Martin Delacourt

Rice's Theorem for µ-Limit Sets of Cellular Automata

Cellular automata are a parallel and synchronous computing model, made of innitely many nite automata updating according to the same local rule. Rice's theorem states that any nontrivial property over computable functions is undecidable. It has been adapted by Kari to limit sets of cellular automata [Kar94], that is the set of congurations that can be reached arbitrarily late. This paper proves a new Rice theorem for µ-limit sets, which are sets of congurations often reached arbitrarily late.

Introduction

In the eld of decidability, a major result is the Rice theorem [START_REF] Gordon | Classes of recursively enumerable sets and their decision problems[END_REF] which states that every property over computable functions is either trivial or undecidable. This being stated for computable functions, it is quite natural to expect a similar result for other computational systems.

In this paper, we will focus on cellular automata, a massively parallel model of computation introduced by von Neumann [vN66]. Cellular automata are composed of innitely many cells that evolve synchronously following the same local rule. The dynamics of these objects have been well studied, and in particular the notion of limit set i.e. the set of congurations that can be seen arbitrarily late.

An important step was achieved by Kari with the equivalent of Rice's theorem for limit sets [START_REF] Kari | Rice's Theorem for the Limit Sets of Cellular Automata[END_REF].

Another point of view is to look at congurations that can appear arbitrarily late and often. This supposes to choose the initial conguration according to a measure µ. This approach led to µ-attractors [START_REF] Hurley | Ergodic aspects of cellular automata[END_REF] and then to µ-limit sets introduced in [START_REF] Petr | Limit sets of cellular automata associated to probability measures[END_REF]. Congurations of the µ-limit set are those containing only patterns whose probability does not tend to 0, or equivalently congurations obtained starting from a random initial conguration. Some results on µ-limit sets are already known, such as the undecidability of the µ-nilpotency [START_REF] Boyer | On the Complexity of Limit Sets of Cellular Automata Associated with Probability Measures[END_REF]. We deal here with Rice's theorem for µ-limit sets.

With a construction similar to the one presented in [START_REF] Boyer | Construction of µlimit sets[END_REF] to obtain complex subshifts as µ-limit sets, we will reduce any nontrivial property to the question of µ-nilpotency. First we give some denitions, then two sections are devoted Thanks to the project ANR EMC: ANR-09-BLAN-0164.

to the construction of an appropriate cellular automaton, and nally we will be able to prove the reduction.

Due to a lack of space, the proofs are in the appendix.

Denitions

Words and Density

For a nite set Q called an alphabet, denote Q * = n∈N Q n the set of all nite words over Q. The length of u = u 0 u 1 . . . u n-1 is |u| = n. We denote Q Z the set of congurations over Q, which are mappings from Z to Q, and for c ∈ Q Z , we denote c z the image of z ∈ Z by c. For u ∈ Q * and 0 ≤ i ≤ j < |u| we dene the subword u [i,j] = u i u i+1 . . . u j ; this denition can be extended to a conguration c ∈ Q Z as c [i,j] = c i c i+1 . . . c j for i, j ∈ Z with i ≤ j. The language of S ⊂ Q Z is dened by

L(S) = {u ∈ Q * : ∃c ∈ S, ∃i ∈ Z such that u = c [i,i+|u|-1] }.
For every u ∈ Q * and i ∈ Z, we dene the cylinder [u] i as the set of congurations containing the word u in position i that is to say [u]

i = {c ∈ Q Z : c [i,i+|u|-1] = u}.
If the cylinder is at the position 0, we just denote it by [u].

For all u, v ∈ Q * dene |v| u the number of instances of u in v as:

|v| u = card{i ∈ [0, |v| -|u|] : v [i,i+|u|-1] = u} For nite words u, v ∈ Q * , if |u| < |v|, the density of u in v is dened as d v (u) = |v|u |v|-|u| . For a conguration c ∈ Q Z , the density d c (v) of a nite word v is: d c (v) = lim sup n→+∞ |c [-n,n] | v 2n + 1 -|v| .
These denitions can be generalized for a set of words W ⊂ Q * , we note |u| W and d c (W). We can give similar denitions for semi-congurations (indexed by N) too.

Denition 1 (Generic conguration). A conguration c is said to be generic for an alphabet Q if there exists a constant e, such that, for any two words |u| = |v| in Q * , we have dc (u) dc(v ≤ e. If, moreover, any word of length k has density 1 |Q| k , the conguration is said to be normal.

In this paper, we will use a particular generic conguration, that we dene here.

Denition 2 (de Bruijn sequence). A de Bruijn sequence of order n ∈ N over an alphabet Q is a word of length |Q| n + n -1 that contains every word of length n as a subword.

We will consider here a specic de Bruijn sequence of order n noted DB(n) produced as in [START_REF] Fredricksen | Lexicographic compositions and de-Bruijn sequences[END_REF].

Denition 3 (de Bruijn conguration). The de Bruijn conguration c DB is the concatenation of de Bruijn sequences of orders n for every n ∈ N:

c DB = DB(1)DB(2)DB(3) . . . DB(n) . . .

Cellular Automata

Denition 4 (Cellular automaton). A cellular automaton (CA) A is a triple

(Q A , r A , δ A)
where Q A is a nite set of states called the alphabet, r A is the radius of the automaton, and δ A :

Q 2r A +1 A → Q A is the local rule.
The congurations of a cellular automaton are the congurations over Q A . A global behavior is induced and we will note A(c) the image of a conguration c given by: ∀z ∈ Z, A(c) z = δ A (c z-r , . . . , c z , . . . , c z+r). Studying the dynamic of A is studying the iterations of a conguration by the map A :

Q Z A → Q Z A .
When there is no ambiguity, we'll note Q, r and δ for Q

A , r A , δ A . A state a ∈ Q A is said to be permanent for a CA A if for any u, v ∈ Q r A , δ(uav) = a.

µ-Limit Sets

Denition 5 (Uniform Bernoulli measure). For an alphabet Q, the uniform Bernoulli measure µ on congurations over Q is dened by:

∀u ∈ Q * , i ∈ Z, µ([u] i) = 1 |Q| |u| .
µ will be the only considered measure through this paper, even though these denitions can be generalized for a large set of measures.

For a CA A = (Q, r, δ) and u ∈ Q * , we denote for all n ∈ N,

A n µ([u]) = µ (A -n ([u])).
Denition 6 (Persistent set). For a CA A, we dene the persistent set L µ (A) ⊆ Q * by: ∀u ∈ Q * :

u / ∈ L µ (A) ⇐⇒ lim n→∞ A n µ([u] 0) = 0. Then the µ-limit set of A is Λ µ (A) = c ∈ Q Z : L(c) ⊆ L µ (A) .
Remark 1. As said in [KM00], µ-limit sets are closed and shift-invariant. Two µ-limit sets are therefore equal if and only if their languages are equal.

Denition 7 (µ-nilpotency). A CA A is said to be

µ-nilpotent if Λ µ (A) = {a Z } for some a ∈ Q A or equivalently L µ (A) = a * .
The question of the µ-nilpotency of a cellular automaton is proved undecidable in [START_REF] Boyer | On the Complexity of Limit Sets of Cellular Automata Associated with Probability Measures[END_REF]. The problem is still undecidable with CA of radius 1 and with a permanent state. We will reduce all other properties to this problem. Remark 2. The set of normal congurations has measure 1 in Q Z . Which means that a conguration that is randomly generated according to measure µ will be µ-almost surely a normal conguration.

The following lemma translates the belonging to the µ-limit set in terms of density in images of a generic conguration.

Lemma 1. Given a CA A and a nite word u, for any generic conguration c:

u ∈ L µ (A) ⇔ d A n (c) (u)
0 when n → +∞ Example 1 (MAX). We consider here the max automaton A M : the alphabet contains only two states 0 and 1. The radius is 1 and δ A M (x, y, z) = max(x, y, z).

The probability to have a 0 at time t is the probability to have 0 2t+1 on the initial conguration, which tends to 0 when t → ∞ for the uniform Bernoulli measure, so 0 does not appear in the µ-limit set. And nally Λ µ (A M) = { ∞ 1 ∞ }.

The limit set of a cellular automaton is dened as

Λ(A) = i∈N A i (Q Z), so Λ(A M) = (∞ 10 * 1 ∞) ∪ (∞ 0 ∞) ∪ (∞ 10 ∞) ∪ (∞ 01 ∞).
Actually, we can prove that this limit set is an example of limit set that cannot be a µ-limit set.

Properties of µ-Limit Sets

Through all this paper, the alphabets of CA will be nite subsets of a countably innite set {α 0 , α 1 , α 2 . . . }. A property of µ-limit sets is a family P of µ-limit sets of CA and any µ-limit set in P is said to have this property.

A property P is said to be nontrivial if there exist CA A 0 and A 1 such that Λ µ (A 0) ∈ P and Λ µ (A 1) / ∈ P. For example, µ-nilpotency or the appearance of some state in the µ-limit set are nontrivial properties.

Counters

In this section and the following one we describe an automaton A S , which on normal congurations produces nite segments, separated by a special state #, whose size increases with time. In these segments, we will make computations described in Sect. 5.

We want to erase nearly all of the initial random conguration and only remember some information. This information will be on states * that can appear only at time 0. Each * state sends two counters to its left and right. And these counters will erase everything except a younger counter. Therefore, when two counters meet, they compare their age, and the younger erases the older. If they have the same age, they stop and write a #. The notion of counters was introduced in [DPST10] and used in [START_REF] Boyer | Construction of µlimit sets[END_REF].

Counters are composed of two signals, one faster than the other, and the age of the counter is computed between them. The whole construction (both signals and the binary counter in it) is called a counter. Therefore, everything on the initial conguration is erased and forgotten, except for * states. Indeed, even if some counters exist on the initial conguration, they will be older than counters from * when they meet, and hence erased.

For what follows, we will need to have random bits on the #, so we use two states * 0 and * 1 instead of the unique state * . And the bit i is transfered from an * i to the # produced on its left. We then have # 0 and # 1 instead of #. When it makes no dierence, we will speak of # and * for # i and * i .

Merging Segments

We saw in Sect. 3, how a special state * on the initial conguration gave birth to counters protecting everything inside them until they meet some other counter born the same way. In this section, we will describe the evolution of the automaton A S after this time of initialization. When two counters of the same age meet, they disappear and a # is produced.

Denition 8 (Segment). A segment u is a subword of a conguration delimited by two # and containing no # inside u ∈ # (Q \ {#}) * # . The size of a segment is the number of cells between both #.

When a # is produced in automaton A S , it sends a signal on its right to detect the rst # on its right. If the signal catches the inside of a counter still in activity before reaching a #, it waits until this counter produces a #. Then both # have recognized each other and the segment between them becomes conscious. It launches a computation inside itself, and this will be the concern of Sect. 5. But as we will need arbitrarily large space for computation, we will remove small segments and replace them by larger ones. Therefore, at some times, we will erase some #, and the segments that were formerly separated will join their space. We describe here mechanisms that lead to this merging process, and then see how it behaves with µ-limit sets. This happens inside any segment, and in parallel with the computation from Sect. 5.

A segment is said to be well-formed if it is delimited by two # that have themselves been created by * states on the initial conguration. To construct A S , we additionally attribute a color to each segment. There will be Red (R) and Blue (B) segments. So we will have 4 states to replace * 0 and * 1 : * r0 , * r1 , * b0 and * b1 . We still use * to refer to any of them indistinctly. An initial segment has color R when produced by * r0 or * r1 , and else color B. The random bit is still transfered to the # on the left as described in Sect. 3.

We require that any segment stores and updates its age since the initial conguration. We'll add two counters (one on each side of the segment) to perform this task. Moreover, we want to ensure that the storage of the age of a wellformed segment does not need more than

(n) cells where n is the size of the segment. This means we need to know the size of the segment. This can be computed and stored with space log(n). To maintain the property, segments will merge when the age becomes too large for them.

Suppose we use an alphabet of size K ≥ 3 to store the age, then the space used in a segment becomes too large at some time K i with i ∈ N (when i + 1 ≥ (n)). Every segment has to decide whether it will need to merge, and to tell its neighbors before time K i . At that time, any segment that needs more space will merge according to the following conditions:

1. if none of its neighbors want to merge, it merges with the left one, 2. if one only of its neighbors wants to merge, it merges with that one, 3. if both its neighbors want to merge, it merges with the left one except if this neighbor has the same color, and the right one has the other color.

Remark 3. Each segment can decide in (i + 1) 2 steps, if it is larger than (i + 1) 2 .

Then it can write on each side if it wants to merge at time K i or not in less than 2(i + 1) 2 steps. If a segment wants to merge, it can check its neighbors' will on both sides and decide its own behavior in (i + 1) 2 .

The # between two segments that merge together is erased with the age counters around it. Then another cycle starts on the left side of the new segment.

Many successive # have possibly disappeared, so the merging is not necessarily two segments becoming one but many segments becoming one. As at least one # has been erased inside the new segment, we use the bit from the leftmost # i erased to determine the color of the new segment. If i = 0, it will be R, and else B.

We call initial segment, a well-formed segment such that only one cell inside it contained a * on the initial conguration. That is, a segment that is well-formed and not created from a merging. And we call successor segment, a segment wellformed but not initial, that is, created by a merging of well-formed segments that are its predecessors. We so dene a set of predecessors at each time. Remark 4. When two segments merge at time K i , at least one of them wanted to merge, which means one of them was smaller than (i + 1) 2 .

If three or more segments merge at time K i , they all wanted to merge, so they were all smaller than (i + 1) 2 . ∀i ∈ N, at time t > K i , any segment has a size greater than (i + 1) 2 . This is clear since any segment smaller would have merged at time K i . Remark 5. Red and blue segments are initially randomly distributed according to the uniform measure. When some segments merge, the new color is chosen independently from the colors of predecessors or neighbors, and only according to a random bit, so the distribution of colors remains random.

1 # 0 # 1 # 1 # 1 # 1 # 0 # 1 # 0 # 0 # 1 # 0 # 0 # 1 ! ! ! ! ! ! ! ! ! ! K i K i+1
Fig. 2. A # remains until two segments merge. Blue segments are in plain gray, red ones in hashed gray. At time K i , small segments merge together or with their left neighbor.

The general behavior of the segments among themselves is illustrated in Fig. 2.

Thanks to the following claim, we will be able to prove the rst important result for automaton A S : Prop. 1, which says that # states tend to be sparse enough to be left outside of Λ µ (A S).

Claim. The density of cells outside well-formed segments on a normal conguration tends to 0 as time passes.

Proposition 1. There is no # in the µ-limit set of A S .

This comes from the fact that well-formed segments tend to cover the image of a normal conguration. As their growth is permanent, # states are eventually separated by arbitrarily large words.

In Sect 5, we will need to have an upper bound on the size of a large proportion of segments. We will prove such a bound in the following lemma.

A segment is said to be acceptable if it is well-formed and if its size is n ≤ K i/4 at time K i ≤ t < K i+1 . In the sequel, we consider the automaton on a normal conguration c N .

We will show that large segments exist with low probability. First we use the merging protocol, and the colors to justify that a lot of segments rarely merge all together. Then, we show that large initial segments are quite unlikely. In both cases, we give bounds on the probability of large segments.

We have the next lemma:

Lemma 2. The density of non acceptable segments tends to 0 as time passes.

To prove this, each non acceptable segment is seen as either initial, the product of a merging, or a successor of some non acceptable segment. In the third case, we consider the rst predecessor that was in another case and show that it concerns few segments only.

Denote S t , t ∈ N the set of acceptable segments successors of acceptable segments at time t. This set contains all possible segments, it is nite for any time, and it does not depend of the initial conguration. Remark 6. The same proof as for previous lemma shows that d c N (S t) → t→∞ 1.

Thanks to this, we only need to look at the behavior of the automaton inside segments of S t , the words that will remain in the µ-limit set will be the words that appear often in these segments.

Rice Theorem

The idea here is to copy the principle of the proof of Rice's theorem for limit sets from [START_REF] Kari | Rice's Theorem for the Limit Sets of Cellular Automata[END_REF]. We want to reduce any nontrivial property over µ-limit sets to the µ-nilpotency of a CA H of radius 1 having a permanent state q.

First we construct an automaton to prove the following proposition: Proposition 2. For any CA H of radius 1, where a state q is permanent, and CA A, there eectively exists a CA B such that:

if H is µ-nilpotent, Λ µ (B) = Λ µ (A). if H is not µ-nilpotent, Λ µ (B) = α Z , for some chosen α ∈ Q A .
Then, given a property P, for two automata A 1 and A 2 , such that one exactly of Λ µ (A 1) and Λ µ (A 2) has property P, we construct B 1 and B 2 . If there existed an algorithm to decide whether a µ-limit set has property P, we could use this algorithm with B 1 and B 2 . If only one among Λ µ (B 1) and Λ µ (B 2) has property P, they have dierent µ-limit sets and H is µ-nilpotent. In the other case, their µ-limit sets cannot be Λ µ (A 1) and Λ µ (A 2), and H is not µ-nilpotent. This would be a contradiction with [START_REF] Boyer | On the Complexity of Limit Sets of Cellular Automata Associated with Probability Measures[END_REF], where µ-nilpotency was proved undecidable.

Construction

The automaton B is based upon A S from previous sections. The whole construction of counters and segments is exactly as described in Sect(s). 3 and 4. We now describe the computation in a segment. We will only concern ourselves with wellformed segments as, for a normal conguration, every cell is eventually reached by such a segment. We partially test the µ-nilpotency of H in every segment, if the test is successful, we simulate A, meaning we write an image of a prex of the de Bruijn conguration, if not, we write the uniform word α n . Remark 7. We will use the de Bruijn conguration c DB over the alphabet Q A dened in 2.1. Thanks to [START_REF] Fredricksen | Lexicographic compositions and de-Bruijn sequences[END_REF], a de Bruijn sequence of order k can be computed in space O(k) and time O(|Q| k). Therefore we can ll a segment of length n with a prex of c DB in space O(log(n)) and time O(n).

Remark 8. As q is a permanent state in the radius 1 CA H, it behaves like a wall, which means no information can travel through a q state. So a simulation of H over a word u ∈ q (Q H \ {q}) l q needs only space l for any l.

In any well-formed segment of size n ∈ N, the computation of a Turing machine starts on the left of the segment at every time K i for i ∈ N.

1. it measures and stores on each side the segment's size.

2. it simulates H on every u ∈ q (Q H \ {q}) l q for l ≤ 1 2 log |Q H | (K i/4) -1 during |Q H | l timesteps. This is how we test the µ-nilpotency of H. If one of the computed images is not q l , the segment does not simulate A. If all the images are q l , the segment simulates A. 3. on the left of the segment, it computes j(i) = log(log(i)) . 4. if the segment simulates A, the machine computes a prex of length n of c DB , then computes and writes its j(i)-th image by A. If the segment does not simulate A, the head writes α n over the segment.

5. the machine stops when the whole computation and writing is over or when it has reached time K i+1 . At that time, the machine erases itself, leaving what was written.

Remark 9. Each cell in a segment contains a couple: a state for computation, storage of the age or the length of the segment, a state from Q A .

The rst state (computation) is for most cells left blank, then the couple is seen as a state of Q A .

Remark 10. The machine needs only O(j(i) + log(n)) cells to compute. There are O((n)) additional cells used to count the age on each side, and O(1) cells for signals moving through the segment. And only O(j(i)n) steps are required to perform it.

When a segment is formed by a merging, the data of its cells (on the rst layer) is not removed until a new state of Q A has to be written.

To prove Prop. 2, we will need two lemmas: Lemma 3. There exists i 0 such that, for i ≥ i 0 , the computation is nished before K i+1 -1 in every segment that is acceptable at time K i . This is easily proved, since the length of acceptable segments is bounded.

And the second lemma, that will let us test the µ-nilpotency of H:

Lemma 4. If H is not µ-nilpotent, there exists l ∈ N and u ∈ q(Q H \ {q}) l q such that H |Q H | l (u) = q l+2 .
To prove it, we just use the fact that words which cannot have any permanent state in their antecedents cannot be persistent.

H µ-Nilpotent

In this section, we suppose H is µ-nilpotent and we will show Λ µ (B) ⊆ Λ µ (A).

First, we make sure that the simulation happens everywhere in this case.

Claim. If H is µ-nilpotent, every well-formed segment simulates A.

Then we prove the following lemma:

Lemma 5. If H is µ-nilpotent, then Λ µ (B) ⊆ Λ µ (A)
The proof needs a description of the content of a segment with computation parts, and words computed by the simulation of A.

Remark 11. Thanks to Lemma 3, any s ∈ S t with |s| = n at time K i ≤ t < K i+1 contains:

O((n)) cells for computation, they will not appear in L µ (B). a subword of A j(i) (c DB[0..n-1]) computed between times K i and t. a concatenation of subwords of A j(i-1) (c DB[0..n-1]) computed before time K i that were not erased during the merging.

To prove the lemma, we show that any word of L µ (B) appears often in large acceptable segments. Then we prove that if a word appears often in an acceptable segment, thanks to the previous remark, it appears often in at least an image of c DB by A. As c DB is generic, we can conclude.

Now we show the second inclusion

: Lemma 6. If H is µ-nilpotent, then Λ µ (A) ⊆ Λ µ (B)
To prove this lemma, we consider a word in L µ (A). There exists necessarily a sequence of images (A tx (c DB)) x∈N in which the density of u does not tend to 0. We take a sequence (τ x) x∈N of times at which B τx simulates A tx . Then, thanks to the regularity property of c DB , we can prove that the density of u in the images of a normal conguration by B does not tend to 0.

H not µ-Nilpotent

In this case, we rst make sure that after some time, A is not simulated in any segment anymore.

Claim. If H is not µ-nilpotent, there exists i 0 such that, for all i ≥ i 0 , no wellformed segment at time K i ≤ t < K i+1 simulates A.

Then we conclude by saying that any letter dierent from α has a density that tends to 0. Which forces α Z to be the unique conguration in L µ (B).

Lemma 7. If H is not µ-nilpotent, then α * = L µ (B).
This ends the proof of Prop. 2.

Rice Theorem

First we need to consider two automata A 1 and A 2 over the same alphabet: Lemma 8. For any nontrivial property, there exist CA A 0 and A 1 over the same alphabet Q A such that one among Λ µ (A 0) and Λ µ (A 1) has this property, and the other not.

We can prove this lemma by taking multiple copies of each state of both automata, in order to get an alphabet which size is the least common multiple of both sizes.

And nally, we complete the proof of the theorem: Theorem 1. Any nontrivial property of µ-limit sets of cellular automata is undecidable.

As announced, from A 1 and A 2 , we construct B 1 and B 2 , then deciding a property P leads to deciding the µ-nilpotency of H.

The result presented in this article is that no algorithmic property over µ-limit sets can be decided, except for trivial ones. This, as [START_REF] Boyer | Construction of µlimit sets[END_REF], shows the complexity and hence the interest of this object. We have the same restriction as in [START_REF] Kari | Rice's Theorem for the Limit Sets of Cellular Automata[END_REF], that is, we work on an unlimited set of states. One property at least becomes decidable if we limit the set of possible states, it is having the fullshift as µ-limit set. Which is equivalent to being surjective.

In [START_REF] Guillon | Revisiting the Rice Theorem for Cellular Automata[END_REF], it was proved that surjectivity was the only decidable problem on limit sets with a xed alphabet. This extension could perhaps be adapted to µ-limit sets and then show another parallel between limit and µ-limit sets. This is also another use of counters and segments, showing how powerful this tool can be for cellular automata. Especially concerning µ-limit sets.

A Proofs

First, we add a denition that will help: Denition 9 (Set of predecessors). We dene the set of predecessors at time n of a nite word u for a CA A as

P n A (u) = v ∈ Q |u|+2rn : A n ([v] -rn) ⊆ [u] 0 .
Remark 12. As we consider the uniform measure µ,

|P n A (u)| |Q| |u|+2rn → 0 ⇔ u / ∈ L µ (A).
A.1 Proofs for Sect. 2

Remark 13. Let n ∈ N and u ∈ Q n , we have:

∀m ∈ N, |DB(n+m)| u -|Q| m ≤ m.
Lemma 1. There exists l 0 ∈ N and a constant A such that for all l ≥ l 0 , for any k ≥ |Q| 2l and any

u ∈ Q l , 1 A d c DB (u) ≤ d c DB[0,k-1] (u) ≤ Ad c DB (u).
Proof. Let l ∈ N. The length of the concatenation of the l rst de Bruijn se-

quences is: s(l) = l i=1 (|Q| i + i -1) = |Q| l+1 -1 |Q|-1 + l(l-1) 2 . Let k ≥ s(l), there exists m ∈ N such that s(l + m) ≤ k ≤ s(l + m + 1). Now d c DB[0,k-1] (u) ≥ 1 k l+m i=l |DB(i)| u
and there are at least |Q| i words of size l + i containing u.

Therefore d c DB[0,k-1] (u) ≥ m i=0 |Q| i s(l+m+1) ≥ A 0 1 |Q| l . And as |DB(l + i)| u ≤ |Q| i + i, d c DB[0,k-1] (u) ≤ A 1 1 |Q| l , we have a constant A = max(A 1 , 1 A0), such that 1 A d c DB (u) ≤ d c DB[0,k-1] (u) ≤ Ad c DB (u)
. This proves that c DB is generic.

Lemma 2. Given a CA A and a nite word u, for any generic conguration c:

u ∈ L µ (A). ⇔ d A n (c) (u) 0 when n → +∞.
Proof. Actually, we prove here that for any n ∈ N:

d A n (c) (u) = A n µ(u) = |P n A (u)| |Q| |u|+2rn .
The second equality is clear.

Let n ∈ N. We note r the radius of A. Since any instance of u in A n (c) corresponds to an instance of a predecessor of u in c : Claim. The density of cells outside well-formed segments on a normal conguration tends to 0.

Proof. The proof is clear since such a cell needs predecessors without states * on each side in the initial conguration.

Proposition 1. There is no # in the µ-limit set of A S .

Proof. Let > 0. We consider a normal conguration. Previous claim tells that there exists t 0 ∈ N such that ∀t > t 0 , the density of cells outside well-formed segments is less than /2. Take i 0 such that ∀i > i 0 , 1/(i + 1) 2 ≤ /2: thanks to remark 4, for t > t 1 with t 1 = max(t 0 , K i), the size of any segment is bigger than (i+1) 2 . For t > t 1 , as the # have to come either from well-formed segments (density less than 1/(i + 1) 2), or from the rest of the conguration (density less than /2), the total density of # is less than .

And nally, this density tends to 0 and Lemma 1 concludes.

Claim. A segment produced by the merging of three or more segments at time K i has size n with probability less than 4n (i+1) 2 2

n (i+1) 2 .

Proof. Consider such a segment of size n. All the predecessors of it were smaller than (i+1) 2 , or they would not have merged together. So n (i+1) 2 segments at least have merged. Now consider the colors of these segments. As they prefer to merge with a segment of the same color, and if not possible on their left, the colors' distribution among them was: R(RB) l R k , (RB) l R k , R(RB) l B k or R(RB) l B k (or symmetrically if starting with B) for some k, l ∈ N. So the distribution is determined by its shape (among four possible shapes), its length and k. Therefore the probability of such a succession of segments is less than 4 n (i+1) 2 2

n (i+1) 2 .

Claim. An initial segment has length n with probability less than n 4 q 3 q-4 q

2n
where q is the number of states of the automaton.

Fig. 1 .

 1 Fig.1. When two counters launched by a * meet, a # delimiter is produced and counters disappear. Information between * states on the initial conguration is lost when it meets a gray area..

d

 A n (c) (u) = lim k→+∞ |A n (c) [-k,k] | u 2k + 1 -|u| = lim k→+∞ v∈P n A (u) |c [-k-rn,k+rn] | v 2k + 2rn + 1 -(|u| + 2rn) .And as c is normal, for any v ∈P n A (u) : |c [-k-rn,k+rn] | v ∼ k→+∞ 2k+1 |Q| |u|+2rn . |Q| |u|+2rn .A.2 Proofs for Sect. 4

Proof. An initial segment of length n is produced by three * distant from l 1 and l 2 , with (l 1 + l 2)/2 = n. So the probability is less than 4 q q-4 q l1 4 q q-4 q l2 4 q .

Considering the n possibilities for the choice of l 1 and l 2 , we have n 4 q 3 q-4 q 2n

Lemma 3. The density of non acceptable segments tends to 0 as time passes.

Proof. Consider time K i ≤ t < K i+1 . Thanks to remark 4, and for large enough i (such that K i/4 ≥ 2i 2), if a segment is larger than K i/4 at time t, then it is:

1. either an initial segment, 2. or a segment produced by the merging of many segments.

3. or the successor of a segment that was larger than K (i-1)/4 at time K i-1 , and that possibly merged with a segment smaller than i 2 at time K i .

For case 3, we consider the chain of non acceptable predecessors of the segment at time K j , j ≤ i. The oldest predecessor of this chain is either case 1 or case 2: there exists h ≤ i minimal such that at time K j , for all h ≤ j ≤ i, one predecessor of the segment is larger than K j/4 . If this predecessor's size at K h was n, its size at K i is less than n + i 0 j 2 since it merged with at most one small segment at each K j .

There exists i 0 such that ∀i ≥ i 0 , i 0 j 2 ≤ K i/4-1 , therefore, as n + i 0 j 2 ≥ K i/4 , we have n ≥ K i/4-1 . The predecessor was either case 1 or case 2 and its size doubled at most between steps h and i. We treat both cases (with h ≤ i) thanks to the two previous claims.

So the density d i of cells in segments larger than K i/4 at time K i is the sum of: cells in initial segments larger than K i/4-1 , that at most doubled; cells in case 2 segments created before i and that at most doubled.

Finally, d i → 0.

A.3 Proofs for Sect. 5 Lemma 4. There exists i 0 such that, for i ≥ i 0 , the computation is nished before K i+1 -1 in every segment that is acceptable at time K i .

Proof. As said in remark 10, the computation needs O(j(i)n) = O(n log(log(i))), and as n log(log(i)) = o(K i) for n ≤ K i/4 , there exists i 0 such that the computation is nished within K i steps for acceptable segments. And then, at time K i+1 -1 ≥ K i + K i , the computation is over.

Lemma 5. If H is not µ-nilpotent, there exists l ∈ N and u

Proof. As q is a wall for H, the behavior between two q is ultimately periodic. If any word in these periods is uniform, non-uniform words will disappear as time passes.

Suppose that for any

for any u of length |v| + 2t with u x = q = u y , we have H t (u) = v. In this case, the density of predecessors of v is 0.

Therefore, there exists u

Then, as y-x ≤ |v|+2 log(log(t)), and for large enough

Claim. If H is µ-nilpotent, every well-formed segment simulates A.

Proof. Let s be a well-formed segment. It simulates H on every u ∈ q (Q H \ {q}) p q during |Q H | p for a nite number of values for p. Thanks to Lemma 4, every such simulation computes q p+2 , so s decides to simulate A.

Proof. If the computation is over in the segment, as |s| ≥ |Q A | 2(k+2j(i)) , Lemma 1 applies for antecedents of u by A j(i) and:

If the computation is not even begun, s contains the concatenation of words written by the computation in its predecessors. As they were all larger than k+2j(i-1)) , the same reasoning shows that the density of u in each of them was less than 2d

At any time K i /leqt < K i+1 , any instance of u comes either from what remains of the content of the segment before the computation, or what is already written of the computed word. Therefore, the density is less than the sum of both:

Proof. We will prove L µ (B) ⊆ L µ (A).

Let u ∈ L µ (B) (|u| = k), there exists > 0 and (t x) x such that ∀x ∈ N, d B tx (c N) (u) ≥ . Thanks to Lemma 2 and remark 6, d B t (c N) (S t) → 1, so there exists x 0 ∈ N such that ∀x ≥ x 0 , there exists an acceptable segment s x ∈ S tx ∩ L (B tx (c N)) with d sx (u) ≥ .

There exists i 0 ∈ N such that for all i

, clearly, there exists x 0 ∈ N such that ∀x ≥ x 0 , i 2 x ≥ |Q A | 2(k+2tx) . Now, denote τ x = K ix+1 -1, at time τ x , any acceptable segment of the automaton B contains the image by A tx of a prex of c DB .

For

Now, consider an acceptable segment s at time τ x . The computation in s is over and the word A tx (c DB)[0, |s| -1] is written. As remarked in 10, there exists β > 0 such that less than β s = β √ (|s|) |s| cells are used for computation in s. k+2tx) , so, we can apply Lemma 1 with words in P tx A (u), which are all k+2t x long:

We nally have:

Claim. If H is not µ-nilpotent, there exists i 0 such that, for all i ≥ i 0 , no wellformed segment at time K i ≤ t < K i+1 simulates A.

Proof. Thanks to Lemma 4, there exists l ∈ N and u ∈ Q l H such that H |Q H | l (u) = q l . There exists i 0 such that l ≤ 1 2 log |Q H | (K i0/4) -1. Then for any well-formed segment at time K i0 ≤ t, the simulation of u is done and the segment does not simulate A.

Lemma 8. If H is not µ-nilpotent, then α * = L µ (B).

Proof. For each segment of length n, there are O((n)) cells used for computation and signals. As the length of the segments tends to innity, the density of computation cells tends to 0. So they do not appear in L µ (B). Thanks to the previous claim, we know that α is written all over the segment, therefore other cells can only contain α. So any word in L µ (B) is in α * . Lemma 9. For any nontrivial property, there exist CA A 0 and A 1 over the same alphabet Q A such that one among Λ µ (A 0) and Λ µ (A 1) has this property, and the other not.

Proof. Consider some nontrivial property, there exist two CA D O and D 1 over alphabets Q 0 and Q 1 , such that one among Λ µ (D 0) and Λ µ (D 1) has this property, and the other not. For simplicity, we suppose they both have radius 1, other cases could be treated the same way. We will take multiple copies of each state of each alphabet in order to obtain two CA with the same alphabet. Then, the new automata will consider a copy of a state as the equivalent of it. Copies will not appear after the initial conguration.

Then let A 0 and A 1 be CA over Q, of radius 1 and with the following rules:

Theorem 2. Any nontrivial property of µ-limit sets of cellular automata is undecidable.

Proof. We consider a nontrivial property P over µ-limit sets. There exist CA A 0 and A 1 such that Λ µ (A 0) ∈ P and Λ µ (A 1) / ∈ P. With a CA H containing a permanent state, we construct two CA B i (i = 0 or 1) with the construction described in 5.1, such that:

1. if H is µ-nilpotent then Λ µ (B i) = Λ µ (A i)} for i = 0, 1. 2. if H is not µ-nilpotent then Λ µ (B 0) = Λ µ (B 1).

If there exists an algorithm that determines if the µ-limit set of a given CA has property P, we apply it on CA B 0 and B 1 . If the algorithm gives dierent answers for both CA, necessarily we have case 1 and H is µ-nilpotent. If on the other hand, both answers are identic, we have case 2 and H is not µ-nilpotent. Therefore, we have an algorithm to determine if a CA is µ-nilpotent. Which is a contradiction with [START_REF] Boyer | On the Complexity of Limit Sets of Cellular Automata Associated with Probability Measures[END_REF], where this problem was proved undecidable.