <: U 3 Γ; Σ; ε ′ g ′ c ⊢ t 3 : U 3 ε 3 ⊢ U 3 ≲ U 2 <: U 3 Γ; Σ; εg c ⊢ if ε 1 t 1 then ε 2 t 2 else ε 3 t 3 : (U 2 <: U 3 ) ≺ g (I⊕) Γ; Σ; εg c ⊢ t 1 : U 1 ε 1 ⊢ U 1 ≲ Bool g 1 Γ; Σ; εg c ⊢ t 2 : U 2 ε 2 ⊢ U 2 ≲ Bool g 2 Γ; Σ; εg c ⊢ ε 1 t 1 ⊕ ε 2 t 2 : Bool g 1 ≺ g 2 (Iref) Γ; Σ; εg c ⊢ t : U ′ ε 1 ⊢ U ′ ≲ U ε 2 ⊢ g ′ c ≼ label(U ) Γ; Σ; εg c ⊢ ref U ε 2 ε 1 t : Ref ⊥ U (Ideref) Γ; Σ; εg c ⊢ t : U ′ ε ′ ⊢ U ′ ≲ Ref g U Γ; Σ; εg c ⊢ !ε ′ t : U ≺ g (Iassgn) Γ; Σ; εg c ⊢ t 1 : Ref g ′ U ′ 1 ε 1 ⊢ Ref g ′ U ′ 1 ≲ Ref g U 1 Γ; Σ; εg c ⊢ t 2 : U 2 ε 2 ⊢ U 2 ≲ U 1 ε 3 ⊢ Â g ′ c ≺ g ≼ label(U 1 ) Γ; Σ; εg c ⊢ ε 1 t 1 := ε 3 ε 2 t 2 : Unit ⊥ Every type rule has the extra judgment ε ⊢ g c ≼ g ′ c .
; Σ ⊢ ⟨ ĝ1 , ρ 1 , µ 1 ⟩ ≈ k ℓ o ⟨ ĝ2 , ρ 2 , µ 2 ⟩, if ρ i |= Γ, Σ ⊢ µ 1 ≈ k ℓ o µ 2 and ∀x ∈ dom(Γ).Σ ⊢ ⟨ ĝ1 , ρ 1 (x), µ 1 ⟩ ≈ k ℓ o ⟨ ĝ2 , ρ 2 (x), µ 2 ⟩ : Γ(x) ε g c -→ : C × (C ∪ { error }) (r 1) ε 1 (b 1 ) g 1 ⊕ ε 2 (b 2 ) g 2 | µ ε g c -→ (ε 1 ≺ ε 2 )(b 1 ⊕ b 2 ) (g 1 ≺ g 2 ) | µ (r 2) prot ε 1 g 1 ε 2 g 2 (ε 3 u) | µ ε g c -→ (ε 3 ≺ ε 1 )(u ≺ g 1 ) | µ (r 3) ε 1 (λ g ′ x : U .t) g @ ε 3 ε 2 u | µ ε g c -→ ® prot ilbl(ε 1 )g ε ′ 1 g ′ 1 (icod(ε 1 )([ε ′ 2 u/x]t)) | µ error if ε ′ 1 or ε ′ 2 are not defined where: ε ′ 1 = (ε ≺ ilbl(ε 1 )) • ≼ ε 3 • ≼ ilat(ε 1 ) ε ′ 2 = ε 2 • <: idom(ε 1 ) g ′ 1 = (g c ≺ g) (r 4) if ε 1 b g 1 then t 2 else t 3 | µ ε g c -→ ® prot ilbl(ε 1 )g 1 ε ′ g ′ (ε 2 t 2 ) | µ if b = true prot ilbl(ε 1 )g 1 ε ′ g ′ (ε 3 t 3 ) | µ if b = false
where:

ε ′ = ε ≺ ilbl(ε 1 ) g ′ = g c ≺ g 1 (r 5) ref U ε 2 ε 1 u | µ ε g c -→ o ⊥ | µ [o → ε ′ (u ≺ g c )] error if (ε • ≼ ε 2 ) is not defined where: o dom(µ ) ε ′ = ε 1 ≺ (ε • ≼ ε 2 ) (r 6) !ε 1 o g | µ ε g c -→ prot ilbl(ε 1 )g ε ′ g ′ (iref (ε 1 )v)
where:

µ (o) = v ε ′ = ε ≺ ilbl(ε 1 ) g ′ = g c ≺ g (r 7) ε 1 o g := ε 3 ε 2 u | µ ε g c -→ unit ⊥ | µ [o → ε ′ (u ≺ (g c ≺ g))]
error if ε ′ is not defined, or ε ⌊≤⌋ ilbl(ε ′′ )does not hold where: Proposition 5.5 (Security Type Soundness). Γ; Σ; ĝ ⊢ t :

µ (o) = ε ′′ u ′ ε ′ = (ε 2 • <: iref (ε 1 )) ≺ ((ε ≺ ilbl(ε 1 )) • ≼ ε 3 • ≼ ilbl(iref (ε 1 ))) ε 1 (ε 2 u) -→ <: ® (ε 2 • <: ε 1 )u error if not defined -→ <: : EvTerm × (EvTerm ∪ { error })
Γ; Σ; ĝ |= t : U ⇐⇒ ∀ ℓ o ∈ Label, k ≥ 0, ρ 1 , ρ 2 ∈ Subst and µ 1 , µ 2 ∈ Store such that Σ ⊢ µ i and Γ; Σ ⊢ ⟨ ĝ, ρ 1 , µ 1 ⟩ ≈ k ℓ o ⟨ ĝ, ρ 2 , µ 2 ⟩ , we have Σ ⊢ ⟨ ĝ, ρ 1 (t), µ 1 ⟩ ≈ k ℓ o ⟨ ĝ, ρ 2 (t), µ 2 ⟩ : C(U ) (R-→) t | µ ε g c -→ r r ∈ C ∪ { error } t | µ ε g c -→ r (Rf ) t | µ ε g c -→ t ′ | µ ′ f [t] | µ ε g c -→ f [t ′ ] | µ ′ (Rprot) t | µ ε ′ g ′ c -→ t ′ | µ ′ prot ε 1 g 1 ε ′ g ′ c (εt) | µ ε g c -→ prot ε 1 g 1 ε ′ g ′ c (εt ′ ) | µ ′ (Rh) εv -→ <: ε ′ u h[εv] | µ ε g c -→ h[ε ′ u] | µ (Rproth) εv -→ <: ε ′ u prot ε 1 g 1 ε ′ g ′ c (εv) | µ ε g c -→ prot ε 1 g 1 ε ′ g ′ c (ε ′ u) | µ (Rf err) t | µ ε g c -→ error f [t] | µ ε g c -→ error (Rherr) εv -→ <: error h[εv] | µ ε g c -→ error (Rproterr) t | µ ε ′ g ′ c -→ error prot ε 1 g 1 ε ′ g ′ c (εt) | µ ε g c -→ error (Rprotherr) εv -→ <: error prot ε 1 g 1 ε ′ g ′ c (εv) | µ ε g c -→ error
ℓ 1 ≺ ℓ ′ 1 ≼ ℓ 2 ≺ ℓ ′ 2 [ℓ 1 , ℓ 2 ] ⊓ [ℓ ′ 1 , ℓ ′ 2 ] = [ℓ 1 ≺ ℓ ′ 1 , ℓ 2 ≺ ℓ ′ 2 ] ⟨ı 1 , ı 2 ⟩ ⊓ ⟨ı ′ 1 , ı ′ 2 ⟩ = ⟨ı 1 ⊓ ı ′ 1 , ı 2 ⊓ ı ′ 2 ⟩ ⟨ı 1 , ı 2 ⟩ ≺ ⟨ı ′ 1 , ı ′ 2 ⟩ = ⟨ı 1 ≺ ı ′ 1 , ı 2 ≺ ı ′ 2 ⟩ ⟨ı 1 , ı 2 ⟩ ≺ ⟨ı ′ 1 , ı ′ 2 ⟩ = ⟨ı 1 ≺ ı ′ 1 , ı 2 ≺ ı ′ 2 ⟩ ℓ 1 ≼ ℓ ′ 2 ℓ ′ 1 ≼ ℓ ′′ 2 ℓ 1 ≼ ℓ ′′ 2 △ ≼ ([ℓ 1 , ℓ 2 ], [ℓ ′ 1 , ℓ ′ 2 ], [ℓ ′′ 1 , ℓ ′′ 2 ]) = ⟨[ℓ 1 , ℓ 2 ≺ ℓ ′ 2 ≺ ℓ ′′ 2 ], [ℓ 1 ≺ ℓ ′ 1 ≺ ℓ ′′ 1 , ℓ ′′ 2 ]⟩ ⟨ı 1 , ı 21 ⟩ • ≼ ⟨ı 22 , ı 3 ⟩ = △ ≼ (ı 1 , ı 21 ⊓ ı 22 , ı 3 ) ℓ 3 ≼ ℓ ′ 3 ⟨[ℓ 1 , ℓ 2 ], [ℓ 3 , ℓ 4 ]⟩ ⌊≤⌋ ⟨[ℓ ′ 1 , ℓ ′ 2 ], [ℓ ′ 3 , ℓ ′ 4 ]⟩
U =⇒ Γ; Σ; ĝ |= t : U Proof. Proof in Appendix E. □ Bool ı ⊓ Bool ı ′ = Bool ı ⊓ı ′ Ref ı E 1 ⊓ Ref ı ′ E 2 = Ref ı ⊓ı ′ E 1 ⊓ E 2 (E 11 ı 2 -→ ı 1 E 12 ) ⊓ (E 21 ı ′ 2 -→ ı ′ 1 E 22 ) = (E 11 ⊓ E 21 ) ı 2 ⊓ı ′ 2 -→ ı 1 ⊓ı ′ 1 (E 12 ⊓ E 22 ) E ⊓ E ′ undefined otherwise Bool ı 1 ≺ ı 2 = Bool (ı 1 ≺ ı 2 ) E 1 ı 2 -→ ı 1 E 2 ≺ ı 3 = E 1 ı 2 -→ (ı 1 ≺ ı 3 ) E 2 Ref ı 1 E ≺ ı 2 = Ref (ı 1 ≺ ı 2 ) E Bool ı 1 ≺ ı 2 = Bool (ı 1 ≺ ı 2 ) E 1 ı 2 -→ ı 1 E 2 ≺ ı 3 = E 1 ı 2 -→ (ı 1 ≺ ı 3 ) E 2 Ref ı 1 E ≺ ı 2 = Ref (ı 1 ≺ ı 2 ) E ⟨E 1 , E 2 ⟩ ≺ ⟨ı 1 , ı 2 ⟩ = ⟨E 1 ≺ ı 1 , E 2 ≺ ı 2 ⟩ ⟨E 1 , E 2 ⟩ ≺ ⟨ı 1 , ı 2 ⟩ = ⟨E 1 ≺ ı 1 , E 2 ≺ ı 2 ⟩ Bool ı 1 ≺ Bool ı 2 = Bool (ı 1 ≺ ı 2 ) E 1 ı 2 -→ ı 1 E 2 ≺ E ′ 1 ı ′ 2 -→ ı ′ 1 E ′ 2 = E 1 ≺ E ′ 1 ı 2 ≺ ı ′ 2 -→ (ı 1 ≺ ı ′ 1 ) E 2 ≺ E ′ 2 Ref ı 1 E 1 ≺ Ref ı ′ 1 E ′ 1 = Ref (ı 1 ≺ ı ′ 1 ) E 1 ⊓ E ′ 1 Bool ı 1 ≺ Bool ı 2 = Bool (ı 1 ≺ ı 2 ) E 1 ı 2 -→ ı 1 E 2 ≺ E ′ 1 ı ′ 2 -→ ı ′ 1 E ′ 2 = E 1 ≺ E ′ 1 ı 2 ≺ ı ′ 2 -→ (ı 1 ≺ ı ′ 1 ) E 2 ≺ E ′ 2 Ref ı 1 E 1 ≺ Ref ı ′ 1 E ′ 1 = Ref (ı 1 ≺ ı ′ 1 ) E 1 ⊓ E ′ 1 ⟨E 1 , E 2 ⟩ ≺ ⟨E ′ 1 , E ′ 2 ⟩ = ⟨E 1 ≺ E ′ 1 , E 2 ≺ E ′ 2 ⟩ ⟨E 1 , E 2 ⟩ ≺ ⟨E ′ 1 , E ′ 2 ⟩ = ⟨E 1 ≺ E ′ 1 , E 2 ≺ E ′ 2 ⟩ △ ≼ (ı 1 , ı 2 , ı 3 ) = ⟨ı ′ 1 , ı ′ 3 ⟩ △ <: (Bool ı 1 , Bool ı 2 , Bool ı 3 ) = ⟨Bool ı ′ 1 , Bool ı ′ 3 ⟩ △ <: (E 31 , E 21 , E 11 ) = ⟨E ′ 31 , E ′ 11 ⟩ △ <: (E 12 , E 22 , E 32 ) = ⟨E ′ 12 , E ′ 32 ⟩ △ ≼ (ı 1 , ı 2 , ı 3 ) = ⟨ı ′ 1 , ı ′ 3 ⟩ △ ≼ (ı 13 , ı 12 , ı 11 ) = ⟨ı ′ 13 , ı ′ 11 ⟩ △ <: (E 11 ı 11 -→ ı 1 E 12 , E 21 ı 12 -→ ı 2 E 22 , E 31 ı 13 -→ ı 3 E 32 ) = ⟨E ′ 11 ı ′ 11 -→ ı ′ 1 E ′ 12 , E ′ 31 ı ′ 13 -→ ı ′ 3 E ′ 32 ⟩ △ ≼ (ı 1 , ı 2 , ı 3 ) = ⟨ı ′ 1 , ı ′ 3 ⟩ E ′ 1 = E 1 ⊓ E 2 E ′ 3 = E 2 ⊓ E 3 △ <: (Ref ı 1 E 1 , Ref ı 2 E 2 , Ref ı 3 E 3 ) = ⟨Ref ı ′ 1 E ′ 1 , Ref ı ′ 3 E ′ 3 ⟩ ⟨E 1 , E 21 ⟩ • <: ⟨E 22 , E 3 ⟩ = △ <: (E 1 , E 21 ⊓ E 22 , E 3 ) Fig. 25. GSL ε Ref :
Auxiliary functions for the dynamic semantics (Types)

ilbl(⟨Bool ı 1 , Bool ı 2 ⟩) = ⟨ı 1 , ı 2 ⟩ ilbl(⟨Unit ı 1 , Unit ı 2 ⟩) = ⟨ı 1 , ı 2 ⟩ ilbl(⟨Ref ı 1 U 1 , Ref ı 2 U 2 ⟩) = ⟨ı 1 , ı 2 ⟩ ilbl(⟨E 1 ı 2 -→ ı 1 E 2 , E ′ 1 ı ′ 2 -→ ı ′ 1 E ′ 2 ⟩) = ⟨ı 1 , ı ′ 1 ⟩ iref (⟨Ref ı 1 E 1 , Ref ı 2 E 2 ⟩) = ⟨E 1 , E 2 ⟩ iref (⟨E 1 , E 2 ⟩) = undefined otherwise idom(⟨E 1 ı 2 -→ ı 1 E 2 , E ′ 1 ı ′ 2 -→ ı ′ 1 E ′ 2 ⟩) = ⟨E ′ 1 , E 1 ⟩ idom(⟨E 1 , E 2 ⟩) = undefined otherwise icod(⟨E 1 ı 2 -→ ı 1 E 2 , E ′ 1 ı ′ 2 -→ ı ′ 1 E ′ 2 ⟩) = ⟨E 2 , E ′ 2 ⟩ icod(⟨E 1 , E 2 ⟩) = undefined otherwise Fig. 26. GSL ε Ref : Inversion functions for evidence Γ; Σ; g c ⊢ t t ′ : U (T x) Γ(x) = U Γ; Σ; g c ⊢ x x : U (T b) Γ; Σ; g c ⊢ b g b g : Bool g (T u) Γ; Σ; g c ⊢ unit g unit g : Unit g (T λ) Γ; Σ; g ′ ⊢ t t ′ : U 2 Γ; Σ; g c ⊢ (λ g ′ x : U 1 .t) g (λ g ′ x : U 1 .t ′ ) g : U 1 g ′ -→ g U 2 (T ⊕) Γ; Σ; g c ⊢ t 1 t ′ 1 : Bool g 1 Γ; Σ; g c ⊢ t 2 t ′ 2 : Bool g 2 ε 1 = I ⟳ Bool g 1 ε 2 = I ⟳ Bool g 2 Γ; Σ; g c ⊢ t 1 ⊕ t 2 ε 1 t ′ 1 ⊕ ε 2 t ′ 2 : Bool g 1 ≺ g 2 (T app) Γ; Σ; g c ⊢ t 1 t ′ 1 : U 11 g ′ -→ g U 12 Γ; Σ; g c ⊢ t 2 t ′ 2 : U 2 ε 1 = I ⟳ U 11 g ′ -→ g U 12 ε 2 = I U 2 ≲ U 11 ε 3 = I ‰ g c ≺ g ≼ g ′ Γ; Σ; g c ⊢ t 1 t 2 ε 1 t ′ 1 @ ε 3 ε 2 t ′ 2 : U 12 ≺ g (T if) Γ; Σ; g c ⊢ t 1 t ′ 1 : Bool g g ′ c = g c ≺ g Γ; Σ; g ′ c ⊢ t 2 t ′ 2 : U 2 Γ; Σ; g ′ c ⊢ t 3 t ′ 3 : U 3 ε 1 = I ⟳ Bool g ε 2 = I Â U 2 <: U 2 <: U 3 ε 3 = I Â U 3 <: U 2 <: U 3 Γ; Σ; g c ⊢ if t 1 then t 2 else t 3 if ε 1 t 1 then ε 2 t 2 else ε 3 t 3 : (U 2 <: U 3 ) ≺ g (T assgn) Γ; Σ; g c ⊢ t 1 t ′ 1 : Ref g U 1 Γ; Σ; g c ⊢ t 2 t ′ 2 : U 2 ε 1 = I ⟳ Ref g U 1 ε 2 = I U 2 ≲ U 1 ε 3 = I Â g c ≺ g ≼ label(U 1 ) Γ; Σ; g c ⊢ t 1 :=t 2 ε 1 t ′ 1 := ε 3 ε 2 t ′ 2 : Unit ⊥ (T ref) Γ; Σ; g c ⊢ t t ′ : U ′ ε 1 = I U ′ ≲ U ε 2 = I g c ≼ label(U ) Γ; Σ; g c ⊢ ref U t ref U ε 2 ε 1 t ′ : Ref ⊥ U (T deref) Γ; Σ; g c ⊢ t t ′ : Ref g U ε = I ⟳ Ref g U Γ; Σ; g c ⊢ !t !εt ′ : U ≺ g (T ::) Γ; Σ; g c ⊢ t t ′ : U 1 ε = I U 1 ≲ U 2 Γ; Σ; g c ⊢ t :: U 2 εt ′ : U 2
where I ⟳ g = I g ≼ g and 

I ⟳ U = I U ≲ U Fig. 27. GSL Ref : translation to GSL ε Ref terms bounds(?) = [⊥, ⊤] bounds(ℓ) = [ℓ, ℓ] bounds(x 1 ≺ x 2 ) = bounds(x 1 ) ≺ bounds(x 2 ) bounds(x 1 ≺ x 2 ) = bounds(x 1 ) ≺ bounds(x 2 ) bounds(x 1 ⊓ x 2 ) = bounds(x 1 ) ⊓ bounds(x 2 ) bounds(F 1 (x i ) ≺ F 2 (x i )) = bounds(F 1 (x i )) ≺ bounds(F 2 (x i )) bounds(F 1 (x i ) ≺ F 2 (x i )) = bounds(F 1 (x i )) ≺ bounds(F 2 (x i )) bounds(F 1 (x i ) ⊓ F 2 (x i )) = bounds(F 1 (x i )) ⊓ bounds(F 2 (ℓ i )) bounds(F 1 (g i )) = [ℓ 1 , ℓ 2 ] bounds(F 2 (g j )) = [ℓ ′ 1 , ℓ ′ 2 ] I( Â F 1 (g 1 , ...g n ) ≼ F 2 (g n+1 , ...g n+m )) = ⟨[ℓ 1 , ℓ 2 ≺ ℓ ′ 2 ], [ℓ 1 ≺ ℓ ′ 1 , ℓ ′ 2 ]⟩ where F 1 : GLabel n → GLabel and F 2 : GLabel m → GLabel. I ⟳ ( Â F (g 1 , ..., g n )) = I( Â F (g 1 , ..., g n ) ≼ F (g 1 , ..., g n ))
P T 2 ) = liftP(P T 1 ) ≺ liftP(P T 2 ) liftP(P T 1 <: P T 2 ) = liftP(P T 1 ) ≺ liftP(P T 2 ) liftP(P T 1 ⊓ P T 2 ) = liftP(P T 1 ) ⊓ liftP(P T 2 ) invert(_) = _ invert(P T 1 <: P T 2 ) = invert(P T 1 ) <: invert(P T 2 ) invert(P T 1 <: P T 2 ) = invert(P T 1 ) <: invert(P T 2 ) invert(P T 1 ⊓ P T 2 ) = invert(P T 1 ) ⊓ invert(P T 2 ) tomeet(_) = _ tomeet(P T 1 <: P T 2 ) = tomeet(P T 1 ) ⊓ tomeet(P T 2 ) tomeet(P T 1 <: P T 2 ) = tomeet(P T 1 ) ⊓ tomeet(P T 2 ) tomeet(P T 1 ⊓ P T 2 ) = tomeet(P T 1 ) ⊓ tomeet(P T 2 ) I Â liftP(G 1 )(ℓ i ) <: liftP(G 2 )(ℓ j ) = ⟨ı 1 , ı 2 ⟩ I Â G 1 (Bool g i ) ≼ G 2 (Bool g j ) = ⟨Bool ı 1 , Bool ı 2 ⟩ I Â invert(G 2 )(U j1 ) <: invert(G 1 )(U i1 ) = ⟨E ′ 21 , E ′ 11 ⟩ I Â G 1 (U i2 ) <: G 2 (U j2 ) = ⟨E 12 , E 22 ⟩ I Â liftP(G 1 )(ℓ i1 ) <: liftP(G 2 )(ℓ j1 ) = ⟨ı 11 , ı 12 ⟩ I Â liftP(invert(G 2 ))(ℓ j2 ) <: liftP(invert(G 1 ))(ℓ i2 ) = ⟨ı 22 , ı 21 ⟩ I Â G 1 (U i1 g i 2 -→ g i 1 U i2 ) <: G 2 (U j1 g j2 -→ g j1 U j2 ) = ⟨E 11 ı 21 -→ ı 11 E 12 , E 21 ı 22 -→ ı 12 E 22 ⟩ I Â liftP(G 1 )(ℓ i ) <: liftP(G 2 )(ℓ j ) = ⟨ı 1 , ı 2 ⟩ I Â tomeet(G 1 )(U i ) <: tomeet(G 2 )(U j ) = ⟨E 1 , E 2 ⟩ I Â tomeet(G 2 )(U j ) <: tomeet(G 1 )(U i ) = ⟨E ′ 2 , E ′ 1 ⟩ I Â G 1 (Ref g i U i ) <: G 2 (Ref g j U j ) = ⟨Ref ı 1 E 1 ⊓ E ′ 1 , Ref ı 2 E 2 ⊓ E ′ 2 ⟩ where G 1 : GLabel n → GLabel and G 2 : GLabel m → GLabel, and G 1 (x 1 , ..., x n ) = P T 1 (x 1 , ..., x n ), G 2 (x 1 , ..., x n ) = P T 2 (x 1 , ..., x m ). I ⟳ ( Â F (U 1 , ..., U n )) = I Â F (U 1 , ..., U n ) <: F (U 1 , ..., U n ) Fig. 29. GSL ε Ref : Initial evidence for gradual types Σ ⊢ ⟨ ĝ1 , v 1 , µ 1 ⟩ ≈ k ℓ o ⟨ ĝ2 , v 2 , µ 2 ⟩ : U ⇐⇒ ĝ1 ≈ ℓ o ĝ2 ∧ Σ ⊢µ 1 ≈ k ℓ o µ 2 ∧ •; Σ; ĝi ⊢ v i : U ∧ (obsVal U ℓ o (v i ) ∨ ¬obsVal U ℓ o (v i )) ∧ (obsVal U ℓ o (v i ) ∧ obsEv g ′ i ℓ o (ε i )) =⇒ obsRel Σ,U k ,ℓ o ( ĝ1 , v 1 , µ 1 , ĝ2 , v 2 , µ 2 )
where ĝi = ε i g i , and 

ε i ⊢ g i ≼ g ′ i . obsRel Σ,U k ,ℓ o ( ĝ1 , v 1 , µ 1 , ĝ2 , v 2 , µ 2 ) ⇐⇒ rval(v 1 ) = rval(v 2 ) if U ∈ {Bool g , Unit g , Ref g U ′ } obsRel Σ,U 1 g 32 -→ g 31 U 2 k ,ℓ o ( ĝ1 , v 1 , µ 1 , ĝ2 , v 2 , µ 2 ) ⇐⇒ ∀j ≤ k. ∀U ′ = U ′ 1 g ′ 32 -→ g ′ 31 U ′ 2 , ∀U ′′ 1 , ∀ ĝ′ i , s.t. ĝi ≤ ℓ o ĝ′ i , ε 11 ⊢ U 1 g 32 -→ g 31 U 2 ≲ U ′ , and ε 12 ⊢ U ′′ 1 ≲ U ′ 1 , ε 3i ⊢ Â g ′ ci ≺ g ′ 31 ≼ g ′ 32 we have: ∀v ′ i , µ ′ i , Σ ′ ,Σ ⊆ Σ ′ ,Σ ′ ⊢ ⟨ ĝ1 , v ′ 1 , µ ′ 1 ⟩ ≈ j ℓ o ⟨ ĝ2 , v ′ 2 , µ ′ 2 ⟩ : U ′′ 1 , dom(µ i ) ⊆ dom(µ ′ i ), Σ ′ ⊢ ⟨ ĝ1 , (ε 11 v 1 @ ε 31 ε 12 v ′ 1 ), µ ′ 1 ⟩ ≈ j ℓ o ⟨ ĝ2 , (ε 11 v 2 @ ε 32 ε 12 v ′ 2 ), µ ′ 2 ⟩ : C(U ′ 2 ≺ g ′ 31 ) where ĝ′ i = ε ′ i g ′ i , and ε ′ i ⊢ g ′ i ≼ g ′ ci . Fig. 30. Related values Σ ⊢ ⟨ ĝ1 , t 1 , µ 1 ⟩ ≈ k ℓ o ⟨ ĝ2 , t 2 , µ 2 ⟩ : C(U ) ⇐⇒ ĝ1 ≈ ℓ o ĝ2 ∧ µ 1 ≈ k ℓ o µ 2 ∧ ∀ ĝ′ i , s.t. ĝi ≤ ℓ o ĝ′ i and 
•; Σ; ĝ′ i ⊢ t i : U , ∀j < k, t i | µ i ĝ′ i -→ j t ′ i | µ ′ i =⇒ ∃Σ ′ , Σ ⊆ Σ ′ Σ ′ ⊢µ ′ 1 ≈ k -j ℓ o µ ′ 2 ∧ ((irred(t ′ 1 ) ∧ irred(t ′ 2 )) =⇒ Σ ′ ⊢ ⟨ ĝ1 , t ′ 1 , µ ′ 1 ⟩ ≈ k -j ℓ o ⟨ ĝ2 , t ′ 2 , µ ′ 2 ⟩ : U )

B.1 SSL Ref : Static type safety

In this section we present the proof of type safety for SSL Ref .

Definition B.1 (Well typeness of the store). A store µ is said to be well typed with respect to a typing context Γ and a store typing Σ, written Γ; Σ ⊢ µ, if dom(µ) = dom(Σ) and ∀o ∈ dom(µ), Γ; Σ; ⊥ ⊢ µ(o) : S and S <:

Σ(o). Lemma B.2. If Γ; Σ; ℓ c ⊢ t : S then ∀ℓ ′ c ≼ ℓ c , Γ; Σ; ℓ ′ c ⊢ t : S.
Proof. By induction on the derivation of Γ; Σ; ℓ c ⊢ t : S. Noticing that none of the inferred types of the type rules depend on ℓ c .

Case (Sx, Sb, Su, Sl). Trivial because neither the premises and the infered type depend on the security effect.

Case (S⊕). Then

t = b 1ℓ 1 ⊕ b 2ℓ 2 and (S⊕) (Sb) Γ; Σ; ℓ c ⊢ b 1ℓ 1 : Bool ℓ 1 (Sb) Γ; Σ; ℓ c ⊢ b 2ℓ 2 : Bool ℓ 2 Γ; Σ; ℓ c ⊢ b 1ℓ 1 ⊕ b 2ℓ 2 : Bool (ℓ 1 ≺ ℓ 2 )
Suppose ℓ ′ c such that ℓ ′ c ≼ ℓ c , then by induction hypotheses on the premises:

(S⊕) (Sb) Γ; Σ; ℓ ′ c ⊢ b 1ℓ 1 : Bool ℓ ′ 1 (Sb) Γ; Σ; ℓ ′ c ⊢ b 2ℓ 2 : Bool ℓ ′ 2 Γ; Σ; ℓ ′ c ⊢ b 1ℓ 1 ⊕ b 2ℓ 2 : Bool (ℓ ′ 1 ≺ ℓ ′ 2 )
where ℓ ′ 1 = ℓ 1 and ℓ ′ 2 = ℓ 2 and the result holds. Case (Sprot). Then t = prot ℓ (t) and (Sprot)

Γ; Σ; ℓ c ≺ ℓ ⊢ t : S Γ; Σ; ℓ c ⊢ prot ℓ (t) : S ≺ ℓ Suppose ℓ ′ c such that ℓ ′ c ≼ ℓ c . Considering that ℓ ′ c ≺ ℓ ≼ ℓ c ≺ ℓ,
then by induction hypotheses on the premise:

(Sprot) Γ; Σ; ℓ ′ c ≺ ℓ ⊢ t : S Γ; Σ; ℓ ′ c ⊢ prot ℓ (t) : S ≺ ℓ
and therefore the result holds.

Case (Sapp). Then t = t 1 t 2 and

(Sapp) 

(Sλ) D 1 Γ; Σ; ℓ c ⊢ t 1 : S 11 ℓ ′′ c -→ ℓ ′S 12 D 2 Γ; Σ; ℓ c ⊢ t 2 : S 2 ℓ c ≺ ℓ ≼ ℓ ′′ c S 2 <: S 11 Γ; Σ; ℓ c ⊢ t 1 t 2 : S 12 ≺ ℓ Suppose ℓ ′ c such that ℓ ′ c ≼ ℓ c .
′ c ≺ ℓ ′ ≼ ℓ c ≺ ℓ ≼ ℓ ′′ c ≼ ℓ ′′′ c
, and then:

(Sapp) (Sλ) D 1 Γ; Σ; ℓ ′ c ⊢ t 1 : S ′ 11 ℓ ′′′ c -→ ℓ ′S ′ 12 D 2 Γ; Σ; ℓ ′ c ⊢ t 2 : S ′ 2 ℓ ′ c ≺ ℓ ′ ≼ ℓ ′′′ c S ′ 2 <: S ′ 11 Γ; Σ; ℓ ′ c ⊢ t 1 t 2 : S ′ 12 ≺ ℓ ′
Where S ′ 12 ≺ ℓ ′ = S 12 ≺ ℓ and the result holds.

Case (Sif-true). Then t = if true ℓ then t 1 else t 2 and

(Sif)

D 0 Γ; Σ; ℓ c ⊢ true ℓ : Bool ℓ D 1 Γ; Σ; ℓ c ≺ ℓ ⊢ t 1 : S 1 D 2 Γ; Σ; ℓ c ≺ ℓ ⊢ t 2 : S 2 Γ; Σ; ℓ c ⊢ if true ℓ then t 1 else t 2 : (S 1 <: S 2 ) ≺ ℓ Suppose ℓ ′ c such that ℓ ′ c ≼ ℓ c .As ℓ ′ c ≺ ℓ ≼ ℓ c ≺ ℓ
, by induction hypotheses in the premises:

(Sif) D 0 Γ; Σ; ℓ ′ c ⊢ true ℓ : Bool ℓ D 1 Γ; Σ; ℓ ′ c ≺ ℓ ⊢ t 1 : S ′ 1 D 2 Γ; Σ; ℓ ′ c ≺ ℓ ⊢ t 2 : S ′ 2 Γ; Σ; ℓ ′ c ⊢ if true ℓ then t 1 else t 2 : (S ′ 1 <: S ′ 2 ) ≺ ℓ where S ′ 1 = S 1 , S ′ 2 = S 2 . Then (S ′ 1 <: S ′ 2 ) ≺ ℓ = (S 1 <: S 2 ) ≺
ℓ and therefore the result holds.

Case (Sif-false). Analogous to case (if-true).

Case (Sref). Then t = ref S v and (Sref)

Γ; Σ; ℓ c ⊢ v : S ′ S ′ <: S ℓ c ≼ label(S) Γ; Σ; ℓ c ⊢ ref S v : Ref ⊥ S Suppose ℓ ′ c such that ℓ ′ c ≼ ℓ c
. By using induction hypotheses in the premise, considering ℓ ′ c ≼ ℓ c ≼ label(S):

(Sref) Γ; Σ; ℓ ′ c ⊢ v : S ′ S ′ <: S ℓ ′ c ≼ label(S) Γ; Σ; ℓ ′ c ⊢ ref S v : Ref ⊥ S and the result holds. Case (Sderef). Then t = !o ℓ and (Sderef) (Sl) o : S ∈ Σ Γ; Σ; ℓ c ⊢ o ℓ : Ref ℓ S Γ; Σ; ℓ c ⊢ !o ℓ : S ≺ ℓ
Suppose ℓ ′ c such that ℓ ′ c ≼ ℓ c , then by using induction hypotheses in the premise:

(Sderef) (Sl) o : S ∈ Σ Γ; Σ; ℓ ′ c ⊢ o ℓ : Ref ℓ ′ S Γ; Σ; ℓ ′ c ⊢ !o ℓ : S ≺ ℓ ′
where ℓ ′ = ℓ. and the result holds.

Case (Sassgn). Then t = o ℓ :=v and

(Sasgn) o : S ∈ Σ Γ; Σ; ℓ c ⊢ o ℓ : Ref ℓ S D Γ; Σ; ℓ c ⊢ v : S 2 S 2 <: S ℓ c ≺ ℓ ≼ label(S) Γ; Σ; ℓ c ⊢ o ℓ :=v : Unit ⊥ Suppose ℓ ′ c such that ℓ ′ c ≼ ℓ c . Considering that ℓ ′ c ≺ ℓ ≼ ℓ c ≺ ℓ ≼ label(S)
, and S ′ 2 <: S 2 <: S, then:

(Sasgn) o : S ∈ Σ Γ; Σ; ℓ ′ c ⊢ o ℓ : Ref ℓ S D Γ; Σ; ℓ ′ c ⊢ v : S ′ 2 S ′ 2 <: S ℓ ′ c ≺ ℓ ≼ label(S) Γ; Σ; ℓ ′ c ⊢ o ℓ :=v : Unit ⊥ but Unit ⊥ <: Unit ⊥
and therefore the result holds.

Case (S::). Then t = v :: S and (S::) 

D Γ; Σ; ℓ c ⊢ v : S 1 S 1 <: S Γ; Σ; ℓ c ⊢ v :: S : S Suppose ℓ ′ c such that ℓ ′ c ≼ ℓ c ,
Σ; ℓ c ⊢ v : S ′ 1 such that S ′ 1 <: S 1 , then Γ; Σ; ℓ c ⊢ [v/x]t : S ′ such that S ′ <: S.
Proof. By induction on the derivation of Γ, x :

S 1 ; Σ; ℓ c ⊢ t : S. □ Lemma B.4. If Γ; Σ; ℓ c ⊢ v : S then ∀ℓ ′ c , Γ; Σ; ℓ ′ c ⊢ v : S.
Proof. By induction on the derivation of Γ; Σ; ℓ c ⊢ v : S observing that for values, there is no premise that depends on ℓ c . □

Proposition B.5 ( -→ is well defined). If •; Σ; ℓ c ⊢ t : S, •; Σ ⊢ µ and ∀ ℓ r , such that ℓ r ≼ ℓ c , t | µ ℓ r -→ t ′ | µ ′ then, for some Σ ′ ⊇ Σ, •; Σ ′ ; ℓ c ⊢ t ′ : S ′ , where S ′ <: S and •; Σ ′ ⊢ µ ′ . Proof. Case (S⊕). Then t = b 1ℓ 1 ⊕ b 2ℓ 2 and (S⊕) (Sb) •; Σ; ℓ c ⊢ b 1ℓ 1 : Bool ℓ 1 (Sb) •; Σ; ℓ c ⊢ b 2ℓ 2 : Bool ℓ 2 •; Σ; ℓ c ⊢ b 1ℓ 1 ⊕ b 2ℓ 2 : Bool (ℓ 1 ≺ ℓ 2 ) Suppose ℓ r such that ℓ r ≼ ℓ c , then b 1ℓ 1 ⊕ b 2ℓ 2 | µ ℓ r -→ (b 1 ⊕ b 2 ) (ℓ 1 ≺ ℓ 2 ) | µ Then (S⊕) ℓ c ⊢ (b 1 ⊕ b 2 ) (ℓ 1 ≺ ℓ 2 ) : Bool (ℓ 1 ≺ ℓ 2 )
Case (Sprot). Then t = prot ℓ (v) and (Sprot)

•; Σ; ℓ c ≺ ℓ ⊢ v : S •; Σ; ℓ c ⊢ prot ℓ (v) : S ≺ ℓ
Suppose ℓ r such that ℓ r ≼ ℓ c , then

prot ℓ (v) | µ ℓ r -→ v ≺ ℓ | µ But by Lemma B.2, •; Σ; ℓ c ⊢ v : S. •; Σ; ℓ c ⊢ v ≺ ℓ : S ≺ ℓ
and the result holds.

Case (Sapp). Then t = (λ ℓ ′ c x : S 11 .t) ℓ v and (Sapp)

(Sλ) D 1 •, x : S 11 ; Σ; ℓ ′ c ⊢ t : S 12 •; Σ; ℓ c ⊢ (λ ℓ ′ c x : S 11 .t) ℓ : S 11 ℓ ′ c -→ ℓ S 12 D 2 •; Σ; ℓ c ⊢ v : S 2 ℓ c ≺ ℓ ≼ ℓ ′ c S 2 <: S 11 •; Σ; ℓ c ⊢ (λ ℓ ′ c x : S 11 .t) ℓ v : S 12 ≺ ℓ
Suppose ℓ r such that ℓ r ≼ ℓ c , and 

(λ ℓ ′ c x : S 11 .t) ℓ v | µ ℓ r -→ prot ℓ ([v/x]t) | µ But as ℓ c ≺ ℓ ≼ ℓ ′ c then
D ′ 1 •; Σ; ℓ c ≺ ℓ ⊢ [v/x]t : S ′′ 12 •; Σ; ℓ c ⊢ prot ℓ ([v/x]t) : S ′′ 12 ≺ ℓ
Where S ′′ 12 ≺ ℓ <: S 12 ≺ ℓ and the result holds.

Case (Sif-true). Then t = if true ℓ then t 1 else t 2 and

(Sif)

D 0 •; Σ; ℓ c ⊢ true ℓ : Bool ℓ D 1 •; Σ; ℓ c ≺ ℓ ⊢ t 1 : S 1 D 2 •; Σ; ℓ c ≺ ℓ ⊢ t 2 : S 2 •; Σ; ℓ c ⊢ if true ℓ then t 1 else t 2 : (S 1 <: S 2 ) ≺ ℓ Suppose ℓ r such that ℓ r ≼ ℓ c , then if if true ℓ then t 1 else t 2 | µ ℓ r -→ prot ℓ (t 1 ) | µ Then (Sprot) D 1 •; Σ; ℓ c ≺ ℓ ⊢ t 1 : S 1 •; Σ; ℓ c ⊢ prot ℓ (t 1 ) : S 1 ≺ ℓ
and by definition of the join operator, S 1 ≺ ℓ <: (S 1 <: S 2 ) ≺ ℓ and the result holds.

Case (Sif-false). Analogous to case (if-true).

Case (Sref). Then t = ref S v and (Sref)

•; Σ; ℓ c ⊢ v : S ′ S ′ <: S ℓ c ≼ label(S) •; Σ; ℓ c ⊢ ref S v : Ref ⊥ S Suppose ℓ r such that ℓ r ≼ ℓ c , then ref S v | µ ℓ r -→ o ⊥ | µ[o → v ≺ ℓ r ]
where o dom(µ).

Let us take Σ ′ = Σ, o : S and let us call

µ ′ = µ[o → v ≺ ℓ r ]. Then as dom(µ) = dom(Σ) then dom(µ ′ ) = dom(Σ ′ ). Also, as ℓ r ≼ ℓ c ≼ label(S) then by Lemma B.4, •; Σ ′ ; ⊥ ⊢ v : S ′ ≺ ℓ r and S ′ ≺ ℓ r <: Σ(o) = S. Therefore •; Σ ′ ⊢ µ ′ . Then (Sl) o : S ∈ Σ ′ •; Σ ′ ; ℓ c ⊢ o ⊥ : Ref ⊥ S
and the result holds.

Case (Sderef). Then t = !o ℓ and (Sderef) (Sl) o : S ∈ Σ •; Σ; ℓ c ⊢ o ℓ : Ref ℓ S •; Σ; ℓ c ⊢ !o ℓ : S ≺ ℓ Suppose ℓ r such that ℓ r ≼ ℓ c , then !o ℓ | µ ℓ r -→ v ≺ ℓ | µ where µ(o) = v Also •; Σ ⊢ µ then •; Σ; ⊥ ⊢ µ(o) : S ′ and S ′ <: S. By Lemma B.4, •; Σ; ℓ c ⊢ v : S ′ •; Σ; ℓ c ⊢ v ≺ ℓ : S ′ ≺ ℓ
But S ′ ≺ ℓ <: S ≺ ℓ and the result holds.

Case (Sassgn). Then t = o ℓ :=v and (Sasgn)

o : S ∈ Σ •; Σ; ℓ c ⊢ o ℓ : Ref ℓ S D •; Σ; ℓ c ⊢ v : S 2 S 2 <: S ℓ c ≺ ℓ ≼ label(S) •; Σ; ℓ c ⊢ o ℓ :=v : Unit ⊥ Suppose ℓ r such that ℓ r ≼ ℓ c , then o ℓ :=v | µ ℓ r -→ unit ⊥ | µ[o → v ≺ ℓ r ≺ ℓ] Let us call µ ′ = µ[o → v ≺ ℓ r ≺ ℓ]. Also •; Σ ⊢ µ then dom(µ ′ ) = dom(Σ), and •; Σ; ℓ c ⊢ v : S 2 where S 2 <: S. Therefore •; Σ; ℓ c ⊢ v ≺ ℓ r ≺ ℓ : S 2 ≺ ℓ r ≺ ℓ. But ℓ r ≺ ℓ ≼ ℓ c ≺ ℓ ≼ label(S), then S 2 ≺ ℓ r ≺ ℓ <: S and therefore •; Σ ⊢ µ ′ . Also (Su) •; Σ; ℓ c ⊢ unit ⊥ : Unit ⊥ but Unit ⊥ <: Unit ⊥
and therefore the result holds.

Case (S::). Then t = v :: S and (S::)

D •; Σ; ℓ c ⊢ v : S 1 S 1 <: S •; Σ; ℓ c ⊢ v :: S : S Suppose ℓ r such that ℓ r ≼ ℓ c , then v :: S | µ ℓ r -→ v ≺ label(S) | µ
But S 1 <: S then S 1 ≺ S = S and therefore S 1 ≺ label(S) = S. Therefore: (2 -→ t ′ | µ ′ and •; Σ ′ ; ℓ c ⊢ t ′ : S ′ for some S ′ <: S, and some Σ ′ ⊇ Σ such that Σ ′ ⊢ µ ′ .

Γ; Σ; ℓ c ⊢ v ≺ label ( 
) If S = Unit ℓ then v = unit ℓ . (3) If S = S 1 ℓ ′ c -→ ℓ S 2 then v = (λ ℓ ′ c x : S 1 .t 2 )
Proof. By induction on the structure of t.

Case (Sb, Su, Sλ, Sl). t is a value.

Case (Sprot). Then t = prot ℓ (t) and (Sprot)

•; Σ; ℓ c ≺ ℓ ⊢ t 1 : S 1 •; Σ; ℓ c ⊢ prot ℓ (t 1 ) : S 1 ≺ ℓ
By induction hypotheses, one of the following holds:

(1) t 1 is a value. Then by (R→) and Canonical Forms (Lemma B.6). t | µ ℓ r -→ t ′ | µ and by Prop B.5, •; Σ; ℓ c ⊢ t ′ : S ′ where S ′ <: S and the result holds.

(2) Suppose ℓ r such that ℓ r ≼ ℓ c , then

(Rprot) t 1 | µ ℓ r ≺ ℓ -→ t 2 | µ ′ prot ℓ (t 1 ) | µ ℓ r -→ prot ℓ (t 2 ) | µ ′ As ℓ r ≼ ℓ c then ℓ r ≺ ℓ ≼ ℓ c ≺ ℓ. Using induction hypotheses •; Σ ′ ; ℓ c ≺ ℓ ⊢ t 2 : S ′ 1 where S ′ 1 <: S 1 and •; Σ ′ ⊢ µ ′ . Therefore (Sprot) •; Σ; ℓ c ≺ ℓ ⊢ t 2 : S ′ 1 •; Σ; ℓ c ⊢ prot ℓ (t 2 ) : S ′ 1 ≺ ℓ but S ′ 1 ≺ ℓ <: S 1 ≺
ℓ and the result holds.

Case (S⊕). Then t = t 1 ⊕ t 2 and (S⊕)

•; Σ; ℓ c ⊢ t 1 : Bool ℓ 1 •; Σ; ℓ c ⊢ t 2 : Bool ℓ 2 •; Σ; ℓ c ⊢ t 1 ⊕ t 2 : Bool (ℓ 1 ≺ ℓ 2 )
By induction hypotheses, one of the following holds:

(1) t 1 is a value. Then by induction on t 2 one of the following holds: (a) t 2 is a value. Then by Canonical Forms (Lemma B.6)

(R→) t | µ ℓ r -→ t ′ | µ t | µ ℓ r -→ t ′ | µ
and by Prop B.5, •; Σ; ℓ c ⊢ t ′ : S ′ , where S ′ <: S, therefore the result holds.

(b) t 2 | µ ℓ r ′ -→ t ′ 2 | µ ′ for all ℓ r ′ such that ℓ r ′ ≼ ℓ c , in particular we pick ℓ r ′ = ℓ r . Then by induction hypothesis, •; Σ ′ ; ℓ c ⊢ t 2 : Bool ℓ ′ 2 , where Bool ℓ ′ 2 <: Bool ℓ 2 and •; Σ ′ ⊢ µ ′ . Then by (Sf ), t | µ ℓ r -→ t 1 ⊕ t ′ 2 | µ ′ and: (S⊕) •; Σ; ℓ c ⊢ t 1 : Bool ℓ 1 •; Σ; ℓ c ⊢ t ′ 2 : Bool ℓ ′ 2 •; Σ; ℓ c ⊢ t 1 ⊕ t ′ 2 : Bool (ℓ 1 ≺ ℓ ′ 2 ) but (ℓ 1 ≺ ℓ ′ 2 ) ≼ (ℓ 1 ≺ ℓ 2 ) Bool (ℓ 1 ≺ ℓ ′ 2 ) <: Bool (ℓ 1 ≺ ℓ 2 )
and the result holds.

(2) t 1 | µ ℓ r -→ t ′ 1 | µ ′ for all ℓ r ′ such that ℓ r ′ ≼ ℓ c , in particular we pick ℓ r ′ = ℓ r . Then by induction hypotheses, •; Σ ′ ; ℓ c ⊢ t ′ 1 : Bool ℓ ′ 1 where Bool ℓ ′ 1 <: Bool ℓ 1 , and •; Σ ⊢ µ ′ . Then by (Sf ), t | µ ℓ r -→ t ′ 1 ⊕ t 2 | µ ′ and: (S⊕) •; Σ; ℓ c ⊢ t ′ 1 : Bool ℓ ′ 1 •; Σ; ℓ c ⊢ t 2 : Bool ℓ 2 •; Σ; ℓ c ⊢ t ′ 1 ⊕ t 2 : Bool (ℓ ′ 1 ≺ ℓ 2 ) but (ℓ ′ 1 ≺ ℓ 2 ) ≼ (ℓ 1 ≺ ℓ 2 ) Bool (ℓ ′ 1 ≺ ℓ 2 ) <: Bool (ℓ 1 ≺ ℓ 2 )
and the result holds.

Case (Sapp). Then t = t 1 t 2 , S = S 12 ≺ ℓ and (Sapp)

•; Σ; ℓ c ⊢ t 1 : S 11 ℓ ′ c -→ ℓ S 12 •; Σ; ℓ c ⊢ t 2 : S 2 S 2 <: S 11 ℓ c ≺ ℓ ≼ ℓ ′ c •; Σ; ℓ c ⊢ t 1 t 2 : S 12 ≺ ℓ
By induction hypotheses, one of the following holds:

(1) t 1 is a value. Then by Canonical Forms (Lemma B.6), and induction on t 2 one of the following holds:

(a) t 2 is a value. Then by Canonical Forms (Lemma B.6)

(R→) t | µ ℓ r -→ t ′ | µ t | µ ℓ r -→ t ′ | µ
and by Prop B.5 •; Σ; ℓ c ⊢ t ′ : S ′ , where S ′ <: S , therefore the result holds.

(b) t 2 | µ ℓ r ′ -→ t ′ 2 | µ ′ for all ℓ r ′ such that ℓ r ′ ≼ ℓ c
, in particular we pick ℓ r ′ = ℓ r . Then by induction hypothesis, •; Σ ′ ; ℓ c ⊢ t 2 : S ′ 2 , where S ′ 2 <: S 2 and •;

Σ ′ ⊢ µ ′ . Then by (Sf ), t | µ ℓ r -→ t 1 t ′ 2 | µ ′ . But S ′
2 <: S 2 <: S 11 and then:

(Sapp)

•; Σ; ℓ c ⊢ t 1 : S 11 ℓ ′ c -→ ℓ S 12 •; Σ; ℓ c ⊢ t ′ 2 : S ′ 2 S ′ 2 <: S 11 ℓ c ≺ ℓ ≼ ℓ ′ c •; Σ; ℓ c ⊢ t 1 t 2 : S 12 ≺ ℓ
and the result holds.

(2) t 1 | µ ℓ r -→ t ′ 1 | µ ′ for all ℓ r ′ such that ℓ r ′ ≼ ℓ c , in particular we pick ℓ r ′ = ℓ r . Then by induction hypotheses, •; Σ ′ ; ℓ c ⊢ t ′ 1 : S ′ 11 ℓ ′′ c -→ ℓ ′S ′ 12 where S ′ 11 ℓ ′′ c -→ ℓ ′S ′ 12 <: S 11 ℓ ′ c -→ ℓ S 12 , and •; Σ ′ ⊢ µ ′ . Then by (Sf ), t | µ ℓ r -→ t ′ 1 t 2 | µ ′ . By definition of subtyping, S 2 <: S 11 <: S ′ 11 , ℓ ′ c ≼ ℓ ′′ c and ℓ ′ ≼ ℓ. Therefore ℓ c ≺ ℓ ′ ≼ ℓ c ≺ ℓ ≼ ℓ ′ c ≼ ℓ ′′ c . Then (Sapp) •; Σ; ℓ c ⊢ t ′ 1 : S ′ 11 ℓ ′′ c -→ ℓ ′S ′ 12 •; Σ; ℓ c ⊢ t 2 : S 2 S 2 <: S ′ 11 ℓ c ≺ ℓ ′ ≼ ℓ ′′ c •; Σ; ℓ c ⊢ t ′ 1 t 2 : S ′ 12 ≺ ℓ ′ but S ′ 12 ≺ ℓ ′ <: S 12 ≺
ℓ and the result holds.

Case (Sif). Then t = if t 0 then t 1 else t 2 and (Sif)

•; Σ; ℓ c ⊢ t 0 : Bool ℓ •; Σ; ℓ c ≺ ℓ ⊢ t 1 : S 1 •; Σ; ℓ c ≺ ℓ ⊢ t 2 : S 2 •; Σ; ℓ c ⊢ if t 0 then t 1 else t 2 : (S 1 <: S 2 ) ≺ ℓ
By induction hypotheses, one of the following holds:

(1) t 0 is a value. Then by Canonical Forms (Lemma B.6)

(R→) t | µ ℓ r -→ t ′ | µ t | µ ℓ r -→ t ′ | µ
and by Prop B.5, •; Σ; ℓ c ⊢ t ′ : S ′ , where S ′ <: S , therefore the result holds.

(2)

t 0 | µ ℓ r ′ -→ t ′ 0 | µ ′ for all ℓ r ′ such that ℓ r ′ ≼ ℓ c , in particular we pick ℓ r ′ = ℓ r . Then by induciton hypothesis, •; Σ; ℓ c ⊢ t ′ 0 : Bool ℓ ′ , where Bool ℓ ′ <: Bool ℓ and •; Σ ⊢ µ ′ . Then by (Sf ), t | µ ℓ r -→ if t ′ 0 then t 1 else t 2 | µ ′ . As ℓ c ≺ ℓ ′ ≼ ℓ c ≺ ℓ, by Lemma B.2, •; Σ; ℓ c ≺ ℓ ′ ⊢ t 1 : S ′ 1 and •; Σ; ℓ c ≺ ℓ ′ ⊢ t 2 : S ′ 2 ,
where S ′ 1 <: S 1 and S ′ 2 <: S 2 . Therefore:

(Sif) •; Σ; ℓ c ⊢ t ′ 0 : Bool ℓ ′ •; Σ; ℓ c ≺ ℓ ′ ⊢ t 1 : S ′ 1 •; Σ; ℓ c ≺ ℓ ⊢ t 2 : S ′ 2 •; Σ; ℓ c ⊢ if t ′ 0 then t 1 else t 2 : (S ′ 1 <: S ′ 2 ) ≺ ℓ ′
but by definition of join and subtyping (S ′ 1 <:

S ′ 2 ) ≺ ℓ ′ <: (S 1 <: S 2 ) ≺
ℓ and the result holds.

(2)

t 1 | µ ℓ r -→ t ′ 1 | µ ′ for all ℓ r ′ such that ℓ r ′ ≼ ℓ c , in particular we pick ℓ r ′ = ℓ r . Then by induction hypothesis, •; Σ; ℓ c ⊢ t ′ 1 : Ref ℓ ′ S 1 where Ref ℓ ′ S 1 <: Ref ℓ S 1 and •; Σ ′ ⊢ µ ′ . Then by (Sf ), t | µ ℓ r -→ t ′ | µ ′ and: (Sderef) •; Σ; ℓ c ⊢ t ′ 1 : Ref ℓ ′ S 1 •; Σ; ℓ c ⊢ !t ′ 1 : S 1 ≺ ℓ ′ but S 1 ≺ ℓ ′ <: S 1 ≺
ℓ and the result holds.

Case (Sasgn). Then t = t 1 := t 2 and (Sasgn)

•; Σ; ℓ c ⊢ t 1 : Ref ℓ S 1 •; Σ; ℓ c ⊢ t 2 : S 2 S 2 <: S 1 ℓ c ≺ ℓ ≼ label(S 1 ) •; Σ; ℓ c ⊢ t 1 := t 2 : Unit ⊥
By induction hypotheses, one of the following holds:

(1) t 1 is a value. Then by Canonical Forms (Lemma B.6), and induction on t 2 one of the following holds: (a) t 2 is a value. Then by Canonical Forms (Lemma B.6)

t | µ ℓ r -→ t ′ | µ ′ t | µ ℓ r -→ t ′ | µ ′
and by Prop B.5, •; Σ; ℓ c ⊢ t ′ : S ′ , where S ′ <: S and •; Σ ′ ⊢ µ ′ , therefore the result holds.

(b) t 2 | µ ℓ r ′ -→ t ′ 2 | µ ′ for all ℓ r ′ such that ℓ r ′ ≼ ℓ c
, in particular we pick ℓ r ′ = ℓ r . Then by induction hypothesis, •; Σ ′ ; ℓ c ⊢ t 2 : S ′ 2 where S ′ 2 <: S 2 and •;

Σ ′ ⊢ µ ′ . Then by (Sf ), t | µ ℓ r -→ t 1 := t ′ 2 | µ ′ . As S ′ 2 <: S 2 <: S 1 , then: (Sasgn) •; Σ; ℓ c ⊢ t 1 : Ref ℓ S 1 •; Σ; ℓ c ⊢ t ′ 2 : S ′ 2 S ′ 2 <: S 1 ℓ c ≺ ℓ ≼ label(S 1 ) •; Σ; ℓ c ⊢ t 1 := t ′ 2 : Unit ⊥ and the result holds. (2) t 1 | µ ℓ r -→ t ′ 1 | µ ′ for all ℓ r ′ such that ℓ r ′ ≼ ℓ c , in particular we pick ℓ r ′ = ℓ r . Then by induction hypotheses, •; Σ ′ ; ℓ c ⊢ t ′ 1 : Ref ℓ ′ S 1 , where Ref ℓ ′ S 1 <: Ref ℓ S 1 and •; Σ ′ ⊢ µ ′ . Then by (Sf ), t | µ ℓ r -→ t ′ 1 := t 2 | µ ′ . As ℓ ′ ≼ ℓ then ℓ c ≺ ℓ ′ ≼ ℓ c ≺ ℓ ≼ label(S 1
), and therefore:

(Sasgn) •; Σ; ℓ c ⊢ t ′ 1 : Ref ℓ ′ S 1 •; Σ; ℓ c ⊢ t 2 : S 2 S 2 <: S 1 ℓ c ≺ ℓ ′ ≼ label(S 1 ) •; Σ; ℓ c ⊢ t 1 := t 2 : Unit ⊥
and the result holds.

□

B.2 SSL Ref : Noninterference

In this section we present the proof of noninterference for SSL Ref . Section B.3 present some auxiliary definitions and section B.4 present the proof of noninterference. 

Σ ⊢ ⟨ℓ 1 , v 1 , µ 1 ⟩ ≈ k ℓ o ⟨ℓ 2 , v 2 , µ 2 ⟩ : S ⇐⇒ ℓ 1 ≈ ℓ o ℓ 2 ∧ Σ ⊢ µ 1 ≈ k ℓ o µ 2 ∧ Σ; ℓ i ⊢ v i : S ′ i , S ′ i <: S, ∧ Ä obs ℓ o (ℓ i , S) =⇒ obsRel Σ,S k ,ℓ o (ℓ 1 , v 1 , µ 1 , ℓ 2 , , v 2 , µ 2 ) ä obsRel Σ,S k ,ℓ o (ℓ 1 , v 1 , µ 1 , ℓ 2 , v 2 , µ 2 ) ⇐⇒ (rval(v 1 ) = rval(v 2 )) if S ∈ {Bool g , Unit g , Ref g S ′ } obsRel Σ,S 1 ℓ ′ -→ ℓ S 2 k ,ℓ o (ℓ 1 , v 1 , µ 1 , ℓ 2 , v 2 , µ 2 ) ⇐⇒ ∀j ≤ k. ∀Σ ⊆ Σ ′ , Σ ′ ⊢ ⟨ℓ 1 , v ′ 1 , µ ′ 1 ⟩ ≈ j ℓ o ⟨ℓ 2 , v ′ 2 , µ ′ 2 ⟩ : S 1 , Σ ′ ⊢ ⟨ℓ 1 , v 1 v ′ 1 , µ ′ 1 ⟩ ≈ j ℓ o ⟨ℓ 2 , v 2 v ′ 2 , µ ′ 2 ⟩ : C(S 2 ≺ g) Σ ⊢ ⟨ℓ 1 , t 1 , µ 1 ⟩ ≈ k ℓ o ⟨ℓ 2 , t 2 , µ 2 ⟩ : C(S) ⇐⇒ ℓ 1 ≈ ℓ o ℓ 2 ∧ Σ ⊢ µ 1 ≈ k ℓ o µ 2 ∧ Σ; ℓ i ⊢ t i : S ′ i , S ′ i <: S, ∀j < k t i | µ i ℓ i -→ j t ′ i | µ ′ i =⇒ Σ ⊆ Σ ′ , Σ ′ ⊢ µ ′ 1 ≈ k -j ℓ o µ ′ 2 ∧ (irred(t ′ i ) =⇒ Σ ′ ⊢ ⟨ℓ 1 , t ′ 1 , µ ′ 1 ⟩ ≈ k -j ℓ o ⟨ℓ 2 , t ′ 2 , µ ′ 2 ⟩ : S) Σ ⊢ µ 1 ≈ k ℓ o µ 2 ⇐⇒ Σ ⊢ µ i ∧ ∀ℓ i , ℓ 1 ≈ ℓ o ℓ 2 , j < k, ∀o ∈ dom(µ 1 ) ∩ dom(µ 2 ) Σ ⊢ ⟨ℓ 1 , µ 1 (o), µ 1 ⟩ ≈ j ℓ o ⟨ℓ 2 , µ 2 (o), µ 2 ⟩ : Σ(o) ℓ 1 ≈ ℓ o ℓ 2 ⇐⇒ obs ℓ o (ℓ i ) ∨ ¬obs ℓ o (ℓ i ) µ 1 µ 2 ⇐⇒ dom(µ 1 ) ⊆ dom(µ 2 ) obs ℓ o (ℓ, S) ⇐⇒ obs ℓ o (ℓ) ∧ obs ℓ o (label(S)) obs ℓ o (ℓ) ⇐⇒ ℓ ≼ ℓ o

B.3 Definitions

To define the fundamental property of the step-indexed logical relations we first define how to relate substitutions:

Definition B.7. Let ρ be a substitution, Γ and Σ a type substitutions. We say that substitution ρ satisfy environment Γ and Σ, written ρ |= Γ; Σ, if and only if dom(ρ) = Γ and ∀x ∈ dom(Γ), ∀ℓ c , Γ; Σ; ℓ c ⊢ ρ(x) : S ′ , where S ′ <: Γ(x). 

Definition B.8 (Related substitutions). Tuples ⟨ℓ

1 , ρ 1 , µ 1 ⟩ and ⟨ℓ 2 , ρ 2 , µ 2 ⟩ are related on k steps, notation Γ; Σ ⊢ ⟨ℓ 1 , ρ 1 , µ 1 ⟩ ≈ k ℓ o ⟨ℓ 2 , ρ 2 , µ 2 ⟩, if ρ i |= Γ; Σ, Σ ⊢ µ 1 ≈ k ℓ o µ 2 and ∀x ∈ Γ.Σ ⊢ ⟨ℓ 1 , ρ 1 (x), µ 1 ⟩ ≈ k ℓ o ⟨ℓ 2 , ρ 2 (x), µ 2 ⟩ : Γ(x) B.
; Σ ⊢ ⟨ℓ 1 , ρ 1 , µ 1 ⟩ ≈ k ℓ o ⟨ℓ 2 , ρ 2 , µ 2 ⟩, then if ∀j ≤ k, if Σ ⊆ Σ ′ , Σ ′ ⊢ µ ′ 1 ≈ j ℓ o µ ′ 2 then Γ; Σ ′ ⊢ ⟨ℓ 1 , ρ 1 , µ ′ 1 ⟩ ≈ j ℓ o ⟨ℓ 2 , ρ 2 , µ ′ 2 ⟩
Proof. By definition of related computations and related stores. The key argument is that given that µ i µ ′ i then µ ′ i have at least the same locations of µ i and the values still are related as well given that they still have the same type. □ Lemma B.11 (Substitution preserves typing). If Γ; Σ; ℓ ⊢ t : S then ∀ℓ ′ ≼ ℓ, Γ; Σ; ℓ ′ ≼ ℓ : S.

Proof. By induction on the derivation of Γ; Σ; ℓ ⊢ t ∈ S. □ Lemma B.12 (Downward Closed / Monotonicity).

If (1) Σ ⊢ ⟨ℓ 1 , v 1 , µ 1 ⟩ ≈ k ℓ o ⟨ℓ 2 , v 2 , µ 2 ⟩ : S then ∀j ≤ k, Σ ⊢ ⟨ℓ 1 , v 1 , µ 1 ⟩ ≈ j ℓ o ⟨ℓ 2 , v 2 , µ 2 ⟩ : S (2) Σ ⊢ ⟨ℓ 1 , t 1 , µ 1 ⟩ ≈ k ℓ o ⟨ℓ 2 , t 2 , µ 2 ⟩ : C(S) then ∀j ≤ k, Σ ⊢ ⟨ℓ 1 , t 1 , µ 1 ⟩ ≈ j ℓ o ⟨ℓ 2 , t 2 , µ 2 ⟩ : C(S) (3) Σ ⊢ µ 1 ≈ k ℓ o µ 2 then ∀j ≤ k, Σ ⊢ µ 1 ≈ j ℓ o µ 2
Proof. By induction on type S and the definition of related stores. □ Lemma B.13. Consider simple values v i : S i and

Σ ⊢ ⟨ℓ 1 , v 1 , µ 1 ⟩ ≈ k ℓ o ⟨ℓ 2 , v 2 , µ 2 ⟩ : S. Then Σ ⊢ ⟨ℓ 1 , (v 1 ≺ ℓ), µ 1 ⟩ ≈ k ℓ o ⟨ℓ 2 , (v 2 ≺ ℓ), µ 2 ⟩ : S ≺ ℓ
Proof. By induction on type S. We proceed by definition of related values and observationalmonotonicity of the join, considering that the label stamping can only make values non observable. □ Lemma B.14 (Reduction preserves relations). Consider Σ;

ℓ i ⊢ t i ∈ T[S], µ i ∈ Store, Σ ⊢ µ i ,
and 

Σ ⊢ µ 1 ≈ k ℓ o µ 2 . Consider j < k, posing t i | µ i ℓ i -→ j t ′ i | µ ′ i , Σ ⊆ Σ ′ , Σ ′ ⊢ µ ′ i we have Σ ⊢ ⟨ℓ 1 , t 1 , µ 1 ⟩ ≈ k ℓ o ⟨ℓ 2 , t 2 , µ 2 ⟩ : C(S) if and only if Σ ′ ⊢ ⟨ℓ 1 , t ′ 1 , µ ′ 1 ⟩ ≈ k -j ℓ o ⟨ℓ 2 , t ′ 2 , µ ′ 2 ⟩ : C(S) Proof. Direct by definition of Σ ⊢ ⟨ℓ 1 , t 1 , µ 1 ⟩ ≈ k ℓ o ⟨ℓ 2 , t 2 , µ 2 ⟩ : C(S)
such that t | µ ℓ -→ j t ′ | µ ′ . Then µ µ ′ .
Proof. Trivial by induction on the derivation of t. The only rules that change the store are the ones for reference and assignment, neither of which remove locations.

□ Lemma B.16. Suppose that Σ ⊢ ⟨ℓ 1 ≺ ℓ ′ 1 , t 1 , µ 1 ⟩ ≈ k ℓ o ⟨ℓ 2 ≺ ℓ ′ 2 , t 2 , µ 2 ⟩ : C(S), and that ℓ i ⊢ prot ℓ ′ i (t) : S ′ i ≺ ℓ ′ i , S ′ i ≺ ℓ ′ i <: S ≺ ℓ for i ∈ {1, 2}. If ℓ 1 ≈ k ℓ o ℓ 2 , and ℓ ′ 1 ≈ k ℓ o ℓ ′ 2 , then Σ ⊢ ⟨ℓ 1 , prot ℓ ′ 1 (t 1 ), µ 1 ⟩ ≈ k ℓ o ⟨ℓ 2 , prot ℓ ′ 2 (t 2 ), µ 2 ⟩ : C(S ≺ ℓ)
Proof. Consider j < k, we know by definition of related computations that Suppose that after j steps t

t i | µ i ℓ i ≺ ℓ ′ i -→ j t ′ i | µ ′ i then µ ′ 1 ≈ j ℓ o µ ′ 2 ,
′ i = v i , then Σ ′ ⊢ ⟨ℓ 1 ≺ ℓ ′ 1 , v 1 , µ ′ 1 ⟩ ≈ k -j ℓ o ⟨ℓ 2 ≺ ℓ ′ 2 , v 2 , µ ′ 2 ⟩ : S, for some Σ ′ such that Σ ⊆ Σ ′ . Therefore: prot ℓ ′ i (t i ) | µ ′ i ℓ i -→ j prot ℓ ′ i (v i ) | µ ′ i ℓ i -→ 1 (v i ≺ ℓ ′ i ) | µ ′ i Let us suppose Σ ′ ; ℓ i ⊢ v i : S ′′ i , where S ′′ i <: S ′ i <: S. Then Σ ′ ; ℓ i ⊢ v i ≺ ℓ ′ i : S ′′ i ≺ ℓ ′ i , and S ′′ i ≺ ℓ ′ i <: S ≺ ℓ. If ¬obs ℓ o (ℓ i ≺ ℓ ′ i ) by monotonicity of the join either ¬obs ℓ o (ℓ ′ i ) or ¬obs ℓ o (ℓ i ). If ¬obs ℓ o (ℓ ′ i ) then ¬obs ℓ o (S ≺ ℓ ′ i ) and the result holds. If ¬obs ℓ o (ℓ i ) the result holds immediately. If obs ℓ o (ℓ i ≺ ℓ ′ i , S) then obs ℓ o (ℓ i , S ≺ ℓ ′ i )
, then the result follows by Lemma B.13, and by backward preservation of the relations (Lemma B.14). □ Lemma B.17. Consider ℓ, such that ¬obs ℓ o (ℓ), then then ∀k > 0, such that, Σ;

ℓ ⊢ t : S, Σ ⊢ µ t | µ ℓ -→ k t ′ | µ ′ , then ∀ℓ ′ , (1) ∀o ∈ dom(µ ′ )\ dom(µ), ¬obs ℓ o (ℓ ′ , µ ′ (o)). (2) ∀o ∈ dom(µ ′ ) ∩ dom(µ) ∧ µ ′ (o) µ(o), ¬obs ℓ o (label(Σ(o))) .
Proof. We use induction on the derivation of t. The interest cases are the last step of reduction rules for references and assignments.

Case (t = o ℓ ′′ :=v). We are only updating the heap so we only have to prove (1) and ( 2). Then

o ℓ ′′ :=v ℓ -→ unit ⊥ | µ[o → (v ≺ (ℓ ≺ ℓ ′′ ))]
Next we have to prove that obs ℓ o (label(Σ(o))) is not defined. As Σ; ℓ ⊢ t : S, then we know that ℓ ≺ ℓ ′′ ≼ label(Σ(o)), and as ¬(obs ℓ o (ℓ)) by monotonicity of the join the result holds.

Case (t = ref S ′ v).
We are extending the heap, so we need to only prove (1). Then

ref S ′ v | µ ℓ -→o ⊥ | µ[o → (v ≺ ℓ)]
where o dom(µ). We need to prove that obs ℓ o (label(v ≺ ℓ)) does not hold, which follows directly by monotonicity of the join.

□

Lemma B.18. Consider ℓ, such that obs ℓ o (ℓ) does not hold, then then ∀k > 0, such that Σ; ℓ ⊢ t i : S i , and that

t i | µ i ℓ -→ k t ′ i | µ ′ i , then if Σ ⊢ µ 1 ≈ k ℓ o µ 2 , then Σ ′ ⊢ µ ′ 1 ≈ k ℓ o µ ′ 2 for some Σ ′ such that Σ ⊆ Σ ′ and that Σ ′ ; ℓ ⊢ t ′ i : S ′ i , where S ′ i <: S i .
Proof. By Lemma B.17 we know three things:

(1

) ∀o ∈ dom(µ ′ i )\ dom(µ i ), obs ℓ o (ℓ, µ ′ i (o))
does not hold, i.e. new locations are not observable and therefore as Σ ′ ; ℓ ⊢ µ ′ i (o) : S and S <:

Σ ′ (o), then ¬obs ℓ o (label(Σ(o))) . (2) ∀o ∈ dom(µ ′ i ) ∩ dom(µ i ) ∧ µ ′ i (o) µ(o), ¬obs ℓ o (label(Σ(o))) i.
e. for all updated references they have to be previously not observable, and by definition therefore related, and second they are still non observable after the update, and by definition those locations are still related under ℓ because

Σ(o) = Σ ′ (o). Therefore Σ ′ ⊢ µ ′ 1 ≈ k ℓ o µ ′ 2 and the result holds. □ Lemma B.19. Suppose that Σ; ℓ i ⊢ prot ℓ ′ i (t i ) : S ′ ≺ ℓ ′ i , S ′ ≺ ℓ ′ i <: S for i ∈ {1, 2}, where ¬obs ℓ o (ℓ i ≺ ℓ ′ i ). Also consider two stores µ i such that Σ ⊢ µ 1 ≈ k ℓ o µ 2 . Then Σ ⊢ ⟨ℓ 1 , prot ℓ ′ 1 (t 1 ), µ 1 ⟩ ≈ k ℓ o ⟨ℓ 2 , prot ℓ ′ 2 (t 2 ), µ 2 ⟩ : C(S) Proof.
Suppose that after at least j more steps, where j < k, both subterms reduce to a value :

t | µ i ℓ i ≺ ℓ ′ i -→ j v i | µ ′ i Therefore: prot ℓ ′ i (t) | µ ′ i ℓ i -→ j prot ℓ ′ i (v i ) | µ ′ i ℓ i -→ 1 (v i ≺ ℓ ′ i ) | µ ′ i
As the values can be radically different we have to make sure that both values are not observables. 

∀ρ i ∈ Subst, Γ; Σ ⊢ ⟨ℓ 1 , ρ 1 , µ 1 ⟩ ≈ k ℓ o ⟨ℓ 2 , ρ 2 , µ 2 ⟩ , we have Σ ⊢ ⟨ℓ 1 , ρ 1 (t), µ 1 ⟩ ≈ k ℓ o ⟨ℓ 2 , ρ 2 (t), µ 2 ⟩ : C(S)
. By induction on the derivation of term t. Let us take an arbitrary index k ≥ 0.

Case (x). t = x and Γ(x) = S. Γ; Σ ⊢ ⟨ℓ 1 , ρ 1 , µ 1 ⟩ ≈ k ℓ o ⟨ℓ 2 , ρ 2 , µ 2 ⟩ implies by definition that Σ ⊢ ⟨ℓ 1 , ρ 1 (x), µ 1 ⟩ ≈ k ℓ o ⟨ℓ 2 , ρ 2 (x)
, µ 2 ⟩ : S, and the result holds immediately.

---

Case (b). t = b g . By definition of substitution, ρ 1 (b g ) = ρ 2 (b g ) = b g . By definition, Σ ⊢ ⟨ℓ 1 , b g , µ 1 ⟩ ≈ k ℓ o ⟨ℓ 2 , b g , µ 2 ⟩ : Bool g as required.
---

Case (o). t = o g 1 and Σ(o) = S, where S = Ref g 1 S 1 . By definition of substitution, ρ 1 (o g 1 ) = ρ 2 (o g 1 ) = o g 1 . We know that Σ; ℓ i ⊢ o g 1 : Ref g 1 S 1 . By definition of related stores, Σ ⊢ ⟨ℓ 1 , o g 1 , µ 1 ⟩ ≈ k ℓ o ⟨ℓ 2 , o g 1 , µ 2 ⟩ : Ref g 1 S 1
as required, and the result holds.

---

Case (λ). t = (λ ℓ ′′ c x : S ′ 1 .t 1 ) ℓ ′ . Then S ′ i = S ′ 1 ℓ ′′ c -→ ℓ ′ i S ′ i2 , and S = S 1 ℓ ′ c -→ ℓ S 2
, where S ′ <: S. By definition of substitution, assuming x dom(ρ i ), and Lemma B.9:

Γ; Σ; ℓ i ⊢ ρ i (t) = Γ; Σ; ℓ i ⊢ (λ ℓ ′′ c x : S 1 .ρ i (t 1 )) ℓ ′ : S ′ 1 ℓ ′′ c -→ ℓ ′S ′′ i2 where S ′′ i2 <: S ′ 2 . Consider j ≤ k, µ ′ 1 , µ ′ 2 such that µ i µ ′ i and Σ ⊆ Σ ′ Σ ′ ⊢ µ ′ 1 ≈ j ℓ o µ ′ 2 ,
and assume two values v 1 and v 2 such that

Σ ′ ⊢ ⟨ℓ 1 , v 1 , µ ′ 1 ⟩ ≈ j ℓ o ⟨ℓ 2 , v 2 , µ ′ 2 ⟩ : S 1 .
We need to show that:

Σ ′ ⊢ ⟨ℓ 1 , (λ ℓ ′′ c x : S ′ 1 .ρ 1 (t 1 )) ℓ ′ v 1 , µ ′ 1 ⟩ ≈ j ℓ o ⟨ℓ 2 , (λ ℓ ′′ c x : S ′ 1 .ρ 2 (t 1 )) ℓ ′ v 2 , µ ′ 2 ⟩ : C(S 2 )
Then:

(λ ℓ ′′ c x : S ′ 1 .ρ i (t 1 )) ℓ ′ v i | µ ′ i ℓ i -→ prot ℓ ′ ([v i /x]ρ i (t 1 )) | µ ′ i ℓ i -→ * prot ℓ ′ ([v i /x]ρ i (t 1 )) | µ ′ i
We then extend the substitutions to map x to the arguments:

ρ ′ i = ρ i {x → v i } We know that Σ ′ ⊢ ⟨ℓ 1 , v 1 , µ ′ 1 ⟩ ≈ j ℓ o ⟨ℓ 2 , v 2 , µ ′ 2 ⟩ : S 1 . So as µ i µ ′ i then by Lemma B.10, Γ, x : S 1 ; Σ ′ ⊢ ⟨ℓ 1 , ρ ′ 1 , µ ′ 1 ⟩ ≈ j ℓ o ⟨ℓ 2 , ρ ′ 2 , µ ′ 2 ⟩. By Lemma B.9, Γ; Σ ′ ; ℓ ′′ c ⊢ ρ ′ i (t 1 ) : S ′′ i2 where S ′′ i2 <: S ′ i2 <: S 2 . We know that ℓ i ≺ ℓ ′ ≼ ℓ ′′ c , therefore by Lemma B.2, Γ; Σ ′ ; ℓ i ≺ ℓ ⊢ ρ ′ i (t 1 ) : S ′′ i2 .
Then by induction hypothesis and Lemma B.12:

Σ ′ ⊢ ⟨ℓ 1 ≺ ℓ ′ , ρ ′ 1 (t 1 ), µ ′ 1 ⟩ ≈ j-1 ℓ o ⟨ℓ 2 ≺ ℓ ′ , ρ ′ 2 (t 1 ), µ ′ 2 ⟩ : C(S 2 ),
Finally, by Lemma B.16:

Σ ′ ⊢ ⟨ℓ 1 , prot ℓ ′ (ρ ′ 1 (t 1 )), µ ′ 1 ⟩ ≈ j ℓ o ⟨ℓ 2 , prot ℓ ′ (ρ ′ 2 (t 1 )), µ ′ 2 ⟩ : C(S 2
) and finally the result holds by backward preservation of the relations (Lemma B.14).

---

Case (!). t = !t ′ , where Σ; ℓ i ⊢ t ′ : Ref ℓ ′′ i S 1 , where S 1 ≺ ℓ ′′ i <: S = S 1 ≺ ℓ . By definition of substitution: ρ i (t) = !ρ i (t ′ )
We have to show that

Σ ⊢ ⟨ℓ 1 , !ρ i (t ′ ), µ 1 ⟩ ≈ k ℓ o ⟨ℓ 2 , !ρ i (t ′ ), µ 2 ⟩ : C(S)
By Lemma B.9:

Σ; ℓ i ⊢ !ρ i (t ′ ) : S 1 ≺ ℓ ′′′ i where ℓ ′′′ i ≼ ℓ ′′ i ≼ ℓ.
By induction hypotheses on the subterm:

Σ ⊢ ⟨ℓ 1 , ρ 1 (t ′ ), µ 1 ⟩ ≈ k ℓ o ⟨ℓ 2 , ρ 2 (t ′ ), µ 2 ⟩ : C(Ref ℓ S 1 )
Consider j < k, then by definition of related computations

ρ i (t ′ ) | µ i ℓ i -→ j t ′ i | µ ′ i =⇒ Σ ⊆ Σ ′ , Σ ′ ⊢ µ ′ 1 ≈ k -j ℓ o µ ′ 2 ∧(irred(t ′ i ) ⇒ Σ ′ ⊢ ⟨ℓ 1 , t ′ 1 , µ ′ 1 ⟩ ≈ k-j ℓ o ⟨ℓ 2 , t ′ 2 , µ ′ 2 ⟩ : Ref ℓ S 1 ) If terms t ′ i are reducible after j = k -1 steps, then !ρ i (t) | µ i ℓ i -→ j !t ′ i | µ ′
i and the result holds. If after at most j steps t ′ i is irreducible it means that for some

j ′ ≤ j, !ρ i (t) | µ i ℓ i -→ j ′ !v i | µ ′ i .
If j ′ = j then we use the same same argument for reducible terms and the result holds. 

Let us consider now j

′ < j. Then Σ ′ ⊢ ⟨ℓ 1 , v 1 , µ ′ 1 ⟩ ≈ k -j ′ ℓ o ⟨ℓ 2 , v 2 , µ ′ 2 ⟩ : Ref ℓ S 1 . By Lemma B.6, each v i is a location o i ℓ ′ i , such that Σ ′ (o i ℓ ′ i ) = Ref ℓ ′ i S 1 and ℓ ′ i ≼ ℓ ′ . Then: ρ i (t) | µ ℓ i -→ j ′ +1 !o i ℓ ′ i | µ ′ i ℓ i -→ 1 prot ℓ ′ i (v ′ i ) | µ ′ i with ℓ ′ i ≼ ℓ ′′′ i , v ′ i = µ ′ i (o i ℓ ′ i ), As Σ ′ ⊢ ⟨ℓ 1 , v 1 , µ ′ 1 ⟩ ≈ k -j ′ ℓ o ⟨ℓ 2 , v 2 , µ ′ 2 ⟩ : Ref ℓ S 1 ,
(ℓ ′ i ) or ¬obs ℓ o (ℓ ′ i ). Finally as Σ ′ ⊢ ⟨ℓ 1 , v ′ 1 , µ ′ 1 ⟩ ≈ k -j ′ ℓ o ⟨ℓ 2 , v ′ 2 , µ ′ 2 ⟩ : S 1 , by Lemma E.60, Σ ′ ⊢ ⟨ℓ 1 , prot ℓ ′ 1 (v ′ 1 ), µ ′ 1 ⟩ ≈ j ℓ o ⟨ℓ 2 , prot ℓ ′ 2 (v ′ 2 ), µ ′ 2 ⟩ : C(S 1 ≺ ℓ)
and finally the result holds by backward preservation of the relations (Lemma B.14).

---

Case (:=). t = t 1 :=t 2 . Then S = Unit ⊥ .
By definition of substitution:

ρ i (t) = ρ i (t 1 ):=ρ i (t 2 )
and Lemma B.9:

Σ; ℓ i ⊢ ρ i (t 1 ):=ρ i (t 2 ) : Unit ⊥ We have to show that Σ ⊢ ⟨ℓ 1 , ρ 1 (t 1 ):=ρ 1 (t 2 ), µ 1 ⟩ ≈ k ℓ o ⟨ℓ 2 , ρ 2 (t 1 ):=ρ 2 (t 2 ), µ 2 ⟩ : C(S) By induction hypotheses Σ ⊢ ⟨ℓ 1 , ρ 1 (t 1 ), µ 1 ⟩ ≈ k ℓ o ⟨ℓ 2 , ρ 2 (t 1 ), µ 2 ⟩ : C(S 1 )
Suppose j 1 < k, and that ρ i (t 1 ) are irreducible after j 1 steps (otherwise, similar to case !, the result holds immediately). Then by definition of related computations:

ρ i (t 1 ) | µ i ℓ i -→ j 1 v i | µ ′ i =⇒ Σ ⊆ Σ ′ , Σ ′ ⊢ µ ′ 1 ≈ k -j 1 ℓ o µ ′ 2 ∧ Σ ′ ⊢ ⟨ℓ 1 , v 1 , µ ′ 1 ⟩ ≈ k -j 1 ℓ o ⟨ℓ 2 , v 2 , µ ′ 2 ⟩ : Ref ℓ S 1 By Lemma B.15 µ i µ ′ i , and µ ′ 1 ≈ k -j 1 ℓ o µ ′ 2 then by Lemma E.41, Σ ′ ⊢ ⟨ℓ 1 , ρ 1 , µ ′ 1 ⟩ ≈ k -j 1 ℓ o ⟨ℓ 2 , ρ 2 , µ ′ 2 ⟩. By induction hypotheses: Σ ′ ⊢ ⟨ℓ 1 , ρ 1 (t 2 ), µ ′ 1 ⟩ ≈ k ℓ o ⟨ℓ 2 , ρ 2 (t 2 ), µ ′ 2 ⟩ : C(S 2 ) Again, consider j 2 = k -j 1 , if after j 2 steps ρ 1 (t 2 ) is reducible or is a value, the result holds immediately. The interest case if after j ′ 2 < j 2 steps ρ 1 (t S 2 ) reduces to values v ′ i : ρ i (t S 2 ) | µ ′ i ℓ i -→ j ′ 2 v ′ i | µ ′′ i =⇒ Σ ′ ⊆ Σ ′′ , Σ ′′ ⊢ µ ′′ 1 ≈ k-j 1 -j ′ 2 ℓ o µ ′′ 2 ∧Σ ′′ ⊢ ⟨ℓ 1 , v ′ 1 , µ ′′ 1 ⟩ ≈ k -j 1 -j ′ 2 ℓ o ⟨ℓ 2 , v ′ 2 , µ ′′ 2 ⟩ : S 2 Then ρ i (t S ) | µ i ℓ i -→ j 1 +j ′ 2 v i :=v ′ i | µ ′′ i ∧ Σ ′′ ⊢ µ ′′ 1 ≈ k -j 1 -j ′ 2 ℓ o µ ′′ 2
As both values v i are related at some reference type, then by canonical forms (Lemma B.6) they both must be locations o i ℓ ′ i for some S ′ 1 <: S 1 . We consider when the values are observable and the locations are identical (otherwise the result is trivial):

v i :=v ′ i | µ ′′ i = o ℓ ′ i :=v ′ i | µ ′′ i ℓ i -→ 1 unit ⊥ | µ ′′′ i Where µ ′′′ i = µ ′′ i [o → (v ′ i ≺ (ℓ i ≺ ℓ ′ i ))]. As Σ ′′ ⊢ ⟨ℓ 1 , v ′ 1 , µ ′′ 1 ⟩ ≈ k-j 1 -j ′ 2 ℓ o ⟨ℓ 2 , v ′ 2 , µ ′′ 2 ⟩ : S 2 ,

and as

ℓ i ≺ ℓ ′ i ≼ label(S 1 ), where ℓ ′ i ≼ ℓ, and label(v ′ i ) ≼ label(S 1 ), then Σ ′′ ; ℓ i ⊢ v ′ i ≺ (ℓ i ≺ ℓ ′ i )
: S ′ and S ′ <: S 1 . Then by monotonicity of the join Lemma B.13,

Σ ′′ ⊢ ⟨ℓ 1 , (v ′ 1 ≺ (ℓ 1 ≺ ℓ ′ 1 )), µ ′′ 1 ⟩ ≈ k -j 1 -j ′ 2 ℓ o ⟨ℓ 2 , (v ′ 2 ≺ (ℓ 2 ≺ ℓ ′ 2 )), µ ′′ 1 ⟩ But if ¬obs ℓ o (ℓ i ) then by monotonicity of the join ¬obs ℓ o (v ′ i ≺ (ℓ i ≺ ℓ ′ i )). Therefore, ∀ℓ ′′ i such that ℓ ′′ 1 ≈ k ℓ o ℓ ′′ 2 Σ ′′ ⊢ ⟨ℓ ′′ 1 , (v ′ 1 ≺ (ℓ 1 ≺ ℓ ′ 1 )), µ ′′ 1 ⟩ ≈ k -j 1 -j ′ 2 ℓ o ⟨ℓ ′′ 2 , (v ′ 2 ≺ (ℓ 2 ≺ ℓ ′ 2 )), µ ′′ 1 ⟩
As every values are related at type Unit, we only have to prove that

Σ ′′ ⊢ µ ′′′ 1 ≈ k -j 1 -j ′ 2 -3 ℓ o µ ′′′
1 , but using monotonicity (Lemma E.47), it is trivial to prove that because either both both stores update the same location o to values that are related, therefore the result holds.

---

Case (ref ). t = ref S 1 t S ′ 1 . Then S = Ref ⊥ S 1 . By definition of substitution: ρ i (t) = ref S 1 ρ i (t ′ )
and Lemma B.9:

ℓ i ⊢ ref S 1 ρ i (t ′ ) : Ref ⊥ S 1
We have to show that

Σ ⊢ ⟨ℓ 1 , ref S 1 ρ 1 (t ′ ), µ 1 ⟩ ≈ k ℓ o ⟨ℓ 2 , ref S 1 ρ 2 (t ′ ), µ 2 ⟩ : C(S 1 )
As Σ; ℓ i ⊢ ρ i (t ′ ) : S ′ i where S ′ i <: S 1 , by induction hypotheses:

Σ ⊢ ⟨ℓ 1 , ρ 1 (t ′ ), µ⟩ ≈ k ℓ o ⟨ℓ 2 , ρ 2 (t ′ ), µ⟩ : C(S 1 ) Consider j < k, by definition of related computations ρ i (t ′ ) | µ i ℓ i -→ j t ′ i | µ ′ i =⇒ Σ ⊆ Σ ′ , Σ ′ ⊢ µ ′ 1 ≈ k -j ℓ o µ ′ 2 ∧(irred(t ′ i ) ⇒ Σ ′ ⊢ ⟨ℓ 1 , t ′ 1 , µ ′ 1 ⟩ ≈ k -j ℓ o ⟨ℓ 2 , t ′ 2 , µ ′ 2 ⟩ : S ′ 1 ) If terms t ′ i are reducible after j = k -1 steps, then ref S 1 ρ i (t ′ ) | µ i ℓ i -→ j ref S 1 t ′ i | µ ′ i and the result holds. If after at most j steps t ′ i is irreducible, it means that for some j ′ ≤ j ref S 1 ρ i (t ′ ) | µ i ℓ i -→ j ′ ref S 1 v i | µ ′ i . If j ′ =
j then we use the same same argument for reducible terms and the result holds. Let us consider now j ′ < j. Then:

ρ i (t) | µ ℓ i -→ j ′ +1 ref S 1 v i | µ ′ i ℓ i -→ 1 o ⊥ | µ ′′ i with, µ ′′ i = µ ′ i [o → (v i ≺ ℓ i )]. Also, as Σ ′ ⊢ ⟨ℓ 1 , v 1 , µ ′ 1 ⟩ ≈ k -j ′ ℓ o ⟨ℓ 2 , v 2 , µ ′ 2 ⟩ : S 1 , then Σ ′′ ⊢ ⟨ℓ 1 , v 1 , µ ′′ 1 ⟩ ≈ k -j ′ ℓ o ⟨ℓ 2 , v 2 , µ ′′ 2 ⟩ : S 1 , with Σ ′′ = Σ ′ , o : S 1 . And as label(v i ) ≺ ℓ i ≼ label(S 1 ),then by Lemma B.13, Σ ′′ ⊢ ⟨ℓ 1 , v 1 ≺ ℓ 1 , µ ′ 1 ⟩ ≈ k -j ′ ℓ o ⟨ℓ 2 , v 2 ≺ ℓ 2 , µ ′ 2 ⟩ : S 1 . If ¬obs ℓ o (ℓ i ) then by monotonicity of the join ¬obs ℓ o (label(v ′ i ≺ ℓ i )) and ¬obs ℓ o (label(Σ ′′ (o))).
Therefore,

∀ℓ ′′ i such that ℓ ′′ 1 ≈ k ℓ o ℓ ′′ 2 Σ ′′ ⊢ ⟨ℓ ′′ 1 , v 1 ≺ ℓ 1 , µ ′ 1 ⟩ ≈ k-j ′ ℓ o ⟨ℓ ′′ 2 , v 2 ≺ ℓ 2 , µ ′ 2 ⟩ : S 1 . By definition of related stores Σ ′′ -µ ′′ 1 ≈ k -j ′ ℓ o µ ′′ 2 .
Then by Monotonicity of the relation (Lemma E.47)

Σ ′′ -µ ′′ 1 ≈ k -j ′ -2 ℓ o
µ ′′ 2 and the result holds.

---

Case (⊕). t = t 1 ⊕; t 2
By definition of substitution:

ρ i (t) = ρ i (t 1 ) ⊕; ρ i (t 2 )
and Lemma B.9:

Σ; ℓ i ⊢ ρ i (t 1 ) ⊕; ρ i (t 2 ) : S ′′
with S ′′ i <: S ′ i <: S. We use a similar argument to case := for reducible terms. The interest case is when we suppose some j 1 and j 2 such that j 1 + j 2 < k -3 where:

ρ i (t 1 ) | µ i ℓ i -→ j 1 v i1 | µ ′ i =⇒ Σ ⊆ Σ ′ , Σ ′ ⊢ µ ′ 1 ≈ k -j 1 ℓ o µ ′ 2 ∧ Σ ′ ⊢ ⟨ℓ 1 , v 11 , µ ′ 1 ⟩ ≈ k -j 1 ℓ o ⟨ℓ 2 , v 21 , µ ′ 2 ⟩ : S 1 ρ i (t 2 ) | µ ′ i ℓ i -→ j 2 v i2 | µ ′′ i =⇒ Σ ′ ⊆ Σ ′′ , Σ ′′ ⊢ µ ′′ 1 ≈ k -j 1 -j 2 ℓ o µ ′′ 2 ∧Σ ′′ ⊢ ⟨ℓ 1 , v 12 , µ ′′ 1 ⟩ ≈ k -j 1 -j 2 ℓ o ⟨ℓ 2 , v 22 , µ ′′ 2 ⟩ : S 2 By Lemma B.6, each v i j is a boolean (b i j ) ℓ i j then: ρ i (t) | µ ′′ i -→ j 1 +j 2 +2 (b i1 ) ℓ i 1 ⊕ (b i2 ) ℓ i 2 | µ ′′ i -→ 1 (b i ) ℓ ′ i | µ ′′ i with b i = b i1 ⊕ b i2 , ℓ ′ i = ℓ i1 ≺ ℓ i2 , and ℓ ′ i ≼ label(S ′′ i ) ≼ label(S)
. It remains to show that: ---

Σ ′′ ⊢ ⟨ℓ 1 , (b 1 ) ℓ ′ 1 , µ ′′ 1 ⟩ ≈ k -j 1 -j 2 -3 ℓ o ⟨ℓ 2 , (b 2 ) ℓ ′ 2 , µ ′′ 2 ⟩ : S If ¬obs ℓ o (ℓ i ),
Case (app). t = t 1 t 2 , with Σ; ℓ i ⊢ t 1 : S i1 ℓ ci -→ ℓ ′ i S i2 , and Σ; ℓ i ⊢ t 2 : S ′′ i1 . Also S i1 ℓ c i -→ ℓ ′ i S i2 <: S 1 ℓ c -→ ℓ S 2 , and S = S 2 .
By definition of substitution:

ρ i (t) = ρ i (t 1 ) ρ i (t 2 )
and Lemma B.9:

Σ; ℓ i ⊢ ρ i (t 1 ) ρ i (t 2 ) : S ′ i2
with S ′ i2 <: S i2 <: S 2 . We use a similar argument to case := for reducible terms. The interest case is when we suppose some j 1 and j 2 such that j 1 + j 2 < k where by induction hypotheses and the definition of related computations:

ρ i (t 1 ) | µ i ℓ i -→ j 1 v i1 | µ ′ i =⇒ Σ ⊆ Σ ′ , Σ ′ ⊢ µ ′ 1 ≈ k -j 1 ℓ o µ ′ 2 ∧ Σ ′ ⊢ ⟨ℓ 1 , v 11 , µ ′ 1 ⟩ ≈ k -j 1 ℓ o ⟨ℓ 2 , v 21 , µ ′ 2 ⟩ : S 1 ρ i (t 2 ) | µ ′ i ℓ i -→ j 2 v i2 | µ ′′ i =⇒ Σ ′ ⊆ Σ ′′ , Σ ′ ⊢ µ ′′ 1 ≈ k -j 1 -j 2 ℓ o µ ′′ 2 ∧Σ ′′ ⊢ ⟨ℓ 1 , v 12 , µ ′′ 1 ⟩ ≈ k -j 1 -j 2 ℓ o ⟨ℓ 2 , v 22 , µ ′′ 2 ⟩ : S 2 Then ρ i (t) | µ i ℓ i -→ j 1 +j 2 v i1 v i2 | µ ′′ i If obs ℓ o (ℓ i , v i1
) then, by definition of ≈ ℓ o at values of function type, we have:

Σ ′ ⊢ ⟨ℓ 1 , (v 11 v 12 ), µ ′′ 1 ⟩ ≈ k -j 1 -j 2 ℓ o ⟨ℓ 2 , (v 21 v 22 ), µ ′′ 2 ⟩ : C(S 2 ≺ ℓ)
Finally, by backward preservation of the relations (Lemma B.14) the result holds.

If ¬obs ℓ o (ℓ i , v i1 ), and we assume by canonical forms that

v i1 = (λ ℓ ′ c i x .t i ) ℓ ′′ i then, either ¬obs ℓ o (ℓ i ) or ¬obs ℓ o (ℓ ′′ i ) and (v i1 v i2 ) | µ ′′ 1 = ((λ ℓ ′ ci x .t i ) ℓ ′′ i v i2 ) | µ ′′ 1 ℓ i -→ 1 prot ℓ ′′ i (t ′ i ) | µ ′′ 1 If either ¬obs ℓ o (ℓ i ) or ¬obs ℓ o (ℓ ′′ i ) then by Lemma B.19 , Σ ′′ ⊢ ⟨ℓ 1 , prot ℓ ′′ 1 (t ′ 1 ), µ ′′ 1 ⟩ ≈ k -j 1 -j 2 ℓ o ⟨ℓ 2 , prot ℓ ′′ 2 (t ′ 2 ), µ ′′ 2 ⟩ : C(S 2 ≺ ℓ)
Finally, by backward preservation of the relations (Lemma B.14) the result holds.

---

Case (if). t = if t 1 then t 2 else t 3 , with Σ; ℓ i ⊢ t 1 : S 1 , Σ; ℓ ′ i ⊢ t 2 : S 2 , Σ; ℓ ′ i ⊢ t 3 : S 3 , ℓ ′ i = ℓ i ≺ label(S 1
), and S ′ = S 2 <: S 3 <: S By definition of substitution:

ρ i (t) = if ρ i (t 1 ) then ρ i (t 2 ) else ρ i (t 3 )
We use a similar argument to case := for reducible terms. The interest case is when we suppose some j 1 and j 2 such that j 1 + j 2 < k where by induction hypotheses and related computations we have that:

ρ i (t 1 ) | µ i ℓ i -→ j 1 v i1 | µ ′ i =⇒ Σ ⊆ Σ ′ , Σ ′ ⊢ µ ′ 1 ≈ k -j 1 ℓ o µ ′ 2 ∧ Σ ′ ⊢ ⟨ℓ 1 , v 11 , µ ′ 1 ⟩ ≈ k -j 1 ℓ o ⟨ℓ 2 , v 21 , µ ′ 2 ⟩ : S 1 By Lemma B.6, each v i1 is a boolean (b i1 ) ℓ i 1 , such that Σ ′ ; ℓ i ⊢ (b i1 ) ℓ i 1 : Bool ℓ i 1 and Bool ℓ i 1 <: S 1 , implies S 1 = Bool ℓ ′ 1 . Then: ρ i (t) | µ i ℓ i -→ j 1 +1 if (b i1 ) ℓ i 1 then ρ i (t 2 ) else ρ i (t 3 ) | µ ′ i Let us consider ¬obs ℓ o (ℓ i , (b i1 ) ℓ i 1 ).
Let us assume the worst case scenario and that both execution reduce via different branches of the conditional. Then Then by induction hypothesis

ρ 1 (t) | µ 1 ℓ i -→ j 1 +2 prot ℓ 11 (ρ 1 (t 2 )) | µ ′ 1 ρ 2 (t) | µ 2 ℓ i -→ j 1 +2 prot ℓ 21 (ρ 2 (t 3 )) | µ ′ 2 But because ¬obs ℓ o (ℓ i , (b i1 ) ℓ i 1 ), then either ¬obs ℓ o (ℓ i ) or ¬obs ℓ o (ℓ i1 ) and therefore, ¬obs ℓ o (ℓ i ≺ ℓ i1 ). Then by Lemma B.19, Σ ′ ⊢ ⟨ℓ 1 , prot ℓ 11 (ρ 1 (t 2 )), µ ′ 1 ⟩ ≈ k ℓ o ⟨ℓ 2 , prot ℓ 21 (ρ 2 (t 3 )), µ ′ 2 ⟩
Σ ′ ⊢ ⟨ℓ 1 ≺ ℓ 11 , ρ 1 (t 2 ), µ ′ 1 ⟩ ≈ k ℓ o ⟨ℓ 2 ≺ ℓ 21 , ρ 2 (t 2 ), µ ′ 2 ⟩ : S 2 , and by Lemma B.16, Σ ′ ⊢ ⟨ℓ 1 , prot ℓ 11 (ρ 1 (t 2 )), µ ′ 1 ⟩ ≈ k ℓ o ⟨ℓ 2 , prot ℓ 21 (ρ 2 (t 2 )
), µ ′ 2 ⟩ : S and the result holds by backward preservation of the relations (Lemma B.14).

Case (prot()). Direct by using Lemma B.16.

□ C GRADUALIZING THE STATIC SEMANTICS

In section C.1, we show the proof of optimality and soundness of the abstraction. In section C.2, we present the proof for the Static Gradual Guarantee.

C.1 From Gradual Labels to Gradual Types

Proposition C.1 (α is Sound). If Û ℓ ∅ then Û ℓ ⊆ γ (α( Û ℓ)).
Proof. By case analysis on the structure of Û ℓ.

If Û ℓ = { ℓ } then γ (α({ ℓ })) = γ (ℓ) = { ℓ } = Û ℓ, otherwise γ (α( Û ℓ)) = γ (?) = Label ⊇ Û ℓ. □ Proposition C.2 (α is Optimal). If Û ℓ ⊆ γ (g) then α( Û ℓ) ⊑ g.
Proof. By case analysis on the structure of g.

If g = ℓ, γ (g) = { ℓ }; Û ℓ ⊆ { ℓ } , Û ℓ ∅ implies α( Û ℓ) = α({ ℓ }) = ℓ ⊑ g (if Û ℓ = ∅, α( Û ℓ) is undefined). If g = ?, g ′ ⊑ g for all g ′ . □ Proposition 6.4 (α is Sound and Optimal). If Û ℓ ∅ then, (i) Û ℓ ⊆ γ (α( Û ℓ)). (ii) If Û ℓ ⊆ γ (g) then α( Û ℓ) ⊑ g.
Proof. Trivial using Prop C.1 and C.2.

□ Proposition C.3 (α S is Sound). If Û S valid, then Û S ⊆ γ S (α S ( Û S)).
Proof. By well-founded induction on Û S according to the ordering relation Û S ⊏ Û S defined as follows:

dom( Û S) ⊏ Û S ĉod(j Û S) ⊏ Û S
Where dom, ĉod : P(GType) → P(GType) are the collecting liftings of the domain and codomain functions dom, cod respectively, e.g.,

dom( Û S) = { dom(S) | S ∈ Û S } .
We then consider cases on Û S according to the definition of α S .

Case ({ Bool ℓ i }). γ S (α S ({ Bool ℓ i })) = γ S (Bool α ({ ℓ i }) ) = { Bool ℓ | ℓ ∈ γ (α({ ℓ i })) } ⊇ { Bool ℓ i } by soundness of α. Case ({ S i1 ℓ c i -→ ℓ i S i2 }). γ S (α S ({ S i1 ℓ c i -→ ℓ i S i2 })) = γ S (α S ({ S i1 }) α ({ ℓ c i }) -→ α ({ ℓ i }) α S ({ S i2 })) = γ S (α S ({ S i1 })) γ (α ({ ℓ c i })) -→ γ (α ({ ℓ i })) γ S (α S ({ S i2 })) ⊇ { S i1 ℓ c i -→ ℓ i S i2 }
by induction hypothesis on { S i1 } and { S i2 }, and soundness of α.

Case ({ Ref ℓ i S i }). γ S (α S ({ Ref ℓ i S i })) = γ S (Ref α ({ ℓ i }) α S ({ S i })) = { Ref ℓ S | ℓ ∈ γ (α({ ℓ i })), S ∈ γ S (α S ({ S i })) } ⊇ { Ref ℓ i S i }
by induction hypothesis on { S i } and soundness of α.

□ Proposition C.4 (α S is Optimal). If Û S valid and Û S ⊆ γ S (U ) then α S ( Û S) ⊑ U .
Proof. By induction on the structure of U .

Case (Bool g ). γ S (Bool g ) = { Bool ℓ | ℓ ∈ γ (g) } So Û S = { Bool ℓ | ℓ ∈ Û ℓ } for some Û ℓ ⊆ γ (g). By optimality of α, α( Û ℓ) ⊑ g, so α S ({ Bool ℓ | ℓ ∈ Û ℓ }) = Bool α ( Û ℓ) ⊑ Bool g . Case (U 1 → g U 2 ). γ S (U 1 g c -→ g U 2 ) = γ S (U 1 ) γ (g c ) -→ γ (g) γ S (U 2 ). So Û S = { S 1i ℓ c i -→ g i S 2i }, with { S 1i } ⊆ γ S (U 1 ), { S 1i } ⊆ γ S (U 2 ), { ℓ c i } ⊆ γ (g c ) and { ℓ c i } ⊆ γ (g). By induction hypothesis, α S ({ S 1i }) ⊑ U 1 and α S ({ S 2i }) ⊑ U 2 , and by optimality of α, α({ ℓ c i }) ⊑ g c and α({ ℓ i }) ⊑ g. Hence α S ({ S 1i ℓ c i -→ ℓ i S 2i }) = α S ({ S 1i }) α ({ ℓ c i }) -→ α ({ g i }) α S ({ S 2i }) ⊑ U 1 g c -→ g U 2 . Case (Ref g U ). γ S (Ref g U ) = { Ref ℓ S | ℓ ∈ γ (g), S ∈ γ (U ) } So Û S = { Ref ℓ S | ℓ ∈ Û ℓ, S ∈ { S i } } for some { S i } ⊆ γ S (U ) and some Û ℓ ⊆ γ (g). By induction hypothesis α S ({ S i }) ⊑ U and by optimality of α, α( Û ℓ) ⊑ g, so α S ({ Ref ℓ S | ℓ ∈ Û ℓ, S ∈ { S i } }) = Ref α ( Û ℓ) α S ({ S i }) ⊑ Ref g U .

□

Proposition A.9 (α S is Sound and Optimal). Assuming Û S valid:

(i) Û S ⊆ γ S (α S ( Û S)) (ii) If Û S ⊆ γ S (U ) then α S ( Û S) ⊑ U .
Proof. Trivial using Prop C.3 and C. [START_REF] Pottier | Information Flow Inference for ML[END_REF].

□ Case (U λ). Then t 1 = (λ g ′ c x : U ′ 1 .t) g and U 1 = U ′ 1 g ′ c -→ g U ′ 2
. By (U λ) we know that:

(U λ) Γ, x : U ′ 1 ; •; g ′ c ⊢ t : U ′ 2 Γ; •; g c1 ⊢ (λ g ′ c x : U ′ 1 .t) g : U ′ 1 g ′ c -→ g U ′ 2 (1)
Consider g c2 such that g c1 ⊑ g c2 and t 2 such that t 1 ⊑ t 2 . By definition of term precision t 2 must have the form

t 2 = (λ g ′ c x : U ′′ 1 .t ′ ) ′ g and therefore (U λ) t ⊑ t ′ g ′ c ⊑ g ′′ c U ′ 1 ⊑ U ′′ 1 g ⊑ g ′ (λ g ′ c x : U ′ 1 .t) g ⊑ (λ g ′′ c x : U ′′ 1 .t ′ ) g ′ (2)
Using induction hypotheses on the premise of 1, Γ, x :

U ′ 1 ; •; g c2 ⊢ t ′ : U ′′ 2 with U ′ 2 ⊑ U ′′ 2 . By Lemma C.7, Γ, x : U ′′ 1 ; •; g c2 ⊢ t ′ : U ′′′ 2 where U ′′ 2 ⊑ U ′′′ 2 .
Then we can use rule (U λ) to derive:

(U λ) Γ, x : U ′′ 1 ; •; g ′′ c ⊢ t ′ : U ′′′ 2 Γ; .; g c1 ⊢ (λ g ′′ c x : U ′ 1 .t ′ ) g ′ : U ′′ 1 g ′′ c -→ g ′U ′′′ 2
Where U 2 ⊑ U ′′ 2 . Using the premise of 2 and the definition of type precision we can infer that

U ′ 1 g ′ c -→ g U ′ 2 ⊑ U ′′ 1 g ′′ c -→ g ′U ′′′ 2
and the result holds.

Case (U o). This case can not happen because initial programs do not contain locations.

Case (U prot). Then t 1 = prot g (t) and U 1 = U ≺ g. By (U prot) we know that:

(U prot) Γ; •; g c1 ≺ g ⊢ t : U Γ; •; g c1 ⊢ prot g (t) : U ≺ g (3)
Consider g c2 such that g c1 ⊑ g c2 and t 2 such that t 1 ⊑ t 2 . By definition of term precision t 2 must have the form t 2 = prot g ′ (t ′ ) and therefore

(Pprot) t ⊑ t ′ g ⊑ g ′ prot g (t) ⊑ prot g ′ (t ′ ) (4)
By definition of join on consistent labels, g c1 ≺ g ⊑ g c2 ≺ g ′ . Using induction hypotheses on the premises of 3, we can use rule (U prot) to derive:

(U prot) Γ; •; g c2 ≺ g ′ ⊢ t ′ : U ′ Γ; •; g c2 ⊢ prot g ′ (t ′ ) : U ′ ≺ g ′
For some U ′ , where U ⊑ U ′ . Using the premise of 4 and the definition of join we can infer that

U ≺ g ⊑ U ′ ≺ g ′
and the result holds.

Case (U ⊕). Then t 1 = t ′ 1 ⊕ t ′ 2 and U 1 = Bool (g 1 ≺ g 2 )
. By (U ⊕) we know that:

(U ⊕) Γ; •; g c1 ⊢ t ′ 1 : Bool g 1 Γ; •; g c1 ⊢ t ′ 2 : Bool g 2 Γ; •; g c1 ⊢ t ′ 1 ⊕ t ′ 2 : Bool (g 1 ≺ g 2 )
(5)

Consider any ℓ ′ such that ℓ ⊑ ℓ ′ . As g c1 ≺ g ⊑ g c2 ≺ g ′ then we can use induction hypotheses on the premises of 9 and derive:

(U if) Γ; •; g c2 ⊢ t ′ : Bool g ′ Γ; •; g c2 ≺ g ′ ⊢ t ′′ 1 : U ′′ 1 Γ; •; g c2 ≺ g ′ ⊢ t ′′ 2 : U ′′ 2 Γ; •; g c2 ⊢ if t ′ then t ′′ 1 else t ′′ 2 : (U ′′ 1 <: U ′′ 2 ) ≺ g ′ Where U ′ 1 ⊑ U ′′ 1 and U ′ 2 ⊑ U ′′ 2 .
Using the definition of type precision we can infer that

(U ′ 1 <: U ′ 2 ) ≺ g ⊑ (U ′′ 1 <: U ′′ 2 ) ≺ g ′
and the result holds.

Case (U ::). Then t 1 = t :: U 1 . By (U ::) we know that:

(U ::) Γ; •; g c1 ⊢ t : U ′ 1 U ′ 1 ≲ U 1 Γ; •; g c1 ⊢ t :: U ′ 1 : U 1 (11)
Consider g c2 such that g c1 ⊑ g c2 and t 2 such that t 1 ⊑ t 2 . By definition of term precision t 2 must have the form t 2 = t ′ :: U 2 and therefore (P::)

t ⊑ t ′ U 1 ⊑ U 2 t :: U 1 ⊑ t ′ :: U 2 (12)
Using induction hypotheses on the premises of 11, Γ; •;

g c ⊢ t ′ : U ′ 2 where U ′ 1 ⊑ U ′ 2 .
We can use rule (U ::) and Lemma C.8 to derive:

(U ::) Γ; •; g c2 ⊢ t ′ : U ′ 2 U ′ 2 ≲ U 2 Γ; •; g c2 ⊢ t ′ :: U 2 : U 2
Where U 1 ⊑ U 2 and the result holds.

Case (U ref). Then t

1 = ref U t and U 1 = Ref g c U . By (U ref) we know that: (U ref) Γ; •; g c1 ⊢ t : U ′ 1 U ′ 1 ≲ U g c1 ≼ label(U ) Γ; •; g c1 ⊢ ref U t : Ref ⊥ U (13)
Consider g c2 such that g c1 ⊑ g c2 and t 2 such that t 1 ⊑ t 2 . By definition of term precision t 2 must have the form

t 2 = ref U ′ t ′ and therefore (Pref) t ⊑ t ′ U ⊑ U ′ ref U t ⊑ ref U ′ t ′ (14)
Using induction hypotheses on the premises of 13, we can use rule (U ref) and Lemma C.8 and C.10 to derive:

(U ref) Γ; •; g c2 ⊢ t ′ : U ′′ 1 U ′′ 1 ≲ U ′ g c2 ≼ label(U ′ ) Γ; •; g c2 ⊢ ref U ′ t ′ : Ref ⊥ U ′ Where U ⊑ U ′ and U ′ 1 ⊑ U ′′ 1 .
Using the the definition of type precision we can infer that

U ⊑ U ′ Ref ⊥ U ⊑ Ref ⊥ U ′
and the result holds.

Case (U deref). Then t 1 = !t and U 1 = U ≺ g. By (U deref) we know that:

(U deref) Γ; •; g c1 ⊢ t : Ref g U Γ; •; g c1 ⊢ !t : U ≺ g (15)
Consider g c2 such that g c1 ⊑ g c2 and t 2 such that t 1 ⊑ t 2 . By definition of term precision t 2 must have the form t 2 = !t ′ and therefore

(Pderef) t ⊑ t ′ !t ⊑ !t ′ (16)
Using induction hypotheses on the premises of 15, we can use rule (U deref) to derive:

(U deref) Γ; •; g c2 ⊢ t ′ : Ref g ′ U ′ Γ; •; g c2 ⊢ !t ′ : U ′ ≺ g ′
Where g ⊑ g ′ and U ⊑ U ′ . Using the premise of 16 and the definition of type precision we can infer that

U ≺ g ⊑ U ′ ≺ g ′
and the result holds.

Case (U asgn). Then t 1 = t ′ 1 :=t ′ 2 and U 1 = Unit ⊥ . By (U asgn) we know that:

(U asgn) Γ; •; g c1 ⊢ t ′ 1 : Ref g U ′ 1 Γ; •; g c1 ⊢ t ′ 2 : U ′ 2 U ′ 2 ≲ U ′ 1 Â g ≺ g c1 ≼ label(U ′ 1 ) Γ; •; g c1 ⊢ t ′ 1 :=t ′ 2 : Unit ⊥ (17) 
Consider g c2 such that g c1 ⊑ g c2 and t 2 such that t 1 ⊑ t 2 . By definition of term precision t 2 must have the form t 2 = t ′′ 1 :=t ′′ 2 and therefore (Pasgn)

t ′ 1 ⊑ t ′′ 1 t ′ 2 ⊑ t ′′ 2 t ′ 1 :=t ′ 2 ⊑ t ′′ 1 :=t ′′ 2 (18) 
Using induction hypotheses on the premises of 17, Γ; •;

g c2 ⊢ t ′ 1 : Ref g ′ U ′′ 1 and Γ; •; g c2 ⊢ t ′ 2 : U ′ 2 , where Ref g U ′ 1 ⊑ Ref g ′ U ′′ 1 and U ′ 2 ⊑ U ′′ 2 .
By definition of precision on types and Lemma C.8,

U ′′ 2 ≲ U ′′ 1 . Also, as, g ⊑ g ′ and U ′ 1 ⊑ U ′′ 1 , by Lemma C.9, Â g ′ ≺ g c2 ≼ label(U ′ 1
). Then we can use rule (U asgn) to derive:

(U asgn) Γ; •; g c2 ⊢ t ′ 1 : Ref g ′ U ′′ 1 Γ; •; g c2 ⊢ t ′ 2 : U ′′ 2 U ′′ 2 ≲ U ′′ 1 Â g ′ ≺ g c2 ≼ label(U ′′ 1 ) Γ; •; g c2 ⊢ t ′′ 1 :=t ′′ 2 : Unit ⊥

Using the definition of type precision we can infer that

Unit ⊥ ⊑ Unit ⊥ and the result holds.

□ D GRADUALIZING THE DYNAMIC SEMANTICS

In this section we present the formalization of the evidences for GSL Ref . Section D.1 presents the structure of evidence and the abstraction and concretization functions. In section D.2, we show how to calculate the initial evidence. In particular we give definition for the initial evidence of consistent judgments for labels and types. In section D.2, we present how to evolve evidence. We define the consistent transitivity operator, the meet operator and join of evidences. In section D.4, we present the algorithmic definitions of initial evidence and consistent transitivity. Finally, in section D.5, we present some of the proofs of the propositions for evidence presented.

D.1 Precise Evidence for Consistent Security Judgments

Definition D.1 (Interval). An interval is a bounded unknown label [ℓ 1 , ℓ 2 ] where ℓ 1 is the upper bound and ℓ 2 is the lower bound.

ı ∈ Label 2 ı ::= [ℓ, ℓ] (interval) Definition D.2 (Interval Concretization). Let γ ı : Label 2 → P(Label) be defined as follows:

γ ı ([ℓ 1 , ℓ 2 ]) = {ℓ | ℓ ∈ Label, ℓ 1 ≼ ℓ ≼ ℓ 2 }
We can only concretize valid intervals:

Definition D.3 (Valid Gradual Label). ℓ 1 ≼ ℓ 2 valid([ℓ 1 , ℓ 2 ])
Definition D.4 (Label Evidence Concretization). Let γ ε ℓ : Label 4 → P(Label 2 ) be defined as follows:

γ ε ℓ (⟨ı 1 , ı 2 ⟩) = {⟨ℓ 1 , ℓ 2 ⟩ | ℓ 1 ∈ γ ı (ı 1 ), ℓ 2 ∈ γ ı (ı 2 )}
Definition D.5 (Interval Abstraction). Let α : P(Label) → Label 2 be defined as follows:

α ı (∅) is undefined α ı ({ ℓ i }) = [ ≺ ℓ i , ≺ ℓ i ] otherwise
Definition D.6 (Label Evidence Abstraction). Let α ε ℓ : P(Label 2 ) → Label 4 be defined as follows:

α ε ℓ (∅) is undefined α ε ℓ ({ ⟨ℓ 1i , ℓ 2i ⟩ }) = ⟨α ı ({ ℓ 1i }), α ı ({ ℓ 2i })⟩ otherwise
Definition D.7 (Type Evidence). An evidence type is a gradual type labeled with an interval:

E ∈ GEType, ı ∈ Label 2 E ::= Bool ı | E ı -→ ı E | Ref ı E | Unit ı (evidence types)
Definition D.8 (Type Evidence Concretization). Let γ E : GEType → P(Type) be defined as follows:

γ E (Bool ı ) = { Bool ℓ | ℓ ∈ γ ı (ı) } γ E (E 1 ı 2 -→ ı 1 E 2 ) = γ E (E 1 ) γ ı (ı 2 ) -→ γ ı (ı 1 ) γ E (E 2 ) γ E (Ref ı E) = { Ref ℓ S | ℓ ∈ γ ı (ı), S ∈ γ E (E) }
where → is the set of all possible combinations of function types, using each member of the sets obtained by the γ E and γ ı functions. Definition D.9 (Evidence Concretization). Let γ ε ℓ : GEType 2 → P(Type 2 ) be defined as follows:

γ ε ℓ (⟨E 1 , E 2 ⟩) = {⟨S 1 , S 2 ⟩ | S 1 ∈ γ E (E 1 ), S 2 ∈ γ E (E 2 )}
Definition D.10 (Type Evidence Abstraction). Let the abstraction function α E : P(Type) → GEType be defined as:

α E ({ Bool ℓ i }) = Bool α ı ({ ℓ i }) α E ({ S i1 ℓ ci -→ ℓ i S i2 }) = α E ({ S i1 }) α ı ({ ℓ c i }) -→ α ı ({ ℓ i }) α E ({ S i2 }) α E ({ Ref ℓ i S i }) = Ref α ı ({ ℓ i }) α E ({ S i }) α E ( Û S) is undefined otherwise
Definition D.11 (Evidence Abstraction). Let α ε : P(Type 2 ) → GEType 2 be defined as follows:

α ε (∅) is undefined α ε ({ ⟨S 1i , S 2i ⟩ }) = ⟨α E ({ S 1i }), α E ({ S 2i })⟩ otherwise
We can only abstract valid sets of security types, i.e. in which elements only defer by security labels.

Definition D.12 (Valid Type Sets).

valid({ Bool

ℓ i }) valid({ S i1 }) valid({ S i2 }) valid({ S i1 ℓ c i -→ ℓ i S i2 }) valid({ S i }) valid({ Ref ℓ i S i }) valid({ Unit ℓ i }) Proposition D.13 (α ı is Sound). If Û ℓ is not empty, then Û ℓ ⊆ γ ı (α ı ( Û ℓ)). Proposition D.14 (α ı is Optimal). If Û ℓ is not empty, and Û ℓ ⊆ γ ı (ı) then α ı ( Û ℓ) ⊑ ı. Proposition D.15 (α E is Sound). If valid( Û S) then Û S ⊆ γ E (α E ( Û S)). Proposition D.16 (α E is Optimal). If valid( Û S) and Û S ⊆ γ E (E) then α E ( Û S) ⊑ E.
With concretization of security type, we can now define security type precision.

Definition D.17 (Interval and Type Evidence Precision).

(1) ı 1 is less imprecise than ı 2 , notation ı 1 ⊑ ı 2 , if and only if γ ε ℓ (ı 1 ) ⊆ γ ε ℓ (ı 2 ); inductively:

ℓ 3 ≼ ℓ 1 ℓ 2 ≼ ℓ 4 [ℓ 1 , ℓ 2 ] ⊑ [ℓ 3 , ℓ 4 ] (2) E 1 is less imprecise than E 2 , notation E 1 ⊑ E 2 , if and only if γ E (E 1 ) ⊆ γ E (E 2 ); inductively: ı 1 ⊑ ı 2 Bool ı 1 ⊑ Bool ı 2 E 11 ⊑ E 21 E 12 ⊑ E 22 ı 1 ⊑ ı 2 ı ′ 1 ⊑ ı ′ 2 E 11 ı ′ 1 -→ ı 1 E 12 ⊑ E 21 ı ′ 2 -→ ı 2 E 22 ı 1 ⊑ ı 2 E 1 ⊑ E 2 Ref ı 1 E 1 ⊑ Ref ı 2 E 2

D.2 Initial evidence

With the definition of concretization and abstraction we can now define the initial evidence of label ordering and subtyping: Definition D.18 (Initial Evidence of label ordering). Let F 1 : Label n -→ Label and F 2 : Label m -→ Label be functions over labels. The initial evidence of the judgment  F 1 (g i ) ≼ F 2 (g j ), notation

I Â F 1 (g i ) ≼ F 2 (g j )
, is defined as follows:

I Â F 1 (g 1 , ...g n ) ≼ F 2 (g n+1 , ...g n+m ) = α ε ℓ ({⟨F 1 (ℓ i ), F 2 (ℓ j )⟩ | ⟨ℓ i ⟩ ∈ γ n (g i [1/n] ), ⟨ℓ j ⟩ ∈ γ m (g i [n+1/m] ) | F 1 (ℓ i ) ≼ F 2 (ℓ j )}) Suppose F 1 = F 11
Definition D.19 (Initial Evidence of subtyping). Let F 1 : Type n -→ Type and F 2 : Type m -→ Type be functions over types. The initial evidence of the judgment Â

F 1 (U i ) ≼ F 2 (U j ), notation I Â F 1 (U i ) <: F 2 (U j )
, is defined as follows:

I Â F 1 (U 1 , ...U n ) <: F 2 (U n+1 , ...U n+m ) = α ε ℓ ({⟨F 1 (S i ), F 2 (S j )⟩ | ⟨S i ⟩ ∈ γ n S (U i [1/n] ), ⟨S j ⟩ ∈ γ m S (U i [n+1/m] ) | F 1 (S i ) <: F 2 (S j )})
Proposition D.20. [Elaboration preserves typing] Consider Γ; Σ; g c ⊢ t : U then if Γ; Σ; g c ⊢ t t ′ : U , and ε = I ⟳ ≼ (ℓ c ), then Γ; Σ; εg c ⊢ t ′ : U Proof. Straightforward induction on type U . □

D.3 Evolving evidence: Consistent Transitivity

Now that we know how to extract initial evidence from consistent judgments, we need a way to combine evidences to use during program evaluation, i.e. we need to find a way to evolve evidence. We define consistent transitivity for label ordering and subtyping, • ≼ and • <: respectively, to combine evidences as follows:

Definition D.21 (Consistent transitivity for label ordering). Let function • ≼ : Interval 2 ×Interval 2 → Label 2 be defined as:

⟨ı 11 , ı 12 ⟩ • ≼ ⟨ı 21 , ı 22 ⟩ = α ε ℓ ({⟨ℓ 11 , ℓ 22 ⟩ ∈ γ ε ℓ (⟨ı 11 , ı 22 ⟩) | ∃ℓ ∈ γ ı (ı 12 ) ∩ γ ı (ı 21 ).ℓ 11 ≼ ℓ ∧ ℓ ≼ ℓ 22 }) Proposition 6.14. Suppose ε 1 ⊢ Â F 1 (g i ) ≼ F 2 (g j ) and ε 2 ⊢ Â F 2 (g j ) ≼ F 3 (g k ). If ε 1 • ≼ ε 2 is defined, then ε 1 • ≼ ε 2 ⊢ Â F 1 (g i ) ≼ F 3 (g k ) Proposition D.22. γ ı (ı 1 ⊓ ı 2 ) = γ ı (ı 1 ) ∩ γ ı (ı 2 ).
where

ı ⊓ ı ′ = α(γ (ı) ∩ γ (ı ′ )). Proposition D.23. ⟨ı 1 , ı 21 ⟩ • ≼ ⟨ı 22 , ı 3 ⟩ = △ ≼ (ı 1 , ı 21 ⊓ ı 22 , ı 3 ) where △ ≼ (ı 1 , ı 2 , ı 3 ) = α ε ({⟨ℓ 1 , ℓ 3 ⟩ ∈ γ ε (⟨ı 1 , ı 3 ⟩) | ∃ℓ 2 ∈ γ ı (ı 2 ).ℓ 1 ≼ ℓ 2 ∧ ℓ 2 ≼ ℓ 3 })
Definition D.24 (Consistent transitivity for subtyping). Suppose

⟨E 11 , E 12 ⟩ ⊢ Â F 1 (U i ) <: F 2 (U j ) ⟨E 21 , E 22 ⟩ ⊢ Â F 2 (U j ) <: F 3 (U k )
We deduce evidence for consistent transitivity for subtyping:

⟨E 11 , E 12 ⟩ • <: ⟨E 21 , E 22 ⟩ ⊢ Â F 1 (U i ) <: F 3 (U k ) where • <: : EType 2 × EType 2 → EType 2 is defined as: ⟨E 11 , E 12 ⟩ • <: ⟨E 21 , E 22 ⟩ = α ε ({⟨S 11 , S 22 ⟩ ∈ γ ε (⟨E 11 , E 22 ⟩) | ∃S ∈ γ E (E 12 ) ∩ γ E (E 21 ).S 11 <: S ∧ S <: S 22 }) Proposition D.25. γ E (E 1 ⊓ E 2 ) = γ E (E 1 ) ∩ γ E (E 2 ).
Then following AGT, Proposition D.26.

⟨E 1 , E 21 ⟩ • <: ⟨E 22 , E 3 ⟩ = △ <: (E 1 , E 21 ⊓ E 22 , E 3 )
where

△ <: (E 1 , E 2 , E 3 ) = α ε ({⟨S 1 , S 3 ⟩ ∈ γ ε (⟨E 1 , E 3 ⟩) | ∃S 2 ∈ γ ı (E 2 ).S 1 <: S 2 ∧ S 2 <: S 3 }) Definition D.27 (Intervals join). [ℓ 1 , ℓ 2 ] ≺ [ℓ 3 , ℓ 4 ] = [ℓ 1 ≺ ℓ 3 , ℓ 2 ≺ ℓ 4 ]
Definition D.28 (Evidence label join).

⟨ı 1 , ı 2 ⟩ ≺ ⟨ı 3 , ı 4 ⟩ = ⟨ı 1 ≺ ı 3 , ı 2 ≺ ı 4 ⟩ Definition D.29. Bool ı 1 ≺ ı 2 = Bool (ı 1 ≺ ı 2 ) E 1 ı 2 -→ ı 1 E 2 ≺ ı 3 = E 1 ı 2 -→ (ı 1 ≺ ı 3 ) E 2 Ref ı 1 E ≺ ı 2 = Ref (ı 1 ≺ ı 2 ) E Definition D.30. ⟨E 1 , E 2 ⟩ ≺ ⟨ı 1 , ı 2 ⟩ = ⟨E 1 ≺ ı 1 , E 2 ≺ ı 2 ⟩ Proposition D.31. If ε S ⊢ U 1 ≲ U 2 and ε l ⊢ g 1 ≼ g 2 then ε S ≺ ε l ⊢ U 1 ≺ g 1 <: U 2 ≺ g 2 D.

Algorithmic definitions

This section gives algorithmic definitions of consistent transitivity and initial evidence for label ordering and subtyping.

D.4.1 Label Evidences.

Definition D.32 (Intervals join).

[ℓ 1 , ℓ 2 ] ≺ [ℓ 3 , ℓ 4 ] = [ℓ 1 ≺ ℓ 3 , ℓ 2 ≺ ℓ 4 ] Definition D.33 (Intervals meet). [ℓ 1 , ℓ 2 ] ≺ [ℓ 3 , ℓ 4 ] = [ℓ 1 ≺ ℓ 3 , ℓ 2 ≺ ℓ 4 ]
Definition D.34. Let F 1 : GLabel n → GLabel and F 2 : GLabel m → GLabel. The initial evidence for consistent judgment  F 1 (g i ) ≼ F 2 (g j ) is defined as follows:

bounds(?) = [⊥, ⊤] bounds(ℓ) = [ℓ, ℓ] bounds(x 1 ≺ x 2 ) = bounds(x 1 ) ≺ bounds(x 2 ) bounds(x 1 ≺ x 2 ) = bounds(x 1 ) ≺ bounds(x 2 ) bounds(x 1 ⊓ x 2 ) = bounds(x 1 ) ⊓ bounds(x 2 ) bounds(F 1 (x i ) ≺ F 2 (x i )) = bounds(F 1 (x i )) ≺ bounds(F 2 (x i )) bounds(F 1 (x i ) ≺ F 2 (x i )) = bounds(F 1 (x i )) ≺ bounds(F 2 (x i )) bounds(F 1 (x i ) ⊓ F 2 (x i )) = bounds(F 1 (x i )) ⊓ bounds(F 2 (ℓ i )) bounds(F 1 (g i )) = [ℓ 1 , ℓ 2 ] bounds(F 2 (g j )) = [ℓ ′ 1 , ℓ ′ 2 ] I( Â F 1 (g 1 , ...g n ) ≼ F 2 (g n+1 , ...g n+m )) = ⟨[ℓ 1 , ℓ 2 ≺ ℓ ′ 2 ], [ℓ 1 ≺ ℓ ′ 1 , ℓ ′ 2 ]⟩
where F 1 : GLabel n → GLabel and F 2 : GLabel m → GLabel.

I ⟳ ( Â F (g 1 , ..., g n )) = I( Â F (g 1 , ..., g n ) ≼ F (g 1 , ..., g n ))
The algorithmic definition of meet:

[ℓ 1 , ℓ 2 ] ⊓ [ℓ 3 , ℓ 4 ] = [ℓ 1 ≺ ℓ 3 , ℓ 2 ≺ ℓ 4 ] if valid([ℓ 1 ≺ ℓ 3 , ℓ 2 ≺ ℓ 4 ]) ı ⊓ ı ′ undefined otherwise
We calculate the algorithmic definition of △ ≼ :

ℓ 1 ≼ ℓ 4 ℓ 3 ≼ ℓ 6 ℓ 1 ≼ ℓ 6 △ ≼ ([ℓ 1 , ℓ 2 ], [ℓ 3 , ℓ 4 ], [ℓ 5 , ℓ 6 ]) = ⟨[ℓ 1 , ℓ 2 ≺ ℓ 4 ≺ ℓ 6 ], [ℓ 1 ≺ ℓ 3 ≺ ℓ 5 , ℓ 6 ]⟩ D.4.
2 Type Evidences. We define a function liftP() to transform functions over types into functions over labels. Also we define function invert() to invert the operator on types, used in the domain and latent effect of function types. Finally we define function tomeet() to transform type operators into meets, given the invariant property of references.

We start defining a pattern of operations:

Definition D.35 (Operation pattern).

P T ∈ GPattern, P ℓ ∈ LPattern P T ::= _ | P T op T P T (pattern on types) op T ::= <: | <: | ⊓ (operations on types) P ℓ ::= _ | P ℓ op ℓ P ℓ (pattern on labels)

op ℓ ::= ≺ | ≺ | ⊓ (operations on labels) liftP(_) = _ liftP(P T 1 <: P T 2 ) = liftP(P T 1 ) ≺ liftP(P T 2 ) liftP(P T 1 <: P T 2 ) = liftP(P T 1 ) ≺ liftP(P T 2 ) liftP(P T 1 ⊓ P T 2 ) = liftP(P T 1 ) ⊓ liftP(P T 2 ) invert(_) = _ invert(P T 1 <: P T 2 ) = invert(P T 1 ) <: invert(P T 2 ) invert(P T 1 <: P T 2 ) = invert(P T 1 ) <: invert(P T 2 ) invert(P T 1 ⊓ P T 2 ) = invert(P T 1 ) ⊓ invert(P T 2 ) tomeet(_) = _ tomeet(P T 1 <: P T 2 ) = tomeet(P T 1 ) ⊓ tomeet(P T 2 ) tomeet(P T 1 <: P T 2 ) = tomeet(P T 1 ) ⊓ tomeet(P T 2 ) tomeet(P T 1 ⊓ P T 2 ) = tomeet(P T 1 ) ⊓ tomeet(P T 2 )
We use case-based analysis to calculate the algorithmic rules for the initial evidence of consistent subtyping on gradual security types:

I Â liftP(G 1 )(ℓ i ) <: liftP(G 2 )(ℓ j ) = ⟨ı 1 , ı 2 ⟩ I Â G 1 (Bool g i ) ≼ G 2 (Bool g j ) = ⟨Bool ı 1 , Bool ı 2 ⟩ I Â invert(G 2 )(U j1 ) <: invert(G 1 )(U i1 ) = ⟨E ′ 21 , E ′ 11 ⟩ I Â G 1 (U i2 ) <: G 2 (U j2 ) = ⟨E 12 , E 22 ⟩ I Â liftP(G 1 )(ℓ i1 ) <: liftP(G 2 )(ℓ j1 ) = ⟨ı 11 , ı 12 ⟩ I Â liftP(invert(G 2 ))(ℓ j2 ) <: liftP(invert(G 1 ))(ℓ i2 ) = ⟨ı 22 , ı 21 ⟩ I Â G 1 (U i1 g i 2 -→ g i 1 U i2 ) <: G 2 (U j1 g j2 -→ g j 1 U j2 ) = ⟨E 11 ı 21 -→ ı 11 E 12 , E 21 ı 22 -→ ı 12 E 22 ⟩ I Â liftP(G 1 )(ℓ i ) <: liftP(G 2 )(ℓ j ) = ⟨ı 1 , ı 2 ⟩ I Â tomeet(G 1 )(U i ) <: tomeet(G 2 )(U j ) = ⟨E 1 , E 2 ⟩ I Â tomeet(G 2 )(U j ) <: tomeet(G 1 )(U i ) = ⟨E ′ 2 , E ′ 1 ⟩ I Â G 1 (Ref g i U i ) <: G 2 (Ref g j U j ) = ⟨Ref ı 1 E 1 ⊓ E ′ 1 , Ref ı 2 E 2 ⊓ E ′ 2 ⟩
where G 1 : GLabel n → GLabel and G 2 : GLabel m → GLabel, and

G 1 (x 1 , ..., x n ) = P T 1 (x 1 , ..., x n ), G 2 (x 1 , ..., x n ) = P T 2 (x 1 , ..., x m ). I ⟳ ( Â F (U 1 , ..., U n )) = I Â F (U 1 , ..., U n ) <: F (U 1 , ..., U n )
We calculate a recursive meet operator for gradual types:

Bool ı ⊓ Bool ı ′ = Bool ı ⊓ı ′ (E 11 ı 2 -→ ı 1 E 12 ) ⊓ (E 21 ı ′ 2 -→ ı ′ 1 E 22 ) = (E 11 ⊓ E 21 ) ı 2 ⊓ı ′ 2 -→ ı 1 ⊓ı ′ 1 (E 12 ⊓ E 22 ) Ref ı E 1 ⊓ Ref ı ′ E 2 = Ref ı ⊓ı ′ E 1 ⊓ E 2 U ⊓ U ′ undefined otherwise
We calculate a recursive definition for △ <: by case analysis on the structure of the second argument,

△ ≼ (ı 1 , ı 2 , ı 3 ) = ⟨ı ′ 1 , ı ′ 3 ⟩ △ <: (Bool ı 1 , Bool ı 2 , Bool ı 3 ) = ⟨Bool ı ′ 1 , Bool ı ′ 3 ⟩ △ <: (E 31 , E 21 , E 11 ) = ⟨E ′ 31 , E ′ 11 ⟩ △ <: (E 12 , E 22 , E 32 ) = ⟨E ′ 12 , E ′ 32 ⟩ △ ≼ (ı 1 , ı 2 , ı 3 ) = ⟨ı ′ 1 , ı ′ 3 ⟩ △ ≼ (ı 13 , ı 12 , ı 11 ) = ⟨ı ′ 13 , ı ′ 11 ⟩ △ <: (E 11 ı 11 -→ ı 1 E 12 , E 21 ı 12 -→ ı 2 E 22 , E 31 ı 13 -→ ı 3 E 32 ) = ⟨E ′ 11 ı ′ 11 -→ ı ′ 1 E ′ 12 , E ′ 31 ı ′ 13 -→ ı ′ 3 E ′ 32 ⟩ △ ≼ (ı 1 , ı 2 , ı 3 ) = ⟨ı ′ 1 , ı ′ 3 ⟩ E ′ 1 = E 1 ⊓ E 2 E ′ 3 = E 2 ⊓ E 3 △ <: (Ref ı 1 E 1 , Ref ı 2 E 2 , Ref ı 3 E 3 ) = ⟨Ref ı ′ 1 E ′ 1 , Ref ı ′ 3 E ′ 3 ⟩ D.4.
3 Evidence inversion functions. The evidence inversion functions are defined as follows

ilbl(⟨Bool ı 1 , Bool ı 2 ⟩) = ⟨ı 1 , ı 2 ⟩ ilbl(⟨Unit ı 1 , Unit ı 2 ⟩) = ⟨ı 1 , ı 2 ⟩ ilbl(⟨Ref ı 1 U 1 , Ref ı 2 U 2 ⟩) = ⟨ı 1 , ı 2 ⟩ ilbl(⟨E 1 ı 2 -→ ı 1 E 2 , E ′ 1 ı ′ 2 -→ ı ′ 1 E ′ 2 ⟩) = ⟨ı 1 , ı ′ 1 ⟩ iref (⟨Ref ı 1 E 1 , Ref ı 2 E 2 ⟩) = ⟨E 1 , E 2 ⟩ iref (⟨E 1 , E 2 ⟩) = undefined otherwise idom(⟨E 1 ı 2 -→ ı 1 E 2 , E ′ 1 ı ′ 2 -→ ı ′ 1 E ′ 2 ⟩) = ⟨E ′ 1 , E 1 ⟩ idom(⟨E 1 , E 2 ⟩) = undefined otherwise icod(⟨E 1 ı 2 -→ ı 1 E 2 , E ′ 1 ı ′ 2 -→ ı ′ 1 E ′ 2 ⟩) = ⟨E 2 , E ′ 2 ⟩ icod(⟨E 1 , E 2 ⟩) = undefined otherwise D.5 Proofs Proposition D.13 (α ı is Sound). If Û ℓ is not empty, then Û ℓ ⊆ γ ı (α ı ( Û ℓ)). Proof. Suppose Û ℓ = { ℓ i }. By definition of α ε ℓ , α ı ({ ℓ i }) = [ ≺ ℓ i , ≺ ℓ i ]. Therefore γ ı (α ı ({ ℓ i })) = {ℓ | ℓ ∈ Label, ≺ ℓ i ≼ ℓ ≼ ≺ ℓ i } And it is easy to see that if ℓ ∈ { ℓ i }, then ℓ ∈ γ ı (α ı ({ ℓ i }))
, and therefore the result holds. □

Proposition D.14 (α ı is Optimal). If Û ℓ is not empty, and Û ℓ ⊆ γ ı (ı) then α ı ( Û ℓ) ⊑ ı.
Proof. By case analysis on the structure of ı.

If ı = [ℓ 1 , ℓ 2 ], γ ε ℓ (ı) = {ℓ | ℓ ∈ Label, ℓ 1 ≼ ℓ ≼ ℓ 2 }; Û ℓ ⊆ {ℓ | ℓ ∈ Label, ℓ 1 ≼ ℓ ≼ ℓ 2 }, Û ℓ ∅ implies α ε ℓ ( Û ℓ) = [ℓ 3 , ℓ 4 ], where ℓ 1 ≼ ℓ 3 and ℓ 4 ≼ ℓ 2 , therefore [ℓ 3 , ℓ 4 ] ⊑ ı (if Û ℓ = ∅, α ε ℓ ( Û ℓ) is undefined). □ Proposition D.15 (α E is Sound). If valid( Û S) then Û S ⊆ γ E (α E ( Û S)).
Proof. By well-founded induction on Û S. Similar to Prop C.3.

□ Proposition D.16 (α E is Optimal). If valid( Û S) and Û S ⊆ γ E (E) then α E ( Û S) ⊑ E.
Proof. By induction on the structure of U . Similar to Prop C. [START_REF] Pottier | Information Flow Inference for ML[END_REF].

□ Proposition D.22. γ ı (ı 1 ⊓ ı 2 ) = γ ı (ı 1 ) ∩ γ ı (ı 2 ).
Proof.

γ ı (ı 1 ⊓ ı 2 ) = γ ı (α ı (γ ı (ı 1 ) ∩ γ ı (ı 1 ))) ⊆ γ ı (ı 1 ) ∩ γ ı (ı 1 ) (soundness of α ı ) Let ℓ ∈ γ ı (ı 1 ) ∩ γ ı (ı 1 ). We now that γ ı (ı 1 ⊓ ı 2 ) is defined. Suppose ı 1 = [ℓ 1 , ℓ 2 ] and ı 2 = [ℓ 3 , ℓ 4 ]. Therefore ı 1 ⊓ ı 2 = [ℓ 1 ≺ ℓ 3 , ℓ 2 ≺ ℓ 4 ]. But γ ı (ı 1 ) ∩ γ ı (ı 1 ) = {ℓ | ℓ ∈ Label, ℓ 1 ≼ ℓ ≼ ℓ 2 } ∩ {ℓ | ℓ ∈ Label, ℓ 3 ≼ ℓ ≼ ℓ 4 }. Which is equivalent to {ℓ | ℓ ∈ Label, ℓ 1 ≼ ℓ ≼ ℓ 2 ∧ ℓ 3 ≼ ℓ ≼ ℓ 4 }, equivalent to {ℓ | ℓ ∈ Label, ℓ 1 ≺ ℓ 3 ≼ ℓ ≼ ℓ 2 ≺ ℓ 4 }. Which is by definition γ ı ([ℓ 1 ≺ ℓ 3 , ℓ 2 ≺ ℓ 4 ]
), and the result holds.

□ Proposition D.23. ⟨ı 1 , ı 21 ⟩ • ≼ ⟨ı 22 , ı 3 ⟩ = △ ≼ (ı 1 , ı 21 ⊓ ı 22 , ı 3 )
Proof. Follows directly from the definition of consistent transitivity and Prop D.22.

□ Proposition D.25. γ E (E 1 ⊓ E 2 ) = γ E (E 1 ) ∩ γ E (E 2 ).
Proof. By induction on evidence types ε 1 and ε 2 and Prop D.22.

□ Proposition D.26. ⟨E 1 , E 21 ⟩ • <: ⟨E 22 , E 3 ⟩ = △ <: (E 1 , E 21 ⊓ E 22 , E 3 )
where

△ <: (E 1 , E 2 , E 3 ) = α ε ({⟨S 1 , S 3 ⟩ ∈ γ ε (⟨E 1 , E 3 ⟩) | ∃S 2 ∈ γ ı (E 2 ).S 1 <: S 2 ∧ S 2 <: S 3 })
Proof. Follows directly from the definition of consistent transitivity and Prop D.25.

□ Proposition D.31. If ε S ⊢ U 1 ≲ U 2 and ε l ⊢ g 1 ≼ g 2 then ε S ≺ ε l ⊢ U 1 ≺ g 1 <: U 2 ≺ g 2
Proof. By induction on types U 1 and U 2 , using the definition of I <: and Proposition 6.13.

□ Proposition D.36. [ℓ 1 , ℓ 2 ] ≺ [ℓ 3 , ℓ 4 ] = [ℓ 1 ≺ ℓ 3 , ℓ 2 ≺ ℓ 4 ]
Proof. Follows directly by definition of γ and

≺ . □ Proposition D.37. ⟨ı 1 , ı 2 ⟩ ≺ ⟨ı ′ 1 , ı ′ 2 ⟩ = ⟨ı 1 ≺ ı ′ 1 , ı 2 ≺ ı ′ 2 ⟩ Proof.
Follows directly from the definition of consistent join monotonicity and Prop D.36.

□ Proposition D.38. [ℓ 1 , ℓ 2 ] ⊓ [ℓ 3 , ℓ 4 ] = [ℓ 1 ≺ ℓ 3 , ℓ 2 ≺ ℓ 4 ] if ℓ 1 ≺ ℓ 3 ≼ ℓ 2 ≺ ℓ 4 ı ⊓ ı ′ undefined otherwise
Proof. By definition of meet:

[ℓ 1 , ℓ 2 ] ⊓ [ℓ 3 , ℓ 4 ] = α ı ({ℓ ′ | ℓ ′ ∈ γ ([ℓ 1 , ℓ 2 ]) ∩ γ ([ℓ 3 , ℓ 4 ])})
But by definition of intersection on intervals, γ

([ℓ 1 , ℓ 2 ]) ∩γ ([ℓ 3 , ℓ 4 ]) = γ ([ℓ 1 ≺ ℓ 3 , ℓ 2 ≺ ℓ 4 ]) if ℓ 1 ≺ ℓ 3 ≼ ℓ 2 ≺ ℓ 4
(otherwise the intersection is empty), and the result follows by definition of α ı . □ Proposition D.39.

ℓ 1 ≼ ℓ 4 ℓ 3 ≼ ℓ 6 ℓ 1 ≼ ℓ 6 △ ≼ ([ℓ 1 , ℓ 2 ], [ℓ 3 , ℓ 4 ], [ℓ 5 , ℓ 6 ]) = ⟨[ℓ 1 , ℓ 2 ≺ ℓ 4 ≺ ℓ 6 ], [ℓ 1 ≺ ℓ 3 ≺ ℓ 5 , ℓ 6 ]⟩
Proof. By definition:

△ ≼ ([ℓ 1 , ℓ 2 ], [ℓ 3 , ℓ 4 ], [ℓ 5 , ℓ 6 ]) = α ε ({⟨ℓ ′ 1 , ℓ ′ 3 ⟩ ∈ γ ε (⟨[ℓ 1 , ℓ 2 ], [ℓ 5 , ℓ 6 ]⟩) | ∃ℓ ′ 2 ∈ γ ı ([ℓ 3 , ℓ 4 ]).ℓ ′ 1 ≼ ℓ ′ 2 ≼ ℓ ′ 3 }) It is easy to see that α ı ({ ℓ ′ 1i }) = [ℓ 1 , ℓ ′ 12 ], for some ℓ ′ 12 . We know that ℓ ′ 12 ≼ ℓ 2 , ℓ ′ 12 ≼ ℓ 4 and ℓ ′ 12 ≼ ℓ 6 , i.e. ℓ ′ 12 ≼ ℓ 2 ≺ ℓ 4 ≺ ℓ 6 . But ℓ 2 ≺ ℓ 4 ≺ ℓ 6 ≼ ℓ 4 ≼ ℓ 6 therefore ⟨ℓ 2 ≺ ℓ 4 ≺ ℓ 6 , ℓ 6 ⟩ ∈ {⟨ℓ ′ 1 , ℓ ′ 3 ⟩ ∈ γ ε (⟨[ℓ 1 , ℓ 2 ], [ℓ 5 , ℓ 6 ]⟩) | ∃ℓ ′ 2 ∈ γ ı ([ℓ 3 , ℓ 4 ]).ℓ ′ 1 ≼ ℓ ′ 2 ≼ ℓ ′ 3 }
and by definition of

α ı , ℓ 2 ≺ ℓ 4 ≺ ℓ 6 ≼ ℓ ′ 12 , then α ı ({ ℓ ′ 1i }) = [ℓ 1 , ℓ 2 ≺ ℓ 4 ≺ ℓ 6 ]. Similar argument is used to prove that α ı ({ ℓ ′ 3i }) = [ℓ 1 ≺ ℓ 3 ≺ ℓ 5 , ℓ 6 ]. □ Lemma D.40. Let ℓ i ∈ Label, then (ℓ 1 ≺ ℓ 2 ) ≺ (ℓ 3 ≺ ℓ 4 ) ≼ (ℓ 1 ≺ ℓ 3 ) ≺ (ℓ 2 ≺ ℓ 4 ). Proof. (ℓ 1 ≺ ℓ 2 ) ≺ (ℓ 3 ≺ ℓ 4 ) ≼ (ℓ 1 ≺ (ℓ 3 ≺ ℓ 4 )) ≺ (ℓ 2 ≺ (ℓ 3 ≺ ℓ 4 )) ≼ ((ℓ 1 ≺ ℓ 3 ) ≺ (ℓ 1 ≺ ℓ 4 )) ≺ ((ℓ 2 ≺ ℓ 3 ) ≺ (ℓ 2 ≺ ℓ 4 )) ≼ (ℓ 1 ≺ ℓ 3 ) ≺ (ℓ 2 ≺ ℓ 4 ) □ Proposition 6.14. Suppose ε 1 ⊢ Â F 1 (g i ) ≼ F 2 (g j ) and ε 2 ⊢ Â F 2 (g j ) ≼ F 3 (g k ).
If

ε 1 • ≼ ε 2 is defined, then ε 1 • ≼ ε 2 ⊢ Â F 1 (g i ) ≼ F 3 (g k )
Proof. Suppose ε 1 = ⟨ı 11 , ı 12 ⟩ and ε 2 = ⟨ı 21 , ı 22 ⟩. Then by definition of initial evidence:

⟨ı 11 , ı 12 ⟩ = ⟨[ℓ 1 , ℓ 2 ], [ℓ 3 , ℓ 4 ]⟩ ⊑ I Â F 1 (g i ) ≼ F 2 (g j ) = ⟨ı ′ 11 , ı ′ 12 ⟩ and ⟨ı 21 , ı 22 ⟩ = ⟨[ℓ 5 , ℓ 6 ], [ℓ 7 , ℓ 8 ]⟩ ⊑ I Â F 2 (g j ) ≼ F 3 (g k ) = ⟨ı ′ 21 , ı ′ 22 ⟩ Suppose that I Â F 1 (g i ) ≼ F 3 (g k ) = ⟨ı ′ 1 , ı ′ 3 ⟩. We have to prove that ⟨ı 11 , ı 12 ⟩ • ≼ ⟨ı 21 , ı 22 ⟩ ⊑ ⟨ı ′ 1 , ı ′ 3 ⟩. If bounds(F 1 (g i )) = [ℓ ′ 1 , ℓ ′ 2 ], bounds(F 2 (g j )) = [ℓ ′ 3 , ℓ ′ 4 ], and bounds(F 3 (g i )) = [ℓ ′ 5 , ℓ ′ 6 ] We know that I Â F 1 (g i ) ≼ F 2 (g j ) = ⟨[ℓ ′ 1 , ℓ ′ 2 ≺ ℓ ′ 4 ], [ℓ ′ 1 ≺ ℓ ′ 3 , ℓ ′ 4 ]⟩. Therefore ℓ ′ 1 ≼ ℓ 1 , ℓ 2 ≼ ℓ ′ 2 ≺ ℓ ′ 4 , ℓ ′ 1 ≺ ℓ ′ 2 ≼ ℓ 3 and ℓ 4 ≼ ℓ ′ 4 . Using the same argument, I Â F 2 (g j ) ≼ F 3 (g k ) = ⟨[ℓ ′ 3 , ℓ ′ 4 ≺ ℓ ′ 6 ], [ℓ ′ 3 ≺ ℓ ′ 5 , ℓ ′ 6 ]⟩. Therefore ℓ ′ 3 ≼ ℓ 5 , ℓ 6 ≼ ℓ ′ 4 ≺ ℓ ′ 6 , ℓ ′ 3 ≺ ℓ ′ 5 ≼ ℓ 7 and ℓ 8 ≼ ℓ ′ 6 . But I Â F 1 (g i ) ≼ F 3 (g k ) = ⟨[ℓ ′ 1 , ℓ ′ 2 ≺ ℓ ′ 6 ], [ℓ ′ 1 ≺ ℓ ′ 5 , ℓ ′ 6 ]⟩ and ⟨ı 11 , ı 12 ⟩ • ≼ ⟨ı 21 , ı 22 ⟩ = △ ≼ (ı 11 , ı 12 ⊓ ı 21 , ı 22 ) = △ ≼ ([ℓ 1 , ℓ 2 ], [ℓ 3 ≺ ℓ 5 , ℓ 4 ≺ ℓ 6 ], [ℓ 7 , ℓ 8 ]) = ⟨[ℓ 1 , ℓ 2 ≺ ℓ 4 ≺ ℓ 6 ≺ ℓ 8 ], [ℓ 1 ≺ ℓ 3 ≺ ℓ 5 ≺ ℓ 7 , ℓ 8 ]⟩
we need to prove that

⟨[ℓ 1 , ℓ 2 ≺ ℓ 4 ≺ ℓ 6 ≺ ℓ 8 ], [ℓ 1 ≺ ℓ 3 ≺ ℓ 5 ≺ ℓ 7 , ℓ 8 ]⟩ ⊑ ⟨[ℓ ′ 1 , ℓ ′ 2 ≺ ℓ ′ 6 ], [ℓ ′ 1 ≺ ℓ ′ 5 , ℓ ′ 6 ]⟩ . But we know that ℓ ′ 1 ≼ ℓ 1 . Also that ℓ 2 ≼ ℓ ′ 2 ≺ ℓ ′ 4 and therefore ℓ 2 ≼ ℓ ′ 2 . The same for ℓ 6 ≼ ℓ ′ 6 and therefore ℓ 2 ≺ ℓ 4 ≺ ℓ 6 ≺ ℓ 8 ≼ ℓ ′ 2 ≺ ℓ ′ 6 , i.e. [ℓ 1 , ℓ 2 ≺ ℓ 4 ≺ ℓ 6 ≺ ℓ 8 ] ⊑ [ℓ ′ 1 , ℓ ′ 2 ≺ ℓ ′ 6 ].
The argument is applied for the second components and the result holds. □ Proposition 6.13. Suppose

ε 1 ⊢ Â F 11 (g i ) ≼ F 12 (g j ) and ε 2 ⊢ Â F 21 (g i ) ≼ F 22 (g j ) Then ε 1 ≺ ε 2 ⊢ Â F 11 (g i ) ≺ F 21 (g i ) ≼ F 12 (g j ) ≺ F 22 (g j )
Proof. By definition of initial evidence noticing that ε 1 ≺ ε 2 can be more precise than the initial evidence of judgment Suppose

ε 1 = ⟨[ℓ 1 , ℓ 2 ], [ℓ 3 , ℓ 4 ]⟩, and ε 2 = ⟨[ℓ 5 , ℓ 6 ], [ℓ 7 , ℓ 8 ]⟩, then ε 1 ≺ ε 2 = ⟨[ℓ 1 ≺ ℓ 5 , ℓ 2 ≺ ℓ 6 ], [ℓ 3 ≺ ℓ 6 , ℓ 4 ≺ ℓ 8 ]⟩. If bounds(F 11 (g i )) = [ℓ ′ 111 , ℓ ′ 112 ], bounds(F 12 (g i )) = [ℓ ′ 121 , ℓ ′ 122 ], bounds(F 21 (g i )) = [ℓ ′ 211 , ℓ ′ 212 ] and bounds(F 22 (g i )) = [ℓ ′ 221 , ℓ ′ 222 ]. We know that I Â F 11 (g i ) ≼ F 12 (g j ) = ⟨[ℓ ′ 111 , ℓ ′ 112 ≺ ℓ ′ 122 ], [ℓ ′ 111 ≺ ℓ ′ 121 , ℓ ′ 122 ]⟩. Therefore ℓ ′ 111 ≼ ℓ 1 , ℓ 2 ≼ ℓ ′ 112 ≺ ℓ ′ 122 , ℓ ′ 111 ≺ ℓ ′ 121 ≼ ℓ 3 and ℓ 4 ≼ ℓ ′ 122 . Using the same argument, I Â F 21 (g i ) ≼ F 22 (g j ) = ⟨[ℓ ′ 211 , ℓ ′ 212 ≺ ℓ ′ 222 ], [ℓ ′ 211 ≺ ℓ ′ 221 , ℓ ′ 222 ]⟩. Therefore ℓ ′ 211 ≼ ℓ 5 , ℓ 6 ≼ ℓ ′ 212 ≺ ℓ ′ 222 , ℓ ′ 211 ≺ ℓ ′ 221 ≼ ℓ 7 and ℓ 8 ≼ ℓ ′ 222 . But the I Â F ′ 1 (g i ) ≼ F ′ 2 (g j ) = ⟨[ℓ ′ 1 , ℓ ′ 2 ≺ ℓ ′ 4 ], [ℓ ′ 1 ≺ ℓ ′ 3 , ℓ ′ 4 ]⟩ where bounds(F ′ 1 (g i )) = bounds(F 11 (g i )) ≺ bounds(F 21 (g i )) = [ℓ ′ 111 , ℓ ′ 112 ] ≺ [ℓ ′ 211 , ℓ ′ 212 ] = [ℓ ′ 111 ≺ ℓ ′ 211 , ℓ ′ 112 ≺ ℓ ′ 212 ], and bounds(F ′ 2 (g i )) = bounds(F 12 (g i )) ≺ bounds(F 22 (g i )) = [ℓ ′ 121 , ℓ ′ 122 ] ≺ [ℓ ′ 221 , ℓ ′ 222 ] = [ℓ ′ 121 ≺ ℓ ′ 221 , ℓ ′ 122 ≺ ℓ ′ 222 ]. We need to prove that [ℓ 1 ≺ ℓ 5 , ℓ 2 ≺ ℓ 6 ] ⊑ [ℓ ′ 111 ≺ ℓ ′ 211 , ℓ ′ 112 ≺ ℓ ′ 212 ], i.e. ℓ ′ 111 ≺ ℓ ′ 211 ≼ ℓ 1 ≺ ℓ 5 and ℓ 2 ≺ ℓ 6 ≼ ℓ ′ 112 ≺ ℓ ′ 212 . But ℓ ′ 111 ≼ ℓ 1 and ℓ ′ 211 ≼ ℓ 5 , therefore ℓ ′ 111 ≺ ℓ ′ 211 ≼ ℓ 1 ≺ ℓ 5 . Similarly, as ℓ 2 ≼ ℓ ′ 112 ≺ ℓ ′ 122 and ℓ 6 ≼ ℓ ′ 212 ≺ ℓ ′ 222 , then ℓ 2 ≺ ℓ 6 ≼ ℓ ′ 112 ≺ ℓ ′ 212 . Therefore [ℓ 1 ≺ ℓ 5 , ℓ 2 ≺ ℓ 6 ] ⊑ [ℓ ′ 111 ≺ ℓ ′ 211 , ℓ ′ 112 ≺ ℓ ′ 212 ]. Using analogous argument, we also know that [ℓ 3 ≺ ℓ 6 , ℓ 4 ≺ ℓ 8 ] ⊑ [ℓ ′ 121 ≺ ℓ ′ 221 , ℓ ′ 122 ≺ ℓ ′ 222 ]. There- fore ε 1 ≺ ε 2 ⊑ I Â F ′ 1 (g i ) ≼ F ′ 2 (g j )
, and the result holds.

□ Lemma D.41. Let S 1 , S 2 ∈ Type. Then (1) If (S 1 <: S 2 ) is defined then S 1 <: (S 1 <: S 2 ). (2) If (S 1 <: S 2 ) is defined then (S 1 <: S 2 ) <: S 1 .
Proof. We start by proving (1) assuming that (S 1 ≺ S 2 ) is defined. We proceed by case analysis on S 1 .

Case (Bool ℓ ). If S 1 = Bool ℓ 1 then as (S 1 <: S 2 ) is defined then S 2 must have the form Bool ℓ 2 for some ℓ 2 . Therefore (S 1 <:

S 2 ) = Bool (ℓ 1 ≺ ℓ 2 ) . But by definition of ≼, ℓ 1 ≼ (ℓ 1 ≺ ℓ 2
) and therefore we use (<: Bool ) to conclude that Bool ℓ 1 <:

Bool (ℓ 1 ≺ ℓ 2 ) , i.e. S 1 <: (S 1 <: S 2 ).
Case (S → ℓ S). If S 1 = S 11 → ℓ 1 S 12 then as (S 1 <: S 2 ) is defined then S 2 must have the form S 21 → ℓ 2 S 22 for some S 21 , S 22 and ℓ 2 . We also know that (S 1 <:

S 2 ) = (S 11 <: S 21 ) → (ℓ 1 ≺ ℓ 2 ) (S 12 <: S 22 ). By definition of ≼, ℓ 1 ≼ (ℓ 1 ≺ ℓ 2 ).
Also, as (S 1 <: S 2 ) is defined then (S 11 <: S 21 ) is defined. Using the induction hypothesis of (2) on S 11 , (S 11 <: S 21 ) <: S 11 . Also, using the induction hypothesis of (1) on S 12 we also know that S 12 <: (S 12 <: S 22 ). Then by (<: → ) we can conclude that S 11 → ℓ 1 S 12 <: (S 11 <:

S 21 ) → (ℓ 1 ≺ ℓ 2 ) (S 12 <: S 22 ), i.e. S 1 <: (S 1 <: S 2 ).
The proof of ( 2) is similar to (1) but using the argument that (ℓ 1 ≺ ℓ 2 ) ≼ ℓ 1 . □ Lemma D.42. Let S ∈ Type and ℓ ∈ Label. Then S <: S ≺ ℓ.

Proof. Straigthforward case analysis on type S using the fact that ℓ ≼ (ℓ ′ ≺ ℓ) for any ℓ ′ . □ Lemma D.43. Let S 1 , S 2 ∈ Type such that S 1 <: S 2 , and let

ℓ 1 , ℓ 2 ∈ Label such that ℓ 1 ≼ ℓ 2 . Then S 1 ≺ ℓ 1 <: S 2 ≺ ℓ 2 .
Proof. Straightforward case analysis on type S using the definition of label stamping on types. □

E GSL ε

Ref : DYNAMIC PROPERTIES Notice that for convenience, the proofs and properties are defined over intrinsic terms [START_REF] Garcia | Abstracting Gradual Typing[END_REF]] instead of terms of the internal language. They are actually the same as terms of the internal language, but keeping all static annotations explicitly. First we introduce the static semantics of intrinsic terms in Sec. E.1. Their dynamic semantics in Sec. E.2. The relation between intrinsic and evidence-augmented terms in Sec. E.3. Then the proof of type safety is presented Sec. E.4, the proof of dynamic gradual guarantee for GSL ε

Ref without the specific check in rule (r 7) in section E.5, and the proof of noninterference in Sec. E.6.

E.1 Intrinsic Terms: Static Semantics

Following [START_REF] Garcia | Abstracting Gradual Typing[END_REF], we develop intrinsically typed terms [START_REF] Church | A Formulation of the Simple Theory of Types[END_REF]]: a term notation for gradual type derivations. These terms serve as our internal language for dynamic semantics: they play the same role that cast calculi play in typical presentations of gradual typing [START_REF] Siek | Gradual Typing for Functional Languages[END_REF]]. Intrinsically-typed terms t U comprise a family T[U ] of type-indexed sets, such that ill-typed terms do not exist. They are built up from disjoint families x U ∈ V[U ] and o U ∈ L[U ] of intrinsically typed variables and locations respectively. Unless required, we omit the type exponent on intrinsic terms, writing ť ∈ T[U ].

To each typing rule corresponds an intrinsic term formation rule that captures all the information needed to ensure that an intrinsic term is isomorphic to a typing derivation. Because intrinsic variables and locations reflect their typings, intrinsic terms do not need explicit type environments Γ or store environments Σ; however, the typing judgment depends on a security effect g c , which intrinsic terms must account for.

Additionally, because intrinsic terms represent typing derivations of programs as they reduce, they must account for the possibility that runtime values have more precise types than those used in the original typing derivation. For instance, the term in function position of an application can be a subtype of the function type used to type-check the program originally. The formation rule of the application intrinsic term must permit this extra subtyping leeway, justified by evidence. The same holds for the security information. Therefore, an intrinsic term has the general form ϕ ▷ ť , where the context information ϕ ≜ ⟨εg c , g c ⟩ contains the static program counter label g c used to type-check the source term, as well as the runtime program counter label g c , along with the evidence ε ⊢ g c ≼ g c . 19 For simplicity we define accessors ϕ .g c ≜ g c , ϕ .g c ≜ g c , and ϕ .ε ≜ ε. In rule (Iprot), labels g and g ′ represent the static and dynamic information of the label used to increase the program counter label in the subterm, respectively. Evidence ε 1 justifies that the type of the subterm is a consistent subtype of U , the static type of the subterm. ϕ ′ represents the context information associated to the subterm ť: ϕ ′ .g c (resp. ϕ ′ .g c ) is the program counter label used to typecheck (resp. evaluate) ť.

ε ∈ Evidence, et ∈ EvTerm, ev ∈ EvValue, v ∈ Value, u ∈ SimpleValue, д ∈ EvFrame, f ∈ TmFrame u ::= x U | b g | (λ g x U . ť) g | o U g | unit g v ::= u | εu :: U f ::= h[ε] µ := • | µ, o U → v p ::= x U | o U q ::= p | εp :: U ε ::= ⟨E 1 , E 2 ⟩ | ⟨ı 1 , ı 2 ⟩ et ::= ε ť ev ::= εu eℓ ::= εg ϕ ::= ⟨εg, g⟩ h ::= □ ⊕ g et | ev ⊕ g □ | □ @ U ε et | ev @ U ε □ | □ :: U | if g □ then et else et | ! U □ | □ g,U := ε et | ev g,U := ε □ | ref U ε □ | prot g,U ε g ϕ ′ (εt) Fig. 33. GSL Ref : Syntax of the Intrinsic Term Language (Ix) ϕ ▷ x U ∈ T[U ] (Ib) ϕ ▷ b g ∈ T[Bool g ] (Iu) ϕ ▷ unit g ∈ T[Unit g ] (Il) ϕ ▷ o U g ∈ T[Ref g U ] (Iλ) ϕ ′ = ⟨ε, g ′ , g ′ ⟩ ϕ ▷ ť ∈ T[U 2 ] ε ⊢ g ′ ≼ g ′ ϕ ▷ (λ g ′ x U 1 . ť) g ∈ T[U 1 g ′ -→ g U 2 ] (Iprot) ϕ ′ ▷ ť ∈ T[U ′ ] ε 1 ⊢ U ′ ≲ U ε 2 ⊢ g ′ ≼ g ϕ ▷ prot g,U ε 2 g ′ ϕ ′ (ε 1 ť) ∈ T[U ≺ g] (I⊕) ϕ ▷ ť1 ∈ T[U 1 ] ε 1 ⊢ U 1 ≲ Bool g 1 ϕ ▷ ť2 ∈ T[U 2 ] ε 2 ⊢ U 2 ≲ Bool g 2 ϕ ▷ ε 1 ť1 ⊕ g 1 ≺ g 2 ε 2 ť2 ∈ T[Bool g 1 ≺ g 2 ] (Iapp) ϕ ▷ ťi ∈ T[U i ] ε 1 ⊢ U 1 ≲ U 11 g ′ -→ g U 12 ε 2 ⊢ U 2 ≲ U 11 ε 3 ⊢ Â ϕ .g c ≺ g ≼ g ′ ϕ ▷ ε 1 ť1 @ U 11 g ′ -→ g U 12 ε 3 ε 2 ť2 ∈ T[U 12 ≺ g] (Iif) ϕ ▷ ť1 ∈ T[U 1 ] ε 1 ⊢ U 1 ≲ Bool g ϕ ′ = ϕ ≺ ⟨ilbl(ε 1 ), label(U 1 ), g⟩ ϕ ′ ▷ ť2 ∈ T[U 2 ] ε 2 ⊢ U 2 ≲ U 2 <: U 3 ϕ ′ ▷ ť3 ∈ T[U 3 ] ε 3 ⊢ U 3 ≲ U 2 <: U 3 ϕ ▷ if g ε 1 ť1 then ε 2 ť2 else ε 3 ť3 ∈ T[(U 2 <: U 3 ) ≺ g] (Iref) ϕ ▷ ť ∈ T[U ′ ] ε 1 ⊢ U ′ ≲ U ε 2 ⊢ ϕ .g c ≼ label(U ) ϕ ▷ ref U ε 2 ε 1 ť ∈ T[Ref ⊥ U ] (Ideref) ϕ ▷ ť ∈ T[U ′ ] ε ⊢ U ′ ≲ Ref g U ϕ ▷ ! Ref g U ε ť ∈ T[U ≺ g] (Iassgn) ϕ ▷ ť1 ∈ T[Ref g ′ U ′ 1 ] ε 1 ⊢ Ref g ′ U ′ 1 ≲ Ref g U 1 ϕ ▷ ť2 ∈ T[U 2 ] ε 2 ⊢ U 2 ≲ U 1 ε 3 ⊢ Â ϕ .g c ≺ g ≼ label(U 1 ) ϕ ▷ ε 1 ť1 g,U 1 := ε 3 ε 2 ť2 ∈ T[Unit ⊥ ] (I::) ϕ ▷ ť ∈ T[U 1 ] ε 1 ⊢ U 1 ≲ U 2 ϕ ▷ ε 1 ť :: U 2 ∈ T[U 2 ]
In the intrinsic term formation rule for applications (Iapp), U 1 is the runtime type of the function term. We annotate the initial static type information with @. The evidence ε 2 for the label ordering premise is also annotated, since it is needed to reconstruct the derivation. The intrinsic term of a conditional, described in Rule (Iif)20 , carries the static information of the label of the conditional term g. The context information ϕ ′ used for both branches is obtained by joining the term context ϕ point-wise with the evidence and labels associated with the consistent subtyping judgment of the conditional. Evidences ε 2 and ε 3 justify that the type of each branch is a consistent subtype of the join of both types. Finally, rule (Iassgn) is built similarly to the application rule (Iapp).

E.2 Intrinsic Terms: Dynamic Semantics

Next we present the full definition of the intrinsic reduction rules in Figure 35, and the full definition of notions of intrinsic reduction in Figure 36.

Because the security context information of a term is maintained at each step, we also adopt the

lightweight notation ť1 | µ 1 ϕ -→ ť2 | µ 2 ,
to denote the reduction of the intrinsic term ϕ ▷ ť1 ∈ T[U ] in store µ 1 to the intrinsic term ϕ ▷ ť2 ∈ T[U ] in store µ 2 . We note C[U ] the combination of a term ť ∈ T[U ] (without context) and a store µ. Function applications reduce to to an error if consistent transitivity fails to justify U 2 <: U 11 . Conditionals similarly reduce to a new prot term, which is constructed using the static and dynamic information of the conditional term. Assignments may reduce to an ascribed unit value. Similarly to references, the stored value is ascribed the statically determined type U . Therefore consistent transitivity may fail to justify that the actual type of the stored value is a subtype of U . As the value is stamped with actual labels, the term may also reduce to an error if consistent transitivity cannot support the judgment  ϕ .g c ≺ ℓ ≼ U .

E.3 Relating Intrinsic and Evidence-augmented Terms

In this section we present the translation rules from GSL Ref terms to intrinsic terms in Figure 37. Also this section presents the erasure function in in Figure 38-highlighting the syntactics differences between terms in gray-along properties that relates evidence-augmented terms and intrinsic terms.

In particular we identify four important properties. First, that given a source language the erasure of the translation to intrinsic term is equal to the translation of the source term to an evidence-augmented term:

Proposition E.1. If Γ; Σ; g c ⊢ t ť : U and Γ; Σ; g c ⊢ t t ′ : U , then | ť | = t ′ .
Proof. By induction on the type derivation of t. □

Second, given a reducible intrinsic term ť, if it reduces to an error, then it erasure also reduces to an error; or, if reduces to an intrinsic term ť ′ , then the erasure of ť ′ also reduces to the erasure of ť ′ :

Proposition E.2. Consider ϕ = εg c , ϕ ▷ ť ∈ T[U ], and •; Σ; εg c ⊢ t : U , such that Σ |= µ 2 . Then if ť = t and µ 1 = µ ′ 1 then either • ť | µ 1 ϕ -→ ť ′ | µ 2 ⇒ | ť | | |µ 2 | ε g c -→ | ť ′ | | |µ ′ 2 |, or • ť | µ 1 ϕ -→ error ⇒ | ť | | |µ 2 |error
Proof. By induction on the type derivation of ť. Case (I::). Then ť = ε 1 ť ′ :: U and by (E::), t = ε 1 t ′ for some t ′ such that ť ′ = t ′ . Suppose that ε 1 ⊢ U ′ ≲ U . By inspection on the type derivations, ϕ ▷ ť ′ ∈ T[U ′ ] and •; Σ; εg c ⊢ t ′ : U ′ .

-→: C[U ] × (C[U ] ∪ { error }) (R-→) t U | µ ϕ -→ r r ∈ C[U ] ∪ { error } t U | µ ϕ -→ r (Rf ) ť1 | µ ϕ -→ ť2 | µ ′ f [ ť1 ] | µ ϕ -→ f [ ť2 ] | µ ′ (Rprot) ť1 | µ ϕ ′ -→ ť2 | µ ′ prot eℓ ϕ ′ (ε ť1 ) | µ ϕ -→ prot eℓ ϕ ′ (ε ť2 ) | µ ′ (Rh) et -→ c et ′ h[et] | µ ϕ -→ h[et ′ ] | µ ′ (Rproth) et -→ c et ′ prot eℓ ϕ ′ (et) | µ ϕ -→ prot eℓ ϕ ′ (et ′ ) | µ ′ (Rf err) ť | µ ϕ -→ error f [ ť] | µ ϕ -→ error (Rherr) et -→ c error h[et] | µ ϕ -→ error (Rproterr) ť | µ ϕ ′ -→ error prot eℓ ϕ ′ (ε ť) | µ ϕ -→ error (Rprotherr) et -→ c error prot eℓ ϕ ′ (et) | µ ϕ -→ error

Let us suppose that ť

′ | µ 1 ϕ -→ ť ′′ | µ 2 , then by induction hypothesis t ′ | µ 2 ε g c -→ t ′′ | µ ′ 2 and ť ′′ = t ′′ and µ ′ 1 = µ ′ 2 . Then ε 1 ť ′ :: U | µ 1 ϕ -→ ε 1 ť ′′ :: U | µ ′ 1 and ε 1 t ′ | µ 2 ε g c -→ ε 1 t ′′ | µ ′ 2 . But as µ ′ 1 = µ ′ 2 ,
and by (E::) ε 1 ť ′′ :: U = ε 1 t ′′ , the result holds. Let us suppose now that ť ′ = ε 2 u ::

U ′ . Then as ť ′ = t ′ , t ′ = ε 2 u ′ , for some u ′ such that u = u ′ . If ε 2 • <: ε 1 is not defined the result holds immediately. Suppose ε 2 • <: ε 1 = ε ′ , then ε 1 (ε 2 u :: U ′ ) :: U | µ 1 ϕ -→ ε ′ u :: U | µ 1 and ε 1 (ε 2 u ′ ) | µ 2 ε g c -→ ε ′ u ′ | µ 2 .
But as µ 1 = µ 2 , and by (E::) ε ′ u :: U = ε ′ u ′ , the result holds.

If ť ′ = u, then as ť ′ = t ′ , t ′ = ε 2 u ′ , for some u ′ such that u = u ′ , and the result holds immediately.

The other cases proceed analogous. □ Fourth, if an intrinsic term type checks, then its erasure also type checks to the same type. Proof. By induction on the type derivation of ť. □

Finally, if an evidence-augmented term type checks, then there must exists some intrinsic term that have the same type and that it erasure is the original evidence-augmented term. Proof. By induction on the type derivation of t. Case (ε ′ t ′ ). Then t = ε ′ t ′ , for some ε ′ , t ′ . But we know that Γ; Σ; εg c ⊢ ε ′ t ′ : U and suppose

Notions of Reduction

ϕ -→ : C[U ] × (C[U ] ∪ { error }) ε 1 (b 1 ) g 1 ⊕ g ε 2 (b 2 ) g 2 | µ ϕ -→ (ε 1 ≺ ε 2 )(b 1 ⊕ b 2 ) (g 1 ≺ g 2 ) :: Bool g | µ prot g,U ε 2 g ′ ϕ ′ (ε 1 u) | µ ϕ -→ (ε 1 ≺ ε 2 )(u ≺ g ′ ) :: U ≺ g | µ ε 1 (λ g ′ 2 x U 11 .t * ) g 2 @ U 1 g ′ 1 -→ g 1 U 2 ε 3 ε 2 u | µ ϕ -→ prot g 1 ,U 2 ilbl(ε 1 )g 2 ϕ ′ (icod(ε 1 )([(εu :: U 11 )/x U 11 ]t * )) | µ error if ε or ε ′ are not defined where ε = ε 2 • <: idom(ε 1 ), ε ′ = (ϕ .ε ≺ ilbl(ε 1 )) • ≼ ε 3 • ≼ ilat(ε 1 ) and ϕ ′ = ⟨ε ′ , ϕ .g c ≺ g 2 , g ′ 2 ⟩ if g ε 1 true g 1 then ε 2 t U 2 else ε 3 t U 3 | µ ϕ -→ prot g,U ilbl(ε 1 )g 1 ϕ ′ (ε 2 t U 2 ) | µ where ϕ ′ = ⟨ϕ .ε ≺ ilbl(ε 1 ), ϕ .g c ≺ g 1 , ϕ .g c ≺ g⟩ and U = (U 2 <: U 3 ) if g ε 1 false g 1 then ε 2 t U 2 else ε 3 t U 3 | µ ϕ -→ prot g,U ilbl(ε 1 )g 1 ϕ ′ (ε 3 t U 3 ) | µ where ϕ ′ = ⟨ϕ .ε ≺ ilbl(ε 1 ), ϕ .g c ≺ g 1 , ϕ .g c ≺ g⟩ and U = (U 2 <: U 3 ) ref U ε ℓ εu | µ ϕ -→ o U ⊥ | µ [o U → ε ′ (u ≺ ϕ .g c ) :: U ] where o U dom(µ ) error if (ϕ .ε • ≼ ε ℓ ) is not defined where ε ′ = ε ≺ (ϕ .ε • ≼ ε ℓ ) ! Ref g U εo U ′ g ′ | µ ϕ -→ prot g,U ilbl(ε )g ′ ϕ ′ (iref (ε)v) where µ (o U ′ ) = v and ϕ ′ = ⟨ϕ .ε ≺ ilbl(ε), ϕ .g c ≺ g ′ , ϕ .g c ≺ g⟩ ε 1 o U g g ′ ,U 1 := ε 3 ε 2 u | µ ϕ -→      unit ⊥ | µ [o U → ε ′ (u ≺ (ϕ .g c ≺ g)) :: U ] error if ε ′ is not defined, or ϕ .ε ≺ ilbl(ε 1 ) ⌊≤⌋ ilbl(ε) does not hold where ε ′ = (ε 2 • <: iref (ε 1 )) ≺ ((ϕ .ε ≺ ilbl(ε 1 )) • ≼ ε 3 • ≼ ilbl(iref (ε 1 )) and µ (o U ) = εu ′ :: U -→ c : EvTerm × (EvTerm ∪ { error }) ε 1 (ε 2 v :: U ) -→ c ® (ε 2 • <: ε 1 )v error if not defined ⟨[ℓ 1 , ℓ 2 ], [ℓ 3 , ℓ 4 ]⟩ ⌊≤⌋ ⟨[ℓ ′ 1 , ℓ ′ 2 ], [ℓ ′ 3 , ℓ ′ 4 ]⟩ ⇐⇒ ℓ 1 ≼ ℓ ′ 1 ∧ ℓ 3 ≼ ℓ ′ 4
ε ′ ⊢ U ′ ≲ U and ε ⊢ g c ≲ g c ′ .
Then by choosing ϕ = ⟨ε, g c ⟩g c ′ and induction hypothesis on

t ′ , ∃ ť ′ such that ϕ ▷ ť ′ ∈ T[U ′ ].
The other cases proceed analogous.

□ Lemma E.5. Consider ϕ ▷ ť1 ∈ T[U ]. If ť1 ⊑ ť2 then | ť1 | ⊑ | ť2 |. Γ; Σ; g c ⊢ t ť : U (T x) Γ(x) = U Γ; Σ; g c ⊢ x x U : U (T b) Γ; Σ; g c ⊢ b g b g : Bool g (T u) Γ; Σ; g c ⊢ unit g unit g : Unit g (T λ) Γ; Σ; g ′ ⊢ t ť : U 2 Γ; Σ; g c ⊢ (λ g ′ x : U 1 .t) g (λ g ′ x U 1 . ť) g : U 1 g ′ -→ g U 2 (T ⊕) Γ; Σ; g c ⊢ t 1 ť1 : Bool g 1 Γ; Σ; g c ⊢ t 2 ť2 : Bool g 2 ε 1 = I <: (Bool g 1 , Bool g 1 ) ε 2 = I <: (Bool g 2 , Bool g 2 ) Γ; Σ; g c ⊢ t 1 ⊕ t 2 ε 1 ť1 ⊕ g 1 ≺ g 2 ε 2 ť2 : Bool g 1 ≺ g 2 (T app) Γ; Σ; g c ⊢ t 1 ť1 : U 11 g ′ -→ g U 12 Γ; Σ; g c ⊢ t 2 ť2 : U 2 ε 1 = I ⟳ <: (U 11 g ′ -→ g U 12 ) ε 2 = I <: (U 2 , U 11 ) ε 3 = I ≼ (g c , g, g ′ ) Γ; Σ; g c ⊢ t 1 t 2 ε 1 ť1 @ U 11 g ′ -→ g U 12 ε 3 ε 2 ť2 : U 12 ≺ g (T if) Γ; Σ; g c ⊢ t 1 ť1 : U 1 g ′ c = g c ≺ g Γ; Σ; g ′ c ⊢ t 2 ť2 : U 2 Γ; Σ; g ′ c ⊢ t 3 ť3 : U 3 ε 1 = I <: (U 1 , Bool g ) ε 2 = I <: (U 2 , U 2 , U 3 ) ε 3 = I <: (U 3 , U 2 , U 3 ) Γ; Σ; g c ⊢ if t 1 then t 2 else t 3 if g ε 1 ť1 then ε 2 ť2 else ε 3 ť3 : (U 2 <: U 3 ) ≺ g (T assgn) Γ; Σ; g c ⊢ t 1 ť1 : Ref g U 1 Γ; Σ; g c ⊢ t 2 ť2 : U 2 ε 1 = I ⟳ <: (Ref g U 1 ) ε 2 = I <: (U 2 , U 1 ) ε 3 = I ≼ (g c , g, label(U 1 )) Γ; Σ; g c ⊢ t 1 :=t 2 ε 1 ť1 g,U 1 := ε 3 ε 2 ť2 : Unit ⊥ (T ref) Γ; Σ; g c ⊢ t ť : U ′ ε 1 = I <: (U ′ , U ) ε 2 ⊢ I ≼ (g c , label(U )) Γ; Σ; g c ⊢ ref U t ref U ε 2 ε 1 ť : Ref ⊥ U (T deref) Γ; Σ; g c ⊢ t ť : Ref g U ε = I ⟳ <: (Ref g U ) Γ; Σ; g c ⊢ !t ! Ref g U ε ť : U ≺ g (T ::) Γ; Σ; g c ⊢ t ť : U 1 ε = I <: (U 1 , U 2 ) Γ; Σ; g c ⊢ t :: U 2 ε ť :: U 2 : U 2
where I ⟳ ≼ (g) = I ≼ (g, g) and I ⟳ <: (U ) = I <: (U , U ) Proof. By induction on ť1 and the definition of ||.

Case (I::). Then ť1 = ε 1 ť ′ 1 :: U , and (2

| ť1 | = ε 1 | ť ′ 1 |.
|x U | = x (Eb) |b g | = b g (Eu) |unit g | = unit g (Eo) |o U g | = o g (Eλ) | ť | = t |(λ g ′ x U 1 . ť) g | = (λ g ′ x : U 1 . ť) g (Eprot) |ϕ ′ | = ε 2 g 2 | ť | = t |prot g ′ 1 , U ε 1 g 1 ϕ ′ (ε 3 ť)| = prot ε 1 g 1 ε 2 g 2 (ε 3 t) (E⊕) | ť1 | = t 1 | ť2 | = t 2 |ε 1 ť1 ⊕ g 1 ≺ g 2 ε 2 ť2 | = ε 1 t 1 ⊕ ε 2 t 2 (Eapp) | ťi | = t i |ε 1 ť1 @ U 11 g ′ -→gU 12 ε 3 ε 2 ť2 | = ε 1 t 1 @ ε 3 ε 2 t 2 (Eif) | ťi | = t i |if g ε 1 ť1 then ε 2 ť2 else ε 3 ť3 | = if ε 1 t 1 then ε 2 t 2 else ε 3 t 3 (Eref) | ť | = t |ref U ε 2 ε 1 ť | = ref U ε 2 ε 1 t (Ederef) | ť | = t |! Refg U ε ť | = !εt (Eassgn) | ťi | = t |ε 1 ť1 g, U 1 := ε 3 ε 2 ť2 | = ε 1 t 1 := ε 3 ε 2 t 2 (E::) | ť | = t |ε ť :: U 2 = εt | |•| = • |µ 1 | = µ 2 |x U | = x |v | = v ′ |µ 1 , x U → v | = µ 2 , x → v ′ |⟨ε, g, g ′ ⟩| = εg
) If U = U 1 g c -→ g U 2 then either v = (λ g c x U 1 .t U 2 ) g with t U 2 ∈ T[U 2 ] or v = ε(λ g ′ c x U ′ 1 .t U ′ 2 ) g ′ :: U 1 g c -→ g U 2 with t U ′ 2 ∈ T[U ′ 2 ] and ε ⊢ U ′ 1 g ′ c -→ g ′U ′ 2 ≲ U 1 g c -→ g U 2 .
(

) If U = Ref g U 1 then either v = o U 1 g or v = εo U ′ 1 g ′ :: Ref g U 1 with o U ′ 1 g ′ ∈ Ref g ′ U ′ 1 and ε ⊢ Ref g ′ U ′ 1 ≲ Ref g U 1 . 3 
Proof. By direct inspection of the formation rules of gradual intrinsic terms (Figure 34).

□

Lemma E.11 (Substitution). If ϕ ▷ t U ∈ T[U ] and ϕ ▷ v ∈ T[U 1 ],then ϕ ▷ [v/x U 1 ]t U ∈ T[U ].
Proof. By induction on the derivation of ϕ ▷ t U . □ Proposition E.12 (-→ is well defined). If t U | µ -→ r and t U ⊢ µ, then r ∈ Config U ∪{ error } and if r = t ′U | µ ′ ∈ Config U then also t ′U ⊢ µ ′ and dom(µ) ⊆ dom(µ ′ ).

Proof. By induction on the structure of a derivation of t T | µ -→ r , considering the last rule used in the derivation.

Case (I⊕). Then t U = b 1ℓ 1 ⊕ g b 2ℓ 2 . By construction we can suppose that g

= g ′ 1 ≺ g ′ 2 , then (I⊕) ϕ .ε ⊢ ϕ .g c ≼ ϕ .g c ϕ ▷ b 1ℓ 1 ∈ Bool g 1 ε 1 ⊢ Bool g 1 ≲ Bool g ′ 1 ϕ ▷ b 2ℓ 2 ∈ Bool g 2 ε 2 ⊢ Bool g 2 ≲ Bool g ′ 2 ϕ ▷ ε 1 b 1ℓ 1 ⊕ g ε 2 b 2ℓ 2 ∈ T[Bool g ] Therefore ε 1 (b 1 ) g 1 ⊕ g ε 2 (b 2 ) g 2 | µ ϕ -→ (ε 1 ≺ ε 2 )(b 1 ⊕ b 2 ) (g 1 ≺ g 2 ) :: Bool g | µ Then (I⊕) ϕ .ε ⊢ ϕ .g c ≼ ϕ .g c ϕ ▷ (ε 1 ≺ ε 2 )(b 1 ⊕ b 2 ) (g 1 ≺ g 2 ) :: Bool g ∈ T[Bool g ] and the result holds. Case (Iprot). Then t U = ϕ ▷ prot g,U ε g ′ ϕ ′ (εu) and (Iprot) ϕ .ε ⊢ ϕ .g c ≼ ϕ .g c ε ′ r ⊢ Â g r ≺ g ′ ≼ g ′ c ϕ ′ ▷ u ∈ T[U ′ ] ε ⊢ U ′ ≲ U ε ℓ ⊢ g ′ ≼ g ϕ ▷ prot g,U ε g ′ ϕ ′ (εu) ∈ T[U ≺ g] Therefore prot g,U ε g ′ ϕ ′ (εu) | µ ϕ -→ (ε ≺ ε ℓ )(u ≺ g ′ ) :: U ≺ g | µ But by Lemma E.9, ϕ ▷ u ∈ T[U ′ ]. Therefore by definition of join ϕ ▷ (u ≺ g ′ ) ∈ T[U ′ ≺ g ′ ].
Then using Lemma 6.13

I:: ϕ ▷ (u ≺ g ′ ) ∈ T[U ′ ≺ g ′ ] (ε ≺ ε ℓ ) ⊢ ‡ U ′ ≺ g ′ ≲ fl U ≺ g ϕ ▷ (ε ≺ ε ℓ )(u ≺ g ′ ) :: U ≺ g ∈ T[U ≺ ℓ]
and the result holds.

Case (Iapp). Then

t U = ε 1 (λ g ′′ c x U 11 .t U 12 ) g 1 @ U 1 g ′ c -→ g U 2 ε ℓ ε 2 u and U = U 2 ≺ g. Then (Iapp) D 1 ϕ ▷ t U 12 ∈ T[U 12 ] ϕ .ε ⊢ ϕ .g c ≼ ϕ .g c ϕ ▷ (λ g ′′ c x U 11 .t U 12 ) g 1 ∈ T[U 11 g ′′ c -→ g 1 U 12 ] D 2 ϕ ▷ u ∈ T[U ′ 2 ] ε 2 ⊢ U ′ 2 ≲ U 1 ε 1 ⊢ U 11 g ′′ c -→ g 1 U 12 ≲ U 1 g ′ c -→ g U 2 ε ℓ ⊢ ‰ g c ≺ g ≼ g ′ c ϕ .ε ⊢ ϕ .g c ≼ ϕ .g c ϕ ▷ ε 1 (λ g ′′ c x U 11 .t U 12 ) g 1 @ U 1 g ′ c -→ g U 2 ε ℓ ε 2 u ∈ T[U 2 ≺ g] If ε ′ = (ε 2 • <: idom(ε 1 )) or ε ′ r = (ϕ .ε ≺ ilbl(ε 1 ))• ≼ ε ℓ • ≼ ilat(ε 1 ) are not defined, then t U | µ ϕ
-→ error, and then the result hold immediately. Suppose that consistent transitivity does hold, then if

ϕ ′ = ⟨ϕ ′ .ε(ϕ .g c ≺ g 1 ), g ′′ c ⟩ ε 1 (λ g ′′ c x U 11 .t U 12 ) g 1 @ U 1 g ′ c -→ g U 2 ε ℓ ε 2 u | µ ϕ -→ prot g,U 2 ilbl(ε 1 )g 1 ϕ ′ (icod(ε 1 )([(ε ′ u :: U 11 )/x U 11 ]t U 12 )) | µ As ε 2 ⊢ U ′ 2 ≲ U 1 and by inversion lemma idom(ε 1 ) ⊢ U 1 ≲ U 11 , then ε ′ ⊢ U ′ 2 ≲ U 11 . Therefore ϕ ▷ ε ′ u :: U 11 ∈ T[U 11 ], and by Lemma E.11, ϕ ▷ [(ε ′ u :: U 11 )/x U 11 ]t U 12 ∈ T[U 12 ]. We know that ε ℓ ⊢ ‰ g c ≺ g ≼ g ′ c .
By inversion on the label of types, ilbl(ε 1 ) ⊢ g 1 ≼ g. Also by monotonicity of the join, ϕ .ε ≺ ilbl(ε 1 ) ⊢ ϕ .g c ≺ g 1 ≼ g c ≺ g. Then, by inversion on the latent effect of function types, ilat(ε 1 ) ⊢ g ′ c ≼ g ′′ c . Therefore combining evidences, as

ϕ ′ .ε = (ϕ .ε ≺ ilbl(ε 1 )) • ≼ ε ℓ • ≼ ilat(ε 1 ), we may justify the runtime judgment ϕ ′ .ε ⊢ Â ϕ .g c ≺ g 1 ≼ g ′′ c . Let us call t ′U 12 = [(ε ′ u :: U 11 )/x U 11 ]t U 12 . By Lemma E.8, ϕ ′ ▷ t ′U 12 ∈ T[U 12 ]. Then (Iprot) ϕ .ε ⊢ ϕ .g c ≼ ϕ .g c ϕ ′ ▷ t ′U 12 ∈ T[U 12 ] icod(ε 1 ) ⊢ U 12 ≲ U 2 ilbl(ε 1 ) ⊢ g 1 ≼ g ϕ ▷ prot g,U 2 ilbl(ε 1 )g 1 ϕ ′ (icod(ε 1 )(t ′U 12 )) ∈ T[U 2 ≺ g]
and the result holds.

Case (Iif-true). Then

t U = if g ε 1 b g 1 then ε 2 t U 2 else ε 3 t U 3 , U = (U 2 <: U 3 ) ≺ g and (If) ϕ ▷ b g 1 ∈ T[Bool g 1 ] ε 1 ⊢ Bool g 1 ≲ Bool g ϕ ′ = ⟨ϕ .ε ≺ ilbl(ε 1 )(ϕ .g c ≺ g 1 ), ϕ .g c ≺ g⟩ ϕ .ε ⊢ ϕ .g c ≼ ϕ .g c ϕ ′ ▷ t U 2 ∈ T[U 2 ] ε 2 ⊢ U 2 ≲ (U 2 <: U 3 ) ϕ ′ ▷ t U 3 ∈ T[U 3 ] ε 3 ⊢ U 3 ≲ (U 2 <: U 3 ) ϕ ▷ if g ε 1 b g 1 then ε 2 t U 2 else ε 3 t U 3 ∈ T[(U 2 <: U 3 ) ≺ g] Therefore if g ε 1 b g 1 then ε 2 t U 2 else ε 3 t U 3 | µ ϕ -→ prot g,(U 2 <: U 3 ) ilbl(ε 1 )g 1 ϕ ′ (ε 2 t U 2 ) | µ But (Iprot) ϕ .ε ⊢ ϕ .g c ≼ ϕ .g c ϕ ′ ▷ t U 2 ∈ T[U 2 ] ε 2 ⊢ U 2 ≲ U 2 <: U 3 ilbl(ε 1 ) ⊢ g 1 ≼ g ϕ ▷ prot g,(U 2 <: U 3 ) ilbl(ε 1 )g 1 ϕ ′ (ε 2 t U 2 ) ∈ T[(U 2 <: U 3 ) ≺ g]
and the result holds.

Case (Iif-false). Analogous to case (if-true).

Case (Iref). Then

t U = ref U ′ ε ℓ εu and (Iref) ϕ .ε ⊢ ϕ .g c ≼ ϕ .g c ϕ ▷ u ∈ T[U ′′ ] ε ⊢ U ′′ ≲ U ′ ε ℓ ⊢ g c ≼ label(U ′ ) ϕ ▷ ref U ′ ε ℓ εu ∈ T[Ref ⊥ U ′ ] If ε ′ = ε ≺ (ϕ .ε • ≼ ε ℓ ) is not defined, then t U ′ | µ ϕ
-→ error, and then the result hold immediately. Suppose that consistent transitivity does hold, then

ref U ′ ε ℓ εu | µ ϕ -→ o U ′ ⊥ | µ[o U ′ → ε ′ (u ≺ ϕ .g c ) :: U ′ ]
where o U ′ dom(µ). We know that ε ℓ ⊢ g c ≼ label(U ′ ), therefore ϕ .ε • ≼ ε ℓ ⊢ ϕ .g c ≼ label(U ′ ). We also know that ε ⊢ U ′′ ≲ U ′ . Therefore combining both evidences we can justify that ε ≺ (ϕ .ε

• <: ε ℓ ) ⊢ Â U ′ 2 ≺ ϕ .g c <: U ′ . But (Il) ϕ .ε ⊢ ϕ .g c ≼ ϕ .g c o U ′ ⊥ ∈ T[Ref ⊥ U ′ ] Let us call µ ′ = µ[o U ′ → ε ′ (u ≺ ϕ .g c ) :: U ′ ]. It is easy to see that freeLocs(o U ′ ) = o U ′ and dom(µ ′ ) = dom(µ) ∪ o U ′
, then freeLocs(o U ′ ) ⊆ dom(µ ′ ). Given that t U ′ ⊢ µ then freeLocs(u) ⊆ dom(µ), and therefore

∀ v ∈ cod(µ ′ ) = cod(µ) ∪ (ε ′ (u ≺ ϕ .g c ) :: U ′ ), freeLocs(v ′ ) ⊆ dom(µ ′ ). Finally as t U ′ ⊢ µ and µ ′ (o U ′ ) = ε ′ (u ≺ ϕ .g c ) :: U ′ ∈ T[U ′ ]
then we can conclude that l U ′ ⊢ µ ′ and dom(µ) ⊆ dom(µ ′ ), and the result holds.

Case (Ideref). Then t U = ! Ref g U ′ εo U ′′ g ′ , U = U ′ ≺ g and (Ideref) ϕ ▷ o U ′′ g ′ ∈ T[Ref g ′ U ′′ ] ε ⊢ Ref g ′ U ′′ ≲ Ref g U ′ ϕ .ε ⊢ ϕ .g c ≼ ϕ .g c ϕ ▷ ! Ref g U ′ εo U ′′ g ′ ∈ T[U ′ ≺ g] Then for ϕ ′ = ⟨(ϕ .ε ≺ ilbl(ε))(ϕ .g c ≺ g ′ ), ϕ .g c ≺ g⟩ ! Ref g U ′ εo U ′′ g ′ | µ ϕ -→ prot g,U ′ ilbl(ε )g ′ ϕ ′ (iref (ε)v) | µ where µ(o U ′′ ) = v. As the store is well typed, therefore ϕ ▷v ∈ T[U ′′ ]. By Lemma E.9, ϕ ′ ▷v ∈ T[U ′′ ]. By inversion lemma on references, ilbl(ε) ⊢ g ′ ≼ g and iref (ε) ⊢ U ′′ ≲ U ′ (Iprot) ϕ .ε ⊢ ϕ .g c ≼ ϕ .g c ϕ ′ ▷ v ∈ T[U ′′ ] iref (ε) ⊢ U ′′ ≲ U ′ ilbl(ε) ⊢ g ′ ≼ g ϕ ▷ prot g,U ′ ilbl(ε )g ′ ϕ ′ (iref (ε)v) ∈ T[U ′ ≺ g]
and the result holds.

Case (Iassgn). Then

t U = ε 1 o U ′ 1 g ′ g,U 1 := ε ℓ ε 2 u and (Iassgn) ε 1 ⊢ Ref g ′ U ′ 1 ≲ Ref g U 1 ϕ ▷ o U ′ 1 g ′ ∈ T[Ref g ′ U ′ 1 ] ε 2 ⊢ U 2 ≲ U 1 ϕ ▷ u ∈ T[U 2 ] ϕ .ε ⊢ ϕ .g c ≼ ϕ .g c ε ℓ ⊢ Â ϕ .g c ≺ g ≼ label(U 1 ) ϕ ▷ ε 1 o U ′ 1 g ′ g,U 1 := ε ℓ ε 2 u ∈ T[Unit ⊥ ] If ε ′ = (ε 2 • <: iref (ε 1 )) ≺ ((ϕ .ε ≺ ilbl(ε 1 ))• ≼ ε ℓ • ≼ ilbl(iref (ε 1 )) is not defined, then t U ′ | µ ϕ
-→ error, and then the result hold immediately. Suppose that consistent transitivity does hold, then

ε 1 o U ′ 1 g g,U 1 := ε ℓ ε 2 u | µ ϕ -→ unit ⊥ | µ[o U → ε ′ (u ≺ (ϕ .g c ≺ g)) :: U ′ 1 ]
We know that ε ℓ ⊢ Â ϕ .g c ≺ g ≼ label(U 1 ). Then by inversion on reference evidence types and inversion in the label of types, ilbl(iref (ε 1 )) ⊢ label(U 1 ) ≼ label(U ′ 1 ). But ilbl(ε 1 ) ⊢ g ′ ≼ g, using monotonicity of the join, ϕ .ε

≺ ilbl(ε 1 ) ⊢ Â ϕ .g c ≺ g ′ ≼ ϕ .g c ≺ g. Therefore ((ϕ .ε ≺ ilbl(ε 1 )) • ≼ ε ℓ ) • ≼ ilbl(iref (ε 1 )) ⊢ Â ϕ .g c ≺ g ′ ≼ label(U ′ 1 ). We also know that if u ∈ T[U 2 ], then (ε 2 • <: iref (ε 1 )) ⊢ U 2 ≲ U ′ 1 . Combining both evidences, ε ′ = (ε 2 • <: iref (ε 1 )) ≺ (((ϕ .ε ≺ ilbl(ε 1 )) • ≼ ε ℓ ) • ≼ ilbl(iref (ε 1 )
)), and by Proposition 6.13 we can then justify that ε ′ ⊢ Â U 2 ≺ (ϕ .g c ≺ g) <: U ′ 1 and therefore justify the ascription in the heap.

Let us call

µ ′ = µ[o U ′ 1 → ε ′ (u ≺ (ϕ .g c ≺ g)) :: U ′ 1 ]. As freeLocs(unit ⊥ ) = ∅ then freeLocs(unit ⊥ ) ⊆ µ ′ .
As t U ⊢ µ then freeLocs(u) ∈ dom(µ), and as dom(µ) = dom(µ ′ ) then it is trivial to see that ∀ v ′ ∈ cod(µ ′ ), freeLocs(v ′ ) ⊆ dom(µ ′ ), and the result holds.

□ Proposition E.13 ( -→ is well defined). If t U | µ ϕ -→ r and t U ⊢ µ, then r ∈ Config U ∪ { error } and if r = t ′U | µ ′ ∈ Config U then also t ′U ⊢ µ ′ and dom(µ) ⊆ dom(µ ′ ).
Proof. By induction on the structure of a derivation of t

U | µ ϕ -→ r . Case (R-→). t U | µ ϕ -→ r . By well-definedness of -→ (Prop E.12), r ∈ Config T ∪ { error } and if r = t ′U | µ ′ ∈ Config U then also t ′U ⊢ µ ′ and dom(µ) ⊆ dom(µ ′ ). Case (Rprot). t U = prot g,U ′ ε g ′ ϕ ′ (εt U ′′ 1 ) and (Iprot) ϕ .ε ⊢ ϕ .g c ≼ ϕ .g c ε ′ r ⊢ Â g r ≺ g ′ ≼ g ′ c ϕ ′ ▷ t U ′′ 1 ∈ T[U ′′ ] ε ⊢ U ′′ ≲ U ′ ε ℓ ⊢ g ′ ≼ g ϕ ▷ prot g,U ′ ε g ′ ϕ ′ (εt U ′′ 1 ) ∈ T[U ′ ≺ g]
Using induction hypothesis on the premise of (Rprot()), then

(Rprot()) t U ′′ 1 | µ ϕ ′ -→ t U ′′ 2 | µ ′ prot g,U ′ ε g ′ ϕ ′ (εt U ′′ 1 ) | µ ϕ -→ prot g,U ′ ε g ′ ϕ ′ (εt U ′′ 2 ) | µ ′ where ϕ ′ ▷ t U ′′ 2 ∈ T[U ′′ ], t U ′′ 2 ⊢ µ ′ and dom(µ) ⊆ dom(µ ′ ). Therefore (Iprot) ϕ .ε ⊢ ϕ .g c ≼ ϕ .g c ε ′ r ⊢ Â g r ≺ g ′ ≼ g ′ c ϕ ′ ▷ t U ′′ 2 ∈ T[U ′′ ] ε ⊢ U ′′ ≲ U ′ ε ℓ ⊢ g ′ ≼ g ϕ ▷ prot g,U ′ ε g ′ ϕ ′ (εt U ′′ 2 ) ∈ T[U ′ ≺ g]
and the result holds.

Case (Rf ).

t U = f [t U ′ 1 ], ϕ ▷ f [t U ′ ] ∈ T[U ], t U ′ 1 | µ ϕ -→ t U ′ 2 | µ ′ , and consider F : T[U ′ ] → T[U ], where F (ϕ ▷ t U ′ ) = ϕ ▷ f [t U ′ ]. By induction hypothesis, ϕ ▷ t U ′ 2 ∈ T[U ′ ], so F (ϕ ▷ t U ′ 2 ) = ϕ ▷ f [t U ′ 2 ] ∈ T[U ].
By induction hypothesis we also know that t

U ′ 2 ⊢ µ ′ . If freeLocs(t U ′ 2 ) ⊆ µ ′ , freeLocs(f [t U 1 ]
) ⊆ µ, and dom(µ) ⊆ dom(µ ′ ), then it is easy to see that freeLocs(f [t U ′ 2 ]) ⊆ µ ′ , and therefore conclude that f [t U 2 ] ⊢ µ ′ . Case (Rf err, Rherr, Rprot()f err, Rprot()herr). r = error.

Case (Rh). t U = h[et], ϕ ▷h[t U ′ ] ∈ T[U ], and consider G : EvLabel×GLabel×GLabel×EvTerm → T[U ], G(ϕ, et) = ϕ ▷ h[et] and et -→ c et ′ . Then there exists U e , U x such that et = ε e t U e
e and ε e ⊢ U e ≲ U x . Also,

t e = ε v v :: U e , with v ∈ T[U v ] and ε v ⊢ U v ≲ U e . We know that ε c = ε v • <: ε e is defined, and et = ε e t e -→ c ε c v = et ′ . By definition of • <: we have ε c ⊢ U v ≲ U x , so G(ϕ, et ′ ) = ϕ ▷ h[et ′ ] ∈ T[U ].
As freeLocs(et) = freeLocs(et ′ ) and µ ′ = µ then it is easy to conclude that h[et ′ ] ⊢ µ.

Case (Rprot()h). Similar case to (Rh) case, using

P : EvTerm → T[U ], P(et) = ϕ ▷ prot g,U ε g ′ ϕ ′ (et).

□

Now we can establish type safety: programs do not get stuck, though they may terminate with cast errors. Also the store of a program is well typed. Proposition E.14 (Type Safety).

If ϕ ▷ t U ∈ T[U ] then either t U is a value v; t U | µ ϕ -→ error; or if t U ⊢ µ then t U | µ ϕ -→ t ′U | µ ′ for some term ϕ ▷ t ′U ∈ T[U ]
and some µ ′ such that t ′U ⊢ µ ′ and dom(µ) ⊆ dom(µ ′ ).

Proof. By induction on the structure of ϕ ▷ t U .

Case (Iu,Il, Ib, Ix, Iλ). t U is a value.

Case (Iprot). t U = prot g,U ε g ′ ϕ ′ (εt U ′ ), and (Iprot) ϕ .ε ⊢ ϕ .g c ≼ ϕ .g c ε ′ r ⊢ Â g r ≺ g ′ ≼ g ′ c ϕ ′ ▷ t U ′ ∈ T[U ′ ] ε ⊢ U ′ ≲ U ε ℓ ⊢ g ′ ≼ g ϕ ▷ prot g,U ε g ′ ϕ ′ (εt U ′ ) ∈ T[U ≺ g]
By induction hypothesis on t U ′ , one of the following holds:

(1) t U ′ is a simple value , then by (R-→), Case (I::). t U = ε 1 t U 1 :: U 2 , and (I::)

t U | µ ϕ -→ v | µ,
ϕ ▷ t U 1 ∈ T[U 1 ] ε 1 ⊢ U 1 ≲ U 2 ϕ .ε ⊢ ϕ .g c ≼ ϕ .g c ϕ ▷ ε 1 t U 1 :: U 2 ∈ T[U 2 ]
By induction hypothesis on t U 1 , one of the following holds:

(1) t U 1 is a value, in which case t U is also a value.

(

) t U 1 | µ ϕ -→ r 1 for some r 1 ∈ T[U 1 ] ∪ { error }. 2 
Hence t U | µ -→ r for some r ∈ Config U ∪ { error } by Prop E.13 and either (Rf ), or (Rf err).

Case (IU if). t U = if g ε 1 t U 1 then ε 2 t U 2 else ε 3 t U 3 and (If) ϕ ▷ t U 1 ∈ T[U 1 ] ε 1 ⊢ U 1 ≲ Bool g ϕ .ε ⊢ ϕ .g c ≼ ϕ .g c ϕ ′ = ⟨(ϕ .ε ≺ ilbl(ε 1 ))(ϕ .g c ≺ label(U 1 )), g c ≺ g⟩ ϕ ′ ▷ t U 2 ∈ T[U 2 ] ε 2 ⊢ U 2 ≲ (U 2 <: U 3 ) ϕ ′ ▷ t U 3 ∈ T[U 3 ] ε 3 ⊢ U 3 ≲ (U 2 <: U 3 ) ϕ ▷ if g ε 1 t U 1 then ε 2 t U 2 else ε 3 t U 3 ∈ T[(U 2 <: U 3 ) ≺ g]
By induction hypothesis on t U 1 , one of the following holds:

(1) t U 1 is a value u, then by (R-→), t U | µ ϕ -→ r and r ∈ Config U ∪ { error } by Prop E.13. (2) t U 1 is an ascribed value v, then, ε 1 t U 1 -→ c et ′ for some et ′ ∈ EvTerm ∪ { error }. Hence t U | µ ϕ -→ r for some r ∈ Config U ∪ { error } by Prop E.13 and either (Rg), or (Rgerr).

(3) t U 1 | µ ϕ -→ r 1 for some r 1 ∈ T[U 1 ] ∪ { error }. Hence t U | µ -→ r for some r ∈ Config U ∪ { error } by Prop E.13 and either (Rf ), or (Rf err).

Case (Iapp). t U = ε 1 t U 1 @ U 11 g ′ c -→ g U 12 ε ℓ ε 2 t U 2 (Iapp) ϕ ▷ t U 1 ∈ T[U 1 ] ε 1 ⊢ U 1 ≲ U 11 g ′ c -→ g U 12 ϕ ▷ t U 2 ∈ T[U 2 ] ε 2 ⊢ U 2 ≲ U 11 ε ℓ ⊢ ‰ g c ≺ g ≼ g ′ c ϕ .ε ⊢ ϕ .g c ≼ ϕ .g c ϕ ▷ ε 1 t U 1 @ U 11 g ′ c -→ g U 12 ε ℓ ε 2 t U 2 ∈ T[U 12 ≺ g]
By induction hypothesis on t U 1 , one of the following holds:

(

1) t U 1 is a value (λx U ′ 11 .t U ′ 12 ) g ′ (by canonical forms Lemma E.10), posing U 1 = U ′ 11 g ′′ c -→ g ′U ′ 12 .
Then by induction hypothesis on t U 2 , one of the following holds: 

(a) t U 2 is a value u, then by (R-→), t U | µ ϕ -→ r and r ∈ Config U ∪ { error } by Prop E.13. (b) t U 2 is an ascribed value v, then, ε 2 t U 2 -→ c et ′ for some et ′ ∈ EvTerm ∪ { error }. Hence t U | µ ϕ -→
= t ′U | µ ′ ∈ T[U ] then dom(µ) ⊆ dom(µ ′ ). (2) t U 1 is an ascribed value v, then, ε 1 t U 1 -→ c et ′ for some et ′ ∈ EvTerm ∪ { error }. Hence t U | µ ϕ
-→ r for some r ∈ Config U ∪ { error } by Prop E.13 and either (Rg), or (Rgerr).

(3) t U 1 | µ -→ r 1 for some r 1 ∈ Config U 1 ∪{ error }. Hence t U | µ ϕ -→ r for some r ∈ Config U ∪ { error } by Prop E.13 and either (Rf ), or (Rf err). Also by Prop E.13, if r

= t ′U | µ ′ ∈ T[U ] then dom(µ) ⊆ dom(µ ′ ).
Case (I⊕). Similar case to (Iapp)

Case (Iref). t U = ref U ′ ε ℓ εt U ′′ and (Iref) ϕ .ε ⊢ ϕ .g c ≼ ϕ .g c ϕ ▷ t U ′′ ∈ T[U ′′ ] ε ⊢ U ′′ ≲ U ′ ε ℓ ⊢ g c ≼ label(U ′ ) ϕ ▷ ref U ′ ε ℓ εt U ′′ ∈ T[Ref ⊥ U ′ ]
By induction hypothesis on t U ′′ , one of the following holds:

(

1) t U ′′ is a value v, then by (R-→), t U ′ | µ ϕ -→ r and r ∈ Config U ′ by Prop E.13. Also by Prop E.13, if r = t ′U | µ ′ ∈ T[U ] then dom(µ) ⊆ dom(µ ′ ). (2) t U ′′ is an ascribed value v, then, εt U ′ 1 -→ c et ′ for some et ′ ∈ EvTerm ∪ { error }. Hence t U ′ | µ ϕ -→ r for some r ∈ Config U ′ ∪ { error } by Prop E.
13 and either (Rg), or (Rgerr).

(

3) t U ′′ | µ ϕ -→ r 1 for some r 1 ∈ Config U ′′ ∪ { error }. Hence t U ′ | µ ϕ -→ r for some r ∈ Config U ′ ∪ { error } by Prop E.13 and either (Rf ), or (Rf err). Also by Prop E.13, if r = t ′U | µ ′ ∈ T[U ] then dom(µ) ⊆ dom(µ ′ ). Case (Ideref). t U = ! Ref g U ′ εt U ′′ (Ideref) ϕ .ε ⊢ ϕ .g c ≼ ϕ .g c ϕ ▷ t U ′′ ∈ T[U ′′ ] ε ⊢ U ′′ ≲ Ref g U ′ ϕ ▷ ! Ref g U ′ εt U ′′ ∈ T[U ′ ≺ g]
By induction hypothesis on t U ′′ , one of the following holds: (1) t U ′′ is a value l U ′′′ (by canonical forms Lemma E.10), where

U ′′ = Ref g ′ U ′′′ , then by (R-→), t U | µ ϕ -→ r and r ∈ Config U by Prop E.13. (2) t U ′′ is an ascribed value v, then, εt U ′′ -→ c et ′ for some et ′ ∈ EvTerm ∪ { error }. Hence t U | µ ϕ -→ r for some r ∈ Config U ∪ { error } by Prop E.
13 and either (Rg), or (Rgerr).

(

3) t U ′′ | µ ϕ -→ r 1 for some r 1 ∈ Config U ′′ ∪ { error }. Hence t U | µ ϕ -→ r for some r ∈ Config U ∪ { error } by Prop E.13 and either (Rf ), or (Rf err). Also by Prop E.13, if r = t ′U | µ ′ ∈ T[U ] then dom(µ) ⊆ dom(µ ′ ). Case (IU assign). t U = ε 1 t U ′′ 1 g,U 1 := ε ℓ ε 2 t U 2 and (Iassgn) ε 1 ⊢ Ref g ′ U ′ 1 ≲ Ref g U 1 ϕ ▷ t U ′′ 1 ∈ T[Ref g ′ U ′ 1 ] ε 2 ⊢ U 2 ≲ U 1 ϕ ▷ t U 2 ∈ T[U 2 ] ϕ .ε ⊢ ϕ .g c ≼ ϕ .g c ε ℓ ⊢ Â ϕ .g c ≺ g ≼ label(U 1 ) ϕ ▷ ε 1 t U ′′ 1 g,U 1 := ε ℓ ε 2 t U 2 ∈ T[Unit ⊥ ]
By induction hypothesis on t U ′′ 1 , one of the following holds: (1) t U ′′ 1 is a value l U ′′′ 1 (by canonical forms Lemma E.10), where

U ′′ 1 = Ref g ′ U ′′′ 1 .
Then by induction hypothesis on t U 2 , one of the following holds: 

(a) t U 2 is a value u, then by (R-→), t U | µ ϕ -→ r and r ∈ Config U ∪ { error } by Prop E.13. Also by Prop E.13, if r = t ′U | µ ′ ∈ T[U ] then dom(µ) ⊆ dom(µ ′ ). (b) t U 2 is an ascribed value v, then, ε 2 t U 2 -→ c et ′ for some et ′ ∈ EvTerm ∪ { error }. Hence t U | µ ϕ -→ r for some r ∈ Config U ∪ {
= t ′U | µ ′ ∈ T[U ] then dom(µ) ⊆ dom(µ ′ ). (2) t U ′′ 1 is an ascribed value v, then, ε 1 t U 1 -→ c et ′ for some et ′ ∈ EvTerm ∪ { error }. Hence t U | µ ϕ -→ r for some r ∈ Config U ∪ { error } by Prop E.
13 and either (Rg), or (Rgerr).

(3 

) t U ′′ 1 | µ ϕ -→ r 1 for some r 1 ∈ Config U ′′ 1 ∪ { error }. Hence t U | µ ϕ -→ r for some r ∈ Config U ∪ {
= I ℓ ′ c ≼ ℓ c , ϕ ▷ t s ∈ T[S], and that ∀v s ∈ cod(µ s ), v s ∈ StaticTerm. Then either t s is a value, or t s | µ s ϕ -→ t ′ s | µ ′ s
Proof. We know that if you follow AGT to derive the dynamic semantics of a gradual language, then by construction the resulting language satisfy the dynamic conservative extension property. As we follow AGT to derive the dynamic semantics, we get this property by construction, save for the assignment elimination reduction rule. In this rule we add an extra check of the form ϕ .ε ⌊≤⌋ ilbl(ε). So if we prove that the extra check is always satisfied, then the result holds.

Let us consider a t ′ 1 fully static like so:

(Iassgn)

ε 1 ⊢ Ref ℓ ′ S ′ 1 ≲ Ref ℓ S 1 ϕ ▷ o S ′ 1 ℓ ′ ∈ T[Ref ℓ ′ S ′ 1 ] ε 2 ⊢ S 2 ≲ S 1 ϕ ▷ u ∈ T[S 2 ] ϕ .ε ⊢ ℓ ′ c ≼ ℓ c ε ℓ ⊢ Â ℓ c ≺ ℓ ≼ label(S 1 ) ϕ ▷ ε 1 o S ′ 1 ℓ ′ ℓ,S 1 := ε ℓ ε 2 u ∈ T[Unit ⊥ ]
By inspection of the reduction rules we have to prove that ϕ .ε ⌊≤⌋ ilbl(ε). ϕ .ε ⌊≤⌋ ilbl(ε). We know by definition of interior between two static labels that ε

= I ℓ ′ c ≼ ℓ c = ⟨[ℓ ′ c , ℓ ′ c ], [ℓ c , ℓ c ]⟩. Also, ff µ s (o S ′ 1 ) = εu ′ :: S ′ 1 , as everything is static, ilbl(ε) have to have the form ⟨[ℓ u , ℓ u ], [label(S ′ 1 ), label(S ′ 1 
)]⟩, for some ℓ u . Then we have to prove that ℓ c ≼ label(S ′ 1 ), but notice that as everything is static,

ε ℓ ⊢ Â ℓ c ≺ ℓ ≼ label(S 1 ) is equivalent to ε ℓ ⊢ ℓ c ≺ ℓ ≼ label(S 1
), therefore we know that ℓ c ≼ label(S 1 ) and the result holds. □

E.5 Dynamic Gradual Guarantee

In this section we present the proof the Dynamic Gradual Guarantee for GSL Ref without the specific check in rule (r 7).

Definition E.16 (Intrinsic term precision).

Let 

Ω ∈ P(V[ * ] × V[ * ]) ∪ P(Loc * × Loc * ) be defined as Ω ::= { x U i 1 ⊑ x U i 2 , o U i 1 ⊑ o U i 2 } We define Ω ∪ { x U 1 ⊑ x U 2 } ⊢ x U 1 ⊑ x U 2 g 1 ⊑ g 2 Ω ⊢ b g 1 ⊑ b g 2 g 1 ⊑ g 2 Ω ⊢ unit g 1 ⊑ unit g 2 g 1 ⊑ g 2 Ω ∪ { o U 1 ⊑ o U 2 } ⊢ o U 1 g 1 ⊑ o U 2 g 2 U 11 ⊑ U 12 g c1 ′ ⊑ g c2 ′ g 1 ⊑ g 2 Ω ∪ { x U 11 ⊑ x U 12 } ⊢ t U 12 ⊑ t U 22 Ω ⊢ (λ g c 1 ′ x U 11 .t U 12 ) g 1 ⊑ (λ g c 2 ′ x U 21 .t U 22 ) g 2 g 1 ⊑ g 2 g ′ 1 ⊑ g ′ 1 ϕ ′ 1 ⊑ ϕ ′ 2 ε 1 ⊑ ε 2 U 1 ⊑ U 2 Ω ⊢ t U ′ 1 ⊑ t U ′ 2 ε ℓ1 ⊑ ε ℓ2 Ω ⊢ prot g 1 ,U 1 ε ℓ1 g ′ 1 ϕ ′ 1 (ε 1 t U ′ 1 ) ⊑ prot g 2 ,U 2 ε ℓ2 g ′ 2 ϕ ′ 2 (ε 2 t U ′ 2 ) Ω ⊢ t U 11 ⊑ t U 21 U 12 ⊑ U 22 ε 1 ⊑ ε 2 (ε 1 t U 11 :: U 12 ) ⊑ (ε 2 t U 21 :: U 22 ) g c1 ⊑ g c2 Ω ⊢ t U 11 ⊑ t U 21 Ω ⊢ t U 12 ⊑ t U 22 ε 11 ⊑ ε 21 ε 12 ⊑ ε 22 ε ℓ1 ⊑ ε ℓ2 U 1 ⊑ U 3 U 2 ⊑ U 4 g 1 ⊑ g 2 Ω ⊢ ε 11 t U 11 @ U 1 g c 1 -→ g 1 U 2 ε ℓ1 [12]t U 12 ⊑ ε 21 t U 21 @ U 3 g c 2 -→ g 2 U 4 ε ℓ2 [22]t U 22 g 1 ⊑ g 2 Ω ⊢ t U 11 ⊑ t U 21 ε 11 ⊑ ε 21 Ω ⊢ t U 12 ⊑ t U 23 ε 12 ⊑ ε 22 Ω ⊢ t U 13 ⊑ t U 23 ε 13 ⊑ ε 23 Ω ⊢ if g 1 ε 11 t U 11 then ε 12 t U 12 else ε 13 t U 13 ⊑ if g 2 ε 21 t U 21 then ε 22 t U 22 else ε 23 t U 23 Ω ⊢ t U 11 ⊑ t U 21 Ω ⊢ t U 12 ⊑ t U 22 ε 11 ⊑ ε 21 ε 12 ⊑ ε 22 g 1 ⊑ g 2 Ω ⊢ (ε 11 t U 11 ⊕ g 1 ε 12 t U 12 ) ⊑ (ε 21 t U 21 ⊕ g 2 ε 22 t U 22 ) U 1 ⊑ U 2 ε ℓ1 ⊑ ε ℓ2 g c1 ⊑ g c2 ε 1 ⊑ ε 2 Ω ⊢ t U ′ 1 ⊑ t U ′ 2 Ω ⊢ ref U 1 ε ℓ1 ε 1 t U ′ 1 ⊑ ref U 2 ε ℓ2 ε 2 t U ′ 2 Ω ⊢ t U 11 ⊑ t U 21 U 1 ⊑ U 2 ε 1 ⊑ ε 2 Ω ⊢ ! U 1 ε 1 t U 11 ⊑ ! U 2 ε 2 t U 21 Ω ⊢ t U 11 ⊑ t U 21 Ω ⊢ t U 12 ⊑ t U 22 ε 11 ⊑ ε 21 ε 12 ⊑ ε 22 ε 1 ⊑ ε 2 g 1 ⊑ g 2 U 1 ⊑ U 2 Ω ⊢ ε 11 t U 11 g 1 ,U 1 := ε 1 ε 12 t U 12 ⊑ ε 21 t U 21 g 2 ,U 2 := ε 2 ε 22 t U 22 ∀o U 1 ∈ dom(µ 1 ).∃o U 2 ∈ dom(µ 2 ) s.t . Ω ⊢ o U 1 ⊑ o U 2 Ω ⊢ µ 1 (l U 1 ) ⊑ µ 2 (l U 2 ) Ω ⊢ µ 1 ⊑ µ 2 where ϕ 1 ⊑ ϕ 2 ⇐⇒ ϕ 1 .ε ⊑ ϕ 2 .ε ∧ ϕ 1 .g c ⊑ ϕ 2 .g c ∧ ϕ 1 .g c ⊑ ϕ 2 .g c
• ⊢ • ⊑ •) ∈ (P(V[ * ] × V[ * ]) ∪ P(Loc * × Loc * )) × T[ * ] × T[ * ]
shown in Figure 39. Definition E.17 (Well Formedness of Ω). We say that Ω is well formed iff

∀ { l U i 1 ⊑ l U i 2 } ∈ Ω.U i1 ⊑ U i2 Proposition E.23 (Substitution preserves precision). If Ω ∪ {x U 3 ⊑ x U 4 } ⊢ t U 1 ⊑ t U 2 and Ω ⊢ t U 3 ⊑ t U 4 , then Ω ⊢ [t U 3 /x U 3 ]t U 1 ⊑ [t U 4 /x U 4 ]t U 2 .
Proof. By induction on the derivation of t U 1 ⊑ t U 2 , and case analysis of the last rule used in the derivation. All cases follow either trivially (no premises) or by the induction hypotheses.

□ Proposition E.24 (Monotone precision for

• <: ). If ε 1 ⊑ ε 2 and ε 3 ⊑ ε 4 then ε 1 • <: ε 3 ⊑ ε 2 • <: ε 4 .
Proof. By definition of consistent transitivity for <: and the definition of precision. □ Proposition E.25 (Monotone precision for

• ≼ ). If ε 1 ⊑ ε 2 and ε 3 ⊑ ε 4 then ε 1 • ≼ ε 3 ⊑ ε 2 • ≼ ε 4 .
Proof. By definition of consistent transitivity for ≼ and the definition of precision. □ Proposition E.26 (Monotone precision for join).

If ε 1 ⊑ ε 2 and ε 3 ⊑ ε 4 then ε 1 ≺ ε 3 ⊑ ε 2 ≺ ε 4 .
Proof. By definition of join and the definition of precision.

□ Proposition E.27. If Ref U 1 ⊑ Ref U 2 then U 1 ⊑ U 2 .
Proof. By definition of precision we know that 

{ Ref T | T ∈ γ (U 1 ) } ⊆ { Ref T | T ∈ γ (U 2 ) }. This relation is true only if γ (U 1 ) ⊆ γ (U 2 ) which is equivalent to U 1 ⊑ U 2 . □ Proposition E.
→). Suppose Ω ⊢ t U 1 1 ⊑ t U 2 1 , ϕ 1 ⊑ ϕ 2 , and Ω ⊢ µ 1 ⊑ µ 2 . If t U 1 1 | µ 1 ϕ 1 -→ t U 1 2 | µ ′ 1 then t U 2 1 | µ 2 ϕ 2 -→ t U 2 2 | µ ′ 2 where Ω ′ ⊢ t U 1 2 ⊑ t U 2 2 and Ω ′ ⊢ µ ′ 1 ⊑ µ ′ 2 , for some Ω ′ ⊇ Ω. Proof. By induction on the structure of t U 1 1 ⊑ t U 2 1 .
For simplicity we omit the Ω ⊢ notation on precision relations when it is not relevant for the argument.

Case (-→ ⊕). We know that t

U 1 1 = (ε 11 (b 1 ) g 11 ⊕ g 1 ε 12 (b 2 ) g 12 ) then by (⊑ ⊕ ) t U 2 1 = (ε 21 (b 1 ) g 21 ⊕ g 1 ε 22 (b 2 ) g 22 ) for some ε 21 , ε 22 , g 21 , g 22 such that ε 11 ⊑ ε 21 , ε 12 ⊑ ε 22 , g 11 ⊑ g 21 and g 12 ⊑ g 22 . If t U 1 1 | µ 1 ϕ 1 -→ b 3 | µ 1 where b 3 = (ε 11 ≺ ε 12 )(b 1 ⊕ b 2 ) (g 11 ≺ g 21 ) :: Bool g 1 , then t U 2 1 | µ 2 ϕ 2 -→ b ′ 3 | µ 2 where b ′ 3 = (ε 21 ≺ ε 22 )(b 1 ⊕ b 2 ) (g 21 ≺ g 22 ) :: Bool g 2 . By Lemma E.26, (ε 11 ≺ ε 12 ) ⊑ (ε 21 ≺ ε 22 ). Also (g 11 ≺ g 21 ) ⊑ (g 21 ≺ g 22 ). (g 11 ≺ g 21 ) ⊑ (g 12 ≺ g 22 ) Ω ⊢ (b 1 ⊕ b 2 ) (g 11 ≺ g 21 ) ⊑ (b 1 ⊕ b 2 ) (g 21 ≺ g 22 ) Bool g 1 ⊑ Bool g 2 (ε 11 ≺ ε 12 ) ⊑ (ε 21 ≺ ε 22 ) (ε 11 ≺ ε 12 )(b 1 ⊕ b 2 ) (g 11 ≺ g 21 ) :: Bool g 1 ⊑ (ε 21 ≺ ε 22 )(b 1 ⊕ b 2 ) (g 21 ≺ g 22 ) :: Bool g 2 Therefore t U 1 2 ⊑ t U 2 2 . As Ω ′ = Ω, µ ′ 1 = µ 1 and µ 2 = µ ′ 2 then Ω ′ ⊢ µ ′ 1 ⊑ µ ′ 2 .

E.6 Noninterference

In this section we present the proof of noninterference for GSL Ref . We use a logical relation that is more general than the one presented in the paper. The main difference (beside using intrinsic terms), is that the logical relation is no longer indexed by a static security effect. As ϕ embeds the static security effect information, we generalize the logical relation to also relate two different static security effects as well. Section E.6.1 present some auxiliary definitions. Section E.6.2 presents the proof of Noninterference (Prop E.65), which implies Security Type Soundness (Prop 5.5) presented in the paper.

E.6.1 Definitions. We introduce a function uval, which strips away ascriptions from a simple value:

uval : GType → SimpleValue uval(u) = u uval(εu :: U ) = u.
In order to compare the observable results of program, we introduce the rval(v) operator, which strips away any checking-related information like labels or evidence-carrying ascriptions:

rval : Value → RawValue rval(b g ) = b rval(εb g :: U ) = b rval(unit g ) = unit rval(εunit g :: U ) = unit rval(o U g ) = o rval(εo U ′ g :: U ) = o rval((λ g ′ x U 1 .t U 2 ) g ) = (λ g ′ x U 1 .t U 2 ) rval(ε(λ g ′ x U 1 .t U 2 ) g :: U ) = (λ g ′ x U 1 .t U 2 )
Definition E.32 (Gradual security logical relations). For an arbitrary element ℓ o of the security lattice, the ℓ o -level gradual security relations are step-indexed and type-indexed binary relations on tuples of security effect, closed terms and stores defined inductively as presented in Figure 40

. The notation ⟨ϕ 1 , v 1 , µ 1 ⟩ ≈ k ℓ o ⟨ϕ 2 , v 2 , µ 2 
⟩ : U indicates that the tuple of security effect ϕ 1 , value v 1 and store µ 1 is related to the tuple of security effect ϕ 2 , value v 2 and store µ 2 at type U for k steps when observed at the security level ℓ o . Similarly, the notation ⟨ϕ ≈ ℓo , t ≈ ℓo , µ ≈ ℓo ⟩ k ⟨ϕ : , t : , µ : ⟩ C(U ) indicates that the tuple of security effect ϕ 1 , term t 1 and store µ 1 , and the tuple of security effect ϕ 2 , term t 2 and store µ 2 are related computations for k steps, that produce related values and related stores at type U when observed at the security level ℓ o . Notation µ 1 ≈ k ℓ o µ 1 relates stores µ 1 and µ 2 for k steps when observed at security level ℓ o . Finally, notation ϕ 1 ≈ ℓ o ϕ 2 , relates security effect ϕ 1 and ϕ 2 for any number of steps at security level ℓ o .

We say that a value is observable at level ℓ o if, given a security effect ϕ, the value is typeable, the security effect is observable, and the label of the value is sublabel of ℓ o . Also, as value v can be a casted value, we need to analyze if its underlying evidence justifies that the security level of the bare value is also subsumed by the observer security level. We do this by demanding that the underlying evidence and label is also observable. We say that a security effect is observable if its underlying evidence and static label is also observable. We say that an evidence and label are observable, if any value with that underlying evidence and static label, can be used used as argument of a function that expects a value with security level ℓ o . If the consistent transitivity check of the reduction of the application does not hold, then it is not plausible that the security level of the value is subsumed by ℓ o , and therefore is not observable. For instance, consider ℓ o = L, evidence ε = ⟨[H, ⊤], [⊥, ⊤]⟩ and static label g = ?. We can construct any value such as v = εtrue ? :: Bool g . The level of the value and the bare value are sublabel of ℓ o . But the evidence describes that at some point during reduction, the security level of the bare value was required to be at least as high as H. Therefore, v is not observable at level L (considering L ≼ H), because as

⟨ϕ 1 , v 1 , µ 1 ⟩ ≈ k ℓ o ⟨ϕ 2 , v 2 , µ 2 ⟩ : U ⇐⇒ ϕ 1 ≈ ℓ o ϕ 2 ∧ µ 1 ≈ k ℓ o µ 2 ∧ ϕ i ▷ v i ∈ T[U ]∧ obsEq ℓ o (ϕ 1 ▷ v 1 , ϕ 2 ▷ v 2 )∧ Ä obs ℓ o (ϕ i ▷ v i ) =⇒ obsRel U k ,ℓ o (ϕ 1 , v 1 , µ 1 , ϕ 2 , v 2 , µ 2 ) ä obsRel U k ,ℓ o (ϕ 1 , v 1 , µ 1 , ϕ 2 , v 2 , µ 2 ) ⇐⇒ (rval(v 1 ) = rval(v 2 )) if U ∈ {Bool g , Unit g , Ref g U } obsRel U 1 g ′ 1 -→ g 1 U 2 k ,ℓ o (ϕ 1 , v 1 , µ 1 , ϕ 2 , v 2 , µ 2 ) ⇐⇒ ∀j ≤ k. ∀U ′ = U ′′ 1 g ′′ 2 -→ g ′ 2 U ′′ 2 , U ′ 1 , ∀ϕ ′ i , ϕ ′ 1 ≈ ℓ o ϕ ′ 2 s.t. ϕ i ≤ ℓ o ϕ ′ i , ε ′ 1 ⊢ U 1 g ′ 1 -→ g 1 U 2 ≲ U ′ , and ε ′ 2 ⊢ U ′ 1 ≲ U ′′ 1 , ε ′′ i ⊢ Â ϕ ′ i .g c ≺ g ′ 2 ≼ g ′′ 2 , we have: ∀v ′ i , µ ′ i , ⟨ϕ 1 , v ′ 1 , µ ′ 1 ⟩ ≈ j ℓ o ⟨ϕ 2 , v ′ 2 , µ ′ 2 ⟩ : U ′ 1 , dom(µ i ) ⊆ dom(µ ′ i ), ⟨ϕ 1 , (ε ′ 1 v 1 @ U ′ ε ′′ 1 ε ′ 2 v ′ 1 ), µ ′ 1 ⟩ ≈ j ℓ o ⟨ϕ 2 , (ε ′ 1 v 2 @ U ′ ε ′′ 2 ε ′ 2 v ′ 2 ), µ ′ 2 ⟩ : C(U ′′ 2 ≺ g ′ 2 ) ⟨ϕ 1 , t 1 , µ 1 ⟩ ≈ k ℓ o ⟨ϕ 2 , t 2 , µ 2 ⟩ : C(U ) ⇐⇒ ϕ 1 ≈ ℓ o ϕ 2 ∧ µ 1 ≈ k ℓ o µ 2 ∧ ∀ϕ ′ i , ϕ ′ 1 ≈ ℓ o ϕ ′ 2 s.t. ϕ i ≤ ℓ o ϕ ′ i and ϕ ′ i ▷ t i ∈ T[U ] we have ∀j < k t i | µ i ϕ ′ i -→ j t ′ i | µ ′ i =⇒ µ ′ 1 ≈ k -j ℓ o µ ′ 2 ∧ (irred(t ′ i ) =⇒ ⟨ϕ 1 , t ′ 1 , µ ′ 1 ⟩ ≈ k -j ℓ o ⟨ϕ 2 , t ′ 2 , µ ′ 2 ⟩ : U ) µ 1 ≈ k ℓ o µ 2 ⇐⇒ ∀ϕ i , ϕ 1 ≈ ℓ o ϕ 2 , j < k, ∀o U ∈ dom(µ 1 ) ∩ dom(µ 2 ) ⟨ϕ 1 ▷ µ 1 (o U ), µ 1 ⟩ ≈ j ℓ o ⟨ϕ 2 ▷ µ 2 (o U ), µ 2 ⟩ : U ϕ 1 ≈ ℓ o ϕ 2 ⇐⇒ obs ℓ o (ϕ i .εϕ i .g c ) ∨ ¬obs ℓ o (ϕ i .εϕ i .g c ) ϕ 1 ≤ ℓ o ϕ 2 ⇐⇒ obs ℓ o (ϕ 2 .εϕ 2 .g c ) ⇒ obs ℓ o (ϕ 1 .εϕ 1 .g c ) µ 1 µ 2 ⇐⇒ dom(µ 1 ) ⊆ dom(µ 2 ) obs ℓ o (ϕ ▷ v) ⇐⇒ ϕ ▷ v ∈ T[U ] ∧ obs ℓ o (ϕ ) ∧ obs ℓ o (ev(v)U ) obs ℓ o (ϕ ) ⇐⇒ obs ℓ o (ϕ .εϕ .g c ) obs ℓ o (εU ) = ⇐⇒ obs ℓ o (εU ) obs ℓ o (εg) = ⇐⇒ ε • ≼ ε ′ is defined, where ε ′ = I ≼ (g, ℓ o ) obsEq ℓ o (ϕ 1 ▷ v 1 , ϕ 2 ▷ v 2 ) = ⇐⇒ ϕ 1 ≈ ℓ o ϕ 2 ∧ (obs ℓ o (ϕ i ) ⇒ ev(v 1 ) ≈ ℓ o ev(v 2 )) ε 1 ≈ ℓ o ε 2 ⇐⇒ ∀U i , U ′ i , ε i ⊢ U ′ i ≲ U i , obs ℓ o (ε i U i ) ∨ ¬obs ℓ o (ε i U i ) ∧ obs ℓ o (ε i U i ) ⇒      idom(ε 1 ) ≈ ℓ o idom(ε 2 ) if defined icod(ε 1 ) ≈ ℓ o icod(ε 2 ) if defined iref (ε 1 ) ≈ ℓ o iref (ε 2 ) if defined where ev(εu :: U ) = ε ev(u) = I <: (u)
I ≼ (?, ℓ o ) = ⟨[⊥, L], [L, L]⟩, the consistent transitivity operation ⟨[H, ⊤], [⊥, ⊤]⟩ • <: ⟨[⊥, L], [L, L]⟩ does not hold.
Two stores are related at k steps if each value in the heap of the locations they have in common, are related at j < k steps for any related security effects. We say that store µ 2 is the evolution of store µ 1 , annotated µ 1 µ 2 if the domain of µ 1 is a subset of µ 2 . Two tuples of security effects, values and stores are related for k steps at type Bool g if the security effects are related, the stores are related for k steps, the values can be typed as Bool g using the security effects as context (any security effect will do, given that the typing of values do not depend on the security effect). Additionally, both security effect and values must both be either observable or not observable. If the security effect and values are observable then the raw values are the same. Two tuples are observables at type Unit g and Ref g U analogous to booleans.

Pairs are related at function types similarly to booleans. The difference is that functions can not be compared as booleans. Two functions are related if, given two related values and stores for j ≤ k steps at the argument type, the application of those function to the related values are also related for j steps at at the return type.

Two tuples of terms and stores are related computations for k steps at type U , first, if the security effects are related, and the stores are related for k steps. Second the terms must be typed as U using a observationally higher security effect. Third, if for any j < k both terms can be reduced for at least j steps, then the resulting stores are related for the remaining kj steps Finally, if after at least j steps the resulting terms are irreducible, then the resulting terms are also related values for the remaining kj steps at type U . Notice that the logical relation also relates programs that do not terminate as long as after k steps the new stores are also related.

To define the fundamental property of the step-indexed logical relations we first define how to relate substitutions: Definition E.33. Let ρ be a substitution and Γ a type substitution. We say that substitution ρ satisfy environment Γ, written ρ |= Γ, if and only if dom(ρ) = Γ.

Definition E.34 (Related substitutions). Tuples ⟨ϕ

1 , ρ 1 , µ 1 ⟩ and ⟨ϕ 2 , ρ 2 , µ 2 ⟩ are related on k steps under Γ, notation Γ ⊢ ⟨ϕ 1 , ρ 1 , µ 1 ⟩ ≈ k ℓ o ⟨ϕ 2 , ρ 2 , µ 2 ⟩, if ρ i |= Γ, µ 1 ≈ k ℓ o µ 2 and ∀x U ∈ Γ. ⟨ϕ 1 , ρ 1 (x U ), µ 1 ⟩ ≈ k ℓ o ⟨ϕ 2 , ρ 2 (x U ), µ 2 ⟩ : U E.6.2 Proof of noninterference.
Lemma E.35 (Noninterference for booleans). Suppose k > 0, and

• an open term ϕ ▷ t U ∈ T[Bool ℓ o ] where FV (t) = { x U 1 } with label(U 1 ) / ≼ ℓ o • two compatible valid stores t U ⊢ µ i , µ 1 ≈ k ℓ o µ 2 Then for any j < k, v 1 , v 2 ∈ T[U 1 ], if both • t U [v 1 /x U 1 ] | µ 1 ϕ -→ j v ′ 1 | µ ′ 1 • t U [v 2 /x U 1 ] | µ 2 ϕ -→ j v ′ 2 | µ ′ 2 we have that rval(v ′ 1 ) = rval(v ′ 2 ), and µ ′ 1 ≈ k ℓ o µ ′ 2 .
Proof. The result follows as a special case of Proposition E.65 below. □

In this theorem, we treat t U as a program that takes x U 1 as its input. Furthermore, the security level g ′ = fi label(U 1 ) of the input is not subsumed by the security level ℓ o of the observer. As such, noninterference dictates that changing non-observable input must not change the observable value of the output (i.e., change true to false or vice-versa). However, this theorem is technically termination-insensitive in that it is vacuously true if a change of inputs changes a program that terminates with a value into one that either terminates with an error, or does not terminate at all. If a program does not terminate after any number of steps, then at least the stores are related at observation level ℓ o .

Note that we compare equality of raw values at first-order type. Restricting attention to firstorder types (i.e., Bool) is common when investigating observational equivalence of typed languages. We strip away security information because a person or client who uses the program ultimately observes only the raw value that the program produces.

Also, gradual security dynamically traps some information leaks, so a change in equivalent inputs may cause a program that previously yielded a value or diverged to now produce an error. This change in behavior falls under the notion of termination-insensitive, since yielding an error is simply a third form of termination behavior (in addition to producing a value and diverging). 

Finally, we use notation t

S | µ ϕ -→ k t ′S | µ ′ to describe that configuration t S | µ reduces, in at most k steps, to configuration t ′S | µ ′ . Lemma E.36. Consider ε 1 ⊢ g ≼ g ′ . If ∀ε 2 such that ε 2 ⊢ g ′ ≼ ℓ o , ε 1 • ≼ ε 2 ⊢ g ≼ ℓ o is not defined. Then if ε 3 ⊢ g ′ ≼ g ′′ , then ∀ε 4 such that ε 4 ⊢ g ′′ ≼ ℓ o , then (ε 1 • ≼ ε 3 ) • ≼ ε 4 ⊢ g ≼ ℓ o is not defined Proof. Applying associativity: (ε 1 • ≼ ε 3 ) • ≼ ε 4 = ε 1 • ≼ (ε 3 • ≼ ε 4 ), but (ε 3 • ≼ ε 4 ) ⊢ g ′ ≼ g o , and we know that ε 1 • ≼ ε 2 is not defined ∀ε 2 such that ε 2 ⊢ g ′ ≼ ℓ o . Therefore (ε 1 • ≼ ε 3 ) • ≼ ε 4 ⊢ g ≼ ℓ o is not defined and the result holds. □ Lemma E.37. Consider ε 1 ⊢ g ≼ g ′ . If ∀ε 2 such that ε 2 ⊢ g ′ ≼ ℓ o , ε 1 • ≼ ε 2 ⊢ g ≼ ℓ o is not defined. Also ε 0 ⊢ g 1 ≼ g 2 , if ε 3 ⊢ Â g 2 ≺ g ′ ≼ ℓ o , then (ε 0 ≺ ε 1 ) • ≼ ε 3 ⊢ ‰ g 1 ≺ g ≼ ℓ o is not defined Proof. Let us prove that if (ε 0 ≺ ε 1 ) • ≼ ε 3 ⊢ ‰ g 1 ≺ g ≼ ℓ o is defined, then ε 1 • ≼ ε 2 is defined. As join is monotone ∃ε ′ 0 such that ε ′ 0 ⊢ Â g ′ ≼ g 2 ≺ g ′ . Suppose ε 1 = ⟨[ℓ 11 , ℓ 12 ], [ℓ 21 , ℓ 22 ]⟩, ε 0 = ⟨[ℓ 31 , ℓ 32 ], [ℓ 41 , ℓ 42 ]⟩, ε ′ 0 = ⟨[ℓ 51 , ℓ 52 ], [ℓ 61 , ℓ 62 ]⟩, and ε 3 = ⟨[ℓ 71 , ℓ 72 ], [ℓ 81 , ℓ 82 ]⟩. As ε 0 ≺ ε 1 = ⟨[ℓ 11 ≺ ℓ 31 , ℓ 12 ≺ ℓ 32 ], [ℓ 21 ≺ ℓ 41 , ℓ 22 ≺ ℓ 42 ]⟩ is defined, then ℓ 11 ≺ ℓ 31 ≼ ℓ 12 ≺ ℓ 32 and ℓ 21 ≺ ℓ 41 ≼ ℓ 22 ≺ ℓ 42 . Also as (ε 0 ≺ ε 1 ) • ≼ ε 3 = ⟨[ℓ 11 ≺ ℓ 31 , (ℓ 12 ≺ ℓ 32 ) ≺ ((ℓ 22 ≺ ℓ 42 ) ≺ ℓ 72 ) ≺ ℓ 82 ], [ℓ 11 ≺ ℓ 31 ≺ ℓ 21 ≺ ℓ 41 ≺ ℓ 72 ≺ ℓ 81 , ℓ 82 ]⟩ is defined then ℓ 21 ≺ ℓ 41 ≺ ℓ 71 ≼ (ℓ 22 ≺ ℓ 42 ) ≺ ℓ 72 ,
• ≼ ε 3 = ⟨[ℓ 51 , ℓ 52 ≺ ℓ 72 ≺ ℓ 82 ], [ℓ 51 ≺ ℓ 71 ≺ ℓ 81 , ℓ 82 ]⟩ Using the same method, ε 1 • ≼ (ε ′ 0 • ≼ ε 3 ) is defined if ℓ 21 ≺ ℓ 51 ≼ ℓ 22 ≺ (ℓ 52 ≺ ℓ 72 ≺ ℓ 82 ),
• ≼ (ε ′ 0 • ≼ ε 3 ) is defined then if we choose ε 2 = (ε ′ 0 • ≼ ε 3 ) ⊢ g ′ ≼ ℓ o , the result holds. □ Lemma E.38 (Associativity). Consider ε 1 , ε 2 and ε 3 , such that ε 1 ⊢ g 1 ≼ g 2 , ε 2 ⊢ g 2 ≼ g 3 and ε 3 ⊢ g 3 ≼ g 4 . (ε 1 • ≼ ε 2 ) • ≼ ε 3 = ε 1 • ≼ (ε 2 • ≼ ε 3 ) Proof. Suppose ε 1 = ⟨[ℓ 11 , ℓ 12 ], [ℓ 21 , ℓ 22 ]⟩, ε 2 = ⟨[ℓ 31 , ℓ 32 ], [ℓ 41 , ℓ 42 ]⟩, and ε 3 = ⟨[ℓ 51 , ℓ 52 ], [ℓ 61 , ℓ 62 ]⟩ Then (ε 1 • ≼ ε 2 ) • ≼ ε 3 = △ ≼ ([ℓ 11 , ℓ 12 ], [ℓ 21 , ℓ 22 ] ⊓ [ℓ 31 , ℓ 32 ], [ℓ 41 , ℓ 42 ]) • ≼ ε 3 = △ ≼ ([ℓ 11 , ℓ 12 ], [ℓ 21 ≺ ℓ 31 , ℓ 22 ≺ ℓ 32 ], [ℓ 41 , ℓ 42 ]) • ≼ ε 3 = ⟨[ℓ 11 , ℓ 12 ≺ (ℓ 22 ≺ ℓ 32 ) ≺ ℓ 42 ], [ℓ 11 ≺ (ℓ 21 ≺ ℓ 31 ) ≺ ℓ 41 , ℓ 42 ]⟩ • ≼ ⟨[ℓ 51 , ℓ 52 ], [ℓ 61 , ℓ 62 ]⟩ = △ ≼ ([ℓ 11 , ℓ 12 ≺ (ℓ 22 ≺ ℓ 32 ) ≺ ℓ 42 ], [ℓ 11 ≺ (ℓ 21 ≺ ℓ 31 ) ≺ ℓ 41 , ℓ 42 ]⊓ [ℓ 51 , ℓ 52 ], [ℓ 61 , ℓ 62 ]) = △ ≼ ([ℓ 11 , ℓ 12 ≺ (ℓ 22 ≺ ℓ 32 ) ≺ ℓ 42 ], [ℓ 11 ≺ (ℓ 21 ≺ ℓ 31 ) ≺ ℓ 41 ≺ ℓ 51 , ℓ 42 ≺ ℓ 52 ], [ℓ 61 , ℓ 62 ]) = ⟨[ℓ 11 , ℓ ′ 21 ], [ℓ ′ 61 , ℓ 62 ]⟩ where ℓ ′ 21 = ℓ 12 ≺ (ℓ 22 ≺ ℓ 32 ) ≺ ℓ 42 ≺ ℓ 52 ≺ ℓ 62 and ℓ ′ 61 = ℓ 11 ≺ (ℓ 21 ≺ ℓ 31 ) ≺ ℓ 41 ≺ ℓ 51 ≺ ℓ 61 . But ε 1 • ≼ (ε 2 • ≼ ε 3 ) = ε 1 • ≼ △ ≼ ([ℓ 31 , ℓ 32 ], [ℓ 41 , ℓ 42 ] ⊓ [ℓ 51 , ℓ 52 ], [ℓ 61 , ℓ 62 ]) = ε 1 • ≼ △ ≼ ([ℓ 31 , ℓ 32 ], [ℓ 41 ≺ ℓ 51 , ℓ 42 ≺ ℓ 52 ], [ℓ 61 , ℓ 62 ]) = ⟨[ℓ 11 , ℓ 12 ], [ℓ 21 , ℓ 22 ]⟩• ≼ ⟨[ℓ 31 , ℓ 32 ≺ (ℓ 42 ≺ ℓ 52 ) ≺ ℓ 62 ], [ℓ 31 ≺ (ℓ 41 ≺ ℓ 51 ) ≺ ℓ 61 , ℓ 62 ]⟩ = △ ≼ ([ℓ 11 , ℓ 12 ], [ℓ 21 , ℓ 22 ]⊓ [ℓ 31 , ℓ 32 ≺ (ℓ 42 ≺ ℓ 52 ) ≺ ℓ 62 ], [ℓ 31 ≺ (ℓ 41 ≺ ℓ 51 ) ≺ ℓ 61 , ℓ 62 ]) = △ ≼ ([ℓ 11 , ℓ 12 ], [ℓ 21 , ℓ 22 ≺ (ℓ 32 ≺ ℓ 42 ) ≺ ℓ 52 ≺ ℓ 62 ], [ℓ 31 ≺ (ℓ 41 ≺ ℓ 51 ) ≺ ℓ 61 , ℓ 62 ] = ⟨[ℓ 11 , ℓ ′ 21 ], [ℓ ′ 61 ,
3 such that ε 1 ⊢ g 1 ≼ g 2 , ε 2 ⊢ g 2 ≼ g 3 and ε 3 ⊢ g 3 ≼ g 4 . If ε 1 ≺ (ε 2 • ≼ ε 3 ) is defined, then (ε 1 ≺ ε 2 ) • ≼ (ε 1 ≺ ε 3 ) is defined
Proof. By definition of join and consistent transitivity, using the property that the join operator is monotone. □ Lemma E.40. If ε 1 , such that ε 1 ⊢ g 1 ≲ g 2 , then ε 2 , such that ε 2 ⊢ Â g 1 ≺ g 3 ≼ g 2 .

Proof. By definition of join and consistent transitivity, using the property that the join operator is monotone.

□ Lemma E.41. Consider stores µ 1 , µ 2 , µ ′ 1 , µ ′ 2 such that µ i µ ′ i , and substitutions ρ 1 and ρ 2 , such that Proof. Following [START_REF] Zdancewic | Programming Languages for Information Security[END_REF], the proof proceeds by induction on the judgment ε ⊢ U ′ ≲ U . The difference here is that consistent subtyping is justified by evidence, and that the terms have to be ascribed to exploit subtyping. In particular, case 1 above establishes a computation-level relation because each ascribed term (εv i :: U ) may not be a value: each value v i is either a bare value u i or a casted value ε i u i :: U i , with ε i ⊢ S i ≲ U . In the latter case, (ε(ε i u i :: U i ) :: U ) either steps to error (in which case the relation is vacuously established), or steps to ε ′ u i :: U , which is a value. Next if both values were originally observables, then whatever the label of U both values are going to be related. (13) follows directly by ( 4) and ( 8). (12) follows from (3) and ( 7 Lemma E.50. Consider ε 1 ⊢ g 1 ≼ g 2 , ε 2 ⊢ g 2 ≼ g 3 , and ε 3 = ε 1 • ≼ ε 2 such that ε 3 ⊢ g 1 ≼ g 3 . Then obs ℓ o (ε 3 (g 3 )) ⇒ (obs ℓ o (ε 1 g 2 ) ∧ obs ℓ o (ε 2 g 3 )).

Γ ⊢ ⟨ϕ 1 , ρ 1 , µ 1 ⟩ ≈ k ℓ o ⟨ϕ 2 , ρ 2 , µ 2 ⟩, then if ∀j ≤ k, if µ ′ 1 ≈ j ℓ o µ ′ 2 then Γ ⊢ ⟨ϕ 1 , ρ 1 , µ ′ 1 ⟩ ≈ j ℓ o ⟨ϕ 2 ,
i ≲ U , then ∀U ′ , ε 1 ≈ ℓ o ε 2 , ε i ⊢ U ≲ U ′ , v i = ε ′ i u i :: U , ε i = ε ′ i • ε i ,

Proof. Suppose ε

1 = ⟨[ℓ 1 , ℓ 2 ], [ℓ 3 , ℓ 4 ]⟩, ε 2 = ⟨[ℓ 5 , ℓ 6 ], [ℓ 7 , ℓ 8 ]⟩. ε 1 • ≼ ε 2 = △ ≼ ([ℓ 1 , ℓ 2 ], [ℓ 3 ≺ ℓ 5 , ℓ 4 ≺ ℓ 6 ], [ℓ 7 , ℓ 8 ]) = ⟨[ℓ 1 , ℓ 2 ≺ ℓ 4 ≺ ℓ 6 ≺ ℓ 8 ], [ℓ 1 ≺ ℓ 3 ≺ ℓ 5 ≺ ℓ 7 , ℓ 8 ]⟩
Notice that as ℓ 3 ≼ ℓ 1 ≺ ℓ 3 ≺ ℓ 5 ≺ ℓ 7 then ε 1 ⌊≤⌋ ε 3 , and as ℓ 7 ≼ ℓ 1 ≺ ℓ 3 ≺ ℓ 5 ≺ ℓ 7 then ε 2 ⌊≤⌋ ε 3 . What we have to prove is equivalent to prove that (¬obs ℓ o (ε 1 g 2 ) ∨ ¬obs ℓ o (ε 2 g 3 )) ⇒ ¬obs ℓ o (ε 3 (g 3 ))

If ¬obs ℓ o (ε 1 g 2 ) and as ε 1 ⌊≤⌋ ε 3 , then by Lemma E.48 ¬obs ℓ o (ε 3 (g 3 )) and the result holds. Similarly, if ¬obs ℓ o (ε 2 g 3 ) and as ε 2 ⌊≤⌋ ε 3 , then by Lemma E.48 ¬obs ℓ o (ε 3 (g 3 )) and the result holds. □ Lemma E.51. Consider ε 1 ⊢ g 1 ≼ g 2 , ε 2 ⊢ g 2 ≼ g 3 , and ε 3 = ε 1 • ≼ ε 2 such that ε 3 ⊢ g 1 ≼ g 3 . Then (obs ℓ o (ε 1 g 2 ) ∧ obs ℓ o (ε 2 g 3 )) ⇒ obs ℓ o (ε 3 (g 3 )). Notice that if g 3 = ? then ℓ ′ 6 = ℓ o and therefore by ( 4) ℓ 1 ≼ ℓ ′ 6 , and by (3), ℓ 3 ≼ ℓ ′ 6 . Also ℓ ′ 5 = ⊥ and therefore ℓ ′ 5 ≼ ℓ 7 ≼ ℓ 8 . If g 3 = ℓ, then ℓ ′ 5 = ℓ ′ 6 = ℓ and ℓ 7 = ℓ 8 = ℓ, but we know that ℓ 1 ≼ ℓ 8 , and therefore ℓ 1 ≼ ℓ ′ 6 and ℓ ′ 5 ≼ ℓ 8 . Also as ℓ 3 ≼ ℓ 8 then ℓ 3 ≼ ℓ ′ 6 . We also know that ℓ 3 ≺ ℓ 5 ≼ ℓ 8 and by definition of intervals ℓ 7 ≼ ℓ 8 . We know that ℓ 1 ≼ ℓ ′ 6 . By (5) ℓ 7 ≺ ℓ ′ 5 ≼ ℓ ′ 6 . By (6) ℓ 5 ≼ ℓ ′ 6 . Also ℓ 3 ≼ ℓ ′ 6 and (10) follows.

Proof. Suppose ε

1 = ⟨[ℓ 1 , ℓ 2 ], [ℓ 3 , ℓ 4 ]⟩, ε 2 = ⟨[ℓ 5 , ℓ 6 ], [ℓ 7 , ℓ 8 ]⟩. ε 1 • ≼ ε 2 = △ ≼ ([
We know that ℓ 1 ≼ ℓ 8 and that ℓ 1 ≼ ℓ ′ 6 therefore (11) holds. By ( 4), (3), ( 7), (8) and because ℓ ′ 5 ≼ ℓ o by definition of interior, (12) holds. Finally (13) holds by [START_REF] Pottier | Information Flow Inference for ML[END_REF]. □ Lemma E.52. Consider ε 1 ⊢ g 1 ≼ g 2 , ε 2 ⊢ g 2 ≼ g 3 , and ε 3 = ε 1 • ≼ ε 2 such that ε 3 ⊢ g 1 ≼ g 3 . Then (¬obs ℓ o (ε 1 g 2 ) ∨ ¬obs ℓ o (ε 2 g 3 )) ⇐⇒ ¬obs ℓ o (ε 3 (g 3 )). 

ε 1 • ≼ ε 3 = △ ≼ ([ℓ 5 , ℓ 6 ], [ℓ 7 ≺ ℓ 9 , ℓ 8 ≺ ℓ 10 ], [ℓ 11 , ℓ 12 ]) = ⟨[ℓ 5 , ℓ 6 ≺ ℓ 8 ≺ ℓ 10 ≺ ℓ 12 ], [ℓ 5 ≺ ℓ 7 ≺ ℓ 9 ≺ ℓ 11 , ℓ 12 ]⟩ ε 2 ≺ (ε 1 • ≼ ε 3 ) = ⟨[ℓ 1 ≺ ℓ 5 , ℓ 2 ≺ (ℓ 6 ≺ ℓ 8 ≺ ℓ 10 ≺ ℓ 12 )], [ℓ 3 ≺ ℓ 5 ≺ ℓ 7 ≺ ℓ 9 ≺ ℓ 11 , ℓ 4 ≺ ℓ 12 ]⟩. But ℓ 7 ≼ ℓ 3 ≺ ℓ 5 ≺ ℓ 7 ≺ ℓ 9 ≺ ℓ 11 and therefore, ε 1 ⌊≤⌋ ε ′ 1 . □ Lemma E.54. Consider ε 1 ⊢ g ′ 1 ≼ g 1 and ε ′ 1 = ε 2 ≺ (ε 1 • ≼ ε 3 ) such that ε ′ 1 ⊢ g ′ 2 ≼ g 2 . Then ¬obs ℓ o (ε 1 g 1 ) ⇒ ¬obs ℓ o (ε ′ 1 g 2 ).
Proof. By Lemma E.53 and Lemma E.48 the result holds immediately. □ Lemma E.55. Consider ε 1 ⊢ g ′ 1 ≼ g 1 , ε 2 ⊢ g ′ 2 ≼ g 2 , and Proof. We use induction on the derivation of t U . The interest cases are the last step of reduction rules for references and assignments. Then by Lemma E.54, ¬(obs ℓ o (ε ′ fi label(U ′ )). Next we have to prove that (a) obs ℓ o (ϕ ▷ µ(o U ′ )) is not defined. Consider that µ(o U ′ ) = εu :: U ′ . We know that obs ℓ o (ϕ ′ .εϕ ′ .g c ) is not defined, and that ϕ ′

ε 3 = ε 1 ≺ ε 2 such that ε 3 ⊢ Â g ′ 1 ≺ g ′ 2 ≼ g 1 ≺ g 2 . Then ε 1 ⌊≤⌋ ε 3 . Proof. Suppose ε 1 = ⟨[ℓ 1 , ℓ 2 ], [ℓ 3 , ℓ 4 ]⟩, ε 2 = ⟨[ℓ 5 , ℓ 6 ], [ℓ 7 , ℓ 8 ]⟩, then ε 3 = ⟨[ℓ 1 ≺ ℓ 5 ,
Case (t = ε 1 o U g ′ g,U 1 := ε ℓ ε 2 u).
.ε ⌊≤⌋ ε, therefore by Lemma E.48, obs ℓ o (εU ′ ) is not defined, concluding that obs ℓ o (ϕ ▷ µ(o U ′ )) is not defined as well and the result holds.

Case (t = ref U ′ ε ℓ ε s u). We are extending the heap, so we need to only prove (1). Then

ref U ε ℓ ε s u | µ ϕ ′ -→o U ′ ⊥ | µ[o U ′ → ε ′ (u ≺ ϕ ′ .g c ) :: U ′ ]
where o U ′ dom(µ), ε ′ = ε s ≺ (ϕ ′ .g c • ≼ ε ℓ ). We need to prove that obs ℓ o (ϕ ▷ ε ′ (u ≺ ϕ ′ .g c ) :: U ′ ) does not hold. In order to do so, we will show that obs ℓ o (ilbl(ε ′ ) fi label(U ′ )) does not holds, which follows directly by Lemma E.54.

□

Lemma E.58. Consider ϕ ′ , such that obs ℓ o (ϕ ′ .εϕ ′ .g c ) does not hold, then then ∀k > 0, such that

t U i | µ i ϕ ′ -→ k t ′U i | µ ′ i , then if µ 1 ≈ k ℓ o µ 2 , then µ ′ 1 ≈ k ℓ o µ ′ 2
Proof. By Lemma E.57 we know three things:

(1) ∀o U ′ ∈ dom(µ ′ i )\ dom(µ i ), obs ℓ o (ϕ ▷ µ ′ i (o U ′ )) does not hold, i.e. new locations are not observable.

(2) ∀o U ′ ∈ dom(µ ′ i ) ∩ dom(µ i ) ∧ µ ′ i (o U ′ ) µ(o U ′ ), (a) obs ℓ o (ϕ ▷ µ i (o U ′ )) does not hold, and (b) obs ℓ o (ϕ ▷ µ ′ i (o U ′ )) does not hold. i.e. for all updated references they have to be previously not observable, and by definition therefore related, and second they are still non observable after the update, and by definition those locations are still related under ϕ. 

:: U , µ 1 ⟩ ≈ k ℓ o ⟨ϕ 2 , ε ′ 2 u 2 :: U , µ 2 ⟩ : U . If ε 1 ≈ ℓ o ε 2 : g ′ where ε i ⊢ g ≲ g ′ , then ⟨ϕ 1 , (ε ′ 1 ≺ ε 1 )(u 1 ≺ g) :: U ≺ g ′ , µ 1 ⟩ ≈ k ℓ o ⟨ϕ 2 , (ε ′ 2 ≺ ε 2 )(u 2 ≺ g) :: U ≺ g ′ , µ 2 ⟩ : U ≺ g ′
Proof. By induction on relation ⟨ϕ 1 , ε ′ 1 u 1 :: U , µ 1 ⟩ ≈ k ℓ o ⟨ϕ 2 , ε ′ 2 u 2 :: U , µ 2 ⟩ : U and Lemma E.56 (observational-monotonicity of the join), considering that the label stamping can make the new values non observable and that join of evidences does not introduce imprecision.

□ Lemma E.60. Suppose that

ϕ i ≤ ℓ o ϕ ′ i , ϕ ′ i ▷ prot g,U ε ′ i g ′ i ϕ ′′ i (ε i t U i ) ∈ T[U ≺ g], for i ∈ {1, 2}
, where ¬obs ℓ o (ϕ ′′ i .εϕ ′′ i .g c ), and either ¬obs ℓ o (ϕ i .εϕ i .g c ) or ¬obs ℓ o (ε ′ i g). Also consider two stores µ i such that

µ 1 ≈ k ℓ o µ 2 . Then ⟨ϕ 1 , prot g,U ε ′ 1 g ′ 1 ϕ ′′ 1 (ε 1 t U 1 ), µ 1 ⟩ ≈ k ℓ o ⟨ϕ 2 , prot g,U ε ′ 2 g ′ 2 ϕ ′′ 2 (ε 2 t U 2 ), µ 2 ⟩
Proof. Suppose that after at least j more steps, where j < k, both subterms reduce to a value (let us assume no cast errors are produced, otherwise the lemma vacuously holds):

t U i | µ i ϕ ′′ i -→ j ε ′ i v i | µ ′ i Therefore: prot g,U ε ′ i g ′ i ϕ ′′ i (ε i t U i ) | µ ′ i ϕ ′ i -→ j prot g,U ε ′ i g ′ i ϕ ′′ i (ε ′′ i u i ) | µ ′ i ϕ ′ i -→ 1 (ε ′′ i ≺ ε ′ i )(u i ≺ g ′ i ) :: U ≺ g | µ ′ i
As the values can be radically different we have to make sure that both values are not observables. 

′ i ▷ prot g,U ε ′ i g ′ i ϕ ′′ i (ε i t U i ) ∈ T[U ≺ g], for i ∈ {1, 2}. If ε 1 ≈ ℓ o ε 2 : U , ϕ 1 ≈ k ℓ o ϕ 2 , ϕ ′ 1 ≈ k ℓ o ϕ ′ 2 , ϕ ′′ 1 ≈ k ℓ o ϕ ′′ 2 , and ε ′ 1 ≈ ℓ o ε ′ 2 : g, then ⟨ϕ 1 , prot g,U ε ′ 1 g ′ 1 ϕ ′′ 1 (ε 1 t U ′ 1 ), µ 1 ⟩ ≈ k ℓ o ⟨ϕ 2 , prot g,U ε ′ 2 g ′ 2 ϕ ′′ 2 (ε 2 t U ′ 2 ), µ 2 ⟩ : C(U ≺ g)
Proof. By induction on the derivation of term ť ∈ T[U ]. Let us take an arbitrary index k ≥ 0.

Case (x). ť = x U so Γ = {x U }. Γ ⊢ ⟨ϕ 1 , ρ 1 , µ 1 ⟩ ≈ k ℓ o ⟨ϕ 2 , ρ 2 , µ 2 ⟩ implies by definition that ⟨ϕ 1 , ρ 1 (x U ), µ 1 ⟩ ≈ k ℓ o ⟨ϕ 2 , ρ 2 (x U ), µ 2 ⟩ : U , and the result holds immediately. ---

Case (o). ť = o U 1 g 1 where U = Ref g 1 U 1 . By definition of substitution, ρ 1 (o U 1 g 1 ) = ρ 2 (o U 1 g 1 ) = o U 1 g 1 . We know that ϕ i ▷ o U 1 g 1 ∈ T[Ref g 1 U 1 ]
. By definition of related stores, ⟨ϕ 1 , o U 1 g 1 , µ 1 ⟩ ≈ k ℓ o ⟨ϕ 2 , o U 1 g 1 , µ 2 ⟩ : Ref g 1 U 1 as required, and the result holds.

---

Case (λ). t U = (λ g ′ c x U 1 .t U 2 ) g . Then U = U 1 g ′ c -→ g U 2 .
By definition of substitution, assuming x U 1 dom(ρ i ), and Lemma E.42:

ϕ ′ i ▷ ρ i (t U ) = ϕ ′ i ▷ (λ g ′ c x U 1 .ρ i (t U 2 )) g ∈ T[U ] Consider j ≤ k, µ ′ 1 , µ ′ 2 such that µ i µ ′ i and µ ′ 1 ≈ j ℓ o µ ′ 2 ,
and assume two values v 1 and v 2 such that ⟨ϕ

1 , v 1 , µ ′ 1 ⟩ ≈ j ℓ o ⟨ϕ 2 , v 2 , µ ′ 2 ⟩ : U ′ 1 . Consider U ′ = U ′′ 1 g ′′ c -→ g ′′U ′′ 2 , ε 11 ≈ ℓ o ε 12 , ε 21 ≈ ℓ o ε 22 , ε ℓ1 ≈ ℓ o ε ℓ2 , such that ε 1i ⊢ U 1 g ′ c -→ g U 2 ≲ U ′ , that ε 2i ⊢ U ′ 1 ≲ U ′′ 1 , and that ε ℓi ⊢ Â ϕ ′ .g c ≺ g ′′ ≼ g c

′′

For simplicity, let us annotate U ′ 2 = U ′′ 2 ≺ g ′′ . We need to show that:

⟨ϕ 1 , ε 11 (λ g ′ c x U 1 .ρ 1 (t U 2 )) g @ U ′ ε ℓ1 ε 21 v 1 , µ ′ 1 ⟩ ≈ j ℓ o ⟨ϕ 2 , ε 12 (λ g ′ c x U 1 .ρ 2 (t U 2 )) g @ U ′ ε ℓ2 ε 22 v 2 , µ ′ 2 ⟩ : C(U ′
2 ) Each v i is either a bare value u i or a casted value ε ui u i :: U ′ 1 . In the latter case, the application expression combines evidence, which may fail with error. If it succeeds, we call the combined evidence ε ′ 2i . The application rule then applies: it may fail with error if the evidence ε ′ 2i cannot be combined with the evidence for the function parameter. Every time a failure is produced product of evidence combination, then the relation vacuously holds. We therefore consider the only interesting case, where reductions always succeed. Then: ε li , ε pi and ε ai are the new evidences for the label, return value and argument, respectively. We then extend the substitutions to map x U 1 to the casted arguments:

ε 1i (λ g ′ c x U 1 .ρ i (t U 2 )) g @ U ′ ε ′ 2i u i | µ ′ i ϕ ′ i -→ prot g ′′ ,U ′′ 2 ε l i g ϕ ′′ i (ε pi ([ε ai u i :: U 1 /x U 1 ]ρ i (t U 2 ))) | µ ′ i ϕ ′ i -→ * prot g ′′ ,U ′′ 2 ε l i g ϕ ′′ i (ε pi ([ε ai u i :: U 1 /x U 1 ]ρ i (t U 2 ))) | µ ′ i where ϕ ′′ i = ⟨ε ′ r , (ϕ ′ i .g c ≺ g), g ′ c ⟩, ε ′ r = (ϕ ′ i .ε ≺ ilbl(ε 1 )) • ≼ ε ℓi • ≼ ilat(ε 1i
ρ ′ i = ρ i {x U 1 → ε ai u i :: U 1 }
We know that ⟨ϕ 1 , v 1 , µ ′ 1 ⟩ ≈ j ℓ o ⟨ϕ 2 , v 2 , µ ′ 2 ⟩ and consider ϕ ▷ u i ∈ T[U ui ] then ε ai ⊢ U ui ≲ U 1 and ε ai = (ε ui • <: ε 2i ) • <: idom(ε 1i ). As ε 21 ≈ ℓ o ε 22 and idom(ε 11 ) ≈ ℓ o idom(ε 12 ), therefore using Lemma E.46 ⟨ϕ 1 , (ε a1 u 1 :: U 1 ), µ ′ 1 ⟩ ≈ j ℓ o ⟨ϕ 2 , (ε a2 u 2 :: U 1 ), µ ′ 2 ⟩ : U 1 So as µ i µ ′ i then by Lemma E.41, Γ, x U 1 ⊢ ⟨ϕ 1 , ρ ′ 1 , µ ′ 1 ⟩ ≈ j ℓ o ⟨ϕ 2 , ρ ′ 2 , µ ′ 2 ⟩. We also know that ϕ ′′ i ▷ ρ i (t U 2 ) ∈ T[U 2 ]. Then by induction hypothesis: ⟨ϕ 1 , ρ ′ 1 (t U 2 ), µ ′ 1 ⟩ ≈ j-1 ℓ o ⟨ϕ 2 , ρ ′ 2 (t U 2 ), µ ′ 2 ⟩ : C(U 2 ) Finally, as ε pi = icod(ε 1i ), we know that icod(ε 11 ) ≈ ℓ o icod(ε 12 ), also ε li = ilbl(ε 1i ), we know that ilbl(ε l 1 ) ≈ ℓ o ilbl(ε l 2 ) then by Lemma E.61:

⟨ϕ 1 , prot g ′′ ,U ′′ 2 ε l 1 g ϕ ′′ 1 (ε p1 ρ ′ 1 (t U 2 )), µ ′ 1 ⟩ ≈ j ℓ o ⟨ϕ 2 , prot g ′′ ,U ′′ 2 ε l 2 g ϕ ′′ 2 (ε p2 ρ ′ 2 (t U 2 )), µ ′ 2 ⟩ : C(U ′
2 ) and finally the result holds by backward preservation of the relations (Lemma E.43).

---

Case (!). t U = ! Ref g U 1 εt U ′ 1 . Then U = U 1 ≺ g.
By definition of substitution:

ρ i (t U ) = ! Ref g U 1 ερ i (t U ′ 1 )
We have to show that

⟨ϕ 1 , ! Ref g U 1 ερ i (t U ′ 1 ), µ 1 ⟩ ≈ k ℓ o ⟨ϕ 2 , ! Ref g U 1 ερ i (t U ′ 1 ), µ 2 ⟩ : C(U 1 ≺ g)
By Lemma E.42:

ϕ ′ i ▷ ! Ref g U 1 ερ i (t U ′ 1 ) ∈ T[U 1 ≺ g]
By induction hypotheses on the subterm:

⟨ϕ 1 , ρ 1 (t U ′ 1 ), µ 1 ⟩ ≈ k ℓ o ⟨ϕ 2 , ρ 2 (t U ′ 1 ), µ 2 ⟩ : C(U ′ 1 ) Consider j < k, then by definition of related computations

ρ i (t U ′ 1 ) | µ i ϕ ′ i -→ j t U ′ 1 i | µ ′ i =⇒ µ ′ 1 ≈ k -j ℓ o µ ′ 2 ∧ (irred(t U ′ 1 i ) ⇒ ⟨ϕ 1 , t U ′ 1 1 , µ ′ 1 ⟩ ≈ k -j ℓ o ⟨ϕ 2 , t U ′ 1 2 , µ ′ 2 ⟩ : U ′ 1 )
Where

U ′ 1 = Ref g ′ U ′′ 1 . If terms t U ′ 1
i are reducible after j = k -1 steps, then

! Ref g U 1 ερ i (t U ′ 1 ) | µ i ϕ ′ i -→ j ! Ref g U 1 εt ′U ′ 1 i
| µ ′ i and the result holds.

If after at most j steps t U ′ 1 i is irreducible it means that for some j ′ ≤ j,

! Ref g U 1 ερ i (t U ′ 1 ) | µ i ϕ ′ i -→ j ′ ! Ref g U 1 εv i | µ ′ i .
If j ′ = j then we use the same same argument for reducible terms and the result holds. Let us consider now j ′ < j.

Then ⟨ϕ 1 , v 1 , µ ′ 1 ⟩ ≈ k-j ′ ℓ o ⟨ϕ 2 , v 2 , µ ′ 2 ⟩ : U ′ 1 .
By Lemma E.10, each v i is either a location (o i

U ′′ i g ′ i ) or a casted location ε i (o i U ′′′ i g ′′ i ) :: U ′ 1 .
Let us assume they both are a casted location (the other cases are analogous). In case a value v i j is a casted value, then the whole term ρ i (t U ) can take a step by (Rд), combining ε with ε i . Such a step either fails, or succeeds with a new combined evidence. Therefore, either:

ρ i (t U ) | µ i ϕ ′ i -→ j ′ error
in which case we do not care since we only consider termination-insensitive noninterference, or:

ρ i (t U ) | µ ϕ ′ i -→ j ′ +1 ! Ref g U 1 ε ′ i o i U ′′′ i g ′′ i | µ ′ i ϕ ′ i -→ 1 prot g,U 1 ilbl(ε ′ i )g ′′ i ϕ ′′ i (iref (ε ′ i )v ′ i ) | µ ′ i Case (app). t U = ε 1 t U 1 @ U 11 g ′ c
-→ g U 12 ε ℓ ε 2 t U 2 with ε 1 ⊢ U 1 ≲ S 11 → g S 12 , ε 2 ⊢ U 2 ≲ U 11 , and U = U 12 ≺ g.

We omit the @ U 11 g ′ c -→ g U 12 ε ℓ operator in applications below.

By definition of substitution:

ρ i (t U ) = ε 1 ρ i (t U 1 ) ε 2 ρ i (t U 2 )
and Lemma E.42:

ϕ ′ i ▷ ε 1 ρ i (t U 1 ) ε 2 ρ i (t U 2 ) ∈ T[U ]
We use a similar argument to case := for reducible terms. The interest case is when we suppose some j 1 and j 2 such that j 1 + j 2 < k where by induction hypotheses and the definition of related computations:

ρ i (t U 1 ) | µ i ϕ ′ i -→ j 1 v i1 | µ ′ i =⇒ µ ′ 1 ≈ k -j 1 ℓ o µ ′ 2 ∧ ⟨ϕ 1 , v 11 , µ ′ 1 ⟩ ≈ k -j 1 ℓ o ⟨ϕ 2 , v 21 , µ ′ 2 ⟩ : U 1 ρ i (t U 2 ) | µ ′ i ϕ ′ i -→ j 2 v i2 | µ ′′ i =⇒ µ ′′ 1 ≈ k -j 1 -j 2 ℓ o µ ′′ 2 ∧ ⟨ϕ 1 , v 12 , µ ′′ 1 ⟩ ≈ k -j 1 -j 2 ℓ o ⟨ϕ 2 , v 22 , µ ′′ 2 ⟩ : U 2 Then ρ i (t U ) | µ i ϕ ′ i -→ j 1 +j 2 ε 1 v 11 ε 2 v 12 | µ ′′ i If obs ℓ o (ϕ i ▷ v i1
) then, by definition of ≈ ℓ o at values of function type, using ε 1 and ε 2 to justify the subtyping relations, we have:

⟨ϕ 1 , (ε 1 v 11 ε 2 v 12 ), µ ′′ 1 ⟩ ≈ k -j 1 -j 2 ℓ o ⟨ϕ 2 , (ε 1 v 21 ε 2 v 22 ), µ ′′ 2 ⟩ : C(U 12 ≺ g)
Finally, by backward preservation of the relations (Lemma E.43) the result holds.

If ¬obs ℓ o (ϕ i ▷ v i1 ), and we assume by canonical forms that v i1 = ε i1 (λ д ′ i x .t i ) д i :: U 1 and that v i2 = ε i2 u i2 :: U 2 (and that evidence combination always succeed or the result holds immediately), then, Finally, by backward preservation of the relations (Lemma E.43) the result holds.

(ε 1 v i1 ε 2 v i2 ) | µ ′′ 1 ϕ ′ i -→ 1 (ε ′ i1 (λ д ′ i x .t i ) д i ε ′ i2 u i2 ) | µ ′′ 1 ϕ ′ i -→ 1 prot g c ′ ,U 12 ilbl(ε ′ i 1 )g i ϕ ′′ i (icod(ε ′ i1 )t ′ i ) | µ ′′ 1 Where ε ′ i1 = ε i1 • ≼ ε 1 , ε ′ i2 = ε i2 • ≼ ε 2 , and ϕ ′′ i = ⟨ε ′′ i (ϕ ′ i .g c ≺ g i ), g ′ i ⟩, ε ′′ i = (ϕ ′ i .ε ≺ ilbl(ε ′ i1 )) • ≼ ε ℓ • ≼ ilat(ε ′ i1 )). As ¬obs ℓ o (ϕ i ▷ v i1 ),
---

Case (if). t U = if g ε 1 t U 1 then ε 2 t U 2 else ε 3 t U 3 , with ϕ ′ i ▷ t U 1 ∈ T[U 1 ], g ′ = label(U 1 ), ε ′ r i = (ϕ i .ε ≺ ilbl(ε 1 )), ϕ ′′ i = ⟨ε ′ r (ϕ ′ i .g c ≺ g ′ ), (ϕ ′ i .g c ≺ g)⟩, ϕ ′′ i ▷ t U 2 ∈ T[U 2 ], ϕ ′′ i ▷ t U 3 ∈ T[U 3 ]
, ε 1 ⊢ U 1 ≲ Bool g , and U = (U 2 <:

U 3 ) ≺ g By definition of substitution:

ρ i (t U ) = if g ε 1 ρ i (t U 1 ) then ε 2 ρ i (t U 2 ) else ε 3 ρ i (t U 3 )
We use a similar argument to case := for reducible terms. The interest case is when we suppose some j 1 and j 2 such that j 1 + j 2 < k where by induction hypotheses and related computations we have that:

ρ i (t U 1 ) | µ i ϕ ′ i -→ j 1 v i1 | µ ′ i =⇒ µ ′ 1 ≈ k-j 1 ℓ o µ ′ 2 ∧ ⟨ϕ 1 ▷ v 11 , µ ′ 1 ⟩ ≈ k -j 1 ℓ o
⟨ϕ 2 ▷ v 21 , µ ′ 2 ⟩ : U 1 By Lemma E.10, each v i1 is either a boolean (b i1 ) g i 1 or a casted boolean ε i1 (b i1 ) g ′ i 1 :: U 1 . In either case, U 1 ≲ Bool g 1 implies U 1 = Bool g ′ 1 . In case a value v i1 is a casted value, then the whole term ρ i (t U ) can take a step by (Rд), combining ε i with ε i1 . Such a step either fails, or succeeds with a new combined evidence. Therefore, either:

ρ i (t U ) | µ i ϕ ′ i -→ j 1 +1
error in which case we do not care since we only consider termination-insensitive noninterference, or: 

ρ i (t U ) | µ i ϕ ′ i -→ j 1 +1 if g ε ′ i1 (b i1 ) g ′ i 1 then ε 2 ρ i (t U 2 ) else ε 3 ρ i (t U 3 ) | µ ′ i If ¬obs ℓ o (ϕ i ▷ v i1 ),

  fun x : Bool H = > let y : Ref L Bool L = ref true L let z : Ref L Bool L = ref true L if x then y := false L else unit if ! y then z := false L else unit !z

  fun x : Bool H = > let y : Ref ? Bool ? = ref true ? let z : Ref L Bool L = ref true L if x then y := false ? else unit if ! y then z := false L else unit !z

  let y : Ref ? Bool ? = ref true H
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  Type-based reasoning. Finally, we revisit the mix and smix functions from Sec. 2, which illustrate how GSL Ref preserves type-based reasoning principles in the gradual setting. The desugared GSL Ref program follows: 10 mix = (λpub : L.(λpriv : ?.(if pub < priv then 1 L else 2 L ) :: L) L ) L smix = mix :: L → H → L smix 1 L 5 L This program elaborates to the following GSL ε Ref program: mix = (λpub : L.(λpriv : ?.⟨[⊥, L], L⟩(if
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 8 Fig. 8. GSL ε Ref : Example reduction
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 4 5 (Static terms do not fail). Let StaticTerm be the static subset of GSL ε Ref terms, i.e. with fully-static annotations, and StaticStore the set of stores whose codomains are subsets of StaticTerm. Then consider t ∈ StaticTerm, µ ∈ StaticStore, and εℓ c such that ε
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  fun x : Bool H = > let y : Ref Bool ? = ref true ? let z : Ref Bool L = ref true L if x then y := false ? else unit if ! y then z := false L else unit !z
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  Static semanticsIn this section we present the full definition of the static semantics of GSL ε Ref . Definition A.17 (Interval). An interval is a bounded unknown label [ℓ 1 , ℓ 2 ] where ℓ 1 is the upper bound and ℓ 2 is the lower bound.ı ∈ Label 2 ı ::= [ℓ, ℓ] (interval)Definition A.18 (Evidence for labels). ε ::= ⟨ı, ı⟩ Definition A.19 (Type Evidence). An evidence type is a gradual type labeled with an interval:E ∈ GEType, ı ∈ Label 2 E ::= Bool ı | E ı -→ ı E | Ref ı E | Unit ı (type evidences) Definition A.20 (Evidence for types). ε ::= ⟨E, E⟩ We present the syntax of GSL ε Ref in Figure 20 and the static semantics in Figure 21.
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 7 GSL Ref : Translation to GSL ε Ref In this section we present the translation from terms of GSL Ref into terms of GSL ε Ref in Figure 27. The initial evidence function for consistent label ordering is presented in Figure 28. The initial evidence function for consistent subtyping is presented in Figure 29 using the following definition of operation pattern: (Ix)
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 31 Related computations for intrinsic terms B STATIC SECURITY TYPING WITH REFERENCES In this section we present the proof of type preservation for SSL Ref in Sec. B.1, and the definitions and proof of noninterference for SSL Ref in Sec. B.2.

  ℓ ′ c ⊢ v : S 1 S 1 <: S Γ; Σ; ℓ ′ c ⊢ v :: S : S and the result holds. □ Lemma B.3 (Substitution). If Γ, x : S 1 ; Σ; ℓ c ⊢ t : S and Γ;

  S) : S and the result holds. □ Proposition B.6 (Canonical forms). Consider a value v such that •; Σ; ℓ c ⊢ v : S. Then: (1) If S = Bool ℓ then v = b ℓ for some b.

  for some t 2 and ℓ ′ c . (4) If S = Ref ℓ S then v = o ℓ for some location o. Proof. By inspection of the type derivation rules. □ Proposition 3.1 (Type Safety). If •; Σ; ℓ c ⊢ t : S then either • t is a value v • for any store µ such that Σ ⊢ µ and any ℓ ′ c ≼ ℓ c , we have t | µ ℓ ′ c
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  Consider term Σ; ℓ ⊢ t : S, store µ and j > 0,

  then the result is trivial because the resulting booleans are also related as they are not observable. If obs ℓ o (ℓ i ), and ¬obs ℓ o (ℓ ′ i1 ) or ¬obs ℓ o (ℓ ′ i2 ), then by monotonicity of the join, ¬obs ℓ o (ℓ ′ i ) and the result holds. If obs ℓ o (ℓ i j ) then obs ℓ o (ℓ ′ i ) and therefore b 11 = b 21 and b 12 = b 22 , so b 1 = b 2 , and the result holds.

  and the result holds by backward preservation of the relations (Lemma B.14). Now let us consider if obs ℓ o (ℓ i , (b i1 ) ℓ i 1 ) holds. Then by definition of ≈ ℓ o on boolean values, b 11 = b 21 . Because b 11 = b 21 , both ρ 1 (t) and ρ 2 (t) step into the same branch of the conditional. Let us assume the condition is true (the other case is similar):
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Proposition E. 3 .

 3 Consider ϕ ▷ ť ∈ T[U ] then, for Γ |= ť and Σ |= ť, Γ; Σ; |ϕ | ⊢ | ť | : U .

Proposition E. 4 .

 4 Consider Γ; Σ; εg c ⊢ t : U . Then ∃ ť, ∃ϕ such that | ť | = t and |ϕ | = εg c and ϕ ▷ ť ∈ T[U ]
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 38 Fig. 38. GSL εRef : Equivalence between intrinsic terms and evidence-augmented terms

  and by Prop E.13, ϕ ▷ v ∈ T[U ] and the result holds.(2) t U ′ is an ascribed value v, then, εt U ′ -→ c et ′ for some et ′ ∈ EvTerm ∪ { error }. Hence t U | µ ϕ -→ r for some r ∈ Config U ∪ { error } by Prop E.13 and either (Rg), or (Rgerr).

( 3 )

 3 t U ′ | µ ϕ -→ r 1 for some r 1 ∈ T[U 1 ] ∪ { error }. Hence t U | µ ϕ -→ r for some r ∈ Config U ∪{ error } by Prop E.13 and either (Rprot()), or (Rprot()ferr).
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  Proof. Direct byLemmas E.50 and E.51 .□ Lemma E.53. Consider ε 1 and ε ′ 1 = ε 2 ≺ (ε 1 • ≼ ε 3 ), for some ε 2 and ε 3 . Then ε 1 ⌊≤⌋ ε ′ 1 Proof. Suppose ε 2 = ⟨[ℓ 1 , ℓ 2 ], [ℓ 3 , ℓ 4 ]⟩, ε 1 = ⟨[ℓ 5 , ℓ 2 ], [ℓ 7 , ℓ 8 ]⟩, and ε 3 = ⟨[ℓ 9 , ℓ 10 ], [ℓ 11 , ℓ 12 ]⟩.

  We are only updating the heap so we only have to prove (a) and (b⊥ | µ[o U → ε ′ (u ≺ (ϕ ′ .g c ≺ g ′ )) :: U ′ ]whereε ′ = (ε 2 • <: iref (ε 1 )) ≺ ((ϕ ′ .ε ≺ ilbl(ε 1 )) • ≼ ε 3 • ≼ ilbl(iref (ε 1 )) and if µ(o U ′ ) = εu :: U ′ , then ϕ ′ .ε ≺ ilbl(ε 1 )⌊≤⌋ε. For simplicity let us call ε ′ 2 = (ε 2 • <: iref (ε 1 )) and ε ′ 3 = ε 3 • ≼ ilbl(iref (ε 1 )).We have to prove that (b) ¬(obs ℓ o (ε ′ fi label(U ′ )). As ¬obs ℓ o (ϕ ′ ), by Lemma E.56, ¬obs ℓ o (

  Case (b). ť = b g . By definition of substitution, ρ 1 (b g ) = ρ 2 (b g ) = b g . By definition, ⟨ϕ 1 , b g , µ 1 ⟩ ≈ k ℓ o ⟨ϕ 2 , b g , µ 2 ⟩ : Bool g as required.

As an example, consider the GSL Ref program x:=true ? , with current security effect L and envi- ronment Γ ≜ x : Ref ? Bool H . It elaborates to GSL ε

  

			Ref as follows:	
	Γ; .; L ⊢ x	x : Ref ? Bool H	Γ; .; L ⊢ true ?	true ? :
	(Tassgn)			

  is not defined, the term reduces to an error, successfully preventing an invalid implicit flow.(3) Consider a program fragment similar to the previous one, with security effect ⊥, a variablex : Bool H , and a location ⊢ o ⊥ : Ref ⊥ Int ? :

	⊥ ⊢ if x :: Bool ? then o ⊥ :=10 H else unit ?	t : Unit ?

  by design, the type system of GSL Ref is crisply and smoothly connected to that of SSL Ref . First, the two typing judgments are crisply connected in that the GSL Ref judgment conservatively extends the SSL Ref one. Proposition 4.2 (Static conservative extension). Let ⊢ S denote SSL Ref 's type system. Then for any static language term t ∈ Term, •; Σ; ℓ c ⊢ S t : S if and only if •; Σ; ℓ c ⊢ t : S.

ε

  Ref terms. Furthermore, related intrinsic and GSL ε Ref terms either reduce to related terms or yield errors. Therefore the theorems about intrinsic terms transfer to GSL ε Ref terms. Reduction and consistent deductions. All instances of combining evidence in the reduction rules are dictated by SSL Ref 's type safety proof. To illustrate this deep connection, we now analyze a case of the SSL Ref type safety proof and describe how to lift the argument to GSL Ref . Consider the assignment case of SSL Ref 's preservation proof, which in essence reduces a type derivation D to a new one and updates the program counter ℓ c and store µ.

  Int L ... ⊢ priv : Int ? ..•; L ⊢ pub < priv : Int ? ..•; ? ⊢ 1 L : Int L ...? ⊢ 1 L : Int L ., pub : Int L , priv : Int H ; •; L ⊢ if pub < priv then 1 L else 2 L : Int ? Int ? ≲ Int L ., pub : Int L , priv : Int H ; •; L ⊢ (if pub < priv then 1 L else 2

... ⊢ pub : L ) :: Int L : Int ⊥ ., pub : Int L ; .; L ⊢ (λ ⊤ priv :

  Then by using induction hypotheses on the premisess, considering S ′ S 12 and S ′ 2 <: S 2 . As S 2 <: S 11 and S 11 <: S ′ 11 then S ′ 2 <: S ′ 11 . Also, by definition of the join operator ℓ

	11	ℓ ′′′ c -→ ℓ ′S ′ 12 <: S 11	ℓ ′′ c -→ ℓ

  If ¬obs ℓ o (ℓ i ) then the values are not observables because the security context is not observable. Let us assume that obs ℓ o (ℓ i ) holds, but obs ℓ o (ℓ ′ i ) not. Then by monotonicity of the join, ¬obs ℓ o (label(v i ) ≺ ℓ ′ i ) and the result follows. Now we have to prove that the resulting stores are related, for some Σ ′ such that Σ ⊆ Σ ′ . But by Lemma B.18 the result follows immediately.

□

Next, we present the Noninterference proposition.

Proposition A.5 (Security Type Soundness).

If Γ; Σ; ℓ c ⊢ t : S ′ i =⇒ ∀S, S ′ i <: S, Γ; Σ; ℓ c |= t : S

Proof. We proceed by proving a more general proposition instead: If Γ; Σ; ℓ i ⊢ t : S ′ i , S ′ i <: S, then ∀µ i ∈ Store, Σ ⊢ µ i , and ∀k ≥ 0,

  then by By monotonicity of the join either both obs ℓ o

  By definition of ⊑, t 2 has the form ε 2 t ′

		(Ex)		
					2 , where
	ε 2 ⊑ ε 2 and | ť ′ 1 | ⊑ t ′ 2 . By induction hypothesis, ∃ ť ′ 2 such that ť ′ 1 ⊑ ť ′ 2 and that | ť ′ 2 | = t ′ 2 . By definition
	of evidence, we can build the term ε 2	ť ′ 2 :: ?, but we know that ε 1	ť ′ 1 :: U ⊑ ε 2	ť ′ 2 :: ? and that
	|ε 2	ť ′ 2 :: ?| = ε 2 | ť ′ 2 | = ε 2 t 2 and the result holds.	
		The other cases proceed analogous.			□

  Config U ∪ { error } by Prop E.13 and either (Rf ), or (Rf err). Also by Prop E.13, if r

r for some r ∈ Config U ∪ { error } by Prop E.13 and either (Rg), or (Rgerr).

(c) t U 2 | µ ϕ -→ r 2 for some r 2 ∈ Config U 2 ∪ { error }. Hence t U | µ ϕ -→ r for some r ∈

  error } by Prop E.13 and either (Rg), or (Rgerr). 2 for some r 2 ∈ Config U 2 ∪ { error }. Hence t U | µ Config U ∪ { error } by Prop E.13 and either (Rf ), or (Rf err). Also by Prop E.13, if r

	(c) t U 2 | µ

ϕ

-→ r ϕ -→ r for some r ∈

  error } by Prop E.13 and either (Rf ), or (Rf err). Also by Prop E.13, if r =t ′U | µ ′ ∈ T[U ] then dom(µ) ⊆ dom(µ ′ ).Proposition E.15 (Static terms do not fail). Let us define StaticTerm the set of evidence augmented terms with full static annotations. Then consider t s ∈ StaticTerm, ϕ = ⟨εℓ ′ c , ℓ c ⟩, and µ s , such that ε

	□

  28. If U 11 ⊑ U 12 and U 21 ⊑ U 22 then U 11 Proof. By induction on the type derivation of the types and consistent join. □ Lemma E.29. If ε 1 ⊢ Ref g 11 U 11 ≲ Ref g 12 U 12 and ε 2 ⊢ Ref g 21 U 21 ≲ Ref g 22 U 22 , and ε 1 ⊑ ε 2 , then iref (ε 1 ) ⊑ iref (ε 2 ).

	<: U 21 ⊑ U 12	<: U 22 .
	Proof. By definition of precision and iref .	□
	Proposition E.30 (Dynamic guarantee for -	

  ′ 0 as the interior of the judgment, then we do not get new information, therefore [ℓ 21 , ℓ 22 ] ⊑ [ℓ 51 , ℓ 52 ], i.e. ℓ 51 ≼ ℓ 21 and ℓ 22 ≼ ℓ 52 . Using the same argument ℓ 61 ≼ ℓ 71 and ℓ 72 ≼ ℓ 62 .Thenε ′ 0 • ≼ ε 3 = △ ≼ ([ℓ 51 , ℓ 52 ], [ℓ 61 , ℓ 62 ] ⊓ [ℓ 71 , ℓ 72 ], [ℓ 81 , ℓ 82 ]) = △ ≼ ([ℓ 51 , ℓ 52 ], [ℓ 61 ≺ ℓ 71 , ℓ 62 ≺ ℓ 72 ], [ℓ 81 , ℓ 82 ]) = △ ≼ ([ℓ 51 , ℓ 52 ], [ℓ 71 , ℓ 72 ], [ℓ 81 , ℓ 82 ])which is defined if ℓ 51 ≼ ℓ 72 , ℓ 71 ≼ ℓ 82 and ℓ 51 ≼ ℓ 82 . But ℓ 51 ≼ ℓ 21 ≼ ℓ 21

	ℓ 11 ≺ ℓ 41 ≺ ≺ ℓ 31 ≼ (ℓ 22 ℓ 71 ≼ ℓ 82 . If we choose ε ≺ ≺ ℓ 42 ) ℓ 21 ≺ ℓ 41 ≺ ℓ 71 ≼ ℓ 82 . ℓ 41 ≺ ≺ ℓ 72 , ℓ 11 ℓ 71 ≼ (ℓ 22 ≺ ℓ 31 ≼ ℓ 82 , and ≺ ℓ 42 ) ≺ ℓ 72 ≼ ℓ 72 , ℓ 51 ≼ ℓ 21 ≼ ℓ 21 ≺ ℓ 41 ≺ ℓ 71 ≼ ℓ 82 and ℓ 71 ≼ ℓ 21 Therefore ε ′ 0

  and ℓ 11 ≼ ℓ 82 . But by definition of ı ℓ 21 ≼ ℓ 22 , also ℓ 21 ≼ ℓ 22 ≼ ℓ 52 , ℓ 21 ≼ ℓ 21

															ℓ 11 ≼
	ℓ 22	≺	(ℓ 52	≺	ℓ 72	≺	ℓ 82 ), ≺	ℓ 41	≺	ℓ 71 ≼ (ℓ 22	≺	ℓ 42 )	≺	ℓ 72 ≼ ℓ 72 ,
	ℓ 21 ≼ ℓ 21	≺	ℓ 41	≺	ℓ 71 ≼ ℓ 82 , and ℓ 51 ≼ ℓ 71 ≼ ℓ 72 , therefore ℓ 21	≺	ℓ 51 ≼ ℓ 22	≺	(ℓ 52	≺	ℓ 72	≺	ℓ 82 ).
	Also ℓ 11 ≼ ℓ 22 ≼ ℓ 52 , ℓ 11 ≼ ℓ 11	≺	ℓ 31 ≼ (ℓ 22	≺	ℓ 42 )	≺	ℓ 72 ≼ ℓ 72 , and ℓ 11 ≼ ℓ 11	≺	ℓ 31 ≼ ℓ 82 , therefore
	ℓ 11 ≼ ℓ 22	≺	(ℓ 52	≺	ℓ 72	≺	ℓ 82 ), and ℓ 11 ≼ ℓ 82 .
	Then as ε 1								

  ρ 2 , µ ′ 2 ⟩ Proof. By definition of related computations and related stores. The key argument is that given that µ i µ ′ i then µ ′ i have at least the same locations of µ i and the values still are related as well given that they still have the same type.□Lemma E.42 (Substitution preserves typing). If ϕ ▷t U ∈ T[U ] and ρ |= FV (t U ) then ϕ ▷ρ(t U ) ∈ T[U ].Proof. By induction on the derivation ofϕ ▷ t U ∈ T[U ] □ Lemma E.43 (Reduction preserves relations). Consider ϕ i ≤ ℓ o ϕ ′ i , ϕ ′ i ▷ t i ∈ T[U ], µ i ∈ Store, t i ⊢ µ i , and µ 1 ≈ k ℓ o µ 2 . Consider j < k, posing t i | µ i ϕ ′ i -→ j t ′ i | µ ′ i , we have ⟨ϕ 1 , t 1 , µ 1 ⟩ ≈ k ℓ o ⟨ϕ 2 , t 2 , µ 2 ⟩ : C(U ) if and only if ⟨ϕ 1 , t ′ 1 , µ ′ 1 ⟩ ≈ k -j ℓ o ⟨ϕ 2 , t ′ 2 , µ ′ 2 ⟩ : C(U ) Proof. Direct by definition of ⟨ϕ 1 , t 1 , µ 1 ⟩ ≈ k ℓ o ⟨ϕ 2 , t 2 , µ 2 ⟩ : C(U ) and transitivity of Lemma E.44 (Ascription preserves relation). Suppose ε ⊢ U ′ ≲ U . (1) If ⟨ϕ 1 , v, µ⟩ 1 ≈ k ℓ o ⟨ϕ 2 , v, µ⟩ 2 : U ′ then ⟨ϕ 1 , εv 1 :: U , µ 1 ⟩ ≈ k +1 ℓ o ⟨ϕ 2 , εv 2 :: U , µ 2 ⟩ : C(U ).(2) If ⟨ϕ 1 , t, µ⟩ 1 ≈ k ℓ o ⟨ϕ 2 , t, µ⟩ 2 : C(U ′ ) then ⟨ϕ 1 , εt 1 :: U , µ 1 ⟩ ≈ k ℓ o ⟨ϕ 2 , εt

	ϕ ′ -→ j .	□

2 :: U , µ 2 ⟩ : C(U ).

  If both values were originally not observables, then by Lemma E.44 both values are going to be still non observables.□ Lemma E.45. Consider ε 1i ⊢ U 1 ≼ U 2 , ε 2i ⊢ U 2 ≼ U 3 , and ε 3i = ε 1i • ≼ ε 2i such that ε 3i ⊢ U 1 ≼ U 3 . Then if ε 11 ≈ ℓ o ε 12 and ε 21 ≈ ℓ o ε 22 , then ε 31 ≈ ℓ o ε 32 .Proof. By induction on ε 11 ≈ ℓ o ε 12 .

□ Lemma E.46. If ⟨ϕ 1 , v 1 , µ 1 ⟩ ≈ k ℓ o ⟨ϕ 2 , v 2 , µ 2 ⟩ : U and, ϕ i ▷ uval(v i ) ∈ T[U i ]

where U

  we know that ⟨ϕ 1 , ε ′′ 1 uval(v 1 ) ::U ′ , µ 1 ⟩ ≈ k ℓ o ⟨ϕ 2 , ε ′′ 2 uval(v 2 ) :: U ′ , µ 1 ⟩ : U ′ . Proof. Suppose ε 1 = ⟨[ℓ 11 , ℓ 12 ], [ℓ 13 , ℓ 14 ]⟩ and ε 2 = ⟨[ℓ 21 , ℓ 22 ], [ℓ 23 , ℓ 24 ]⟩. Then ε 1 ≺ ε 2 = ε 3 = ⟨[ℓ 11 ≺ ℓ 21 , ℓ 12 ≺ ℓ 22 ], [ℓ 13 ≺ ℓ 23 , ℓ 14 ≺ ℓ 24 ]⟩. Also consider ε ′ 1 = I ≼ (g 1 , ℓ o ) = ⟨[ℓ ′ 11 , ℓ ′ 12 ], [ℓ o , ℓ o ]⟩ , ε ′ 2 = I ≼ (g 2 , ℓ o ) = ⟨[ℓ ′ 21 , ℓ ′ 22 ], [ℓ o , ℓ o ]⟩, and ε ′ 3 = I ≼ (g 2 ≺ g 3 , ℓ o ) = ⟨[ℓ ′ 31 , ℓ ′ 32 ], [ℓ o , ℓ o ]⟩. If g 1 = ℓ 1 and g 2 = ℓ 2 , then ℓ ′ 32 = ℓ 1 ≺ ℓ 2 , ℓ ′ 22 = ℓ 2 and ℓ ′ 12 = ℓ 1 . Also ℓ ′ 31 = ℓ 1 ≺ ℓ 2 , ℓ ′ 21 = ℓ 2 and ℓ ′ 11 = ℓ 1 . If g 1 = ? or g 2 = ℓ 2 (the other case is analogous) then ℓ ′ 32 = ℓ o and, ℓ ′ 12 = ℓ o and ℓ ′ 22 = ℓ 2 such that ℓ 2 ≼ ℓ o . Also ℓ ′ 11 = ⊥, ℓ ′ 21 = ℓ 2 , but ℓ ′ 31 = ⊥. Therefore ℓ ′ 32 = ℓ ′

										12	≺	ℓ ′ 22 and ℓ ′ 31 ≼ ℓ ′ 11	≺	ℓ ′ 21 .
	We know that		
	(1) ℓ 13	≺	ℓ ′ 11 ≼ ℓ 14	≺	ℓ ′ 12 ,
	(2) ℓ 11 ≼ ℓ 14	≺	ℓ ′ 12 , or
	(3) ℓ 13	≺	ℓ ′ 11 ≼ ℓ o or
	(4) ℓ 11 ≼ ℓ o .				
	(5) ℓ 23	≺	ℓ ′ 21 ≼ ℓ 24	≺	ℓ ′ 22 ,
	(6) ℓ 21 ≼ ℓ 24	≺	ℓ ′ 22 , or
	(7) ℓ 23	≺	ℓ ′ 21 ≼ ℓ o or
	(8) ℓ 21 ≼ ℓ o .				
	We have to prove
	(10) (ℓ 13	≺	ℓ 23 )	≺	ℓ ′ 31 ≼ (ℓ 14	≺	ℓ 24 )	≺	ℓ ′ 32 ,
	(11) (ℓ 11	≺	ℓ 21 ) ≼ (ℓ 14	≺	ℓ 24 )	≺	ℓ ′ 32 , or
	(12) (ℓ 13	≺	ℓ 23 )	≺	ℓ ′ 31 ≼ ℓ o or
	(13) (ℓ 11							

≺ ℓ 21 ) ≼ ℓ o .

  ) and monotonicity of the join. By definition of evidence and interior, ℓ ′ 32 ≼ ℓ o and ℓ ′ 31 ≼ ℓ ′ 32 . Therefore, from (1) ℓ 13 ≼ ℓ 14 , from (5) ℓ 23 ≼ ℓ 24 and therefore ℓ 13 ≺ ℓ 23 ≼ ℓ 14 ≺ ℓ 24 . Also as ℓ 13 ≼ ℓ ′ 12 and ℓ 23 ≼ ℓ ′

										12 , then
	ℓ 13	≺	ℓ 23 ≼ ℓ ′ 12	≺	ℓ ′ 22 = ℓ ′ 32 . By similar argument ℓ ′ 31 ≼ (ℓ 14	≺	ℓ 24 ), and also ℓ ′ 11	≺	ℓ ′ 21 ≼ ℓ ′ 32 . But then
	ℓ ′ 31 ≼ ℓ ′ 11	≺	ℓ ′ 21 ≼ ℓ ′ 32 and (10) holds.			□

  ℓ 1 , ℓ 2 ], [ℓ 3 ≺ ℓ 5 , ℓ 4 ≺ ℓ 6 ], [ℓ 7 , ℓ 8 ]) = ⟨[ℓ 1 , ℓ 2By definition of the transitivity operator, ℓ 1 ≼ ℓ 8 , ℓ 1 ≼ ℓ 4 ≺ ℓ 6 , andℓ 3 ≺ ℓ 5 ≼ ℓ 8 . Let us consider ε ′ 1 = I ≼ (g 2 , ℓ o ) = ⟨[ℓ ′ 1 , ℓ ′ 2 ], [ℓ o , ℓ o ]⟩, ε ′ 2 = ε ′ 3 = I ≼ (g 3 , ℓ o ) = ⟨[ℓ ′ 5 , ℓ ′ 6 ], [ℓ o , ℓ o ]⟩ ≼ ℓ o or (13) ℓ 1 ≼ ℓ o .

													We
	know that									
	(1) ℓ 3	≺	ℓ ′ 1 ≼ ℓ 4	≺	ℓ ′ 2 ,			
	(2) ℓ 1 ≼ ℓ 4	≺	ℓ ′ 2 , or			
	(3) ℓ 3	≺	ℓ ′ 1 ≼ ℓ o or			
	(4) ℓ 1 ≼ ℓ o .						
	(5) ℓ 7	≺	ℓ ′ 5 ≼ ℓ 8	≺	ℓ ′ 6 ,			
	(6) ℓ 5 ≼ ℓ 8	≺	ℓ ′ 6 , or			
	(7) ℓ 7	≺	ℓ ′ 5 ≼ ℓ o or			
	(8) ℓ 5 ≼ ℓ o .						
	We have to prove			
	(10) (ℓ 1	≺	ℓ 3	≺	ℓ 5	≺	ℓ 7 )	≺	ℓ ′ 5 ≼ ℓ 8	≺	ℓ ′ 6 ,
	(11) ℓ 1 ≼ ℓ 8	≺	ℓ ′ 6 , or			
	(12) (ℓ 1	≺	ℓ 3	≺	ℓ 5	≺	ℓ 7 )	≺	ℓ ′ 5	
													≺	ℓ 4	≺	ℓ 6	≺	ℓ 8 ], [ℓ 1	≺	ℓ 3	≺	ℓ 5	≺	ℓ 7 , ℓ 8 ]⟩

  ℓ 2 ≺ ℓ 6 ], [ℓ 3 ≺ ℓ 7 , ℓ 4 ≺ ℓ 8 ]⟩. As ℓ 3 ≼ ℓ 3 ≺ ℓ 3 ≺ ℓ 7 therefore, ε 1 ⌊≤⌋ ε 3 and the result holds. □ Lemma E.56. Consider ε 1 ⊢ g ′ 1 ≼ g 1 , ε 2 ⊢ g ′ 2 ≼ g 2 , and ε 3 = ε 1 ≺ ε 2 such that ε 3 ⊢ Â g ′ Then (¬obs ℓ o (ε 1 g 1 ) ∨ ¬obs ℓ o (ε 2 g 2 )) ⇐⇒ ¬obs ℓ o (ε 3 (g 1 ≺ g 2 )).Proof. First we prove the ⇒ direction. By Lemma E.55, ε 1 ⌊≤⌋ ε 3 . Suppose obs ℓ o (ε 1 g 1 ) does not hold (the other case is analogous). Then by Lemma E.48 the result holds immediately. Then for the ⇐ we use Lemma E.49 and the result holds immediately.□Lemma E.57. Consider ϕ ′ ▷ t U ∈ T[U ],and µ, such that t U ⊢ µ and ¬obs ℓ o (ϕ ′ ), and ∀k > 0, suchthat t U | µ ϕ ′ -→ k t ′U | µ ′ , then ∀ϕ, (1) ∀o U ′ ∈ dom(µ ′ )\ dom(µ), ¬obs ℓ o (ϕ ▷ µ ′ (o U ′ )). (2) ∀o U ′ ∈ dom(µ ′ ) ∩ dom(µ) ∧ µ ′ (o U ′ ) µ(o U ′ ),(a) ¬obs ℓ o (ϕ ▷ µ(o U ′ )) , and (b) ¬obs ℓ o (ϕ ▷ µ ′ (o U ′ )) .

	1	≺	g ′ 2 ≼ g 1	≺	g 2 .

  Therefore µ ′ 1 ≈ k ℓ o µ ′ 2 and the result holds. □ Lemma E.59. Consider simple values u i ∈ T[U i ] and ⟨ϕ 1 , ε ′ 1 u 1

  If obs ℓ o (ϕ i .εϕ i .g c ) does not hold then the values are not observables because the security context is not observable. Let us assume that obs ℓ o (ϕ i .εϕ i .g c ) holds, but obs ℓ o (ε ′ i g) not. Then by Lemma E.56, obs ℓ o ((ε ′′ does not hold, and therefore obs ℓ o (ϕ i ▷ (ε ′′ Now we have to prove that the resulting stores are related. But by Lemma E.58 the result immediately. □ Lemma E.61. Suppose that ϕ i ≤ ℓ o ϕ ′ i , ϕ i ≤ ℓ o ϕ ′′ i , ⟨ϕ 1 , t 1 , µ 1 ⟩ ≈ k ℓ o ⟨ϕ 2 , t 2 , µ 2 ⟩ : C(U ′ ), and that ϕ

	i not hold, and by definition of related evidences (ε ′′ ≺ ε ′ i )( fi label(U ) ≺ g)) i 1 ≺ ε ′ 1 ) ≈ ℓ o (ε ′′ 2 ≺ ε ′ 2 ).	≺	ε ′ i )(u i	≺	g ′ i ) :: U	≺	g) does

  ). Notice that ilat(ε 11 )g c ′ ≈ ℓ o ilat(ε 11 )g c ′ , also ε ℓ1 g c ′′ ≈ ℓ o ε ℓ2 g c ′′ . If obs ℓ o (ϕ ′ i ) donot hold, then by Lemma E.56, obs ℓ o (ϕ ′′ i ) do not hold. Then ϕ ′ i ≤ ℓ o ϕ ′′ i , and by Lemma E.63, ϕ i ≤ ℓ o ϕ ′′ i . Also by Lemmas E.52 and E.56, ϕ ′′ 1 ≈ ℓ o ϕ ′′ 2 .

  then either ¬obs ℓ o (ϕ i ) or ¬obs ℓ o (ilbl(ε i1 ) fi label(U 1 )). If ¬obs ℓ o (ϕ i ) then ¬obs ℓ o (ϕ ′ i )and by Lemma E.56 and E.54,¬obs ℓ o (ϕ ′′ i ). As ε ′ i1 = ε i1 • ≼ ε 1 , by Lemma E.52, either both ilbl(ε ′ i1 ) are observable or not (the latter when ¬obs ℓ o (ilbl(ε i1 ) fi label(U 1 ))). If ¬obs ℓ o (ilbl(ε i1 ) fi label(U 1 ))then similar to the context case, ¬obs ℓ o (ϕ ′′ i ). Also by Lemma E.52, ¬obs ℓ o (ilbl(ε i1 fi label(U 1 ))).

	Finally by Lemma E.60,			
	≈ k-j 1 -j 2 ℓ o	⟨ϕ 1 , prot g c ilbl(ε ′ ′ ,U 12 11 )g 1 ϕ ′′ 1 (icod(ε ′ 11 )t ′ 1 ), µ ′′ 1 ⟩ ⟨ϕ 2 , prot g c ′ ,U 12 ilbl(ε ′ 21 )g 2 ϕ ′′ 2 (icod(ε ′ 21 )t ′ 2 ), µ ′′ 2 ⟩ : C(U 12	≺	g)

  then by Lemma E.64 ¬obs ℓ o (ϕ i ▷ ε ′ i1 b i1 :: Bool д ). Without loosing generality, let us assume the worst case scenario and that both execution reduce via different branches of the conditional. It is easy to see that if ϕ i is not observable, then asϕ i ≤ ℓ o ϕ ′ i ¬obs ℓ o (ϕ ′ i ),and therefore by Lemma E.56, ¬obs ℓ o (ϕ ′′ i .εϕ ′′ i .g c ). Therefore ϕ i ≤ ℓ o ϕ ′′ i . If ¬obs ℓ o (ε ′ i1 Bool д ), then also by Lemma E.56, ¬obs ℓ o(ϕ ′′ i .εϕ ′′ i .g c ).Thenρ 1 (t U ) | µ 1 But because ¬obs ℓ o (ϕ ▷ ε ′ i1 b i1 :: Bool д ) then either ¬obs ℓ o (ϕ .εϕ .g c ) or ¬obs ℓ o (ilbl(ε ′ i1 g)). Then as ϕ i ≤ ℓ o ϕ ′′ i by Lemma E.60, (ε 2 ρ 1 (t U 2 )), µ ′ 1 ⟩ ≈ k ℓ o ⟨ϕ 2 , prot (ε 3 ρ 2 (t U 3 )), µ ′ 2 ⟩ : C(U )and the result holds by backward preservation of the relations (Lemma E.43). Now consider if obs ℓ o (ϕ ▷v i1 ), then obs ℓ o (ϕ ▷ε ′ i1 b i1 :: Bool д ) may hold or not. If its not observable we proceed like we just did for the non-observable case. Let us consider that obs ℓ o (ϕ ▷ε ′ i1 b i1 :: Bool д ) holds. Then by definition of ≈ ℓ o on boolean values, b 11 = b 21 Because b 11 = b 21 , both ρ 1 (t U ) and ρ 2 (t U ) step into the same branch of the conditional. Let us assume the condition is true (the other case is similar):Then by induction hypotheses ⟨ϕ 1 , ρ1 (t U 2 ), µ ′ 1 ⟩ ≈ k ℓ o ⟨ϕ 2 , ρ 2 (t U 2 ), µ ′ 2 ⟩ : C(U 2). Also we know that ilbl(ε ′ 11 ) ≈ ℓ o ilbl(ε ′ 21 ), and as ϕ ′ 1 ≈ ℓ o ϕ ′ 2 , by Lemma E.56, ϕ ′′ 1 ≈ ℓ o ϕ ′′ 2 , then as ϕ i ≤ ℓ o ϕ ′′ i , by Lemma E.61, ⟨ϕ 1 , prot (ε 2 ρ 1 (t U 2 )), µ ′ 1 ⟩ ≈ k ℓ o ⟨ϕ 2 , prot

	Consider ϕ ′′ i = ⟨(ϕ ′ i .ε	≺	ilbl(ε ′ i1 ))(ϕ ′ i .g c -→ j 1 +2 prot ≺ g ′ i1 ), (ϕ ′ .g c g)⟩. ϕ ′ ≺ i g,U ilbl(ε ′ 11 )g ′ 11	ϕ ′′ 1 (ε 2 ρ 1 (t U 2 )) | µ ′ 1
			ρ 2 (t U ) | µ 2	ϕ ′ i -→ j 1 +2 prot g,U ilbl(ε ′ 21 )g ′ 21	ϕ ′′ 2 (ε 3 ρ 2 (t U 3 )) | µ ′ 2
	⟨ϕ 1 , prot g,U ilbl(ε ′ 11 )g ′ 11 2 g,U ϕ ′′ 1 g,U ilbl(ε ′ 21 )g ′ 21 ϕ ′′ ilbl(ε ′ 11 )g ′ 11 ϕ ′′ 1 g,U ilbl(ε ′ 21 21 )g ′ ϕ ′′ 2 (ε

2 ρ 2 (t U 2 )), µ ′ 2 ⟩ : C(U )

Like type annotations, security labels appear in dynamic semantics solely to prove type safety: they are erased in a practical runtime.

Recent work by[START_REF] Fennell | LJGS: Gradual Security Types for Object-Oriented Languages[END_REF] on LGJS addresses this particular problem, as described in Sec. 7.

Note that SSL Ref does not have an explicit effect ascription form t :: ℓ c [Bañados[START_REF] Schwerter | A Theory of Gradual Effect Systems[END_REF], but this can be encoded using the expression (λ ℓc x : Unit ⊥ .t ) ⊥ unit ⊥ .

[START_REF] Zdancewic | Programming Languages for Information Security[END_REF] observes that e.g. if x then e L else e L leaks no information about Boolean x : Bool H so could be deemed low-security, but security type systems must be conservative for the sake of tractability.

In GSL Ref , the o and prot g (t ) forms and typing rules merely serve to induce corresponding GSL ε Ref forms (Sec 4.2).

in a way that we make precise below.

In Garcia et al. [2016], the interior and initial evidence operators coincide under the name "interior" because both operate on pairs of gradual types. By distinguishing between intervals and labels, the present development induces a corresponding distinction between these notions.

For simplicity and without loss of generality, like[START_REF] Austin | Efficient purely-dynamic information flow analysis[END_REF], we assume that a new reference in two related executions is allocated at the same address.

This requirement is motivated by the proof, in order to obtain a stronger induction hypothesis[START_REF] Toro | Type-Driven Gradual Security with References: Complete Definitions and Proofs[END_REF]].

To be honest, despite the warning of Garcia et al., we first overlooked the issue and applied compositional lifting, assuming it would hold. We then observed that the resulting design loses enough precision to miss some evident inconsistencies, with dramatic consequences for security.

Note that associativity of cast composition is also critical for space-efficient semantics of gradual typing, e.g. Siek and

This check is analogous to the no-sensitive-upgrade check introduced by[START_REF] Austin | Efficient purely-dynamic information flow analysis[END_REF], taken to the gradual context, and hence involving unknown labels, evidences and consistent judgments.

Removing the additional check on assignments recovers the dynamic gradual guarantee, but it breaks noninterference: there is no free lunch in presence of mutable references.

We use color to make distinctions when is needed: green is for effects and static information; orange is for the runtime information of the security effect.

Evidence inversion functions (idom, icod, iref , ilbl and ilat) manifest the evidence for the inversion principles on consistent subtyping judgments; e.g. starting from the evidence that U 1 ≲ U 2 , ilbl produces the evidence of the judgment label(U 1 ) ≼ label(U 2 ).
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Case (S::). Then t = t 1 :: S 2 and (S::)

•; Σ; ℓ c ⊢ t 1 : S 1 S 1 <: S 2 •; Σ; ℓ c ⊢ t 1 :: S 2 : S 2 By induction hypotheses, one of the following holds:

(1) t 1 is a value. Then (R→)

and by Prop B.5, •; Σ; ℓ c ⊢ t ′ : S ′ , where S ′ <: S , therefore the result holds.

(2)

, in particular we pick ℓ r ′ = ℓ r . Then by induction hypothesis, •; Σ; ℓ c ⊢ t ′ 1 : S ′ 1 , where S ′ 1 <: S 1 and •; Σ ′ ⊢ µ ′ . Then by (Sf ), t | µ ℓ r -→ t ′ 1 :: S 2 | µ ′ . Also, S ′ 1 <: S 1 <: S 2 and therefore:

(S::)

1 :: S 2 : S 2 and the result holds.

Case (Sref). Then t = ref S t and (Sref)

By induction hypotheses, one of the following holds:

(1) t 1 is a value. Then (R→)

and by Prop B.5, •; Σ; ℓ c ⊢ t ′ : S ′ , where S ′ <: S and •; Σ ′ ⊢ µ ′ , therefore the result holds.

(2) t 1 | µ ℓ r -→ t ′ 1 | µ ′ for all ℓ r ′ such that ℓ r ′ ≼ ℓ c , in particular we pick ℓ r ′ = ℓ r . Then by induction hypothesis, •; Σ; ℓ c ⊢ t ′ 1 : S ′′ 1 where S ′′ 1 <: S ′ 1 and •; Σ ′ ⊢ µ ′ . Then by (Sf ),

Ref ⊥ S 1 and the result holds.

Case (Sderef). Then t = !t 1 and (Sderef)

By induction hypotheses, one of the following holds:

(1) t 1 is a value. Then by Canonical Forms (Lemma B.6)

and by Prop B.5, •; Σ; ℓ c ⊢ t ′ : S ′ , where S ′ <: S , therefore the result holds.

C.2 Static Criteria for Gradual Typing

In this section we present the proof of Static Gradual Guarantee for GSL Ref .

Proposition 4.2 (Static conservative extension). Let ⊢ S denote SSL Ref 's type system. Then for any static language term t ∈ Term, •; Σ; ℓ c ⊢ S t : S if and only if •; Σ; ℓ c ⊢ t : S.

Proof. By induction over the typing derivations. The proof is trivial because static types are given singleton meanings via concretization. □ Definition C.5 (Term precision).

( Px) x ⊑ x

Definition C.6 (Type environment precision).

. ⊑ .

Lemma C.7. If Γ; •; g c ⊢ t : U and Γ ⊑ Γ ′ , then Γ ′ ; •; g c ⊢ t : U ′ for some U ⊑ U ′ .

Proof. Simple induction on typing derivations.

Proof. By definition of ≲, there exists

Proof. By definition of the consistent judgment, there exists

Proof. Using almost identical argument of Lemma C.9 □ Proposition 4.4 (Static gradual guarantee). Suppose g c1 ⊑ g c2 and

Proof. We prove the property on opens terms instead of closed terms:

The proof proceed by induction on the typing derivation.

Case (U x, U b, U u). Trivial by definition of ⊑ using (Px), (Pb), (Pu) respectively.

Consider g c2 such that g c1 ⊑ g c2 and t 2 such that t 1 ⊑ t 2 . By definition of term precision t 2 must have the form t 2 = t ′′ 1 ⊕ t ′′ 2 and therefore

Using induction hypotheses on the premises of 5, we can use rule (U ⊕) to derive:

Where

Using the premise of 6 and the definition of type precision we can infer that

and the result holds.

Case (U app). Then t 1 = t ′ 1 t ′ 2 and U 1 = U 12 ≺ g. By (U app) we know that:

Consider g c2 such that g c1 ⊑ g c2 and t 2 such that t 1 ⊑ t 2 . By definition of term precision t 2 must have the form t 2 = t ′′ 1 t ′′ 2 and therefore

Using induction hypotheses on the premises of 7, Γ; •;

By definition of precision of types, g ′ c ⊑ g ′′ c and g ⊑ g ′ , therefore by Lemma C.9, Â g ′ ≺ g c2 ≼ g ′′ c . Then we can use rule (U app) to derive:

Using the definition of type precision we can infer that

and the result holds.

Consider g c2 such that g c1 ⊑ g c2 and t 2 such that t 1 ⊑ t 2 . By definition of term precision t 2 must have the form t 2 = if t ′ then t ′′ 1 else t ′′ 2 and therefore

E.4 Type Safety

In this section we present the proof of type safety for GSL Ref .

We define what it means for a store to be well typed with respect to a term. Informally, all free locations of a term and of the contents of the store must be defined in the domain of that store. Also, the store must preserve types between intrinsic locations and underlying values.

Definition E.7 (µ is well typed). A store µ is said to be well typed with respect to an intrinsic term t U , written t U ⊢ µ, if

(1) freeLocs(t U ) ⊆ dom(µ), and (2)

Proof. By induction on the derivation of

Proof. By induction on the derivation of ϕ ′ ▷ v observing that for values, there is no premise that depends on the security effect.

□

Before proving the gradual guarantee, we first establish some auxiliary properties of precision. For the following propositions, we assume Well Formedness of Ω (Definition E.17).

Proposition E.18.

Proof. Straightforward induction on Ω ⊢ t U 1 ⊑ t U 2 , since the corresponding precision on types is systematically a premise (either directly or transitively).

□

We proceed by case analysis on д i .

, and the result holds.

Straightforward using similar argument to the previous case.

We proceed by case analysis on д i .

Case (□ @ U ε et). Then there must exist some

Then by the hypothesis and the premises of (⊑ AP P ), t U 1 ⊑ t U 2 and ε 1 ⊑ ε 2 , and the result holds immediately.

Straightforward using similar argument to the previous case.

, and as join is monotone

Case (-→app). We know that

1 must have the form

and idom(ε 11 ) ⊑ idom(ε 21 ) as well, then by Prop E.24 ε 1 ⊑ ε 2 . Then ε 1 u 1 :: U 11 ⊑ ε 2 u 2 :: U 21 by (⊑ :: ). We also know by (⊑ AP P ) and (⊑ λ ) that Ω ∪ {x

by Lemma E.24 and E.26, ε ′ r 1 ⊑ ε ′ r 2 . Also, as ϕ 1 .g c ⊑ ϕ 2 .g c by monotonicity of the join g 1 ≺ ϕ 1 .g c ⊑ g 2 ≺ ϕ 2 .g c , and as ϕ 1 .g c ⊑ ϕ 2 .g c also by monotonicity of the join

Case (-→if-true).

as ϕ 1 .g c ⊑ ϕ 2 .g c and g 1 ⊑ g 2 , and as join is monotone,

and as join is monotone,

By Prop E.18, we know that U 12 ⊑ U 22 and U 13 ⊑ U 23 . Therefore by Prop E.28 (U 12 <:

Case (-→if-false). Same as case -→if-true, using the fact that ε 13 ⊑ ε 23 and t U 13 ⊑ t U 23 .

Case (-→ref). We know that t U 1 1 = ref

Case (-→deref). We know that t

Case (-→assign). We know that t

. By well formedness of Ω we also know that U 11 ⊑ U 21 . Therefore, by Lemmas E.24, E.25 and E.26

Proof. We prove the following property instead: Suppose

By induction on the structure of a derivation of t U 1 1 ⊑ t U 2 1 . For simplicity we omit the Ω ⊢ notation on precision relations when it is not relevant for the argument.

And the result holds immediately.

Case (Rf ).

By Prop E.22, we also know that Ω ⊢ t

] and the result holds.

and

But then by (⊑ prot() ),

2 ) and the result holds.

Case (Rд).

where

Then there exists U 1 , ε 11 , ε 12 and v 1 such that et 1 = ε 11 (ε 12 v 1 :: U 1 ). Also there exists U 2 , ε 21 , ε 22 and v 2 such that et 2 = ε 21 (ε 22 v 2 :: U 2 ). By Prop E.20, ε 11 ⊑ ε 21 , and by (⊑ :: )

then, by Prop E.24 we know that ε 12 • <: ε 11 ⊑ ε 22 • <: ε 21 . Then using this information, and the fact that v 1 ⊑ v 2 , by Prop E.19, it follows that

Case (Rprotg). Analogous to (Rprot) case but using -→ c instead.

□

Proof. The result follows by induction on relation ⟨ϕ

, µ 2 ⟩ : U using Lemmas E.43, E.45, and observational monotonicity of the transitivity (Lemma E.52).

□

Proof. By induction on type U and the definition of related stores.

By construction we know that ℓ 11 ≼ ℓ 14 . By ε 1 ⌊≤⌋ ε 2 we know that ℓ 13 ≼ ℓ 23 .

If

21 ¬ ≼ ℓ o and the result holds immediately. If ℓ ≼ ℓ o , by construction of evidence we know that it must be the case that ℓ 11 ≼ ℓ 13 , then either

(1) ℓ

so the only possibility is that ℓ 11 ¬ ≼ ℓ o , but we know that ℓ 11 ≼ ℓ 13 , i.e. ℓ 11 ≼ ℓ and that ℓ ≼ ℓ o , then by transitivity ℓ 11 ≼ ℓ o which is a contradiction so ℓ ≼ ℓ o case cannot happen.

If

, by construction we know that ℓ 13 ≼ ℓ 14 , therefore it must be the case that ℓ 13 ¬ ≼ ℓ o , but ℓ 13 ≼ ℓ 23 and the result holds because (3) does not hold for ε 2 . If (2) holds, i.e. ℓ 11 ¬ ≼ ℓ 14 ≺ ℓ o , by construction we know that ℓ 11 ≼ ℓ 14 , therefore it must be the case that ℓ 11 ¬ ≼ ℓ o . We also know by construction that ℓ 11 ≼ ℓ 13 , then ℓ 13 ¬ ≼ ℓ o . As ℓ 13 ≼ ℓ 23 , then ℓ 23 ≼ ℓ o , and therefore (3) does not hold for ε 2 , i.e. 

Proof. In case that combining evidence may fail, then the Lemma vacuously holds. Let us assume that combining evidence always successes. Consider j < k, we know by definition of related computations that 

does not hold and therefore the final values are related.

Let us consider that obs ℓ o (ϕ i ▷v i ), obs ℓ o (ε i fi label(U )), and that obs ℓ o (ϕ i ▷ε ′′ i u i :: U ) holds (otherwise we follow by the previous argument).

Let us assume that ¬obs ℓ o (ε ′ i g). Then by Lemma E.56,

, then the result follows by Lemma E.59, and by backward preservation of the relations (Lemma E.43).

□ Lemma E.62. Consider term ϕ ▷ t U ∈ T[U ], store µ and j > 0,

Proof. Trivial by induction on the derivation of t U . The only rules that change the store are the ones for reference and assignment, neither of which remove locations.

□

Proof. Trivial because if ϕ is not observable, then ϕ ′ is not observable as well by definition of ≤ ℓ o , and therefore ϕ ′′ must also be not observable.

Proof. Direct by Lemma E.52. □

MT ▶NEW PROOF HERE ◀ Next, we present the Noninterference proposition, which naturally implies the Security Type Soundness proposition (Prop 5.5) presented in the paper. 

2 ) and finally the result holds by backward preservation of the relations (Lemma E.43).

---

2 . Then U = Unit ⊥ . By definition of substitution:

and Lemma E.42:

Suppose j 1 < k, and that ρ i (t U 1 ) are irreducible after j 1 steps (otherwise, similar to case !, the result holds immediately). Then by definition of related computations:

the relation vacuously holds. As both values v i are related at some reference type, then by canonical forms (Lemma E.10) they both must be locations o

We consider first when the values are observable and the locations are identical: 

and therefore by monotonicity of the join ¬obs ℓ o (ε ′′ 1i fi label(U ′′ 1 )). Therefore if the values where different but context not observables, now the new values are going to be not observable as well, independently of the context. Then ∀,

As every values are related at type Unit, we only have to prove that

1 , but using monotonicity (Lemma E.47), it is trivial to prove that because either both both stores update the same location o U ′′ 1 1 to values that are related, therefore the result holds.

We consider now when the values are not observable and the locations may be different: Suppose that µ ′′ i (o 

2 ), µ ′′ 2 ⟩ : U ′′ 1 , and the result holds.

---

| µ ′ i and the result holds.

If after at most j steps t

If j ′ = j then we use the same same argument for reducible terms and the result holds. Let us consider now j ′ < j. By Lemma E.10, each v i is either a base value u i or a casted base value ε i u i :: U ′ 1 . In case a value v i j is a casted value, then the whole term ρ i (t U ) can take a step by (Rд), combining ε with ε i . Such a step either fails, or succeeds with a new combined evidence. Therefore, either:

in which case we do not care since we only consider termination-insensitive noninterference, or:

ε, and ε ℓ ≈ ℓ o ε ℓ therefore by Lemma E.52. We know that if u i ∈ T[U i ], then ε i ⊢ U i ≲ U 1 . Also, as µ ′′ 2 and the result holds.

---

By definition of substitution:

and Lemma E.42:

We use a similar argument to case := for reducible terms. The interest case is when we suppose some j 1 and j 2 such that j 1 + j 2 < k -3 where:

⟨ϕ 2 , v 22 , µ ′′ 2 ⟩ : U 2 By Lemma E.10, each v i j is either a boolean (b i j ) g i j or a casted boolean ε i j (b i j ) g ′ i j :: U j . In case a value v i j is a casted value, then the whole term ρ i (t U ) can take a step by (Rд), combining ε i with ε i j . Such a step either fails, or succeeds with a new combined evidence. Therefore, either:

in which case we do not care since we only consider termination-insensitive noninterference, or:

It remains to show that: ---and the result holds by backward preservation of the relations (Lemma E.43).

Case (prot()). Direct by using Lemma E.61.

□