
HAL Id: hal-01957536
https://hal.science/hal-01957536

Submitted on 17 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Real Time Language Recognition on 2D Cellular
Automata: Dealing with Non-convex Neighborhoods

Martin Delacourt, Victor Poupet

To cite this version:
Martin Delacourt, Victor Poupet. Real Time Language Recognition on 2D Cellular Automata: Deal-
ing with Non-convex Neighborhoods. Luděk Kučera, Antonín Kučera. Mathematical Foundations of
Computer Science 2017, 4708, Springer Berlin Heidelberg, pp.298-309, 2007, Lecture Notes in Com-
puter Science, �10.1007/978-3-540-74456-6_28�. �hal-01957536�

https://hal.science/hal-01957536
https://hal.archives-ouvertes.fr

Real Time Language Recognition on 2D Cellular
Automata: Dealing with Non-Convex

Neighborhoods

Martin Delacourt? and Victor Poupet??

LIP (UMR 5668 — CNRS, ENS Lyon, UCB Lyon, INRIA), ENS Lyon, 46 allée
d’Italie, 69364 LYON cedex 07 FRANCE

Abstract. In this paper we study language recognition by two-dimensional
cellular automata on different possible neighborhoods. Since it is known
that all complete neighborhoods are linearly equivalent we focus on a
natural sub-linear complexity class: the real time.
We show that any complete neighborhood is sufficient to recognize in
real time any language that can be recognized in real-time by a cellular
automaton working on the convex hull of V .

1 Introduction

Cellular automata are a widely studied computing model, very well suited for
studying parallel computing (as opposed to most other models such as Turing
machines or RAM machines). It is made of infinitely many elementary machines
of finite memory (the cells) that evolve synchronously at discrete times according
to the states of their neighbors. All cells have the same transition rule and can
only see their neighbors. Because of the parallel behavior, it is easy to consider
cellular automata in any dimension d ∈ N (the cells are arranged on Zd). It is
known that cellular automata are Turing universal [1, 8].

The neighborhood of a cellular automaton (the set of cells whose states a
given cell can see before changing its own) defines the possible communication
between all the cells, and therefore the “geography” of the machine: the neigh-
borhood of a cell is the set of cells from which it can get information in one
time step, the neighborhood of the neighborhood is the set from which it can
receive information in two time steps, and so on. In that way, the neighborhood
defines the shortest paths to exchange information from one point to the other.
As such, it can have a great impact on the possible computations that are held
on an automaton.

An important result concerning computations on different neighborhoods is
due to S. Cole [2] and states that two neighborhoods are either linearly equivalent
(any computation that can be done in time T on one can be done in time k · T
on the other for some constant k) or that there exists a cell c ∈ Zd such that

? martin.delacourt@ens-lyon.fr
?? victor.poupet@ens-lyon.fr

information can go from c to the origin in one of the neighborhoods but not in
the other. If we consider neighborhoods that allow communications between any
two cells (which are the most interesting because they can perform all possible
computations), we will want to consider sub-linear complexity classes in order
to distinguish them. The real time is especially well suited for this study: it
corresponds to the shortest possible time so that any letter of the input word
could have an impact on the acceptance of the word (we will only deal with
language recognition here). This real time depends on the chosen neighborhood.

In one dimension (when the cells are arranged on Z) most studies were done
on the standard neighborhood {−1, 0, 1} (each cell can see its own state and
that of its left and right neighbor) and the one-way neighborhood {0, 1} (cells
can only see their own state and their right neighbor’s). It has been shown that
these two neighborhoods are different [4, 6, 11](mainly because information can
only go in one direction on the one-way neighborhood) and many algorithmic
results are known [3, 5, 9, 10]. If we only consider neighborhoods that are “com-
plete enough” to perform language recognition (all letters of the input word can
affect the outcome of the computation), we have shown in 2005 a stronger ver-
sion of Cole’s equivalence: all neighborhoods are real-time equivalent to either
the one-way or standard neighborhood [7]. This was done by showing that it
was possible to recognize the same languages in real time on non-convex neigh-
borhoods (neighborhoods that had “holes”, for example when a cell c can see
(c + 2) but not (c + 1)) than on convex ones.

In two dimensions, the situation is more complicated. Even by only consider-
ing complete neighborhoods it is known that the two more studied neighborhoods
(the von Neumann and the Moore neighborhoods) are not real time equivalent
[12].

In this article we will generalize the work that we had previously done in
one-dimension and show that any language that is recognized in real time by a
cellular automaton working on the convex hull of a complete neighborhood V
can be recognized in real time by a cellular automaton working on V .

To alleviate the notations, we will only consider two-dimensional cellular
automata in this article. All results can however easily be generalized to higher
dimensions. The only result that might seem complicated to generalize would be
Theorem 1, but it can be stated and proved similarly, by considering periodic
volumes, surfaces, etc. and finite sets in the vincinity of the vertices. Theorem 1
is itself a two-dimensional generalization of Theorem 2.1 from [7].

2 Language Recognition by Cellular Automata

2.1 Cellular Automata

Definition 1. A two-dimensional cellular automaton (2DCA) is a triple A =
(Q, V, f) where

– Q is a finite set called set of states containing a special quiescent state #;
– V = {v1, . . . , v|V |} ⊆ Z2 is a finite set called neighborhood that contains 0.

– f : Q|V | → Q is the transition function. We have f(#, . . . ,#) = #.

For a given automaton A, we call configuration of A any function C from Z2

into Q. The set of all configurations is therefore QZ2
. From the local function f

we can define a global function F

F : QZ2 → QZ2

C 7→ C′ | ∀x ∈ Z2,C′(x) = f(C(x + v1), . . . ,C(x + v|V |))

Elements of Z2 are called cells. Given a configuration C, we’ll say that a cell
c is in state q if C(c) = q.

If at time t ∈ N the 2DCA is in a configuration C, we’ll consider that at time
(t + 1) it is in the configuration F (C). We can therefore define the evolution of
a 2DCA from a configuration. This evolution is completely determined by C.

2.2 Two-Dimensional Language Recognition

Definition 2. Given a finite alphabet Σ and two integers n1 and n2, we define
the set of two-dimensional words of size (n1, n2) over the alphabet Σ as:

Σ(n1,n2) = ΣJ0,n1−1K×J0,n2−1K

The set of all two-dimensional words over Σ is defined as:

Σ∗∗ =
⋃

n1∈N,n2∈N
Σ(n1,n2)

Two-dimensional words over Σ can be seen as rectangular grids of size n1×n2

containing letters of Σ.

Definition 3. A language over an alphabet Σ is a subset of Σ∗∗.

Definition 4. We consider a 2DCA A = (Q, V, f) and a set Qacc ⊆ Q of
accepting states. Let w ∈ Σ(n1,n2) be a word over a finite alphabet Σ ⊆ Q. We
define the configuration Cw as follows.

Cw : Z2 → Q{
(x, y)
(x, y)

7→
7→

w(x, y)
#

if (x, y) ∈ J0, n1 − 1K× J0, n2 − 1K
otherwise

We’ll say that the 2DCA A recognizes the word w with accepting states Qacc

in time tw if, starting from the configuration Cw at time 0, the cell 0 is in a state
in Qacc at time tw.

Definition 5. Let A = (Q, V, f) be a 2DCA and L ⊆ Σ∗∗ a language on the
alphabet Σ ⊆ Q. For a given function T : N2 → N, we’ll say that the language
L is recognized by A in time T if there exists a set Qacc ⊆ Q such that, for all
words w of size (n1, n2) in Σ∗∗, the 2DCA A recognizes w with accepting states
Qacc in time T (n1, n2) if and only if w ∈ L.

3 Iterated Neighborhoods

Definition 6. Given two neighborhoods V1, V2 ⊆ Z2, we define

V1 + V2 = {v1 + v2 | v1 ∈ V1 and v2 ∈ V2}

Given a neighborhood V , we define its iterations as V 0 = {0} and for all k ∈ N,
V k+1 = V k + V and its multiples as kV = {k · v | v ∈ V }.

Definition 7. A neighborhood V ∈ Z2 is said to be complete if
⋃

k∈N V k = Z2.

Definition 8. The continuous convex hull of a neighborhood V , denoted CCH(V),
is the smallest convex polygon (in R2) that contains V . The (discrete) convex
hull of V , denoted CH(V), is the set of all points of Z2 that are in the continuous
convex hull of V .

Definition 9. For a given neighborhood V , the vertices of the polygon CCH(V)
are all elements of V (and therefore elements of Z2). We will call them the
vertices of V .

When considering the set {s1, . . . , sp} of vertices of a neighborhood, we will
always order them as they appear when going clockwise around CCH(V). We
will also consider the indexes modulo p (the number of vertices), meaning that
s0 = sp and sp+1 = s1.

3.1 General Form of Iterated Complete Neighborhoods

In this whole subsection V is a complete neighborhood. We will study the shape
of the successive iterations of V . First of all, we define the integer tc = min{t ∈
N | CH(V)2 ⊆ V tc+2}.

We know that tc is correctly defined because V is complete so there exists
an integer t such that CH(V)2 ⊆ V t. We have the following proposition:

Proposition 1. For all integers t ≥ 2,

CH(V)t ⊆ V tc+t ⊆ CH(V)tc+t

Proof. The rightmost inclusion is immediate because V ⊆ CH(V). The other
inclusion can be shown by induction using the fact that V +CH(V)2 = CH(V)3.

We have the following theorem:

Theorem 1. For any two-dimensional complete neighborhood V , if we denote
by (s1, s2, . . . , sp) its vertices, there exists an integer ts such that:

– for all i ∈ J1, pK, there is a set Ai ⊆ V ts+tc \ V ts ,
– for all integer i ∈ J1, pK, there is a set Bi included in the trapezoid of sides

hi = (si+1 − si), tc · si+1, −tc · hi and −tc · si.

– for any integer t ∈ N, the neighborhood V tc+ts+t is exactly the union of the
following sets:
• CH(V)ts+t,
• (Ai + t · si) for all i ∈ J1, pK,
• copies of Bi arranged regularly (translation of vector hi) on the outer

strip of the cone (si, si+1) to cover the area that isn’t covered by the Ai.

The general form of V tc+ts+t (as described by Theorem 1) is illustrated by
Figure 1 for two different values of t.

A1

A2

A3A4

A5

A1

A2

A3A4

A5

Fig. 1. General form of V tc+ts+t (the fillings of the dashed trapezoids are all identical
on a given strip).

Even though it is hard to state clearly, Theorem 1 is very important because
it shows that no matter how irregular V is, it becomes “regular” after a certain
number of iterations.

4 Main Theorem

This whole section will be dedicated to the proof of the following theorem

Theorem 2. Given a complete neighborhood V in d dimensions (d ∈ N), any
language that can be recognized in real time by a 2DCA working on the convex
hull of V can be recognized in real time by a 2DCA working on V .

To prove this theorem, we’ll consider a complete neighborhood V and lan-
guage L recognized in real time by a 2DCA A working on CH(V). We will
then describe the behavior of a 2DCA A′ working on the neighborhood V that
recognizes L in real time. We define tc as previously.

4.1 General Behavior of A′

To describe the behavior of A′, we will consider a two-dimensional word w and
describe the evolution of A′ on this input. Since the evolution of A′ will mimick
that of A, it will be convenient to denote by 〈c〉t the state in which the cell c is at
time t in the evolution of A starting from the initial configuration corresponding
to the word w (for instance 〈0〉0 is the lowest and leftmost letter of w).

For some large enough integer t0 depending on V (we’ll explain later how to
choose t0) the automaton A′ will spend the first t0 steps gathering all possible
information on each cell.

After t0 generations, any cell c knows therefore all states {〈c + x〉0 | x ∈ V t0}.
If V t0 is different from CH(V)t0 there are some states in CH(V)t0(c) that c
doesn’t know. All cells will however assume that the states that they don’t know
in their neighborhood CH(V)t0 are #. Obviously, many of these assumptions
are false at time t0, but for cells close enough to the borders of the input word
some of these assumptions are true.

The cells of A′ will now apply the transition rule of A to all the states they
hold (including the ones they assume). Hence, at time (t0 + t) each cell c of A′

holds a set of states that it assumes to be the states {〈c + x〉t | x ∈ CH(V)t0}.

4.2 Propagation of correct assumptions

As previously, we denote by {s1, . . . , sp} the set of all vertices of V (ordered
clockwise). For all i ∈ J1, pK, we separate the cone (si, si+1) of the neighborhood
CH(V)t0 in four parts:

– the inside triangle Ci of sides (t0 − tc)si and (t0 − tc)si+1 that we know is
totally included in V t0 ;

– a trapezoidal area Ti included in the remaining strip, whose parallel sides
lay on the inner and outter borders of the strip and whose two other sides
are parallel to the segments [si−1, si] and [si+1, si+2] of the convex hull of V ;

– the two parts Sd
i and Sg

i+1 that are left on each side of the central trapezoidal
area.

We also define Si = Sd
i ∪ Sg

i .
We choose t0 large enough so that V t0 is of the “stabilized form” described

by Theorem 1 (meaning that t0 ≥ tc + ts) and also that for all i the trapezoid Ti

doesn’t extend beyond the central periodic area of the outter strip of the cone
(si, si+1) on V t0 (when t grows, the central periodic area becomes arbitrarily
large so there is a time t0 such that we can choose Ti entirely inside of it).

Figure 2 illustrates the general form of such a splitting of CH(V)t0 .
If we consider a cell c of A′ at time (t0 + t), it knows correctly all states

{〈c + x〉t | x ∈ Ci} for all i but not necessarily all states in the other regions.
For all i, we will say that a cell is (si, si+1)-correct if all the assumptions it

makes in the area (c + Ti) are correct. We will say that it is si-correct if it is
(si−1, si)-correct, (si, si+1)-correct and that all the assumptions it makes in the
area (c + Si) are also correct. Figure 3 illustrates these definitions.

We can now prove the two following lemmas:

S1

S2

S3S4

S5

T1

T2

T3

T4

T5 C1

C2

C3

C4

C5

Fig. 2. Splitting of CH(V)t0 .

Ci

Ti

si
si+1

c

CiTi−1

Si

Ti

Ci−1

si si+1si−1
c

Fig. 3. Correct hypothesis of a (si, si+1)-correct (left) and a si-correct (right) cell.

Lemma 1. If at time (t0 + t) the cells (c+ si) and (c+ si+1) are both (si, si+1)-
correct then at time (t0 + t + 1) the cell c is (si, si+1)-correct.

Lemma 2. If at time (t0 + t) the cell (c + si) is si-correct and that both cells
(c + si−1) and (c + si+1) are (si−1, si)-correct and (si, si+1)-correct respectively
then at time (t0 + t + 1) the cell c is si-correct.

Figures 4 and 5 illustrate the proofs of these two lemmas. In both cases we
have represented on the left side the area on which the cell must have correct
information to be correct at the next step and on the right side the areas on
which it can see correct information according to the hypothesis of the lemma.

We see that in both cases the cell has enough information at time (t0 + t) to
compute correct states at time (t0 + t+1) (the slope of the central trapezoid has
been chosen so that everything works correctly, and we use the fact that CH(V)t0

is convex). We also use the fact that if there is a conflict between the information
held by a cell and its neighbors, the priority is given to the information held by
the neighbor that is the closest to the disagreeing point.

We know that at time t0 all cells of A′ that are “close enough” to the border
of the word w are correct in the direction pointing outside of the word. Lemmas 1

Fig. 4. States that the cell c must know to be (si, si+1)-correct at the next time (left)
and the correct information held by its neighbors (right).

Fig. 5. States that the cell c must know to be si-correct at the next time (left) and
the correct information held by its neighbors (right).

and 2 show that the the correctness of thes cells “propagates” to their neighbors
towards the origin along the vectors si until eventually at some time (t0 + tf)
the origin is correct in all possible directions. At this time, the origin knows
correctly all the states in {〈x〉tf

| x ∈ CH(V)t0} and can hence anticipate the
simulation of A of t0 steps. At time (t0 + tf) the origin is therefore capable of
knowing the state 〈0〉t0+tf

in which the origin of A would be at time (t0 + tf).

The 2DCA A′ can therefore compensate for the initial t0 steps that were
“lost” at the beginning. Now we have to show that (t0 + tf) is exactly the real
time corresponding to the input word w.

4.3 The Real Time

Given a word w in Σ∗∗, we denote by M the set of cells on which the word spans
when “written” on the initial configuration of A and A′. In other terms, if w is
of size (n, m), we have M = J0, n− 1K× J0,m− 1K.

By definition of the real time, we have TRV (n, m) = min{t ∈ N | M ⊆ V t}.
To alleviate the notations in this section, we will define tr = TRV (n, m).

We want to show that at time tr the origin of A′ is correct in all possible
directions. We have to consider both cases of angles (si-correctness) and cones
((si, si+1)-correctness).

Lemma 3. If tr ≥ t0 then for any vertex si of V the cell (tr− t0)si is si-correct
at time t0.

Proof. According to the definition of real time, we have M ⊆ V tr . If tr ≥ t0, the
neighborhood V tr is of the “stabilized” form described by Theorem 1. Moreover,
since V t0 is also “stabilized”, we know that the area corresponding to the vertex
si in both neighborhoods V t0 and V tr is identical (see Figure 6).

tr · si

(tr − t0)si

t0 · si

Fig. 6. The sets V t0 + (tr − t0)si (left) and V tr (right) coincide on the black dashed
area.

Since M is included in V tr , there is no point of M in the black dashed area
that isn’t in V tr . By Theorem 1 we know that all points in that area are also
in V t0 + (tr − t0)si. Thus the cell (tr − t0)si makes only correct assumptions in
that area at time t0 when it considers that all the states it doesn’t see are #.

Since we have seen that (si, si+1)-correctness propagates from (c + si) and
(c + si+1) to c and that the only cell we are really interested in is the origin, it
is sufficient to work on the cells of the form (a · si + b · si+1) for a, b ∈ N.

Lemma 4. If tr ≥ t0 then for any i ∈ J1, pK, all cells of the form (a ·si +b ·si+1)
with a, b ∈ N and a + b = tr − t0 are (si, si+1)-correct at time t0 (these cells are
all on the segment [(tr − t0)si, (tr − t0)si+1] as shown by Figure 7).

si

si+1

(tr − t0)si

(tr − t0)si+1

Fig. 7. The cells (a · si + b · si+1) where a, b ∈ N and a + b = tr − t0 (represented by
black circled dots).

Proof. As previously, if tr ≥ t0 the neighborhood V tr is of the form described
by Theorem 1, as is V t0 . This means that the central trapezoids in the strip
of width tc on both neighborhoods are superpositions of identical trapezoidal
fillings periodically translated by a vector (si+1 − si).

This means that for any cell c = (a·si+b·si+1) with a, b ∈ N and a+b = tr−t0
the filling of V t0(c) on the trapezoidal area corresponding to (si, si+1) coincides
with the neighborhood V tr (see Figure 8)

Since M in included in V tr , all letters of the word that are in the area that
the cell c has to know in order to be (si, si+1)-correct are visible to the cell.
It only makes true assumptions in this area when is assumes that all states it
cannot see are #. All cells (a · si + b · si+1) for a, b ∈ N and a + b = tr − t0 are
therefore (si, si+1)-correct at time t0.

4.4 End of the Proof

Using Lemmas 1, 2, 3 and 4 we can now show by induction the following results:

Lemma 5. If tr ≥ t0, for any vertex si of V and any t ∈ N, the cell (tr−t0−t)si

is si-correct at time (t0 + t).

Lemma 6. If tr ≥ t0, for any vertex si of V and any t ∈ N, all cells (a · si + b ·
si+1) where a, b ∈ N and a+ b = tr − t0− t are (si, si+1)-correct at time (t0 + t).

t0 · si

a · si + b · si+1

tr · si

Fig. 8. The sets V t0(c) (left) and V tr (right) coincide on the black dashed area.

We finally conclude by saying that if tr ≥ t0, the origin is correct in all
possible directions at time t0 + (tr − t0) = tr. Hence, on an input w of size
(n, m), the 2DCA A′ working on the neighborhood V can compute at time
TRV (n, m) the state in which the origin of A would be at the same time from
the same input.

Since there are only a finite number of words w ∈ Σ∗∗ such that the real time
corresponding to these words is smaller than t0, we can modify the automaton
so that it recognizes also correctly in real time these words that are too small.
This ends the proof of Theorem 2.

5 Conclusion

Understanding the impact of the choice of the neighborhood in language recog-
nition on cellular automata is a key point to understanding communication in
parallel computations. What we have shown here is that, although it might seem
important, the neighborhood needs not be convex since the same computation
can be done on non-convex neighborhoods than on convex ones, and there is no
other loss of time than the obvious one due to the fact that the neighborhood is
smaller. Not only it shows that convexity is never fully used by any parallel algo-
rithm, but it also simplifies our study considerably since we will now be able to
consider only convex neighborhoods when proving algorithmic results (speed-up
theorems for example).

An interesting thing to notice is that we don’t have the converse of Theo-
rem 2. Although it might seem unlikely, there might exist languages that can be
recognized in real time on a certain neighborhood V but not on its convex hull.
Of course, any computation that can be done on V can be done in the same time
on CH(V), but since the real time on CH(V) can be smaller than the one on

V , it is not easy to show that we can go faster on CH(V). This comes from the
fact that we are unable to prove constant time acceleration theorems on some
convex neighborhoods (such as the von Neumann one).

Also it might be interesting to determine precisely which neighborhoods are
real time equivalent but very little is known in that direction. If we consider
complete neighborhoods, we know that there is a language that is recognized in
real time on the von Neumann neighborhood but not on the Moore neighborhood
[12], but it’s the only example (and the converse is still unknown).

References

1. Albert, J., Čulik II, K.: A simple universal cellular automaton and its one-way and
totalistic version. Complex Systems 1 (1987) 1–16

2. Cole, S.N.: Real-time computation by n-dimensional iterative arrays of finite-state
machines. IEEE Transactions on Computers C-18 (1969) 349–365

3. Čulik, K., Hurd, L.P., Yu, S.: Computation theoretic aspects of cellular automata.
Phys. D 45 (1990) 357–378

4. Dyer, C.R.: One-way bounded cellular automata. Information and Control 44
(1980) 261–281

5. Ibarra, O., Jiang, I.: Relating the power of cellular arrays to their closure properties.
Theoretical Computer Science 57 (1988) 225–238

6. Ibarra, O.: 6. In: Cellular Automata: a Parallel Model. Mathematics and its
applications edn. Kluwer, Dordrecht (1999) 181–197

7. Poupet, V.: Cellular automata: Real-time equivalence between one-dimensional
neighborhoods. In Diekert, V., Durand, B., eds.: STACS. Volume 3404 of Lecture
Notes in Computer Science., Springer (2005) 133–144

8. Smith III, A.R.: Simple computation-universal cellular spaces. J. ACM 18 (1971)
339–353

9. Smith III, A.R.: Real-time language recognition by one-dimensional cellular au-
tomata. Journal of the Assoc. Comput. Mach. 6 (1972) 233–253

10. Terrier, V.: Language recognizable in real time by cellular automata. Complex
Systems 8 (1994) 325–336

11. Terrier, V.: Language not recognizable in real time by one-way cellular automata.
Theoretical Computer Science 156 (1996) 281–287

12. Terrier, V.: Two-dimensional cellular automata recognizer. Theor. Comput. Sci.
218 (1999) 325–346

