
HAL Id: hal-01957546
https://hal.science/hal-01957546v1

Preprint submitted on 17 Dec 2018 (v1), last revised 11 May 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The first return time to the contact hyperplane for
n-degree-of-freedom vibro-impact systems

Huong Le Thi, Stéphane Junca, Mathias Legrand

To cite this version:
Huong Le Thi, Stéphane Junca, Mathias Legrand. The first return time to the contact hyperplane for
n-degree-of-freedom vibro-impact systems. 2018. �hal-01957546v1�

https://hal.science/hal-01957546v1
https://hal.archives-ouvertes.fr


THE FIRST RETURN TIME TO THE CONTACT HYPERPLANE FOR
N-DEGREE-OF-FREEDOM VIBRO-IMPACT SYSTEMS

HUONG LE THI, STÉPHANE JUNCA
Laboratoire de Mathématiques J.A. Dieudonné and Coffee Team INRIA, Université Côte d’Azur,

Nice, France

MATHIAS LEGRAND
Department of Mechanical Engineering, McGill University, Montréal, Québec, Canada

Abstract. The paper deals with the dynamics of conservative N-degree-of-freedom (dof) vibro-
impact systems involving one unilateral contact condition and a linear free flow. Among all
possible trajectories, grazing orbits exhibit a contact occurrence with vanishing incoming velocity
which generates mathematical difficulties. Such problems are commonly attacked through the
definition of a Poincaré section and the attendant First Return Map. It is known that the First
Return Time to the Poincaré section features a square-root singularity near grazing. In this work,
a non-orthodox yet natural and intrinsic Poincaré section is chosen to revisit the square-root
singularity. It is based on the unilateral condition but is not transverse to the grazing orbits. A
detailed investigation of the proposed Poincaré section is provided. Higher-order singularities in
the First Return Time are exhibited. Also, activation coefficients of the square-root singularity for
the First Return Map are defined. For the linear and periodic grazing orbits from which bifurcate
nonlinear modes, one of these coefficients is necessarily non-vanishing. The present work is a
step towards the stability analysis of grazing orbits, which stands as an open problem.
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1. Introduction

The dynamics of a mechanical system with N degrees-of-freedom, one of which being
unilaterally constrained, is of interest. An example of such system is depicted in Figure 1. The

k1 k2 kN−1 kN

d
m1 m2 mN−1 mN

u1 u2 uN−1 uN

Figure 1. A unilaterally constrained N-degree-of-freedom chain with d > 0.

governing equations considered in this work read1:



MÜu +Ku = r (1.1a)
u(0) = u0, Ûu(0) = Ûu0 (1.1b)
uN (t) ≤ d, R(t) ≤ 0, (uN (t) − d)R(t) = 0 (1.1c)
Ûu+(t)>M Ûu+(t) + u>(t)Ku(t) = E(u(t), Ûu+(t)) = E(u(0), Ûu(0)) (1.1d)

with
M = diag(m j)Nj=1; K = (ki j)Ni, j=1; u(t) = (u j)Nj=1; r(t) = (0, . . . , 0, R(t))

where Ûu j and Üu j represent the velocity and acceleration of mass j, j = 1, . . . , N , respectively.
Matrices M and K are assumed to be symmetric constant positive definite.2 Hence, there exists a
matrix P of M-orthogonal eigenmodes which diagonalizes both M and K, that is P>MP = I and
P>KP = Ω2 = diag(ω2

j )| j=1,...,N where I is the N ×N identity matrix; ω2
j are the eigenfrequencies

and Tj , the linear periods with ω jTj = 2π, j = 1, . . . , N . Also, condition (1.1c) says that mass
N is constrained on the right side by a rigid obstacle at a distance d > 0 from its equilibrium.
There is only one constraint on mass N . The other masses are not constrained in any way. The
quantity R(t) is the reaction force induced by the obstacle on mass N at the time of gap closure.
Generally, R(t) is a measure.

System (1.1) without (1.1d) is not well posed: it is known that uniqueness might not be ensured
for the initial value problem. To overcome this issue, an impact law is usually incorporated into
the formulation. This work targets non-dissipative dynamics and condition (1.1d) is enforced:
the total energy of the system is preserved during the motion. This implies the existence of a
perfectly elastic impact law of the form Ûu+N = −e Ûu−N with e = 1 where Ûu−N and Ûu+N respectively
stand for the pre- and post-impact velocities of mass N . For the well-posedness of the initial-value
problem with constant energy, see [1, 11].
With the above impact law, two types of closing contacts should be addressed: contacts with

non-zero pre-impact velocity (or simply “impacts”) and contacts with zero pre-impact velocity.
This second category can itself be divided as follows: “grazing contact” if the mass leaves the
obstacle immediately after contact is closed, or “sticking contact”3 if the mass stays in contact
with the obstacle for a finite time interval. These types of contacts are illustrated in Figure 2.

Recent results on nonlinear modal analysis of discrete vibro-impact systems suggest that the
First Return Map (FRM) could be defined on the unilateral constraint hyperplane {uN = d}
in the phase-space [9, 14, 7]. This hyperplane gives access to special periodic solutions with
closed-form expressions [9, 13] and to reduced-order systems of nonlinear equations together
with the companion stability analysis [12, 8]. Yet this Poincaré section has drawbacks as already
known [2, p. 261-262]: it is not transverse to the grazing orbits. This is the main reason why

1The fact that uN is chosen to be unilaterally constrained is not limiting. It could be any other degree-of-freedom
through a permutation of indices.

2A positive definite mass matrix slightly more general than a diagonal one which has a single non-zero entry NN
on row N and column N can be considered as well.

3Note that the term “sticking” does not mean that there is glue on the wall. The contact force R(t) of the wall on
mass N is still necessarily negative as stated in Equation (1.1c).
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Figure 2. Possible types of contacts in discrete dynamics.

this section is not chosen in [2]. Instead, their First Return Map, called the discontinuity map
is transverse to the flow but requires two times, first to go to the contact interface and then the
Poincaré.
First, we prove that all orbits with a nonlinear behavior intersect the chosen Poincaré section

infinitely many times. Second, the square-root singularity is here revisited in a detailed
mathematical framework.
The paper is organized as follows: in Section 2, the main results are stated including the

definition of the Poincaré section and the square-root singularity of the First Return Time (FRT).
Section 3 deals with the exact subset of initial data at the contact constraint uN = d where the
trajectory will come back to the constraint, that is the domain of the FRM. The square-root
singularity and higher-order singularities are focused on in Section 4 in a mathematical framework
where the implicit function theorem is used in a degenerate case. The dynamics induced by the
square-root singularity is explored in Section 5. Some coefficients of the asymptotic expansion
of the FRM activating the square-root instability are identified. The stability of grazing periodic
solutions is discussed in Section 6.

2. Main results

The Poincaré section is first defined in Section 2.1. The theorems on the square-root singularity
which emerges in the vicinity of grazing orbits from the grazing contact are provided in Section 2.2.
The last section addresses a result on the dynamics near a periodic solution with one grazing
contact occurrence.

2.1. Poincaré section. This section corresponds to the domain of definition of the corresponding
First Return Map. In nonsmooth analysis, where the vector field governing the dynamics is
piecewise smooth only, the hyperplane H = {[u>, Ûu−>]> ∈ R2N, uN = d} of the phase-space
defined by uN = d is a natural choice for the Poincaré section when targeting trajectories with
non-vanishing pre-impact velocities since they hit the section transversally [9]. However, for
grazing trajectories, the transversality condition is lost. A discontinuity mapping on another
suitable section for which the transversality condition is retrieved shall be used instead [2, 6,
10]. To study the stability of grazing periodic orbits, the [2, 6, 10] approach is quite natural
and efficient. To describe the behavior near grazing contact, our approach is more direct than
the previous one. We obtain new insights on the square-root singularity and on the complex
behavior near a grazing contact in the state space. In particular, we take advantage of the linear
free dynamics outside the contact to be more precise at the contact.
In the current work, the Poincaré section is still a subset of the hyperplane H . This is the

simplest cross-section to describe the dynamics with only two phases: contact dynamics and
free-flight dynamics. This does not have adverse effect of introducing a second free-flight
dynamics as the discontinuity mapping does. Nevertheless, our critical choice necessitates a
very careful delimitation of the domain of definition of the FRM. This is stated in the following
theorem that categorizes the initial data generating orbits which will always come back to the
section.
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Proposition 2.1— Finite sticking duration. When d is positive, the sticking phase of a solution
to (1.1) is of finite duration.

This is proven in [8] for a two-dof vibro-impact system. A general proof for the N-dof system
is given in Section 3.1. This property is used to show that a solution to (1.1) has zero, one or
an infinite number of closing contacts with the hyperplane H . Before stating this result, the
following assumption is needed.

Assumption 2.1 — No internal resonances. The linear frequencies of system (1.1) are Z
independent which means:

N∑
i=1

kiωi = 0 and ki ∈ Z ⇒ ki = 0, ∀i = 1, . . . , N (2.1)

Through this assumption, internal resonances are discarded in the current work.

Theorem 2.2 — Zero, one or infinite number of closing contacts with H . Let u(t) be a
solution to (1.1). Under Assumption 2.1 of no internal resonances, the solution is such that

Case 1 — linear solution: the N th mass never hitsH , i.e. uN (t) < d for all t.
Case 2 — linear solution: the N th mass experiences only one closing contact, i.e. there
exists t0 such that uN (t0) = d and uN (t) < d for all t , t0.

Case 3 — nonlinear solution: the N th mass experiences a countably infinite number of
isolated closing contacts onH .

This theorem is proven in Section 3.2. The affine spaceH is of dimension 2N − 1. It is divided
into three disjoint subsets:

H− = {[u>, Ûu−>]> ∈ R2N, uN = d and Ûu−N > 0} (2.2)

H+ = {[u>, Ûu+>]> ∈ R2N, uN = d and Ûu+N < 0} (2.3)

H0 = {[u>, Ûu>]> ∈ R2N, uN = d and ÛuN = 0} (2.4)
By a careful study of the free dynamics, it can be seen that the solution which features a contact
with non-zero pre-impact velocity will always experience a later (and a previous in negative
time) closing contact. The problem of the existence of a subsequent (or previous) closing contact
emerges only onH0. Theorem 2.2 implies thatH0 is the union of the two subsets

H0
∞ = {[u>, Ûu>]> ∈ H0 with an infinite number of contacts} (2.5)

H0
1 = {[u>, Ûu>]> ∈ H0 with a single grazing contact} (2.6)

SinceH0
1 contains solutions with only one grazing contact, it does not belong to the Poincaré

section.

Definition 2.1 — Poincaré section. The Poincaré sectionHP ⊂ H is formed by the union of
the set of the states with non-zero velocity contacts and the set of the states with zero velocity
contact that gives rise to an infinite number of closing contacts, that is

HP = H− ∪H0
∞. (2.7)

Remark 2.1. There are two options for the choice of the Poincaré section inH depending on
whether one wants to start right before or right after the contact occurrence. The former gives the
Poincaré section defined as above, and the latter yieldsH+P = H+ ∪H0∞ as the Poincaré section.

The setH0∞ can also be split into two subsets: H0
S including all the initial data belonging toH0∞

such that the solution starts by a sticking contact and H0
G of initial data such that the solution

starts by a grazing contact:
H0
∞ = H0

S ∪H0
G . (2.8)
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2.2. Square-root singularity. The First Return Time is known to be generically an analytic
function of the initial data. Let W0 = [u0, Ûu0]> ∈ H−. If the first return toH , named W1, belongs
toH− then the FRM is analytic near W0 [2, 9]. However, if W1 ∈ H0, then there is a grazing
contact and it is known that a square-root singularity appears [6, 10].

By definition ofHP and through Theorem 2.2, there exists a time, called “First Return Time”,
at which the orbit emanating from W ∈ HP comes back toHP .
Definition 2.2 — First Return Time. Let u(t) be a solution to (1.1) with the initial data W =
(Wi)2N

i=1 ∈ HP at the initial time t = 0, i.e. WN = uN (0) = e>Nu(0) = d. The First Return Time
T = T(W) > 0 is defined by

T(W) =
{

min{t > 0 : uN (t) = d} if there is no sticking phase at t = 0 (2.9a)
min{t > τ(W) : uN (t) = d} if there is sticking phase at t = 0 (2.9b)

where τ(W) is the sticking duration.
This definition can be shorten by saying that T(W) = min{t > τ(W) : uN (t) = d} with the
convention that τ(W) = 0 if there is no sticking at t = 0. When a sticking phase occurs at t = 0,
Proposition 2.1 ensures that the First Return Time is well defined since the duration of the sticking
phase is finite.
Let u(t,W) be the solution associated with the initial data W ∈ HP . By the definition

of HP , WN = d, hence W is viewed as a vector of 2N − 1 variables. The displacement of the
N th mass is uN (t,W) = e>Nu(t,W) which is a function of time variable t and the initial data W.
Consider the smooth function

Φ(t,W) = e>NR(t)SW (2.10)

defined for all t ∈ R and for all W ∈ R2N where (1) S = diag(1, . . . , 1,−1) is a 2N × 2N diagonal
matrix with last entry −1 to reflect the impact law and (2) the operator R(t) describes the
free-flight dynamics:

R(t) =
[

P cos(tΩ)P−1 PΩ−1 sin(tΩ)P−1

−PΩ sin(tΩ)P−1 P cos(tΩ)P−1

]
. (2.11)

The dynamics between two successive closing contacts is smooth, except at the beginning and
the end of the contact occurrences. The function Φ(t,W) coincides with uN (t,W) as long as
uN (t,W) < d.

Assumption 2.2 — Non-vanishing acceleration. Let W0 be the initial data leading to an orbit
which has a grazing contact at the first time T0. Assume that ∂2

t Φ(T0,W0) , 0.

This is an important assumption which activates the square-root singularity near a grazing orbit.
Otherwise, a stronger singularity will emerge.

Assumption 2.3. There exists 1 ≤ k ≤ 2N , k , N such that ∂Wk
Φ(T0,W0) , 0.

Without the above assumption, the square root singularity in the First Return Time is not expected
to arise. This assumption 2.3 is not verified for N = 1, as explained in Appendix A. However,
for N ≥ 2, it always holds true for an initial data W0 corresponding to a linear grazing mode, as
shown in Lemma 6.1.

With Assumptions 2.2 and 2.3, the scalar

γk = −
∂2

t Φ(T0,W0)
2∂Wk
Φ(T0,W0) (2.12)

is well defined and does not vanish. The expression of the First Return Time near a grazing
contact is then given in Theorem 2.3. Throughout the paper, the expression “near a grazing
contact” means “with initial data W near W0”, and the corresponding solution is investigated
near time T0. The implicit function theorem is applied on the smooth function Φ in place of the
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nonsmooth function uN . It is easier to differentiate the smooth function Φ than the non-smooth
function uN .

Theorem 2.3— Square-root singularity near a grazing contact. Let W0 = (W0i)2N
i=1 ∈ H− be

the initial data generating an orbit with a grazing contact at the First Return Time T0 = T(W0). If
Assumption 2.3 applies, then there exists a component Wk of W such that ∂Wk

Φ(T0,W0) , 0. Let
W ∈ R2N−1 be the reduced vector obtained from W by removing Wk . If Assumptions 2.1 and 2.2
hold then:

(1) There exist two neighborhoods VT0 and VW0 ⊂ HP of T0 and W0, respectively as well as
two smooth scalar functions η and α defined on VW0

= {W,W ∈ VW0} such that the set
Sc = {(t,W) ∈ R × R2N, Φ(t,W) = d and ∂tΦ(t,W) = 0} (2.13)

where the square-root singularity will emerge, is locally parametrized as follows:

Sc ∩ {VT0 × VW0} = {(η(W), α(W),W), W ∈ VW0
}, (2.14)

where η(W0) = T0 and α(W0) = W0k .
(2) Let sk = sign(γk) and the set
Bk = {W ∈ VW0, sk(Wk − α(W)) ≥ 0} (2.15)

Let σ = sign( Üu−N (T0,W0)). There exists a smooth function ψ such that ψ(0,W0) = 0,
∂1ψ(0,W0) = 1/

√
|γk | and for all W ∈ Bk , the First Return Time T is given by

T(W) = η(W) + ψ(σ
√

sk(Wk − α(W)),W). (2.16)

Moreover, the set {W ∈ HP, (T(W),W) ∈ VT0 × VW0} is exactly Bk .

A mathematical proof of this theorem is provided in Section 6.1. Take note that the square-root
dependence on the initial data only appears on the set Bk which is simply the region above or
below the hypersurface Wk = α(W). The issue of this square-root singularity is already known [6,
2, 10, 15].
The presence of the square-root singularity is the consequence of the vanishing incoming

velocity Ûu−N (T0) = 0 and the non-vanishing acceleration Üu−N at T0. Contact occurrences with both
vanishing velocity and vanishing acceleration, that is Ûu−N (T0) = Üu−N (T0) = 0, but with Ýu−N (T0) , 0
are expected to generate a cube-root singularity. More generally, if u(`)−N (T0) = 0 for all 0 < ` < n
and u(n)−N (T0) , 0, then a nth-root singularity is expected, where u(`)−N refers to the `th left time
derivative of uN . This is proved in Section 4.2 under generic assumptions and n is shown to be
bounded by 2N where N is the number of degrees-of-freedom.

Remark 2.2 — Discontinuous First Return Time. Since Bk is a one-sided set with respect to
an hypersurface, the set of initial data with their First Return Time near T0 is not a neighborhood
of W0. This means that in the vicinity of W0, there are initial data with a First Return Time far
from T0. In other words, the First Return Time T(W) is discontinuous at W0, see Section 4.3. It is
a geometric singularity induced by our choice of a non-transverse Poincaré section. This is not a
singularity of the dynamics.

Theorem 2.3 also has to be generalized for an initial data W0 ∈ H0
G for instance the initial

data of a linear grazing orbit (LGO). The neighborhood VW0 has to be replaced by the one half
neighborhood V+W0

= {W ∈ VW0, e>2NW ≥ 0} where the initial velocity is non-positive and the set
Bk is replaced by the smaller set

B+k = Bk ∩ V+W0
= {W ∈ VW0, γk(Wk − α(W)) ≥ 0, W2N ≥ 0}. (2.17)

The following theorem is stated with the notations of Theorem 2.3.
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Theorem 2.4 — Square-root singularity for two successive grazing contacts. Assume that
W0 ∈ H0

G, Üu+N (0,W0) < 0 and W(T0) ∈ H0 where T0 = T(W0). If Assumption 2.3 applies, there
exists k ∈ {1, . . . , 2N} and k , N such that ∂Wk

Φ(T0,W0) , 0 and sk = sign(γk) together with
σ = sign( Üu−N (T0,W0)). If Assumptions 2.1 and 2.2 hold, then there exist two neighborhoods VT0
and VW0 ⊂ HP of T0 and W0, respectively as well as two smooth scalar functions η and α defined
on VW0

containing W0 where η(W0) = T0 and α(W0) = W0k . There also exists a smooth function
ψ such that ψ(0,W0) = 0, ∂1ψ(0,W0) = |γk |−1/2 and for all W ∈ B+k , the First Return Time T is
given by

T(W) = η(W) + ψ(σ
√

sk(Wk − α(W)),W). (2.18)

Moreover, the set {W ∈ HP, (T(W),W) ∈ VT0 × V+W0
} is exactly B+k .

The difference between Theorems 2.3 and 2.4 is that formula (2.16) of the First Return Time in
the former is defined on Bk whereas in the latter it is defined on a smaller subset B+k . This is due
to the fact thatH0

G lies on the boundary of the cross-sectionHP , and not all perturbations of W0
are thus admissible. The condition Üu+N (0,W0) < 0 insures that solutions with initial data near W0
and with a non-negative velocity for the last mass have a First Return Time near T0. The case
W0 ∈ H0

S can also be considered and can add another singularity due to the sticking phase [8].

2.3. Dynamics near a linear grazing orbit. The square-root dynamics near the periodic
solutions with one grazing contact per period is addressed. For a N-dof system without internal
resonances, there are N such periodic solutions which are called linear grazing orbits. It is known
that many invariant submanifolds of periodic solutions with k Impact-Per-Period (k-IPP) [9, 14,
12] might emerge in the vicinity of linear grazing orbits.

We define the j th linear grazing orbit as a periodic trajectory u associated to the j th linear
mode which satisfies maxt∈R uN (t) = d, i.e. the contacts are at most of grazing type. An essential
tool to investigate the dynamics near a linear grazing orbit is the First Return Map [2]. This map
is well defined onHP .
Definition 2.3 — First Return Map. Suppose W ∈ HP and T = T(W) > 0 is the First Return
Time toHP of the orbit emanating from W. The map which associates points inHP to their first
return images toHP is called the First Return Map F . To be more precise F : HP →HP with

F (W) =
{

R(T(W))SW if W ∈ H− ∪H0
G (2.19a)

R(s(U(τ(W)))U(τ(W)) if W ∈ H0
S (2.19b)

where the matrix S describes the impact law; U(t) = [u(t), Ûu(t)] is the state of the system at the
time t; τ and s are the duration of the sticking phase and of the free-flight phase, respectively.

Let us investigate formula (2.19b). If there is a sticking phase, i.e. W ∈ H0
S , then τ = τ(W) is the

sticking duration and s = T(W) − τ(W) denotes the duration of the free-flight after the sticking
phase until the next contact. The state of the system at the end of the sticking phase is called
U(τ(W)). If W ∈ H− ∪H0

G, i.e. there is no sticking at t = 0, then τ is assumed to be 0, hence,
s ≡ T , and U(τ(W)) ≡ W. In other words, formula (2.19b) is valid for all the cases, with or
without sticking. An explicit formula of τ for a two-degree-of-freedom system is exposed in [8].

In (2.16), the square-root singularity shows that periodic orbits with grazing contacts yield
intricate dynamics such as instability of the periodic orbits, grazing bifurcations [6, 10]. This
square-root term may produce the so-called square-root dynamics via the coefficients Ck as
defined below. In the particular framework of Section 5, instability of the linear grazing orbits is
expected. However, this is not true in the one-dof case, see Appendix A.

Definition 2.4 — Square-root dynamics coefficients. Suppose that W0 ∈ HP generates an
orbit with the first contact at T0 of grazing type, i.e. uN (T0) = d and Ûu−N (T0) = 0. Under
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Assumptions 2.1, of no internal resonance, and 2.3, for each k ∈ {1, . . . , 2N} such that
∂Wk
Φ(T0,W0) , 0, the square-root dynamics coefficient Ck is defined by

Ck =

{ √
|γk |e>k P Ûq(T0) if 1 ≤ k < N , (2.20a)

−
√
|γk |e>k−NMP Ω2 q(T0) if N < k ≤ 2N (2.20b)

where [q, Ûq] are the modal coordinates defined by the transformation u = Pq.

The square-root dynamics is then defined as follows.

Definition 2.5 — Square-root dynamics. System (1.1) is said to feature square-root dynamics
near a grazing periodic solution associated to the initial condition W0 if there exists at least a
coefficient Ck , 1 ≤ k ≤ 2N , k , N which does not vanish.

Near a linear grazing orbit, the square-root dynamics is shown to exist under a generic condition
as stated in Theorem 2.5 proven in Section 6.2.

Theorem 2.5 — Square-root dynamics near linear grazing orbits. Consider the j th linear
grazing orbit of (1.1) associated to the initial state W0 ∈ HP and Tj , its period. Assumptions 2.1,
2.2 and 2.3 hold. If there exists an index N < i ≤ 2N such that ∂WiuN (Tj,W0) , 0 and Pi j , 0,
then there exists a square-root dynamics near the j th linear grazing orbit.

Instead, if Ck = 0 for all k then the square-root dynamics is not activated and the dynamics near
the periodic orbit is similar to that of smooth dynamics. In other words, the FRM annihilates the
singularity in the same way as squaring removes a square-root singularity.
Theorem 2.5 gives a hint on how to explore the instability of the linear grazing orbits. For

instance, if the dynamics starts in Bk and stays in Bk , then it follows the framework of Section 5
where the instability of the associated First Return Map fixed-point is explained.

The condition Pi j , 0 comes from the formula of Ci with N < i ≤ 2N . Despite the fact
that Pi j , 0 is a generic property, it might be violated for a chain of masses and N > 2. Hence, in
order to have such a Ci , 0, a condition on Pi j is required. When N = 2 (see [8]), it is shown that
Pi j , 0 for all i, j = 1, 2 and there is always a square-root dynamics near the linear grazing orbits.

3. Domain of definition of the First Return Map

This section details the Poincaré section in a comprehensive manner.

3.1. Contact times. The contact times are defined and then categorized. In particular, if a
sticking phase starts, then it is of finite duration. Moreover, the total energy of the system is
conserved during the sticking phase. These features will be used to show that there is a countably
infinite number of closing contacts after a sticking phase, further details are found in Section 3.2.

Definition 3.1 — Contact time. Assume that u(t) is the solution to system (1.1); T is a contact
time if uN (T) = d and there exists δ > 0 such that uN (T − t) < d for all 0 < t < δ.

In other words, a contact time T is the time when mass N touches the rigid obstacle after a
free-flight phase. Invoking [1], the contact time is well defined in the conservative case which is
without chattering.

Contact times are classified into three categories:
(1) It is a contact with non-zero pre-velocity if uN (T) = d and Ûu−N (T) > 0.
(2) It is a contact with zero pre-velocity if uN (T) = d and Ûu−N (T) = 0, with two possibilities:

(a) a grazing contact if the mass leaves the obstacle right after the contact time;
(b) a sticking contact if the mass stays in contact with the obstacle.
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In this paper, the term “closing contact” indifferently refers to either an impulsive impact or a
grazing contact or the beginning of a sticking contact phase. The sticking system dictates the
dynamics during the sticking phase [2]. Since the last mass lies against the obstacle, the system
“loses” one degree-of-freedom. The sticking system complemented by the initial data at the
beginning of a sticking phase is explicitly derived as

MÜu +Ku = −dl>N (3.1)
mN ÜuN = 0, uN (0) = d, ÛuN (0) = 0 (3.2)

where M and K are the mass and stiffness matrix after removing the last row and last column,
u is a N − 1 vector solution to the sticking dynamics, l>N is the last column of K where the last
entry kNN has been removed.

Proposition 2.1 can now be proven.

Proof. Let us proceed by contradiction and assume that the sticking phase never ends. The new
equilibrium ue of the sticking system satisfies

Kue = −dl>N or ue = −dK−1l>N . (3.3)

During the sticking phase, the last equation reduces to mN ÜuN + lNu + kNN d = R(t), or mN ÜuN =

−F(t) + R(t), with
F(t) = lNu(t) + kNN d ≤ 0. (3.4)

It should be understood that F(t) cannot be positive during the sticking phase. Otherwise, there
exists t0 during the sticking phase such that F(t0) > 0. By continuity of the function F, it is
strictly positive on an open interval including t0. By integrating the acceleration, uN (t0) < d
which contradicts that uN (t) = d during the sticking phase.

The solution u of the sticking system is quasi-periodic and continuous and its mean value 〈u〉
is the equilibrium ue. Therefore, the mean value of the scalar quasi-periodic function F is
〈F〉 = lN 〈u〉 + kNN d = lNue + kNN d. Since F is continuous, there exits t0 > 0 such that
F(t0) = 〈F〉 = −d lNK−1l>N + kNN d = dX>KX with X = [K−1l>N,−1]>. F(t0) is positive because
of the condition d > 0 and the positive definiteness of K, which contradicts (3.4). Therefore, the
sticking duration is finite. �

The conservation of energy during the sticking phase is not necessarily obvious since the
sticking system is a different system.

Lemma 3.1 — Energy during sticking phase. The solution to (3.1)-(3.2) preserves the total
energy E defined in (1.1d).

Proof. Assume that t = 0 is the beginning of a sticking phase and t = τ, the end. During
this sticking phase on the interval [0 ; τ], the governing equations become MÜu +Ku = 0, with
u = u − ue where ue = −dK−1 l>N is the new equilibrium of the sticking system. This sticking
system conserves the energy around the new equilibrium ue:

E(t) = Ûu>(t)M Ûu(t) + u>(t)Ku(t) = E(0). (3.5)

Moreover, since u = u + ue, an easy manipulation yields

E(t) = Ûu>(t)M Ûu(t) + u>(t)Ku(t) = E(t) + u>e Kue + 2u>(t)Kue. (3.6)

In particular,

E(0) = E(0) + u>e Kue + 2u>(0)Kue (3.7)
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and the total energy of the system can be now calculated. Since Ûu is continuous along a sticking
phase, the exponents ± are dropped.

E(t) = Ûu>(t)M Ûu(t) + u>(t)Ku(t)
= Ûu>(t)M Ûu(t) + u>(t)Ku(t) + kNNu2

N (t) + 2uN (t)lNu(t)
= E(t) + kNN d2 + 2dlNu(t)
= E(t) + u>e Kue + 2u>(t)Kue + kNN d2 + 2dlN (u(t) + ue)
= E(t) + u>e Kue − 2du>(t)l>N + kNN d2 + 2dlN (u(t) + ue)
= E(t) + u>e Kue + kNN d2 + 2dlNue (3.8)

Similarly,
E(0) = E(0) + kNN d2 + 2dlNu(0)

= E(0) + u>e Kue + 2u>(0)Kue + kNN d2 + 2dlNu(0)
= E(0) + u>e Kue + kNN d2 + 2dlNue (3.9)

It follows that E(t) = E(0), i.e. the total energy of the system is constant during the sticking
phase. �

3.2. Zero, one or infinity? This section discusses the number of closing contacts along any
trajectory. The main results are stated in Theorem 2.2. For the system of interest, the number
of closing contacts can only be either 0, 1 or countably infinite. As a consequence, if there are
at least two closing contacts, then mass N will interact with the obstacle infinitely many times.
Accordingly, it is strictly impossible to enjoy a solution with exactly 2, 3, . . . ,m closing contacts.

The proof of Theorem 2.2 is mainly grounded on the relative position of mass N with the wall.
In case 1 of the theorem, system (1.1) is linear. In case 2 with only one grazing contact, the
nonlinear contact condition with zero velocity does not affect the solution of the linear system.
Between every two consecutive closing contacts, say ]t j ; t j+1[, system (1.1a) with R(t) = 0 is
linear. There is a unique solution associated with the initial data at time t j . Hence, uN is a
quasi-periodic trigonometric polynomial on every interval ]t j ; t j+1[. The proof is divided into
two steps. We first consider the quasi-periodic function ϕ defined on R which coincides with uN
on a free-flight interval. The properties of almost periodic functions dictate the behavior of ϕ [4].
Then, the results obtained for ϕ are extended to its restriction u(t). The first step is contained in
the following lemma.

Lemma 3.2 — Maximum of a quasi-periodic function. Let ϕ be a quasi-periodic function
defined on R such that

ϕ(t) =
N∑

j=1
(c j cosω j t + s j sinω j t) and ϕ(0) =

N∑
j=1

c j = d > 0 (3.10)

If (ω1, . . . , ωN ) are Z-independent, then two possibilities arise:
(1) If s j = 0 and c j ≥ 0 for all j = 1, . . . , N then supR ϕ = d. Moreover, if ϕ is not periodic,

i.e there exist at least two coefficients c j and ck with j , k such that c j > 0 and ck > 0,
then ϕ(t) < d for all t , 0 and ϕ(t) = d for only t = 0.

(2) Otherwise, if there exists at least one ` ∈ {1, . . . , N} such that s` , 0 or c` < 0 then
supR ϕ > d.

The latter is equivalent to saying that the converse of the first case is true. In the first case,
ϕ(t) = ∑N

j=1 c j cosω j t and the Z-independence of {ω j} implies that ϕ is periodic if and only if
there exists a unique c j > 0 with ck = 0 for all k , j. Then, the set {t : ϕ(t) = d} is the infinite
set {kTj, k ∈ Z} where Tj = 2π/ω j . This corresponds to a solution with infinitely many grazing
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contacts. Discarding the periodic case, the value of ϕ can be very close to d but will never
equal it again in the past and in the future. This argument proves the case when the response of
system (1.1) has only one grazing contact and never reaches the obstacle again.

Later, it is proven that the function ϕ with a supremum strictly greater than d corresponds to a
solution with infinitely many closing contacts. Now, Lemma 3.2 is proven.

Proof.
(1) Consider s j = 0 and c j ≥ 0 for all j = 1, . . . , N , then ϕ(t) = ∑N

j=1 c j cosω j t and
supR ϕ =

∑N
j=1 |c j |=

∑N
j=1 c j = d. If ∃t > 0 such that ϕ(t) = d, i.e.

∑N
j=1 c j cosω j t = d,

then
∑N

j=1 c j(1 − cosω j t) = 0 where c j(1 − cosω j t) ≥ 0 for all j = 1, . . . , N . Hence,
cosω j t = 1 for all j = 1, . . . , N . Thus, ω j t = k j2π, k ∈ Z, which contradicts the
Z-independence assumption. Hence, ϕ is always smaller than d for t > 0.

(2) Otherwise, if there exists ` ∈ {1, . . . , N} such that s` , 0, or c` < 0, then supR ϕ =∑N
j=1

√
c2

j + s2
j ≥ max

(∑N
j=1

√
c2

j + s2
j ,
∑N

j=1 |c j |
)
>

∑N
j=1 c j = d [4]. Hence, there exists

t > 0 such that ϕ(t) = d. �

Now, using Lemma 3.2, Theorem 2.2 is proven.

Proof. When R(t) = 0, the solution to (1.1a) for all t ∈ R reads

Φ(t) = P cos (tΩ)P−1u(0) + PΩ−1 sin (tΩ)P−1 Ûu(0)

=

N∑
j=1
(c j cosω j t + s j sinω j t)Pe j . (3.11)

where Pe j , j = 1, . . . , N are eigenvectors corresponding to eigenvalues ω2
j of M−1K; cos(tΩ) ≡

diag(cosω j t) j=1,...,N and sin(tΩ) ≡ diag(sinω j t) j=1,...,N are used as notations. We can choosePe j
such that PN j = 1, j = 1, . . . , N . It is clear that u(t) = Φ(t) as long as uN (t) < d.
Henceforth, consider the solution u(t) to the vibro-impact system (1.1). If uN (t) < d, for all

t ≥ 0, then the solution does not impact the wall. Otherwise, since the system is autonomous, the
impacting time is chosen to be t = 0, i.e. uN (0) = d. Based on the velocity of the N th mass at the
contact time t = 0, two possibilities are considered:

Strictly positive pre-contact velocity: By assumption, Ûu−N (0) > 0 which implies Ûu+N (0) <
0. Let ϕ be a function defined on R such that ϕ(t) = uN (t) on {t, s ∈ ]0 ; t], uN (s) < d}.
It follows that ϕ(0) = d and Ûϕ(0) < 0, thus there exists τ > 0 such that ϕ(t) > d for
t ∈ ]−τ ; 0[. Therefore, supR− ϕ ≥ sup]−τ ;0[ ϕ > d. For an almost periodic function ϕ,
the supremum taken on R− is also the one taken on R+ [4], this yields supR+ ϕ > d. By
Lemma 3.2, the first instant t1 > 0 such that ϕ(t1) = d exists, i.e. mass N will come back
to the obstacle at time t1.

Vanishing pre-contact velocity: By assumption, Ûu−N (0) = 0 which implies Ûu+N (0) = 0 as
well as

∑N
j=1 c j = d and

∑N
j=1 s jω j = 0. Let ϕ be the function defined on R such that

ϕ(t) = uN (t) on {t, s ∈ ]0 ; t], uN (s) < d}. If s j = 0 and c j ≥ 0 for all j = 1, . . . , N , by
Lemma 3.2, it follows that supR ϕ = d and ϕ(t) < d for all t > 0. Thus, the solution has
only one grazing contact: it is a linear solution.

Otherwise, Lemma 3.2 shows that supR ϕ > d. It follows that there is a sticking phase
from 0 to τ, i.e. uN (t) = d for all t ∈ [0 ; τ] and uN (t) < d for τ < t < τ + δ, where δ > 0.
Assume that w is the solution to (1.1a) after the sticking interval with new initial data at
t = τ. Thus, wN reads

wN (t) =
N∑

j=1
(c j cos(ω j(t − τ)) + s j sin(ω j(t − τ))), t ≥ τ (3.12)
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Let ϕ be the function defined on R satisfying ϕ(t) = wN (t) on {t, s ∈ ]0 ; t], wN (s) < d}.
Consider the solution u to the vibro-impact system (1.1) just before and just after the
sticking phase. Its component uN (t) can be written as

uN (t) =


ϕ(t) for t . 0
d for t ∈ [0 ; τ]
ϕ(t) for t & τ

(3.13)

We then show that sup[τ ;∞[ ϕ > d. Else, supR ϕ = d, then ϕ(t) < d, for all t > τ and
ϕ(τ) = d. By reversibility (e = 1) and uniqueness arguments, the solution to (1.1) never
activates the contact condition and there is only one grazing contact at τ. This is in
contradiction with the fact that the solution involves a sticking phase. As a consequence,
supR ϕ > d. Hence, there exists t > τ such that ϕ(t) = d.

The same procedure can be repeated infinitely many times in both cases, thus the set of closing
contacts is countably infinite. �

3.3. Poincaré section. This section deals with the construction of the Poincaré section on which
the First Return Map is well-defined. Consider an orbit [u, Ûu] ⊂ R2N satisfying (1.1). The First
Return Map (also called Poincaré map) is used to study the dynamics in a neighborhood of such
an orbit. This map is defined on a Poincaré section which is classically a (2N − 1)-dimensional
manifold in R2N that contains a point U(t) = [u(t), Ûu(t)] of the previous orbit and is transverse to
the orbit at U(t). In the current work, the transversality is lost onH0 since an orbit starting onH0

may not intersectH again. Hence, an important task is to eliminate the set of data such that the
associated orbit does not intersectHP again. This is achieved by investigating the structure of
H0. Via Theorem 2.2, there are two possibilities after the grazing contact: the orbit never comes
in contact again (H0

1 ) or the orbit comes in contact infinitely many times (H0∞). The explicit
description ofH0

1 is given in the proposition below.

Proposition 3.3 — H0
1 and solutions with only one grazing contact. The set H0

1 of initial
data onH such that the associated orbits have only one contact is the subset

{[u>, Ûu>]> ∈ R2N, uN = d, Ûuk = 0, k = 1, . . . , N} (3.14)

of a (N − 1)-dimensional affine subspace such that the N − 1 components u1, u2, . . . , uN−1 satisfy
N inequalities:

PNk

N−1∑
j=1

Bk ju j ≥ −PNk BkN d, ∀k = 1, . . . , N (3.15)

with at least two of which are strict inequalities and where B = (Bi j)Ni, j=1 denotes P−1.

Note thatH0
1 can be empty.

Proof. The solution to (1.1) with a unique grazing contact is analytic and uN (t) has a closed
form-expression:

uN (t) = e>N (P cos(tΩ)P−1u(0) + PΩ−1 sin(tΩ)P−1 Ûu(0))

=

N∑
k=1
(ck cosωk t + sk sinωk t) (3.16)

where ck = PNke>k P−1u(0) and sk = PNkω
−1
k e>k P−1 Ûu(0), k = 1, . . . , N . Since [u>, Ûu>]> belongs

to H0
1 , this corresponds to case 1 of Lemma 3.2, thus uN (0) = d and ÛuN (0) = 0, and the
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coefficients (ck, sk) satisfy{ck ≥ 0, ∀k = 1, . . . , N, ∃` , m : c` > 0, cm > 0
sk = 0, ∀k = 1, . . . , N . (3.17)

This gives{
PNke>k P−1u(0) ≥ 0, ∀k = 1, . . . , N, ∃` , m : c` > 0, cm > 0

PNkω
−1
k e>k P−1 Ûu(0) = 0, ∀k = 1, . . . , N .

(3.18)

The second condition yields a linear system P−1 Ûu(0) = 0, since det(P−1) , 0, it follows that
Ûu(0) = 0 and u1, . . . , uN−1 satisfy the inequalities (3.18). This gives the explicit formula ofH0

1
stated in Proposition 3.3. �

An immediate consequence of Proposition 3.3 is that most orbits which belong to H0 are
inH0∞. To be precise, the set of initial data such that the associated orbits belong toH0

1 has a
(2N − 2)-dimensional zero measure inH0. As a consequence, the Poincaré section chosen in
Definition 2.1 is reasonable.

Corollary 3.1 — Domain of definition of the First Return Map. The maximal subset of H
where the First Return Map F is well-defined isHP = H− ∪H0∞.

Consequences of Proposition 3.3 are now stated.

Corollary 3.2. Orbits with a sticking phase exhibit an infinite number of closing contacts.

Proof. An orbit including a sticking phase intersectsH0. As proven in Proposition 3.3, the initial
data must be in H0∞ since H0

1 only involves the data on H such that the orbits have a unique
grazing contact but no sticking phase. Hence, it belongs to the set with an infinite number of
closing contacts. �

Corollary 3.3 — Infinite number of closing contacts. If the orbit intersects H− then it
intersectsH− infinitely many times in the future and in the past.
Proof. By Theorem 2.2, an orbit corresponding to the initial data inH− experiences at least one
impact at t = 0. This eliminates the possibilities of case 1 and case 2 in the theorem. Hence,
the orbit belongs to the third category, which means that there will be an infinite number of
closing contacts. However, if the set of closing contacts involves only grazing contacts in the
future, the system becomes linear with uN (t) ≤ d for all t > 0. Let ϕ be a function defined
on R with ϕ(t) = uN (t), it follows that supR ϕ = supt>0 ϕ = d. This contradicts the fact that the
supremum of ϕ must be greater than d since there is at least one impact at t = 0. The process can
be repeated to get another closing contact and so on. �

The subsetH−− ofH− containing all the initial data generating orbits with impacts only seems
to be dense inH−.
About the setH0

1 for two-dof systems.

Corollary 3.4—H0
1 for a two-dof system. Consider N = 2 in (1.1), then, from Proposition 3.3,

H0
1 is defined as

H0
1 = {[u>, Ûu>]> ∈ R4 : P2k Bk1u1 > −P2k Bk2d, k = 1, 2, u2 = d, Ûu1 = Ûu2 = 0}
= Du1 × {d} × {0} × {0} (3.19)

where Du1 is the subset of R in which u1 satisfies the two strict inequalities:

P21B11u1 > −P21B12d and P22B21u1 > −P22B22d. (3.20)
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Therefore, the set Du1 can be either empty or an open interval of the form (b,∞), (−∞, a), or
(a, b), with a = min{α1, α2}, b = max{α1, α2}, where α1 = −dB22/B21 and α2 = −dB12/B11.

Remark 3.1 — Linear gazing modes of a two-dof system and the boundary of H0
1 . The

scalars α1 and α2 are the distinct initial values of u1 corresponding to the first and the second
linear grazing orbit.

The setH0
1 is an interval in the two-dimensional spaceH0. This means that the set of initial data

generating orbits that have only one grazing contact is a very small subset of all the initial data
such that orbits contain zero velocity closing contacts.

4. Implicit function theorem and power-root singularity

This section is divided into two parts. First, the square-root singularity is investigated. This
singularity induces the square-root dynamics near the linear grazing orbits as stated later in
Section 6. A general power-root singularity is then unveiled.

4.1. Square-root singularity. The First Return Time T is implicitly defined in the equation
f (T,W) = 0 reflecting the equality uN (T) = d. Unfortunately, if the contact atT0 is of grazing type,
∂t f (T0,W0) vanishes and hence the implicit function theorem does not apply in a straightforward
fashion. Indeed, the square-root singularity is expected at the intersection of the hypersurfaces
f = 0 and ∂t f = 0. The implicit function theorem is then exploited on a variable other
than t. We state the results for the function f defined in a two-dimensional space as well as a
m + 2-dimensional space with m ≥ 1.

4.1.1. In two dimensions. Let f be a function of two variables x and y, where the relation of x
with respect to y is implicitly given by f (x, y) = 0. Let us write x locally as a function of y
when f satisfies some unusual conditions as follows.

Theorem 4.1—Square-root singularity in two dimensions. Suppose that f (x, y) ∈ C3(R2,R)
satisfies the following conditions at (x0, y0):

(1) f (x0, y0) = 0,
(2) ∂x f (x0, y0) = 0,
(3) ∂2

x f (x0, y0) , 0,
(4) ∂y f (x0, y0) , 0.

Denote the ratio 2γ = −∂2
x f (x0, y0)/∂y f (x0, y0) , 0 and sγ = sign γ. There exist two neigh-

borhoods I and J of y0 and x0, respectively, as well as a function ψ ∈ C3(Iγ, J) defined on the
subinterval

Iγ = {y ∈ I, sγ(y − y0) ≥ 0} (4.1)
such that the set {(x, y) ∈ I × J, f (x, y) = 0} is formed by the following two branches near
(x0, y0):

x = x0 + ψ(
√

sγ(y − y0)) or x = x0 + ψ(−
√

sγ(y − y0)). (4.2)

Moreover, ψ satisfies ψ(0) = 0 and Ûψ(0) = 1/
√
|γ | , 0.

An illustration of this theorem is given in Figure 3. Note that ψ is not defined on the whole open
interval I but only on half of it, determined by the sign of γ.
Proof. Without loss of generality, assume that (x0, y0) is at the origin. If not, consider the
new variables x∗ = x − x0 and y∗ = y − y0 so that at the point (0, 0), the function f ∗(x∗, y∗) =
f (x0 + x∗, y0 + y∗) satisfies the conditions of the theorem. The conclusions are then modified
accordingly.
The implicit function theorem ensures the existence of the neighborhoods Vx of x0 = 0 and

Vy of y0 = 0, and a unique function y = ϕ(x) for x ∈ Vx and y ∈ Vy such that f (x, ϕ(x)) = 0 for
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x = ψ(
√
|y − y0 |)

x = ψ(−
√
|y − y0 |)

x0

y0

y

x

Figure 3. Two branches on the right of the line y = y0 when γ > 0.

x ∈ Vx , ϕ(0) = 0, Ûϕ(0) = −∂x f (0, 0)/∂y f (0, 0) = 0 and Üϕ(0) = −∂2
x f (0, 0)/∂y f (0, 0) = 2γ , 0.

Moreover, ϕ is as smooth as f . The Taylor expansion of ϕ with an integral remainder at 0 is

y = ϕ(x) = x2r(x) with r(x) =
∫ 1

0
(1 − s) Üϕ(sx)ds (4.3)

where r ∈ C1(R,R) and r(0) = Üϕ(0)/2 = γ , 0. The expression of x with respect to y depends
on the sign of Üϕ(0) (or the sign of γ) as follows:

If γ > 0: then r(0) > 0 and the continuity of r implies that r(x) > 0 in some neighborhood
of 0. On that neighborhood, let us define the continuously differentiable function
φ(x) = x

√
r(x): at x = 0, φ has a nonzero derivative since r(0) , 0. Through the

inverse function theorem, there exists an inverse function φ−1 in some neighborhood I of
φ(0) = 0. From y = φ2(x), it is required that y ≥ 0. Accordingly, Iγ is simply a right
neighborhood of 0. Hence, for y ∈ Iγ, x = φ−1(√y) or x = φ−1(−√y).

If γ < 0: then y = −φ2(x) with φ(x) = x
√
−r(x). A similar proof holds for y defined on Iγ

which is now a left neighborhood of 0. The conclusion is obtained by replacing √y by√−y and the function ψ satisfies Ûψ(0) = Ûφ−1(0) = 1/√−γ.
In both cases, by denoting ψ = φ−1, we have shown that there exists a function ψ defined in a
neighborhood Iγ of 0 satisfying ψ(0) = 0 and Ûψ(0) = Ûφ−1(0) = 1/

√
|γ | such that x = ψ(√sγy) or

x = ψ(−√sγy). This concludes the proof. �

Remark 4.1. Another way to express the square-root singularity of x is x =
√
β(y). However,

with the present expression, say x = λ(√y), we have a better regularity of λ. For instance, if
λ(y) = y+ y2, y ∈ R+, then λ ∈ C∞(R+). However, β(y) = λ2(√y) = (√y+ y)2 = y+2y√y+ y2

is not smooth: β < C∞, β ∈ C1.5.

4.1.2. In m + 2 dimensions (m ≥ 1). Consider a general function f of m + 2 variables with a
non-zero gradient.

Theorem 4.2 — Square-root singularity in m + 2 dimensions. Consider the smooth function
f (x, y, z) : R × R × Rm → R such that at point X0 = (x0, y0, z0), it satisfies the following
conditions:

(1) f (X0) = 0,
(2) ∂x f (X0) = 0,
(3) ∂2

x f (X0) , 0,
(4) ∂y f (X0) , 0.

Denote 2γ = −∂2
x f (X0)/∂y f (X0) , 0 and sγ = sign γ. Then, there exist three neighborhoods

Vx0 , Vy0 , and Vz0 of x0, y0 and z0 respectively, and two smooth scalar functions η : Vz0 → Vx0 and
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α : Vz0 → Vy0 satisfying η(z0) = x0 and α(z0) = y0 such that the set

Sc = {(x, y, z) ∈ R × R × Rm, f (x, y, z) = 0 and ∂x f (x, y, z) = 0} (4.4)

is parameterized by Sc ∩ Ω = {(η(z), α(z), z), z ∈ Vz0} where Ω = Vx0 × Vy0 × Vz0 . Let Bγ be a

(α(z), η(z), z)

z

x

y

z

α(z)

η(z)

Figure 4. Square-root singularity in dimension 3. Two graphs of x(y, z) are shown in
red and blue. The square-root singularity arises along the curve y = α(z) in purple.

subset of Vy0 × Vz0 where Bγ = {(y, z) ∈ Vy0 × Vz0, sγ(y − α(z)) ≥ 0}. There exists a smooth
scalar function ψ defined on Bγ such that there are two graphs:

x = η(z) + ψ(
√

sγ(y − α(z)), z), (y, z) ∈ Bγ, (4.5)

and

x = η(z) + ψ(−
√

sγ(y − α(z)), z), (y, z) ∈ Bγ . (4.6)

In particular, ψ(0, z0) = 0 and ∂yψ(0, z0) = 1/
√
|γ |.

An illustration of the square-root singularity in three dimensions is depicted in Figure 4. The
function ψ is not defined on the whole neighborhood Vy0 × Vz0 but only on Bγ. The subset Bγ in
the theorem gives the one-sided condition from which the square-root singularity arises. When
the sign of γ is positive or negative, respectively, Bγ is simply a region above or below the
hypersurface y = α(z) and includes it. A more general result when condition (3) (in Theorem 4.2)
in the theorem does not hold is discussed in Remark 4.2.

Proof. Let Sc be the manifold of m dimensions which is the intersection of the two hypersurfaces
of dimension m + 1 near (x0, y0, z0), Sc = S0 ∩ S1 where S0 = {(x, y, z) ∈ Ω, f (x, y, z) = 0} and
S1 = {(x, y, z) ∈ Ω,G(x, y, z) = 0}. Moreover, it can be parameterized in a neighborhood of z by
two parametric functions η and α as follows.
From (1) and (4) (in Theorem 4.2), by the implicit function theorem, there exist two

neighborhoods V of (x0, z0) and W of y0, and a function ϕ : V → W , (x, z) 7→ y = ϕ(x, z)
such that f (x, ϕ(x, z), z) = 0 for (x, z) ∈ V , ϕ(x0, z0) = y0. In particular, ∂xϕ(x0, z0) = 0 and
∂2

xϕ(x0, z0) = −∂2
x f (x0, y0, z0)/∂y f (x0, y0, z0) = 2γ , 0. Moreover, ϕ inherits the smoothness

of f .
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For (x, z) ∈ V , once again we apply the implicit function theorem for the function G(x, z) =
∂x f (x, ϕ(x, z), z) which satisfies:

G(x0, z0) = ∂x f (x0, y0, z0) = 0

∂xG(x0, z0) = ∂2
x f (x0, y0, z0) + ∂y∂x f (x0, y0, z0)∂xϕ(x0, z0) = ∂2

x f (x0, a0, z0) , 0.

This guarantees the existence of the neighborhoods Bz0 of z0 and Bx0 of x0 such that there is
a smooth function η : Bz0 → Bx0 , z 7→ x = η(z) satisfying x0 = η(z0), G(η(z), z) = 0 for all
z ∈ Bz0 . It follows that ∂x f (η(z), α(z), z) = 0 for all z ∈ Bz0 where α(z) := ϕ(η(z), z) belongs to
a neighborhood of y0, denoted Vy0 . In particular, α(z0) = ϕ(x0, z0) = y0. As a consequence, the
local parameterization

Sc = {(x, y, z) = (η(z), α(z), z), z ∈ Bz0} (4.7)

exists. This parameterization is also found by using the implicit function theorem for the vector
function H = ( f , ∂x f ) with the invertible matrix

Dx,yH(X0) =
[
∂x f ∂y f
∂2

x f ∂y∂x f

]
(X0) =

[
0 , 0
, 0 ∂y∂x f (X0)

]
. (4.8)

We will now show that the square-root singularity arises along the hypersurface y = α(z). For
each fixed z ∈ Bz0 , the Taylor expansion with an integral remainder of ϕ with respect to x near
η(z) reads

ϕ(x, z) = ϕ(η(z), z) + ∂xϕ(η(z), z)(x − η(z)) (4.9)

+ (x − η(z))2
∫ 1

0
(1 − s)∂2

xϕ(s(x − η(z)) + η(z), z)ds. (4.10)

Since y = ϕ(x, z), ∂xϕ(η(z), z) = 0, ϕ(η(z), z) = α(z), this yields
y − α(z) = (x − η(z))2r(x − η(z), z) (4.11)

where r(x−η(z), z) is a smooth function with respect to x and z, satisfying r(0, z) = ∂2
xϕ(η(z), z)/2.

The remainder r(x − η(z), z) has the sign of γ for all z in a neighborhood of z0. Consider the
function γ(z) = r(0, z), γ(z): it is as smooth as r and satisfies γ(z0) = ∂2

xϕ(x0, z0)/2 = γ , 0.
Without loss of generality, assume that γ > 0. By continuity, γ(z) > 0 in some neighborhood of
z0, say Vz0 . It follows that r(0, z) > 0 for z ∈ Vz0 . Similarly, by the continuity of r with respect to
x, r(x, z) > 0 for all x in a neighborhood of η(z).
Let Bγ ⊂ Vy0 × Vz0 be the region adjacent to and including the hypersurface y = α(z) such

that Bγ = {(y, z) ∈ Vy0 × Vz0, γ(y − α(z)) ≥ 0} and denote by φ the function φ(x − η(z), z) =
(x − η(z))

√
r(x − η(z), z), Equation (4.11) then becomes

y − α(z) = (φ(x − η(z), z))2. (4.12)

This follows that y−α(z) ≥ 0. The subset Bγ is then a region above and including the hypersurface
y = α(z). Since φ satisfies φ(0, z) = 0, ∂xφ(0, z) =

√
r(0, z) =

√
γ(z) , 0, there exists an inverse

function φ−1 in some neighborhood of 0. The inverse function theorem is used uniformly with
respect to the parameter z and eventually reduces the neighborhood of z0 and x0. Therefore,
for (y, z) ∈ Bγ , Equation (4.12) leads to φ(x−η(z), z) =

√
y − α(z) or φ(x−η(z), z) = −

√
y − α(z).

This gives x = η(z) + φ−1(
√
y − α(z), z) or x = η(z) + φ−1(−

√
y − α(z), z). In particular,

φ−1(0, z) = 0 and ∂yφ−1(0, z) = 1/
√
γ(z).

Similarly, for the case γ < 0, r(x − η(z), z) < 0 for x in some neighborhood of η(z), it follows
that y − α(z) = −φ2(x − η(z), z), where φ(x − η(z), z) = (x − η(z))

√
−r(x − η(z), z). The subset

Bγ is now the region below and including the hypersurface y = α(z). The same conclusions hold
with a change of

√
y − α(z) in

√
α(z) − y and Ûφ−1(0, z) = 1/

√
−γ(z).
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Consequently, by denoting ψ = φ−1, we have shown that ψ is defined in Bγ and

x = η(z) + ψ(
√

sγ(y − α(z)), z) or x = η(z) + ψ(−
√

sγ(y − α(z)), z). (4.13)

In particular, ψ(0, z0) = 0, ∂yψ(0, z0) = 1/
√
γ(z0) = 1/

√
|γ |. This ends the proof. �

4.2. Power-root singularity. The square-root singularity shown in Theorem 4.2 stems from the
non-vanishing second derivative ∂2

x f (x0, y0, z0). If it vanishes, then higher order derivatives of f
must be considered. The following remark gives analogous conditions from which we define
power-root singularity.

Remark 4.2. Let n ≤ m + 1 and f (x, y, z) : R × R × Rm → R be a smooth function, such that at
point X0 = (x0, y0, z0), it satisfies the following conditions:

(1) f (X0) = ∂x f (X0) = ∂2
x f (X0) = . . . = ∂n−1

xn−1 f (X0) = 0, ∂n
xn f (X0) , 0, n ≥ 3,

(2) ∂y f (X0) , 0,
(3) linear independence of vectors ∇(x,y,z)∂`x f (x0, y0, z0), 0 ≤ ` < n,

then a nth-root singularity emerges.

Let us explain this remark in details. Denote γ = − f (n)(X0)/n!∂y f (X0) , 0 and sγ = sign γ.
There exist three neighborhoods Vx0 , Vy0 , and Vz0 of x0, y0 and z0 respectively, and smooth scalar
functions η : Vz0 → Vx0 , α : Vz0 → Vy0 such that the critical set

Sc = {(x, y, z) ∈ R × R × Rm, ∂`x` f (x, y, z) = 0, ∀` = 0, . . . , n − 1} (4.14)

can be parametrized under the classical assumption (3). The set Sc has dimension m + 2 − n.
Therefore the functions η and α do not depend on all components of z. Two cases arise when
solving the equation f (x, y, z) = 0 on a small box Ω = Vx0 × Vy0 × Vz0 :

(1) if n = 2`, ` ∈ N: let Bγ be subset of Vy0 × Vz0 defined by

Bγ = {(y, z) ∈ Vy0 × Vz0, γ(y − α(z)) ≥ 0}. (4.15)

Then there exists a smooth real function ψ such that ∀z ∈ Bγ there are only two branches
in Ω:

x = η(z) + ψ(±(sγ(y − α(z)))
1
n , z), (4.16)

(2) Otherwise, if n = 2` + 1, ` ∈ N, then there exist an interval I containing α(z), and a
smooth function ψ defined on I × Vz0 such that

x = η(z) + ψ((y − α(z)) 1
n , z). (4.17)

In both cases, ψ is not degenerate at (0, z0) with respect to the first variable: ψ(0, z0) = 0 and
∂yψ(0, z0) = 1/γ 1

n , 0.
The existence of a cube-root or fourth-root singularity is studied in [3]. In the present work,

the so-called power-root singularity is defined for any positive integer n.

Definition 4.1 — Power-root singularity. A function F defined on a subset of Rm is said to
have an nth-root singularity at 0 if there exists n > 0 such that, by a change of variable if needed,
F can be written as

F(X) = f (X
1
n

1 , X2, . . . , Xm) (4.18)

where f is a smooth function. n is called the singularity exponent.

Using this definition, Theorem 4.2 states the conditions needed for a power-root singularity. This
singularity is associated to the multiplicity of a root of a function whose definition is recalled
below.
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Definition 4.2 —Multiplicity. Given a smooth real function f , a positive integer n is said to be
the multiplicity of a root r of f , denoted by mult( f )(r) = n, if it satisfies

f (r) = Ûf (r) = . . . = f (n−1)(r) = 0 and f (n)(r) , 0 (4.19)

By convention, we denote mult( f )(r) = 0 when f (r) , 0. Before stating the main results of this
section, recall that M = diag(m j)N−1

j=1 and K = (ki j)N−1
i, j=1 are the matrices obtained from M and K

by removing their last row and column, with lN = e>NK as the last row of K and lN is the last row
of K removing the last entry kNN . Lemma 4.3 requires the following assumptions on the matrix
D =M−1K and the matrix P of eigenvectors of M−1K (see Section 1).

Assumption 4.1. The rank(lN, lND, . . . , lNDN−2) = N − 1 is maximal.

This assumption on the Krylov subspace states that the vectors lNDi are linearly independent and
therefore constitute an invertible matrix. Such an assumption is well-known in controllability, for
instance, the so-called Kalman’s criterion to ensure controllability of a linear system [5]. Another
application in the form of Krylov subspaces is used in modern iterative methods for finding one
(or a few) eigenvalues of large sparse matrices or solving large systems of linear equations. This
assumption is also related to the Frobenius decomposition with the block companion matrix [5].

Assumption 4.2. All the eigenvalues of K are distinct and none of the last components of the
eigenvectors Pek shall vanish, i.e. PNk , 0, for all k = 1, . . . , N .

This assumption guarantees the existence of N linear grazing orbits [9]. The following lemma
shows that for a linear differential system non-trivial solution to exist, the multiplicity of the last
entry of the solution must be bounded and related to the dimension of the solution.

Lemma 4.3. Assumption 4.1 or Assumption 4.2 holds. Let x(t) ∈ RN be a solution to the linear
differential system

MÜx +Kx = 0. (4.20)
Then, either mult(xN )(0) ≤ 2N − 1 or x ≡ 0.

In other words, a non-trivial solution to (4.20) exists only if mult(xN )(t) < 2N , for all t. We first
prove this Lemma by using Assumption 4.1; the proof under Assumption 4.2 is provided after.

Proof. With Assumption 4.1: The statement of Lemma 4.3 is equivalent to saying that if
mult(xN )(0) > 2N − 1, that is

xN (0) = ÛxN (0) = . . . = x(2N−1)
N (0) = 0, (4.21)

then x ≡ 0. From the N th equation of (4.20), mN ÜxN + lNx = 0. Differentiating this equation
2N − 3 times and using (4.21) implies that the following relations hold

(Ak) : lN x(k)(0) = 0, k = 1, . . . , 2N − 3. (4.22)

The other N−1 equations form a reduced system MÜx+Kx = c where x = (x j)N−1
j=1 and c = −xN l>N .

Differentiating this system with respect to t gives Mx(3)(0) +KÛx(0) = 0, or x(3)(0) + DÛx(0) = 0.
Similarly, differentiating this system 2N − 5 times yields

(Bk) : x(k+2)(0) + Dx(k)(0) = 0, k = 1, . . . , 2N − 5. (4.23)
Since xN (0) = ÛxN (0) = 0, it is sufficient to prove that x(0) = 0 and Ûx(0) = 0. To show the former,
a linear system with x(0) as the unknown is constructed as follows. The relation (A1) from (4.22)
gives the first equation of the linear system: lNx(0) = 0. Multiplying (B1) with lN and using the
relation (A3) to eliminate the term lNx(3)(0) results in the second equation: lNDx(0) = 0. The
third equation is obtained after the following steps. First, multiply (B3) with lN , then use the
relation (A5) to get lNDx(3)(0) = 0. This vanishing term appears when (B1) is multiplied by lND,
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which gives rise to the third equation: lND2x(0) = 0. The same recursive process can be used for
each k = 1, . . . , N − 1: the use of the relations of odd indices (A2k−1, B2k−3, B2k−5, . . . , B1) gives
the k th equation of the system

lNDk−1x(0) = 0. (4.24)

Combining the N − 1 equations (4.24), k = 1, . . . , N − 1, it follows that x(0) satisfies lNx(0) = 0,
lNDx(0) = 0, . . . , lNDN−2x(0) = 0. By Assumption 4.1, the unique solution of this linear system
is x(0) = 0. Together with the hypothesis that xN (0) = 0, then x(0) = 0.
Similarly, Ûx(0) = 0 is shown by constructing another linear system with Ûx(0) as the variable.

The k th equation lNDk−1 Ûx(0) = 0, k = 1, . . . , N − 1, of the system can be derived by using a
similar recursive process now involving the even-indexed relations (A2k, B2k−2, B2k−4, . . . , B2),
whence, lN Ûx(0) = 0, lNDÛx(0) = 0, . . . , lNDN−2 Ûx(0) = 0. It then follows that Ûx(0) = 0, and
together with the assumption ÛxN (0) = 0, eventually gives Ûx(0) = 0.

It was shown that x(0) = 0 and Ûx(0) = 0. A solution of (4.20) associated to this initial data is
then identically zero: x(t) ≡ 0. This ends the proof by using Assumption 4.1.

With Assumption 4.2: Consider the N th component of x(t):
xN (t) = e>Nx(t) = e>N (P cos (tΩ)P−1x(0) + PΩ−1 sin (tΩ)P−1 Ûx(0)) (4.25)

=

N∑
k=1
(αk cosωk t + βk sinωk t)e>NPek =

N∑
k=1
(αk cosωk t + βk sinωk t)vk

where αk and βk are coefficients depending on the initial data [x(0), Ûx(0)], vk = e>NPek are the
components of the last row of the matrix P.

Assume that mult(xN )(0) > 2N − 1, using (4.21) for xN and N − 1 first even-order derivatives
of xN yields

∑N
k=1 αkvk = 0,

∑N
k=1 αkω

2
kvk = 0, . . . ,

∑N
k=1 αkω

2N−2
k vk = 0. Denote λk = ω

2
k , this

can be rewritten as a linear system where αk is the unknown:



1 1 . . . 1
λ1 λ2 . . . λN

. . .

λN−1
1 λN−1

2 . . . λN−1
N





v1 0 . . . 0
0 v2 . . . 0

. . .

0 0 . . . vN





α1
α2
...
αN


=



0
0
...
0


. (4.26)

By Assumption 4.2, it follows that λk , k = 1, . . . , N are distinct, and vk = PNk , 0 for all
k = 1, . . . , N , then there is a unique solution αk = 0, for all k = 1, . . . , N .
Similarly, using (4.21) for N first odd-order derivatives of xN yields

N∑
k=1

βkωkvk = 0,
N∑

k=1
βkω

3
kvk = 0, . . . ,

N∑
k=1

βkω
2N−1
k vk = 0. (4.27)

This can be rewritten as a linear system where the βk are the unknowns:



1 1 . . . 1
λ1 λ2 . . . λN

. . .

λN−1
1 λN−1

2 . . . λN−1
N





ω1v1 0 . . . 0
0 ω2v2 . . . 0

. . .

0 0 . . . ωNvN





β1
β2
...
βN


=



0
0
...
0


. (4.28)

With the same argument, the unique solution of this system is βk = 0, for all k = 1, . . . , N . As a
consequence, all the components of x(t) are zero, hence, x(t) ≡ 0 for all t. Lemma 4.3 is then
proven. �

Remark 4.3. The main idea of the proof using Assumption 4.2 is to show that the set of functions
{cosωk t, sinωk t}k=1,...,N is linearly independent. This is a very classical proof in linear algebra.
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This result can be proven to be true for all components xk of x, k = 1, . . . , N with suitable
Assumption 4.1 or 4.2. Let us apply this general result to the solution to (1.1) in order to show
that at the contact time, uN has at most 2N − 1 derivatives which vanish. Between the successive
closing contacts, the system is linear and hence the solution u(t) is analytic. Therefore, for the
sake of simplicity, assume that all the derivatives are taken on the left of 0, u(n)−N is denoted for
the left nth-derivative of uN at 0 with respect to t.

Proposition 4.4. Assume that u(t) is a solution to (1.1) which has a closing contact at t = 0, i.e.
uN (0) = d. Then, under Assumption 4.1 or 4.2,

0 ≤ mult( Ûu−N )(0) ≤ 2N − 1. (4.29)

Moreover, if there is a sticking phase after t = 0 of duration τ and with one similar assumption
as Assumption 4.1 or 4.2 for the (N − 1) × (N − 1) sticking system rewritten in a suitable basis
where lN Ûu corresponds to the last entry of the solution, then

0 ≤ mult(lN Ûu)(τ) ≤ 2N − 3. (4.30)

Proof. The first part of the proposition is obtained by applying Lemma 4.3 to x = Ûu−. Note that
the dynamics is linear away from the closing contacts, i.e.

MÜu− +Ku = 0. (4.31)

Hence, Ûu is the solution to MÝu− +K Ûu = 0. By Lemma 4.3, it follows that mult( Ûu−N )(0) ≤ 2N − 1
or Ûu(t) ≡ 0. However, if Ûu(t) ≡ 0, then substituting this into the linear system (4.31), it follows
that u(t) ≡ 0. This contradicts the assumption that uN (0) = d > 0.

If there is a sticking phase at t = 0, then Ûu−N (0) = 0 and Ûu−N (τ) = 0 where τ is the end of sticking
phase. During the sticking phase from t = 0 to t = τ, the N th mass lies on the obstacle, that is

mN Üu−N (t) + lNu(t) = R(t) (4.32)

where R(t) ≤ 0, and F(t) = lNu(t). The duration of the sticking phase τ is also the end of the
sticking phase, it satisfies :

F(τ) = lNu(τ) = lNu(τ) + kNN d = 0 (4.33)
F(τ + δ) > 0, ∀δ ∈ ]0 ; δ0[, δ0 > 0 (4.34)

where u is the solution of the sticking system MÜu + Ku = c, with c = −d l>N . Differentiating
this system with respect to t yields MÝu + K Ûu = 0. A change of variables Ûu = Qv using an
M-orthogonal matrix Q, i.e. Q>MQ = I, such that vN−1 = c lN Ûu, with c , 0 yields

Üv +Q>KQv = 0. (4.35)

Invoking Theorem 4.3 for this (N − 1) × (N − 1) reduced system, it follows that mult(lN Ûu)(τ) ≤
2N − 3. �

In the following proposition, the singularity exponents of both the free-flight duration and the
sticking phase duration are bounded. These durations have a relationship with the First Return
Time. More precisely, if W ∈ H− ∪ H0

G, then the First Return Time of an orbit stemming
from W coincides with the duration of the free-flight s(W). Otherwise, if W ∈ H0

S, then the
First Return Time involves the duration of sticking phase and the duration of the free-flight:
T(W) = τ(W) + s(W). The bounded multiplicity shown in Proposition 4.4 is the main ingredient
to prove the singularity.

Proposition 4.5 — Power-root singularity. Suppose that W0 ∈ HP generates an orbit [u, Ûu]
of (1.1) which has a closing contact at t = T0. Assumption 4.1 or 4.2 and an equivalent
assumption for the sticking system hold.
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(1) If W0 ∈ H− and W(T0) ∈ H0, then the duration of the free-flight of the orbit generated
from a nearby W until the next closing contact, denoted by s(W), has an nth-root
singularity at W0 with

n = 1 +mult( Ûu−N )(T0), 1 ≤ n ≤ 2N . (4.36)

(2) Denote H̊0
S the interior ofH0

S in the topology ofH0. If W0 ∈ H̊0
S , i.e. there is a sticking

phase right after t = 0 of duration τ0 = τ(W0), then for all W ∈ H0
S near W0, the duration

of the sticking phase τ = τ(W) has an mth-root singularity at W0 with

m = 1 +mult(lN Ûu)(τ(W0)), 1 ≤ m ≤ 2N − 2. (4.37)

Remark 4.4. The First Return Time can involve two power-root singularities: one from the
duration of the sticking phase, and one from the duration of the free-flight phase.

Remark 4.5. When W0 ∈ H0
G ∩H̄0

S , the behaviour of the First Return Time is more complicated.
It depends on whether W belongs to H0

S or not. In the former, there are two power-root
singularities while in the latter, there is a single power-root singularity.

Proof. The idea of the proof is to use the implicit function theorem for the duration of the
free-flight or the duration of the sticking phase.

(1) Consider the duration T0 of the free-flight between the two closing contacts at t = 0
and t = T0. For (s,W) in the neighborhood of (T0,W0), consider the function f (s,W) =
e>NR(s)SW. It is smooth and defined for all arguments and corresponds to the nonsmooth
function (due to the closing contacts) uN (s,W). A main point is to apply the implicit
function theorem to f and then to interpret the result for the nonsmooth function uN . By
Proposition 4.4, it follows that 0 ≤ mult( Ûu−N )(T0) ≤ 2N − 1. Using Remark 4.2 for the
function f in the neighborhood of (T0,W0), it follows that there exists a subset containing
W0 such that s has an nth-root singularity at W0 with n = 1 + mult( Ûu−N )(T0), and thus,
1 ≤ n ≤ 2N .

(2) Recall that U(·,W) = [u(·,W), Ûu(·,W)] is the solution to (1.1) associated to the initial
data W. During the sticking phase, uN (t,W) = d and ÛuN (t,W) = 0 for all t ∈ [0 ; τ].
By denoting F(t,W) = lNu(t,W) = lNu(t,W) + kNN d, the last equation of (1.1) yields
mN ÜuN (t,W) = −F(t,W) + R(t,W) where R(t,W) ≤ 0, ∀t ∈ [0 ; τ]. Hence, the sticking
phase starts at t = 0 when F(0,W) = 0 and F(δ,W) < 0, ∀δ ∈ ]0 ; δ0[, δ0 > 0. The
second condition ensures that mass N does not leave the wall immediately. The sticking
phase holds as long as F(t,W) ≤ 0, it ends at t = τ when F(τ,W) = 0 and F(τ+δ,W) > 0,
∀δ ∈ ]0 ; δ0[, δ0 > 0. The latter condition makes sure that the total force acting on the
N th mass becomes strictly negative right after t = τ and therefore the mass leaves the
obstacle. Similarly, denote by F∗(t) = lNu(t) + kNN d, where u is the solution of the
smooth system MÜu+Ku = c, with c = −dl>N . By Remark 4.2 for the smooth function F∗

in the neighborhood of (τ0,W0), it follows that there is a subset ofH0
S containing W0 such

that τ has an mth-root singularity at W0 with m = 1 +mult( ÛF)(τ(W0)). Proposition 4.4
implies that 0 ≤ mult(lN Ûu)(τ(W0)) ≤ 2N − 3, therefore 1 ≤ m ≤ 2N − 2. �

Remark 4.6. The lower bound of this multiplicity is optimal for a chain, i.e. 1/2N is the greatest
lower bound of the power-root singularity of the duration s. Let us verify this by showing that,
if uN (T0) = d, ÛuN (T0) = . . . = u(2N−1)

N (T0) = 0 then there is a unique solution to (1.1) with the
maximal 2N-root singularity of s.
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Notice that, in this case, the symmetric matrix K has the form

K =



k11 k21 0 . . . 0 0
k21 k22 k32 . . . 0 0

. . .

0 0 0 . . . kN−1,N−1 kN,N−1
0 0 0 . . . kN,N−1 kNN


(4.38)

with ki+1,i , 0 for all i = 1, . . . , N − 1. Away from closing contacts, u is the solution of the linear
system

MÜu +Ku = 0. (4.39)

From the last equation of (4.39): mN ÜuN + kN,N−1uN−1 + kNNuN = 0, together with kN,N−1 , 0,
it follows that uN−1(0) = CN−1d, ÛuN−1(0) = . . . = u(2N−3)

N−1 (0) = 0, and CN−1 = −kNN/kN,N−1.
Similarly, this recursive process can be used until the (k + 1)th equation, k = 2, . . . , N − 1, which,
together with the assumption that kk,k−1 , 0, give

uk(0) = Ck d and Ûuk(0) = . . . = u2k−1
k (0) = 0 (4.40)

where Ck = −(kkkCk + kk+1,kCk+1)/kk,k−1. As a consequence, an initial data is obtained:

u(0) = [C1d, . . . ,CN−1d, d], Ûu(0) = 0. (4.41)

Hence, there exists a unique solution to (1.1) associated to this initial data.
However, it is not sure that 1/(2N −2) is the greatest lower bound of the singularity of τ since it

depends on the admissibility condition of the end of the sticking phase which is lNu(2N−2)(τ) > 0.

Remark 4.7 — Power-root singularity for the two-dof chain. Let us clarify the power-root
singularity when N = 2. In this case, the duration of the free-flight may have a square-root,
cube-root, or at most fourth-root singularity, while the duration of the sticking phase is analytic.

An illustration of these power-root singularities is given in Figure 5. Let the state of the system
at t = 0 be W0 = [u1(0), d, Ûu1(0), Ûu−2 (0)] ∈ HP . The interesting criteria happens when the first
contact (u2(T0) = d) is with zero velocity, Ûu−2 (T0) = 0. That means W(T0) ∈ H0.

1
3

u1(T0)

Ûu1(T0)

(0, 0) (d, 0)

sticking

1
4

1
2

Figure 5. Power-root singularity (1/2, 1/3 and 1/4) in the plane (u1(T0), Ûu1(T0)) which
is isomorphic to the set H0 since u2(T0) = d and Ûu2(T0) = 0. The blue area u1 < d
corresponds to grazing. The red branch u1 = d and Ûu1 > 0 corresponds to the beginning
of a sticking phase. The green area u1 > d corresponds to states within a sticking phase.
The solid green line u1 = d and Ûu1 < 0 corresponds to the end of a sticking phase. The
dark red dot correspond to a unique orbit the worst power-root singularity.

If W0 ∈ H− ∪H0
G , i.e there is no sticking phase after t = 0, three possibilities are considered:
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(1) u1(T0) < d: This gives m2 Üu−2 (T0) = k2(u1(T0) − u2(T0)) < 0. The duration of the
free-flight s = s(W) has a square-root singularity at W0.

(2) u1(T0) = d and Ûu1(T0) > 0: this is the beginning of a sticking phase, Üu2(T0) = 0 and
m2Ýu−2 (T0) = k2( Ûu1(T0) − Ûu2(T0)) > 0. Hence, s = s(W) has a cube-root singularity at W0.

(3) u1(T0) = d and Ûu1(T0) = 0: this gives Üu−2 (T0) = Ýu−2 (T0) = 0. However, m2u(4)−2 (T0) =
k2( Üu1(T0) − Üu−2 (T0)) = k1k2d > 0. This case corresponds to a grazing contact and the
fourth-root singularity of s(W) arises.

If W0 ∈ H0
S, i.e. there is a sticking phase of duration τ0 at t = 0 and there are two possibilities:

u1(0) > d or (u1(0) = d and Ûu1(0) > 0). During a sticking phase, u1 is a solution of
m1 Üu1 + (k1 + k2)u1 = k2d. The end of the sticking phase is at t = τ0, when u1(τ0) = d and
Ûu1(τ0) < 0. This shows that mult( Ûu1)(τ0) ≤ 2N − 3 = 1. This is a particular case where the
duration of the sticking phase τ(W) is analytic for W ∈ H0

S .
An example of a cubic-root singularity is depicted in Figure 6.
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Figure 6. First Return Time T with respect to v1 = Ûu1 (near a periodic solution with one
sticking phase per period [8]). A cubic-root singularity appears near v1(0) = Ûu1(0) = 5.86.

4.3. Discontinuous First Return Time. The discontinuity of the return time near grazing orbits
is a consequence of Theorem 2.3. The simplest case is stated in the next corollary. This result
yields a possibly discontinuous First Return Map, higher singularity degree, or instantaneous
instability. It is a geometric discontinuity induced by the choice of the Poincaré section. Another
Poincaré section could annihilate this discontinuity.

Corollary 4.1 — Discontinuous First Return Time. If W0 ∈ H− and W(T0) ∈ H0 where
T0 = T(W0) > 0 and W(T0) satisfies Assumption 2.2 which says that the grazing contact is not
degenerate, then the First Return Time T(W) is discontinuous at W0.

Proof. Theorem 2.3 states that T(W) is near T0 = T(W0) only on at most half a neighborhood of
W0: Bk = {W ∈ VW0, sk(Wk −α(W)) ≥ 0}. Accordingly, T(W) is not nearT0 for sk(Wk −α(W)) <
0. �

5. Square-root instability

In this section, the so-called square-root instability is introduced for a fixed-point of the map.
Loosely speaking, the square-root singularity may affect the dynamics and the fixed-point may
become unstable.
Let F : Rn → Rn be a map defined by F(X) = G(

√
|x1 |, x2, . . . , xn) where G : Rn → Rn is at

least a C2 function. F has a fixed-point 0 ∈ Rn. Consider the dynamical system obtained by
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iterating F:
Xm+1 = F(Xm), Xm = (x1, x2, . . . , xn)m ∈ Rn, m = 1, 2, . . . (5.1)

With the presence of the square-root term
√
|x1 |, a question on the stability of the fixed-point 0

arises. This section provides a generic condition for which the fixed-point 0 of the map F is
unstable. Besides, counter-examples show the dynamical complexity of the map in the vicinity
of its fixed-point even in small dimensions.

5.1. A nonlinear n-dimensional map. In the coming theorem, it is shown under a specific
condition that the square-root term acting on the component x1 of X yields the instability of the
fixed-point 0. Moreover, this instability occurs along the direction of x1.

Theorem 5.1 — Unstable fixed-point. Consider two functions F and G : Rn → Rn such that
F(X) = G(X), where G(X) = (g1, g2, . . . , gn)(X), X = (x1, . . . , xn) and X = (

√
|x1 |, x2, . . . , xn).

If G belongs to C2(Rn,Rn), G(0) = 0, and the Jacobian DG(0) = (ai j)ni, j=1 satisfies

a11 , 0 (5.2)

then 0 is an unstable fixed-point of F.

Remark 5.1. More generally, if the square-root is activated on the component xk , then the
instability of the fixed-point 0 can be obtained by evaluating the value of akk = ∂xkgk(0).
Proof. Our goal is to show that there is a neighborhood of 0 such that many points arbitrarily
close to 0 will go out of that neighborhood.

The Taylor expansion with an integral remainder of each gi near 0, i = 1, . . . , n is

gi(X) = ai1
√
|x1 | +

n∑
j=2

ai j x j + |x1 |ri,11(X)+

+ 2
n∑

j=2

√
|x1 |x j ri,1 j(X) + 2

∑
n≥k>`>1

xk x`ri,k`(X) +
n∑

j=2
x2

j ri, j j(X) (5.3)

where ri,k`(X) =
∫ 1

0 (1 − s)∂k∂`gi(sX)ds, for all k, ` = 1, . . . , n. On a compact set which will be
chosen later, there exists a constant M > 0 such that |ri,k`(X)| ≤ M for all k, ` = 1, . . . , n and for
each i = 1, . . . , n. Hence,

|ai1 |
√
|x1 | −

n∑
j=2
|ai j | |x j | − Mθ(X) ≤ |gi(X)| ≤ |ai1 |

√
|x1 | +

n∑
j=2
|ai j | |x j | + Mθ(X) (5.4)

where θ(X) = |x1 | + 2
√
|x1 |

∑n
j=2 |x j | + 2

∑
n≥k>`>1 |xk | |x` | +

∑n
j=2 x2

j . A suitable neighborhood,
denoted Dε , is constructed so that a sequence starting from any point in Dε will eventually go
away from 0 in the direction of x1. To define Dε , the following notations are needed. Let αi,
i = 2, . . . , n, be:

αi =



|a11 |

2n |a1i | if a1i , 0 (5.5a)

1 if a1i = 0. (5.5b)
It follows from this definition that α j |a1 j | ≤ |a11 |/2n while the equality occurs if a1 j , 0;
otherwise it is a strict inequality. For X ∈ Rn such that |x j | ≤ α j

√
|x1 |, ∀ j = 2, . . . , n, we have

|a1 j | |x j | ≤ |a1 j |α j
√
|x1 |, and hence,

n∑
j=2
|a1 j | |x j | ≤

n∑
j=2
|a1 j |α j

√
|x1 | ≤ (n − 1) |a11 |

2n

√
|x1 |. (5.6)
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Moreover, the following inequality holds:

θ(X) ≤ |x1 |
(
1 + 2

n∑
j=2

α j + 2
∑

n≥k>`>1
αkα` +

n∑
j=2

α2
j

)
. (5.7)

Denote α = 1 + 2
∑n

j=2 α j + 2
∑

n≥k>`>1 αkα` +
∑n

j=2 α
2
j , the above inequality becomes θ(X) ≤

α |x1 |. Denote also γ0 = a2
11/(2nαM)2. Then, for X ∈ Rn such that |x1 | ≤ γ0, we have

Mα |x1 | ≤ |a11 |
2n

√
|x1 |. (5.8)

Since Mθ(X) ≤ Mα |x1 |, it follows that

Mθ(X) ≤ |a11 |
2n

√
|x1 |. (5.9)

Let C > 0 be a constant such that

C ≥ 2
|a11 |

(
|ai1 | +

n∑
j=2
|ai j |α j + Mα

)
, ∀i = 2, . . . , n (5.10)

Let γ > 0 such that γ = mini=2,...,n{γi > 0 |Cγi ≤ αi
√
γi}. Therefore, for any X ∈ Rn such that

|x1 | ≤ γ, we have C |x1 | ≤ αi
√
|x1 |, for all i = 2, . . . , n. We can now define Dε as follows. Let

ε = min{γ0, γ, a2
11/8} > 0. Consider

D = {X = (x1, . . . , xn) ∈ Rn, |xi | ≤ C |x1 |, ∀i = 2, . . . , n} (5.11)
Dε = {X = (x1, . . . , xn) ∈ Rn, |x1 | ≤ ε and |xi | ≤ C |x1 |, ∀i = 2, . . . , n} (5.12)

This choice of Dε avoids the criteria in which the instability of 0 is hidden by starting at a point

x1

x2

ε−ε

x2 = α2
√
|x1 |

x2 = −α2
√
|x1 |x2 = C2x1

x2 = −C2x1

DεDε

Figure 7. Neighborhood Dε

near 0 but the sequence comes back at 0 after one step. See Example 5.1 for more information.
An illustration of Dε is provided in Figure 7. Any X ∈ Dε satisfies the important inequalities as
stated next.

Lemma 5.2. For any X ∈ Dε , the following inequalities hold:
|a11 |

2
√
|x1 | ≤ |g1(X)| ≤ 3|a11 |

2
√
|x1 |, (5.13)

|gi(X)| ≤ Ci |g1(X)|, ∀i = 2, . . . , n. (5.14)
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Proof. Suppose that X ∈ Dε then |x j | ≤ C |x1 | for all j = 2, . . . , n, and |x1 | ≤ ε ≤ γ. By the
definition of γ, it follows that C |x1 | ≤ α j

√
|x1 |. Hence, |x j | ≤ C |x1 | ≤ α j

√
|x1 |. Thus (5.6)

holds. Substituting (5.6) and (5.9) into (5.4) when i = 1, the right hand side (RHS) of (5.4)
becomes

RHS(5.4) ≤ |a11 |
√
|x1 | + (n − 1) |a11 |

2n

√
|x1 | + |a11 |

2n

√
|x1 | ≤ 3|a11 |

2
√
|x1 |. (5.15)

Similarly,

LHS(5.4) ≥ |a11 |
√
|x1 | − (n − 1) |a11 |

2n

√
|x1 | − |a11 |

2n

√
|x1 | ≥ |a11 |

2
√
|x1 |. (5.16)

Therefore, X satisfies (5.13).
Let us prove inequality (5.14). For i = 2, . . . , n, expressions (5.4) and (5.9) imply

|gi(X)| ≤
(
|ai1 | +

n∑
j=2
|ai j |α j + Mα

)√
|x1 |. (5.17)

Via inequality (5.13), it is shown that |a11 |
√
|x1 | ≤ 2|g1(X̃)|. Hence, to prove (5.14), it is

sufficient to show that
2
|a11 |

(
|ai1 | +

n∑
j=2
|ai j |α j + Mα

)
≤ C. (5.18)

This is true by the choice of C given in (5.10). Inequality (5.14) and Lemma 5.2 are then
proven. �

Back to the proof of Theorem 5.1, the idea is to show that the recurrence goes away from 0 in the
direction of the first component. In other words, the square-root singularity acting on the first
component plays an important role via the inequalities (5.13) and (5.14).

Let us show that, for any 0 < δ < ε , if the sequence (Xm)m≥1 in Dε , where Xm = (xm
1 , . . . , xm

n ),
is defined by

X0 = (δ/2, 0, . . . , 0) ∈ Dε, Xm+1 = F(Xm), m ≥ 1, (5.19)

then there exists a N0 > 0 such that XN0 < Dε . From (5.14), X1 = F(X0) = G(X0) ∈ D.
If |x1

1 | > ε then X1 < Dε . This shows the instability of 0. Otherwise, if |x1
1 | ≤ ε and

|x1
i | = |gi(X0)| ≤ C |x1

1 | by inequality (5.14), then X1 ∈ Dε , and X2 is considered. If there exists
Xm ∈ Dε for all m ≥ 1 then

a11
2

√
|xm

1 | ≤ |xm+1
1 | ≤ 3a11

2

√
|xm

1 |. (5.20)

Consider the sequence zm defined by zm+1 = a11/2
√
|zm |, z0 = x0

1 = δ/2 ≤ ε ≤ a2
11/8. Then,

inequality (5.20) yields |xm
1 | ≥ zm. It is known that zm increasingly converges to a2

11/4 in
an interval (0, a2

11/4). Hence, there exists N0 > 0 such that |zN0 | > a2
11/8 ≥ ε , and thus

|xN0
1 | ≥ |zN0 | > ε . That means, XN0 < Dε and hence 0 is unstable. �

Example 5.1. Consider F(x, y) = G(
√
|x |, y) when G is a linear map

G(X) = G(x, y) = AX =
[
a b
c d

] [
x
y

]
, a , 0. (5.21)

Figure 8(a) shows that the fixed-point (0, 0) of F is unstable and the recurrence goes away
from this point along the line y = cx/a. An interesting case is when c = αa, d = αb with
α , 0. The instability of (0, 0) is hidden if the sequence starts at a point belonging to the curve
(C) : y = −a

√
|x |/b because the sequence stays at (0, 0) as soon as the second step as illustrated

in Figure 8(b). To show the instability, it is required to start at a point (x0, y0) which does not lie
on C. This is the reason why the set Dε is chosen as specified in the previous proof.
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x

y

(0, 0) (a)

y = −a
√
|x |/b

x

y

(0, 0) (b)

x

y

(0, 0) (c)

Figure 8. Instability of the fixed-point (0, 0): (a) a = 1, c = 2, b = d = 0: the recurrence
goes away from (0, 0) along the line y = cx/a; (b) c = αa, d = αb: the instability
does not realize if the starting point sits on the curve C : y = −a

√
|x |/b since the next

iterate is (0, 0). (c) b = c = 1, a = d = 0: iterates leave (0, 0). The gradient color scale
[ ] shows initial iterates in blue to final iterates in red irrespective of the
magnitude.

5.2. Two-dimensional maps with critical instability. As proven in Theorem 5.1, the square-
root instability of the fixed-point appears when a11 , 0. When a11 vanishes, the square-root
singularity may appear under additional assumptions on the other components of A.

Proposition 5.3. Consider two functions F and G : R2 → R2 such that F(x, y) = G(
√
|x |, y)

where G is a linear map satisfying G(x, y) = (by, cx + dy) with bc , 0. Then, (0, 0) is an
unstable fixed-point of F.

x

y

(0, 0) (a)

x

y

(0, 0) (b)

x

y

(0, 0) (c)

Figure 9. Instability of the fixed-point (0, 0): (a) when 0 < d = 0.5 < 1 and c = 1; (b)
when −1 < d = −0.5 < 0 and c = 1; (c) when d = 0 and c = 1. The gradient color
scale [ ] shows initial iterates in blue to final iterates in red irrespective of the
magnitude.

Proof. By considering the map (F ◦F)(x, y) = (bc
√
|x | + bdy, cd

√
|x | + d2y + c

√
|by |), it is clear

that a11 = bc , 0, then the technique in the proof of Theorem 5.1 is used to show the instability
of the fixed-point (0, 0) of F ◦ F. �

Let us denote

DG(0, 0) =
[
0 b
c d

]
. (5.22)

Then, in the case of a linear map G, the fixed-point (0, 0) of F is stable if and only if bc = 0
and |d | < 1. The square-root term in x disappears because of the condition bc = 0, the stability
analysis of the origin for the two-dimensional map becomes the stability analysis of the origin for
the one-dimensional linear map, and hence |d | < 1 is needed to guarantee stability.
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Example 5.2. A simple example of the instability mechanism is shown in Fig. 8(c) where
b = c = 1 and a = d = 0. Starting at a point closed to (0, 0), the recurrence goes away from this
point.

Example 5.3. Is also of interest the situation where (0, 0) is linearly stable but nonlinearly
unstable. Consider F1(x, y) = (0,

√
|x | + dy) where |d | < 1. Thus (0, 0) is a stable fixed-point

of F1. However, for the map F2(x, y) = (
√
|x |y,

√
|x | + dy), the fixed-point (0, 0) is numerically

shown to be unstable.
More precisely, three cases are expected:
(1) for 0 < d < 1, the recurrence oscillates during several steps then goes away from (0, 0)

along the curve similar to y = k
√
|x |, see Figure 9a.

(2) for −1 < d < 0, the recurrence seems to always oscillate around (0, 0) (see Figure 9b).
(3) For d = 0 and when G is linear, the fixed-point (0, 0) for F is asymptotically stable. when

G is nonlinear, the problem is open, see Figure 9c.

6. Dynamics in the vicinity of the grazing orbits

The aim of this section is first to prove the existence of the square-root singularity near a
grazing contact, that is to prove Theorems 2.3 and 2.4. Then, the square-root dynamics near
periodic solutions with one grazing contact per period is investigated. Such periodic solutions of
the N-dof system are limited to N linear grazing orbits and there is no other such linear solutions.
Periodic solutions with sticking contacts [8, 13] are excluded. Take note thatHP ensures that the
First Return Time exists and is finite. A challenging point in building the FRT is to check the
nonlocal admissibility condition uN (t) < d before the closing contact. Moreover, data may lead
to a FRT which is not in the vicinity of T0 but instead in the vicinity of 2T0, 3T0 and so on. We
pay attention to the class of initial data near W0 inH− orH0

G which leads to orbits having their
FRT near T0.

6.1. First Return Time. This section deals with the proof of Theorem 2.3. It will be shown
that, in a certain class of initial data, the FRT has a particular form containing a square-root
term. First, a lemma is stated, then a long proof is proposed. Recall that Φ(t,W) = e>NR(t)SW is
smooth. It coincides with uN in the neighborhood of (T0,W0) as long as uN (t) ≤ d.

Lemma 6.1. The set K of indices {i ∈ {N + 1, . . . , 2N}, ∂WiΦ(T0,W0) , 0} is not empty for
N ≥ 2.

In other words, there exists at least one non-vanishing partial derivative of Φ with respect to at
least one initial velocity. This guarantees the existence of a component Wk stated in Theorem 2.3.

Proof. This is proved by contradiction. The smooth function Φ(t,W) can be written as
Φ(t,W) = e>NR(t)SW = e>N (P cos(tΩ)P−1u + PΩ−1 sin(tΩ)P−1v) (6.1)

If K = ∅ then ∂WiΦ(T0,W0) = 0 for all i = N + 1, . . . , 2N . It follows that

e>NPΩ−1 sin(T0Ω)P−1ei = 0 for all i = 1, . . . , N . (6.2)

In other words, the N th row of A = PΩ−1 sin(T0Ω)P−1 is identically zero. Thus, sin(T0Ω) = 0,
i.e. sinωiT0 = 0, ∀i = 1, . . . , N which implies ωiT0 = kiπ, ki ∈ N: this is impossible since
N ≥ 2, there is no internal resonance through Assumption 2.1. Hence, K , ∅. �

Now, the implicit equation Φ(T,W) = d is locally solved via a function T = θ(W) defined on
half a neighborhood of W0. Ultimately, it is proven that θ(W) is the First Return Time T(W).
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Proof. Consider the initial condition W0 ∈ H− ∪H0
G at initial instant t = 0, the associated orbit

shows a first grazing contact at T0 = T(W0). The First Return Time T is implicitly given by the
equation uN (T,W) = d. The nonsmooth function uN is replaced by the smooth function

Φ(T,W) = d (6.3)

on which the implicit function theorem applies and where Φ(T0,W0) = uN (T0,W0) = d,
∂tΦ(T0,W0) = Ûu−N (T0,W0) = 0. As a consequence of Lemma 6.1, there exists k ∈ K where
∂Wk
Φ(T0,W0) , 0. Denote W is the reduced vector obtained from W by removing Wk . Together

with Assumption 2.2, function Φ(t,W) can be seen as Φ(t,Wk,W) where W0 corresponds to
(W0k,W0), and f satisfies the following conditions: Φ(T0,W0k,W0) = d, ∂tΦ(T0,W0k,W0) = 0,
∂Wk
Φ(T0,W0k,W0) , 0, ∂2

t Φ(T0,W0k,W0) , 0. Via Theorem 4.2, there exist neighborhoods VW0
,

VT0 and VW0k of W0, T0 and W0k respectively and smooth scalar functions η, α such that

η : VW0
→ VT0, W 7→ T = η(W) (6.4)

α : VW0
→ VW0k, W 7→ Wk = α(W) (6.5)

satisfying η(W0) = T0 and α(W0) = W0k . The set Sc defined as the intersection of the two
hypersurfaces Φ = d and ∂tΦ = 0 can be parameterized as

Sc = {(t,Wk,W) ∈ VT0 × VW0k × VW0
, Φ(t,Wk,W) = d and ∂tΦ(t,Wk,W) = 0}

= {(η(W), α(W),W), W ∈ VW0
}. (6.6)

Recall that Bk = {W = (Wk,W) ∈ VW0k × VW0k, sk(Wk − α(W)) ≥ 0} where sk = sign(γk). It is
the region adjacent to and including the hypersurface Wk = α(W). By applying Theorem 4.2,
there exists a smooth function ψ such that there are two graphs solving equation (6.3):

T = θ(W) = η(W) + ψ(±
√

sk(Wk − α(W)),W), W ∈ Bk (6.7)

where ψ(0,W0) = 0 and ∂Wk
ψ(0,W0) = |γk |−1/2. We choose the branch of θ(W) corresponding

to the admissibility condition for the velocity at the contact so that the mass comes in contact in
the right side of the wall, which is

ÛΦ(θ(W),W) ≥ 0. (6.8)

Denote F(W) = R(θ(W))SW. Using the asymptotic expansion up to the first order of√
sk(Wkα(W0)) in the direction of the k th component of W, and taking note that η(W0) = T0, one

has

θ(W) = T0 ± |γk |−1/2
√

sk(Wk − α(W0)) +O(h2) = T0 + h +O(h2) (6.9)

where h = ±|γk |−1/2√sk(Wk − α(W0)) from which

Wk = α(W0) ± γk h2 = W0k +O(h2) and (6.10)

W = W0 + h2ek, e>k = [0, . . . , 1, . . . , 0] ∈ R2N (6.11)

follow, since α(W0) = W0k , see Theorem 4.2. Similarly,

cos(θ(W)Ω) = cos((T0 + h +O(h2))Ω) = cos(T0 Ω) − h Ω sin(T0 Ω) +O(h2)
sin(θ(W)Ω) = sin((T0 + h +O(h2))Ω) = sin(T0 Ω) + h Ω cos(T0 Ω) +O(h2)

and R(θ(W)) can be written as R(T0 + h +O(h2)) = R(T0) + h ÛR(T0) +O(h2) where ÛR(t) denotes
the matrix whose elements are the derivatives of the elements of R:

ÛR(t) =
[ −P Ω sin(t Ω)P−1 P cos(t Ω)P−1

−P Ω2 cos(t Ω)P−1 −P Ω sin(t Ω)P−1

]
. (6.12)
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Inserting these expressions into F and neglecting higher order terms in h leads to

F(W) ≈ (
R(T0) + h ÛR(T0)

)
SW0 ≈

[
u(T0,W0)
v(T0,W0)

]
+ h

[
v(T0,W0)
−Ku(T0,W0)

]
. (6.13)

Thus, ÛΦ(θ(W),W) = e>2N P(W) ≈ e>N
(
v(T0,W0) − hKu(T0,W0)

)
= −he>NKu(T0,W0) where e2N is

the vector inR2N with all zero components except the 2N th one equal to unity, in away similar to the
vector eN in RN . From the N th equation of (1.1) taken at t = T0 that is mN Üu−N (T0)+ e>NKu(T0) = 0
it follows that mN Üu−N (T0,W0) = −e>NKu(T0,W0) and thus

ÛΦ(θ(W),W) ≈ hmN Üu−N (T0,W0). (6.14)
Since Üu−N (T0,W0) < 0, h is chosen with the negative sign in order to have ÛΦ(θ(W)) ≥ 0. Hence,
θ(W) satisfies (6.8). �

The proof of Theorem 2.3 ends by showing that θ(W) = T(W). This means that Φ(t,W) < d
for all t ∈ ]0 ; θ(W)[.
Proof. First, ÜΦ(T0,W0) < 0 and ÛΦ(T0,W0) = 0 which imply that Φ(t,W0) < d for t < T0 and t
near T0. By the smoothness of Φ with respect to (t,W), there exists a neighborhood [T− ; T+] ×V1
of (T0,W0) and δ1 > 0 such that ÜΦ(T,W) < −δ1 < 0 in this neighborhood and θ(W) ∈ [T− ; T+]
for W ∈ V1. This will be the crucial ingredient to conclude at the end that Φ(t,W) < d for all
t ∈ ]T− ; θ(W)[.
Second, ÛΦ(0,W0) < 0 because W0 belongs to H−. Thus, there exists a neighborhood
[0 ; T2]×V2 of (0,W0)withV2 ⊂ V1 and δ2 > 0 such that ÛΦ(T,W) < −δ2 < 0 in this neighborhood.
This implies that Φ(t,W) < d − δ2t < d for all t ∈ ]0 ; T2]. Let δ3 = 2−1δ2T2 > 0, there
exists a neighborhood of W0 denoted by V3 ⊂ V2 such that |Φ(t,W) − Φ(t,W0)| < δ3 for all
(t,W) ∈ [T2 ; T−] × V3. This yields Φ(t,W) < d − δ3 < d for all (t,W) ∈ [T2 ; T−] × V3.
Finally, on [T− ; θ(W)] with W ∈ V3, the function Φ(t,W) is concave and the velocity at time

θ(W) is nonnegative from (6.8) and Φ(t,W) < d on [T− ; θ(W)[ × V3 which concludes the proof
for θ(W) = T(W). This also ends the proof of Theorem 2.3. �

The proof of Theorem 2.4 is similar in many aspects except two points: the neighborhood of
W0 is smaller and the proof that Φ(t,W) < d for 0 < t small enough requires a careful inspection.
The difference is that the initial velocity of the last mass is zero. However, the acceleration is
negative Üu+N (0,W0) < 0 which is enough to ensure that Φ(t,W) < d for 0 < t small enough. This
concludes the proof of Theorem 2.4.

6.2. Square-root dynamics in the vicinity of a linear grazing orbit. This subsection explores
the possible square-root dynamics near LGO. One feature of LGO is that the sticking phase
does not occur near such a motion. This property is proven in the coming Proposition. Then,
the square-root dynamics coefficients are computed. At least one of them, non-vanishing, will
activate the square-root dynamics near LGO. If the First Return Map has a particular expression
with the square-root term in a class of initial data then one may expect the instability of LGO.

Throughout this section, let us consider the j th LGO (the notation LGO j is also used below)
with period Tj = T(W0) [9] associated to the initial data

W0 = [u>0 , v>0 ]>, u0 =
d

PN j
Pe j, v0 = 0. (6.15)

Proposition 6.2. The sticking phase does not occur near the j th LGO, j = 1, . . . , N .

Proof. From the N th equation in (1.1), mN ÜuN (t) + e>NKu(t) = R(t), R(t) ≤ 0, the sticking phase
does not occur if uN (t) = d and F(t) = e>NKu(t) > 0. By the periodicity of LGO, it is sufficient
to show that F(0) > 0. The initial data of the LGO yields

F(0) = d
PN j

e>NKPe j =
d

PN j
e>NMP Ω2 P−1Pe j = dmNω

2
j > 0 for d > 0. (6.16)
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which ends the proof. �

In some cases when d > 0 and for some initial data in B+k defined in Theorem 2.4, the associated
orbit takes less time to come back to the Poincaré section. This is the consequence of Theorem 2.4
and a feature of LGO.

Corollary 6.1. Consider a LGO with period Tj and an initial perturbation of its initial data
W = W0 + wek with k , 2N (or k = 2N and σ > 0 where σ = sign(γk)), then there exists δ > 0
such that 0 < σw < δ and T(W) < Tj .

Such one-sided condition on the First Return Time is already known for nonlinear modes with
one impact per period near a LGO [9]. It is expected that this inequality is valid on a larger set
near W0 but of course not in the whole neighborhood if k , 2N .

T

T = T1 +
√|u1(0) − u1LGM1 (0)|/|γ |

T = T1 −
√|u1(0) − u1LGM1 (0)|/|γ |

u1(0)u1LGM1 (0)

T1

T

(a)

T

T = T2 +
√|u1(0) − u1LGM2 (0)|/|γ |

T = T2 −
√|u1(0) − u1LGM2 (0)|/|γ | u1(0)

u1LGM1 (0)

T2

T

(b)

Figure 10. First Return Time (red lines) with respect to the initial displacement of the
first mass: (a) near the first LGO, (b) near the second LGO.

Proof. To apply Theorem 2.4, Assumption 2.2 must be verified. The second time derivative of
uN at the grazing point is

ÜuN (Tj,W0) = − 1
mN

e>NKu(Tj) = − 1
mN

e>NKu(0) = −dω2
j < 0. (6.17)

Hence, by Theorem 2.3, the First Return Time T takes the form given by (2.16). Moreover, since
ÜuN (T0,W0) < 0, it follows that in the direction of the k th component of W

T = η(W0) + ψ(−
√
σw,W0), η(W0) = Tj, ∂Wk

ψ(0,W0) = 1/
√
|γk |. (6.18)

Hence, T = Tj − 1/
√
|γk |
√
σw + O(w) < Tj . �

Let us name u1LGO1(0) and u1LGO2(0), the initial displacement of the first mass along LGO1
and LGO2, respectively. The square-root singularity of the FRT with respect to the initial u1,
when u1(0) & u1LGO1(0) or u1(0) . u1LGO2(0) is shown in Figure 10. The red lines are computed
numerically, while the dashed lines illustrate the Taylor expansion of ψ. In both cases, T < Tj ,
j = 1, 2.
The following is the proof of Theorem 2.5 which gives the computation of the coefficients Ck

and the generic condition that causes the square-root dynamics near LGOs.
Proof. Via Proposition 6.2, the sticking phase does not occur near LGOs, thus the First ReturnMap
takes the form (2.19a) F (W) = R(T(W))SW where the FRT has the square-root dependence (2.16)
in the subset B+k . Using the proof in Subsection 6.1, the First Return Map can be rewritten as
F (W) = G(W̄) = (g1, . . . , g2N )(W̄) where W̄ = [W̄i]2N

i=1, with a change of variables:

W̄k =

√
sk(Wk − α(W0)) and W̄i = Wi, ∀i , k . (6.19)
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Note that gN (W̄) = d. From the proof in Subsection 6.1, it follows that W̄k =
√
|γk |h. Together

with (6.13), F can then be written as

F (W) = G(W1, . . . ,
√
|γk |h, . . . ,W2N ) ≈

[
u(Tj,W0)
v(Tj,W0)

]
+ h

[
v(Tj,W0)
−Ku(Tj,W0)

]
. (6.20)

For k ∈ {1, . . . , 2N}, k , N such that ∂Wk
uN (Tj,W0) , 0, the coefficient associated with the

square-root term h is Ck = akk = ∂W̄k
gk(Tj,W0) =

√
|γk |∂hgk(Tj,W0). The expression of Ck is

then obtained via (6.20) as

Ck =

{ √
|γk |e>k v(Tj,W0) if 1 ≤ k < N , (6.21a)

−
√
|γk |e>k−NKu(Tj,W0) if N < k ≤ 2N . (6.21b)

Since v(Tj) = v0 = 0, it follows that Ck = 0, ∀1 ≤ k < N . Another way to write Ck is by using
the modal coordinates [q, Ûq] where u = Pq as

Ck =

{ √
|γk |e>k P Ûq(Tj,W0) if 1 ≤ k < N , (6.22a)

−
√
|γk |e>k−NMP Ω2 q(Tj,W0) if N < k ≤ 2N . (6.22b)

From Lemma 6.1, K , ∅ and for every k ∈ K, the coefficient Ck is

Ck = −
√
|γk |e>k−NMP Ω2 q(Tj) = −

√
|γi |dmiω

2
j Pk j/PN j . (6.23)

By the hypothesis that there exists i ∈ K where Pi j , 0, it follows that Ci , 0. This non-vanishing
coefficient then facilitates the analysis of the square-root dynamics near LGOs. �

The square-root dynamics is activated near W0 and in a particular class of initial data. If the
orbits stay in that regime of initial data, the dynamics will follows the framework of Section 5
and one may be able to determine the instability of LGOs.

7. Conclusion

The instability of the linear grazing orbits of a N-dof vibro-impact system is investigated
via the study on the fixed-points of the corresponding First Return Map. This map is well
defined on a Poincaré section which is carefully chosen as a subset of the impact hyperplane
H = {[u, Ûu]> ∈ R2N, uN = d}. The well-known square-root singularity of the First Return Time
in the vicinity of a grazing contact is studied mathematically in the use of the implicit function
theorem adapted for this degenerate case. This singularity would a priori induce a singularity of
the FRM. However, our observations suggest that the FRM regularizes the singularity in the same
way as squaring removes a square-root singularity. Although the First Return Time is singular, a
coefficient related to the matrix map t 7→ R(t) vanishes and regularizes the singularity. This is
not the case if there exists at least one non-vanishing coefficient, hence the dynamics may not be
unstable as expected with the square-root singularity. It is also seen that the First Return Time
can be discontinuous with respect to the initial data of the system. Accordingly, a discontinuity
of the First Return Time may imply a discontinuity of the FRM. Also, a discontinuity of the FRM
at the LGO implies directly the instability of the LGO.

The existence and the singularity of the First Return Time is a key step to study the First Return
Map in the vicinity of a grazing orbit. However, the square-root dynamics is activated near the
grazing contacts in a particular class of initial data. Hence, it is not straightforward to apply the
theory on a fixed-point of a map involving the square-root term as indicated in Section 5.

Challenges on the results of the First Return Time arise with the presence of internal resonances.
It is however interesting since there are many other periodic solutions involving one grazing
contact per period other than N linear grazing orbits. The prestressed case (d ≤ 0) is also of
interest.
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Appendix A. One-dof system: on the square-root singularity

Consider the one-dof dynamics depicted in Figure 11:
m Üu + ku = r (A.1)
u(0) = u0, Ûu(0−) = Ûu−0 (A.2)
u(t) ≤ d, r(t) ≤ 0, (d − u(t))r(t) = 0 (A.3)
Ûu+ = − Ûu− when u(t) = d (A.4)

The solution to (A.1) is always periodic with or without the obstacle and it takes the form
u(t) = u0 cosωt − Ûu−0 /ω sinωt (A.5)

on ]0 ; T0[ where ω =
√

k/m is the linear frequency and T0 is the period of the nonlinear solution
and also the First Return Time. It can be expressed as

m1k1

d

u

Figure 11. Simple unilaterally constrained one-dof system

T0 = T − 2τ (A.6)
where T = 2π/ω and 2τ is the complementary time for the mass to go from the state (d,+ Ûu−0 )
back to (d,− Ûu−0 ) if there was no obstacle, see Figure 12. Since both linear and nonlinear

t = T0

t = 0

t = −τ

t = τ

u

Ûu

(0, 0) (d, 0)
ε

Figure 12. One-dof system orbit

solutions are periodic, T and T0 are exactly the First Return Time to the Poincaré section
{[u0, Ûu−0 ] ∈ R2, u0 = d, Ûu−0 > 0} of the linear/nonlinear orbit. In order to approximate τ, a
non-admissible solution is considered, see the gray branch in Figure 12. Suppose that the initial
condition is not on the Poincaré section: u(0) = d(1 + ε), ε > 0 and Ûu(0) = 0. The solution is
then u(t) = d(1 + ε) cosωt and since at t = τ, u(τ) = d, it follows that d(1 + ε) cosωτ = d. A
Taylor expansion in the neighborhood of τ = 0 and ε = 0 reads

1 − ω
2τ2

2
+O(τ4) = 1 − ε +O(ε2) (A.7)

ω2τ2 = 2(ε +O(ε2) +O(τ4)). (A.8)

Accordingly, ωτ =
√

2ε +O(ε2) = √2ε +O(ε3/2) and the period of the nonlinear solution is

T0 = T − 2τ = T − 2
ω

√
2ε +O(ε2) = T − 2

ω

√
2ε +O(ε3/2). (A.9)
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Thus, the square-root singularity emerges in the FRT. However, this is slightly misleading because
the derivations proposed in the paper are expressed in terms of Ûu−. In this one-dof example, the
total energy reads d2 + ( Ûu−0 )2 = d2(1 + ε)2 thus ε = ( Ûu−0 )2/2d2 +O( Ûu−0 )2 and the FRT becomes:

T0 = T − 2 Ûu−0
dω
+O( Ûu−0 )2 (A.10)

keeping in mind that W> = (w1,w2) = (u0, Ûu−0 ) = (d, Ûu−0 ). Another reason why there is no square-
root singularity for the FRT is that Assumption 2.3 is not verified. The details are as follows:
Φ(t,W) = Φ(t,W1,W2) = Φ(t, u0, Ûu−0 ) = u0 cosωt + Ûu−0 /ω sinωt. However, ∂W2Φ = Ûu−0 = 0 for
the sole grazing orbit. Accordingly, Assumption 2.3 which reduces to ∂w2Φ , 0 is not satisfied.

Also, in this one-dof model, the FRM is the identity function F (U) = U, ∀U ∈ HP and hence
it is smooth with respect to the initial data.

Appendix B. Power-root singularity for a mass-spring chain

In the case of a chain, there is a simpler proof for Proposition 4.4 as stated below.

Lemma B.1. Suppose u(t) is a solution to (1.1) which models a chain of N masses and has a
closing contact at t = 0. Under the assumption that k j+1, j , 0 for all j = 1, . . . , N − 1, then
mult( Ûu−N )(0) ≤ 2N −1. Moreover, if there is sticking phase at t = 0, then mult( ÛuN−1)(τ) ≤ 2N −3.

Proof. The proof includes two parts. The first part shows that mult( Ûu−N )(0) ≤ 2N − 1. Otherwise,
mult( Ûu−N )(0) ≥ 2N , i.e. Ûu−N (0) = . . . = u(2N−1)−

N (0) = u(2N)−
N (0) = 0 and it is shown that u(0) = 0

and Ûu(0) = 0.
Let v = Ûu, then outside the closing contacts, v is the solution of the linear system

MÜv +Kv = 0 (B.1)

Moreover, vN = ÛuN , from the assumption, vN satisfies v(`)N (0) = 0 for all 1 ≤ ` ≤ 2N − 1. From
the last equation of (B.1): mN ÜvN + kN,N−1vN−1 + kNNvN = 0, and kN,N−1 , 0, it follows that
vN−1(0) = . . . = v

(2N−3)
N (0) = 0. Similarly, from the (N − 1)th equation and by the assumption

that kN−1,N−2 , 0, this yields vN−2(0) = . . . = v
(2N−5)
N−2 (0) = 0. In the end, the second equation

and k21 , 0 give v1(0) = Ûv1(0) = 0. As a consequence, we have v(0) = 0, Ûv(0) = 0 and the
corresponding solution is v ≡ 0, Ûv ≡ 0. Thus, Ûu ≡ 0 and Üu ≡ 0. Substitution of these identities
into (1.1) yields Ku = 0. This induces u ≡ 0 since det(K) , 0. However, this contradicts the fact
that uN (0) = d > 0, i.e. the solution cannot rest at its equilibrium 0.
The next part shows that mult( ÛuN−1)(τ) ≤ 2N − 3 when a sticking phase arises after t = 0.

Based on the last equation of (1.1), mN ÜuN + kN,N−1uN−1 + kNNuN = 0, the end of the sticking
phase at t = τ satisfies

kN,N−1uN−1(τ) = −kNN d (B.2)
kN,N−1uN−1(τ + δ) > −kNN d, ∀ 0 < δ < 1 (B.3)

The sticking system is then a (N − 1) degree-of-freedom non-homogeneous system MÜu+Ku = c
where c = [0, . . . , 0, kN−1,N d]>. Now, assume that mult( ÛuN−1)(τ) ≥ 2N − 2, then ÛuN−1(τ) = . . .
= u(2N−2)

N−1 (τ) = 0. By a similar argument for the reduced (N − 1) × (N − 1) system with the last
entry of the solution being uN−1 instead of uN , it follows that mult( ÛuN−1)(τ) ≤ 2N − 3. �

References
[1] Patrick Ballard. “The Dynamics of DiscreteMechanical Systems with Perfect Unilateral Constraints”.

Archive for Rational Mechanics and Analysis, 2000, 154(3):199–274. doi: 10.1007/s002050000105.
[hal-00111308].

[2] Mario di Bernardo, Chris Budd, Alan Champneys, and Piotr Kowalczyk. Piecewise-smooth
dynamical systems: theory and applications. Springer, 2008. isbn: 9781846280399. doi: 10.1007/
978-1-84628-708-4.

https://doi.org/10.1007/s002050000105
http://hal.archives-ouvertes.fr/hal-00111308
https://doi.org/10.1007/978-1-84628-708-4
https://doi.org/10.1007/978-1-84628-708-4


36 REFERENCES

[3] David Chillingworth. “Dynamics of an impact oscillator near a degenerate graze”. Nonlinearity,
2010, 23(11):2723–2748. doi: 10.1088/0951-7715/23/11/001. [hal-01390258].

[4] Constantin Corduneanu. Almost periodic functions. Interscience tracts in pure and applied mathe-
matics. Interscience Publishers, 1968.

[5] Jean-Michel Coron. Control and Nonlinearity. Vol. 136. Mathematical Surveys and Monographs.
American Mathematical Society, 2007. isbn: 9780821849187.

[6] Mats Fredriksson and Arne Nordmark. “Bifurcations caused by grazing incidence in many degrees
of freedom impact oscillators”. Proceedings of the Royal Society, 1997, 453(1961):1261–1276. doi:
10.1098/rspa.1997.0069. [hal-01297285].

[7] Stéphane Junca, Huong Le Thi, Mathias Legrand, and Anders Thorin. “Impact dynamics near
unilaterally constrained grazing orbits”. 9th European Nonlinear Dynamics Conference. Budapest,
Hungary, 2017. [hal-01562154].

[8] Huong Le Thi, Stéphane Junca, and Mathias Legrand. “Periodic solutions of a two-degree-of-
freedom autonomous vibro-impact oscillator with sticking phases”. Nonlinear Analysis: Hybrid
Systems, 2018, 28:54–74. doi: 10.1016/j.nahs.2017.10.009. [hal-01305719v2].

[9] Mathias Legrand, Stéphane Junca, and Sokly Heng. “Nonsmooth modal analysis of a N-degree-of-
freedom system undergoing a purely elastic impact law”. Communications in Nonlinear Science
and Numerical Simulation, 2017, 45:190–219. doi: 10.1016/j.cnsns.2016.08.022. [hal-01185980].

[10] Arne Nordmark. “Existence of periodic orbits in grazing bifurcations of impacting mechanical
oscillators”. Nonlinearity, 2001, 14(6):1517–1542. doi: 10.1088/0951-7715/14/6/306. [hal-
01297283].

[11] Michelle Schatzman. “A class of nonlinear differential equations of second order in time”. Nonlinear
Analysis: Theory,Methods&Applications, 1978, 2(3):355–373. doi: 10.1016/0362-546X(78)90022-
6. [hal-01294058].

[12] Anders Thorin, Pierre Delezoide, and Mathias Legrand. “Non-smooth modal analysis of piecewise-
linear impact oscillators”. SIAM Journal on Applied Dynamical Systems, 2017, 16(3):1710–1747.
doi: 10.1137/16M1081506. [hal-01298983v2].

[13] Anders Thorin, Pierre Delezoide, and Mathias Legrand. “Periodic solutions of n-dof autonomous
vibro-impact oscillators with one lasting contact phase”. Nonlinear Dynamics, 2017, 90(3):1771–
1783. doi: 10.1007/s11071-017-3763-z. [hal-01505888].

[14] Anders Thorin, Mathias Legrand, and Stéphane Junca. “Nonsmooth modal analysis: investigation of
a 2-dof spring-mass system subject to an elastic impact law”. Proceedings of the ASME International
Design Engineering Technical Conferences and Computers and Information in Engineering
Conference: 11th International Conference on Multibody Systems, Nonlinear Dynamics, and
Control. DETC2015-46796. Boston, USA, 2015. [hal-01185973].

[15] Phanikrishna Thota. “Analytical and Computational Tools for the Study of Grazing Bifurcations of
Periodic Orbits and Invariant Tori”. PhD thesis. Virginia Polytechnic Institute and State University,
2007. [tel-01330429].

https://doi.org/10.1088/0951-7715/23/11/001
http://hal.archives-ouvertes.fr/hal-01390258
https://doi.org/10.1098/rspa.1997.0069
http://hal.archives-ouvertes.fr/hal-01297285
http://hal.archives-ouvertes.fr/hal-01562154
https://doi.org/10.1016/j.nahs.2017.10.009
http://hal.archives-ouvertes.fr/hal-01305719v2
https://doi.org/10.1016/j.cnsns.2016.08.022
http://hal.archives-ouvertes.fr/hal-01185980
https://doi.org/10.1088/0951-7715/14/6/306
http://hal.archives-ouvertes.fr/hal-01297283
http://hal.archives-ouvertes.fr/hal-01297283
https://doi.org/10.1016/0362-546X(78)90022-6
https://doi.org/10.1016/0362-546X(78)90022-6
http://hal.archives-ouvertes.fr/hal-01294058
https://doi.org/10.1137/16M1081506
http://hal.archives-ouvertes.fr/hal-01298983v2
https://doi.org/10.1007/s11071-017-3763-z
http://hal.archives-ouvertes.fr/hal-01505888
http://hal.archives-ouvertes.fr/hal-01185973
http://hal.archives-ouvertes.fr/tel-01330429

	1. Introduction
	2. Main results
	2.1. Poincaré section
	2.2. Square-root singularity
	2.3. Dynamics near a linear grazing orbit

	3. Domain of definition of the First Return Map
	3.1. Contact times
	3.2. Zero, one or infinity?
	3.3. Poincaré section

	4. Implicit function theorem and power-root singularity
	4.1. Square-root singularity
	4.2. Power-root singularity
	4.3. Discontinuous First Return Time

	5. Square-root instability
	5.1. A nonlinear n-dimensional map
	5.2. Two-dimensional maps with critical instability

	6. Dynamics in the vicinity of the grazing orbits
	6.1. First Return Time
	6.2. Square-root dynamics in the vicinity of a linear grazing orbit

	7. Conclusion
	Appendix A. One-dof system: on the square-root singularity
	Appendix B. Power-root singularity for a mass-spring chain
	References

