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Stability Analysis of a More General Class of
Systems with Delay-Dependent Coefficients

Chi Jin, Keqin Gu, IEEE Senior Member, Islam Boussaada, and Silviu-Iulian Niculescu, IEEE Fellow

Abstract—This paper presents a systematic method to analyse
the stability of systems with single delay in which the coefficient
polynomials of the characteristic equation depend on the delay.
Such systems often arise in, for example, life science and
engineering systems. A method to analyze such systems was
presented by Beretta and Kuang in a 2002 paper, but with some
very restrictive assumptions. This work extends their results to
the general case with the exception of some degenerate cases.
It is found that a much richer behavior is possible when the
restrictive assumptions are removed. The interval of interest for
the delay is partitioned into subintervals so that the magnitude
condition generates a fixed number of frequencies as functions
of the delay within each subinterval. The crossing conditions are
expressed in a general form, and a simplified derivation for the
first-order derivative criterion is obtained. Illustrative examples
are also presented.

Index Terms—Delay Systems, Stability Analysis

I. INTRODUCTION

The presence of time-delay has been widely observed in
physical and engineering systems, and it is often caused by
the finite time needed to transfer materials, energy and infor-
mation. Such systems may be modeled as delay deferential
equations, and have attracted significant attentions of scholars
from mathematics, engineering, life science and economics for
many years. See [3], [9], [10], [11] for some recent progress.

For a linear system with constant coefficients and single
delay or multiple commensurate delays, a number of effective
methods have been proposed [1], [2], [5]. The methods are
along the line of D-subdivision [6], [7], also known as the
τ-decomposition method [17] as the parameter involved in
this case is the delay τ . These methods roughly proceed as
follows: starting with one value of delay τ0 that one knows the
number of characteristic roots on the right-half plane (usually
τ0 = 0), one sweeps through an interested interval (τ0,τN)
of delays, and identify all delays τk, k = 1,2, . . . ,N − 1 for
which there are characteristic roots on the imaginary axis. By
identifying the direction these roots cross the imaginary axis,
the change of the number of right-half plane roots as τ goes
through τk can be determined. Thus, the interval (τ0,τN) is
divided into subintervals (τk−1,τk), and the number of right-
half plane roots within each subinterval is constant and can
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be explicitly determined. Especially, the subintervals of delay
for the systems to be stable can be identified.

There are, however, practical systems in, for example, life
science and engineering, for which the coefficients of the
system characteristic equation depend on the delay values. For
example, in [15], the source and dissipative process of a stellar
dynamos is described by the following equations{

Ḃφ (t) = c1e−c2T0A(t−T0)− c2Bφ (t),
Ȧ(t) = c3e−c2T1Bφ (t−T1)− c2A(t),

where Bφ is the strength of toroidal field, and A is the strength
of poloidal field, and c1, c2, c3, T0, T1 are positive constants.
The characteristic equation of the above system can be easily
obtained as the following with delay-dependent coefficients:

λ
2 +2c2λ + c2

2− c1c3e−c2τ e−τλ = 0, (1)

where τ = T0 +T1.
A model of hematopoietic stem cell dynamics is given in

[16]. The model is nonlinear, and possesses two equilibria.
The linearized equation in the neighborhood of the nonzero
equilibrium has the following characteristic equation

λ +A(τ)−B(τ)e−λτ = 0,

where A, B are nonlinear functions of τ . Therefore delay-
dependent coefficients may result from the linearized dynamics
of a nonlinear time-delay system.

Time-delay systems with delay-dependent coefficients can
also arise from the analysis of partial differential equations. As
an example, the modeling of cell density in a generic com-
partment in [27] suggests an advection or reaction-convection
equation of the following form:

∂x(t,a)
∂ t

+V
∂x(t,a)

∂a
=−γ(t,a)x(t,a).

A time-delay system can be obtained from the above equation
using the method of characteristics

Ṡ(t) = 2β (S(t− τs))e−γsτs S(t− τs)− [β (S(t))+δ ]S(t).

Detailed derivation and the meaning of the variables and
functions in the above equation can be found in [27]. It is
clear that the delay parameter τ enters the system coefficients
through the exponential term e−γsτs .

Other examples of systems with delay-dependent coeffi-
cients include the sun flower model [26], control systems using
a finite-difference scheme for stabilization [21] as well as
various population dynamics models [14]. Indeed, it has been
pointed out in [12] that the dynamics of a population that goes
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through distinct life stages in general involves delay-dependent
parameters.

While it is possible to use the existing methods mentioned
above to determine the stability of such a system with a
given delay value, they are no longer sufficient to determine
the range of delays for the system to be stable. Beretta and
Kuang [12] presented an effective method to carry out such
a stability analysis for systems with a single delay. However,
the authors of [12] made some very restrictive assumptions,
and the main attention has been paid to the crossing direction
of the characteristic roots at the imaginary axis. No procedure
was given in [12] to identify all the pairs ( jω,τ) that satisfy
the characteristic equation. In general, the structure of the
functions ω(τ) implicitly defined by F(ω,τ) has not been
sufficiently described in [12] to systematically identify all such
pairs.

The purpose of this paper is to extend the method to the
general case with the exception of some degenerate cases. As
we will see, the removal of such restrictive assumptions means
that a much richer behavior is possible. More specifically,
the interval of interest for delay needs to be divided into
subintervals so that the number of continuous functions ω(τ)
remains constant within each subinterval. The number of such
functions may change as the delay moves from one subinterval
to another. The dividing points of the interval are those
delays for which two polynomial equations have a common
real solution. Based on such a structure, the crossing delays
and the corresponding crossing frequencies may be identified
systematically. Furthermore, the delay intervals such that the
system is stable may be determined based on the crossing
directions of each critical delay-frequency pair.

The crossing direction in the general case may be deter-
mined numerically. With additional nondegeneracy assump-
tion, the crossing direction may be conveniently determined
analytically similar to the method given in [12], although we
will show that a simplified derivation is possible.

A preliminary version of this paper was presented in [20].
The following notation will be used in this paper. For

a polynomial, ord(·) denotes its order. For any complex
number c, ℜ(c), ℑ(c) and c denote its real part, imaginary
part and conjugate, respectively. R stands for the set of
real numbers and R+ for non-negative reals. We will use ∂

with a subscript to denote partial derivatives. For instance,
∂λ D(λ ,τ) := ∂D(λ ,τ)

∂λ
.

II. PROBLEM STATEMENT

Consider a time-delay system with characteristic equation
of the form:

D(λ ,τ) = P(λ ,τ)+Q(λ ,τ)e−τλ = 0, (2)

where P(λ ,τ) and Q(λ ,τ) are continuous in τ and are
polynomials of λ with real coefficients for each given τ ∈I ,
and I = [τ l ,τu] is the range of delay parameters τ of interest,
0≤ τ l < τu. In some context, we may write Pτ(λ ) and Qτ(λ )
instead of P(λ ,τ) and Q(λ ,τ) in order to emphasize them
as functions (polynomial in this case) of λ for a given τ .
The same convention is also used for other functions of two

independent variables with τ as one of them. For example, we
may write Dτ(λ ) instead of D(λ ,τ) to emphasize that we are
considering D as a function of λ for a given τ even though it
is no longer a polynomial.

As we will see later on, the solutions of (2) with λ on the
imaginary axis plays an important role in stability analysis, in
which case, (2) becomes

D( jω,τ) = 0, (3)

where ω is real. For this purpose, we define:

F(ω,τ) = P( jω,τ)P(− jω,τ)−Q( jω,τ)Q(− jω,τ). (4)

It is not difficult to see that a necessary but not sufficient
condition for (ω,τ) to satisfy (3) is

F(ω,τ) = 0. (5)

The equation (5) is known as the magnitude condition, which
means that the norms of the two complex number P( jω,τ)
and Q( jω,τ) are equal.

We will restrict ourselves to systems that satisfy the follow-
ing four assumptions:

Assumption I. For all τ ∈I , Pτ satisfies

ord(Pτ) = n. (6)

Furthermore,

lim
ω→∞

∣∣∣∣Qτ( jω)

Pτ( jω)

∣∣∣∣< 1. (7)

Assumption II. No (ω,τ) ∈ R+×I satisfies

P( jω,τ) = 0,
Q( jω,τ) = 0,

simultaneously.

Assumption III. Any (ω∗,τ∗) ∈ R+×I that satisfies (3)
must also satisfy

∂λ D(λ ,τ)| τ=τ∗
λ= jω∗

6= 0. (8)

Furthermore, let λ (τ) be the function implicitly defined by
(2) in a sufficiently small neighborhood of ( jω∗,τ∗) within
R+×I , then for all τ 6= τ∗, τ ∈I , |τ− τ∗| sufficiently small,

ℜ(λ (τ)) 6= 0.

Assumption IV. There are only a finite number of ( jω,τ) in
R+×I that simultaneously satisfy (5) and

∂ω F(ω,τ) = 0. (9)

These four assumptions are less restrictive than typical in
the literature either stated explicitly or implicitly. Assumption
I above requires the leading coefficient of Pτ not to vanish for
all τ ∈I , and

ord(Qτ)≤ n. (10)

For time-delay systems of retarded type, (10) is satisfied with
strict inequality. When (10) is an equality, the time-delay
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system is of neutral type, and (7) requires the absolute value
of the leading coefficient of Qτ(λ ) to be strictly less than that
of Pτ(λ ). Systems of neutral type involve some surprising
subtleties. See [2] for an example for systems with single
delay. For more comprehensive coverage see [4] and [9].

Assumption II is much less restrictive than the counterpart
in [12] which is

P( jω,τ)+Q( jω,τ) 6= 0 for all (ω,τ) ∈ R2. (11)

Indeed, the two complex equations in Assumption II are
equivalent to four real equations with two real “unknowns”
ω and τ . Obviously, cases that violate this assumption are
degenerate and rare. On the other hand, the set

{P( jω,τ)+Q( jω,τ) | (ω,τ) ∈ R2}

is a region in the complex plane, and (11) requires this region
not to include the origin, which is obviously much more
restrictive. As will be presented later, the analysis is based
on the phase condition on the set of parameters that satisfy
the magnitude condition (5). The violation of this assumption
makes the phase condition discontinuous at this point, and
requires separate treatment which will not be pursued here.

In Assumption III, Condition (8) guarantees that λ (τ∗) =
jω∗ is a simple characteristic root, and consequently λ (τ)
is well defined in a small neighborhood of τ = τ∗ by the
implicit function theorem [22], and λ ′(τ) exists at τ∗ if
D(λ ,τ) is differentiable with respect to τ at (λ (τ∗),τ∗). The
remaining part of the assumption means that the curve λ (τ)
is on the imaginary axis only at one point λ ∗ = λ (τ∗) in
this neighborhood. A more restrictive assumption is to assume
ℜ(λ ′(τ)) 6= 0, which is implicitly assumed in most works of
this nature, including [12].

Assumption IV is also rather natural. It requires two real
equations in two real variables to admit a finit number of
solutions in the set R+×I . This assumption holds for most
systems with delay dependent coefficients in practice. This
assumption allows the delay interval I to be divided into a
finite number of sub-intervals such that the polynomial Fτ(ω)
has a constant number of simple positive roots within each
subinterval.

In most cases, we may choose the lower limit τ l of I to
be 0, and the upper limit τu sufficiently large. We leave them
in this general form so that the method we present here is still
valid even if some of the assumptions are violated for some
τ < τ l or τ > τu.

This paper provides extension of the analysis in [12] so that
it is still applicable when the condition (11) is violated. In [12],
it is also implicitly assumed that the number of real roots,
±ωk(τ),k = 1,2, · · · ,m, of Fτ(ω) remains constant within
the delay interval of interest I , and they are continuously
differentiable. With our relaxed assumptions, these are no
longer true. Especially, the real roots may suddenly emerge
or disappear as the delay τ increases within I . It is therefore
essential to understand the structure of this solution set in order
to solve the stability problem. This will be discussed in the
next section.

III. STABILITY ANALYSIS

The main idea for stability analysis here is along the line
of τ-decomposition method outlined in the introduction. The
validity of the method is based on the fact that there exists a
constant c > 0 for any closed interval of τ such that all roots
of Dτ(λ ) with ℜ(λ ) > −c vary continuously as τ changes.
This is true under Assumption I [2][4][9].

The critical aspects of the stability analysis are: (i) identi-
fying the values of τ such that there is at least one root of
Dτ(λ ) on the imaginary axis, as well as the corresponding
imaginary roots, and (ii) determining whether these imaginary
roots move from the left-half plane to the right-half plane, or
vise versa, or return to the original side as τ increases through
these values. In this section, we will consider the first aspect,
and describe the process of stability analysis assuming we
know the answer to the second aspect. In the next section,
we will describe some methods of accomplishing the second
aspect.

To accomplish the first aspect stated in the last paragraph,
it is useful to introduce the notation

S(λ ,τ) =−P(λ ,τ)
Q(λ ,τ)

eτλ , (12)

whenever

Q(λ ,τ) 6= 0. (13)

Then

S( jω,τ) =W (ω,τ)e jθ(ω,τ), (14)

where

W (ω,τ) =

∣∣∣∣P( jω,τ)

Q( jω,τ)

∣∣∣∣ , (15)

θ(ω,τ) = ∠P( jω,τ)−∠Q( jω,τ)+ωτ +π. (16)

When λ = jω is on the imaginary axis, we note that (3) is
equivalent to the following two conditions

W (ω,τ) = 1, (17)
θ(ω,τ) = 2rπ, for some integer r, (18)

provided that (13) holds.
Equation (17) is equivalent to (5), and represents the

magnitude condition. Equation (18) is the phase condition.
To capture essentially the same phase relationship, in [12] a
function different from θ(ω,τ) is introduced, which requires
the more restrictive condition (11). Let

W = {(τ,ω) | τ ∈I ,ω ∈ R,F(ω,τ) = 0}, (19)

then (τ,ω) ∈ W if and only if (τ,ω) satisfies (13) and (17)
in view of Assumption II. Therefore, an effective approach
to determine all (τ,ω) satisfying (3) is to first determine the
set W , and then choose from W those (τ,ω) that also satisfy
(18).

To understand the structure of W , we will examine the
function F(ω,τ) = Fτ(ω) more closely. For any given τ ,
Fτ(ω) is an 2nth order polynomial with real coefficients in
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view of Assumption I, and it is an even function. It can also
be written as an nth order polynomial of ω2,

F̂(α,τ) = F(ω,τ), (20)
α = ω

2. (21)

Therefore

F̂(α,τ) = 0 (22)

will provide n solutions αk, k = 1,2, . . . ,n. Without loss of
generality, let αk, k = 1,2, . . . ,np, np ≤ n, be the only real
and non-negative solutions. Then, all the real solutions of
(5) are ±ωk, k = 1,2, . . . ,np, where ωk =

√
αk. In general,

the number of non-negative real roots np depends on τ . In
order to understand this dependence, let τ(i), i = 1,2, . . . ,K−1
be the set of all τ ∈ I such that (ω,τ) simultaneously
satisfies (5) and (9) for some ω ∈R+ (recall this set is indeed
finite according to Assumption IV). We agree to order τ(i) in
ascending order

τ
(1) < τ

(2) < · · ·< τ
(K−1).

We will also write τ(0) = τ l and τ(K) = τu. Then, we may
partition I into K subintervals

I (i) = [τ(i−1),τ(i)], i = 1,2, . . . ,K. (23)

The interior of I (i) is denoted as I
(i)

o = (τ(i−1),τ(i)). Then
the structure of the set W may be very clearly described in
the following proposition.

Proposition 1. For a given i, the number of real roots of Fτ(ω)

are the same for all τ ∈ I
(i)

o , and they are all simple. These
real simple roots are continuous functions of τ , and may be
expressed as ±ω

(i)
k (τ), k = 1,2, . . . ,m(i), where m(i) ≤ n, and

ω
(i)
k (τ)> 0 for all τ ∈ I

(i)
o .

Proof. For a fixed i, by definition, for all τ ∈I
(i)

o , any ω ∈R
that satisfies

Fτ(ω) = 0 (24)

must satisfy

F ′τ(ω) = ∂ω F(ω,τ) 6= 0, (25)

from which we conclude that all real roots of Fτ(ω) are simple.
As Fτ(ω) is an even function of ω , we can also conclude that
the −ω is also a root if ω is a real root, and ω = 0 is not a
root (otherwise, it cannot be simple). To show the invariance
of the number of real solutions within I

(i)
o , let τ∗ ∈ I

(i)
o ,

and let ω∗k , k = 1,2, . . . ,m be the only real roots of Fτ∗(ω).
By the continuity of roots with respect to coefficients[8], we
may define m continuous functions ωk(τ), k = 1,2, . . . ,m in
I

(i)
o , ωk(τ

∗) = ω∗k , and each ωk(τ) is a root of Fτ(ω). The
proof is complete if we show that all ωk(τ) are real in I

(i)
o

as this also implies that ωk(τ) are simple roots of Fτ(ω).
For a given k, let

τM = sup{τa | ωk(τ) ∈ R for all τ ∈ [τ∗,τa]}.

By continuity, ωk(τM) is real. We will show τM = τ(i). If not,
for arbitrarily small ε > 0, ωk(τM + ε) is not real, which can

be made arbitrarily close to ωk(τM) with sufficiently small ε .
But this means that its complex conjugate ω̄k(τM + ε) is also
a root of the polynomial with real coefficients FτM+ε

(ω) and
arbitrarily close to ωk(τM). The continuity of roots with respect
to the coefficients means that ωk(τM) cannot be a simple root
of FτM (ω), which contradicts the first part of this proposition
that we have already proven. We have thus shown that ωk(τ)
is real for all τ ∈ [τ∗,τ(i)). Similarly, we can show that ωk(τ)
is real for all τ ∈ (τ(i−1),τ∗], and the proof is complete.

As τ moves rightward from a point in I
(i)

o , some, say m,
real roots, and 2l complex roots of Fτ(ω) may merge to form
a multiple root as τ reaches τ(i), and some, say 2k, become
complex while m+2l−2k roots remain real as τ enters I

(i+1)
o .

The most common scenarios are either two real roots merge
and become complex, or two complex roots merge and become
real as τ moves from I

(i)
o to I

(i+1)
o through τ(i).

A real root of Fτ(ω) in I
(i)

o , say ω
(i)
k (τ), k≤m(i), that does

not merge with other roots at τ(i) remains real, and becomes
ω

(i+1)
l for some l ≤ m(i+1) as τ moves from I

(i)
o to I

(i+1)
o

through τ(i).
For a given i and k, as ω

(i)
k depends on τ continuously in

I
(i)

o , we will require ∠P( jω(i)
k (τ),τ) and ∠Q( jω(i)

k (τ),τ) to
be continuous functions of τ . This means that

θ
(i)
k (τ) = θ(ω

(i)
k (τ),τ), k = 1,2, · · · ,m(i) (26)

are continuous functions of τ within I
(i)

o , and will be known
as the phase functions. On the other hand, this continu-
ity requirement means that the values of ∠P( jω(i)

k (τ),τ),
∠Q( jω(i)

k (τ),τ) and θ
(i)
k (τ) may not be restricted to any 2π

range. Furthermore, if ω
(i)
k (τ) and ω

(i)
l (τ) merge at, say, τ(i),

and we extend the definition of θ
(i)
k (τ) and θ

(i)
l (τ) to τ(i) by

continuity, then it is possible that

θ
(i)
k (τ)−θ

(i)
l (τ) = 2πr,

for some integer r 6= 0 even though

ω
(i)
k (τ(i)) = ω

(i)
l (τ(i)). (27)

Going through each interval I (i) and each curve ω
(i)
k (τ), we

may identify all τ = τl such that

θ
(i)
k (τl) = 2πr, r integer, (28)

for some k if τl ∈I (i). Notice, the ends of the intervals, τ(i),
i = 0,1, · · · ,K should also be included. We will order such τl
in an ascending order

τ
l ≤ τ1 < τ2 < · · ·< τL ≤ τ

u.

Each τl is known as a critical delay. For each given τl , it is
possible that more than one k satisfies (28), and we denote the
corresponding ω

(i)
k (τl)≥ 0 as ωlh, h = 1,2, · · · ,Hl . Therefore,

we can identify all the pairs (ωlh,τl), h = 1,2, · · · ,Hl ; l =
1,2, · · · ,L, that satisfy (3).

It should also be pointed out that it is possible that a simple
root of Dτ( jω) may be a double root of Fτ(ω). In other words,
for some τ = τ(i), an ω that simultaneously satisfy (5) and
(9) may satisfy (18) without violating Assumption III. Such
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points pose special difficulty in determining crossing direction
as will be shown in the next section.

Now we will describe the representation of the second
aspect we mentioned at the beginning of this section, i.e., the
movement of the imaginary roots. For a given pair (ωlh,τl) that
satisfies (3), a sufficiently small ε > 0, and any τ ∈ (τl ,τl +ε),
there is a unique solution λ

+
lh of (2) in the neighborhood of

jωlh. Assumption III and continuity means that ℜ(λ+
lh ) must

be nonzero, and have the same sign for any τ ∈ (τl ,τl + ε).
Similarly, let λ

−
lh be the unique solution of (2) in the neigh-

borhood of jωlh corresponding to a given τ ∈ (τl−ε,τl), then
ℜ(λ−lh ) must have the same sign for all such τ . We define

Inc(ωlh,τl) =
sgn
(
ℜ(λ+

lh )
)
− sgn(ℜ(λ−lh ))

2
. (29)

If Inc(ωlh,τl) = 1, a root of Dτ(λ ) moves from the left-half
plane to the right-half plane crossing the imaginary axis at
jωlh as τ increases from τl − ε to τl + ε . On the other hand,
if Inc(ωlh,τl) = −1, then the root moves from the right-half
plane to the left-half plane as τ increases from τl−ε to τl +ε .
If Inc(ωlh,τl) = 0, the root moves towards the imaginary axis,
touching it at jωlh, then return to the same half plane without
crossing the imaginary axis. We also define

Inc(τl) = 2
Hl

∑
h=1

Inc(ωlh,τl). (30)

Then, as τ increases from τl−ε to τl +ε , there is a net increase
of Inc(τl) roots on the right-half plane. Notice, ωlh > 0, h =
1,2, . . . ,Hl only accounts for the roots on the upper half of the
imaginary axis, and the coefficient 2 in front of the summation
sign in (30) accounts for the fact that the roots of Dτ(λ ) are
symmetric to the real axis.

Let the number of right-half plane roots of Dτ(λ ) be Nu(τ).
Then, for any τ ∈I , τ 6= τl , l = 1,2, . . . ,L, we have

Nu(τ) = Nu(τ l)+
Lτ

∑
l=1

Inc(τl), (31)

where Lτ = max{l | τl < τ}.
If τ l = 0, as D

τ l (λ ) is a polynomial, Nu(τ l) is easily
obtained. If τ l > 0, Nu(τ l) may be obtained by a method
covered in [5] or [1] (but notice the correction [2]). If there
are imaginary roots for D

τ l (λ ), Nu(τ l) should not count these
imaginary roots, and Inc(ω1h,τ

l) should be defined as,

Inc(ω1h,τ
l) =

{
1, if sgn

(
ℜ(λ+

1h)
)
= 1,

0, otherwise (32)

instead. Obviously, Nu(τ) remains the same in the interval
(τl ,τl+1) for any given l. The system is stable if Nu(τ) = 0.

IV. CROSSING DIRECTION CONDITIONS

In the last section, a procedure of determining the range of
τ in I such that Dτ(λ ) is stable has been developed, provided
a method of determining Inc(ωlh,τl) is available. It is not
difficult to determine Inc(ωlh,τl) according to the definition if
a numerical method is used. Indeed, as the solution ( jωlh,τl)
is already known for D(λ ,τ), the Newton-Raphson method
may be used to find the unique solution in the neighborhood

of jωlh when τ is very close to τl and D(λ ,τ) is differentiable
with respect to τ in a neighborhood of (ωlh,τl) [8]. In many
cases, however, a simple analytical method can be used, which
will be described as follows.

The simplest case is when

ℜ
(
λ
′
lh(τ)

)
τ=τl
6= 0, (33)

where, λlh(τ) is the implicit function defined by (2) in the
neighborhood of ( jωlh,τl) provided that λlh(τ) is differen-
tiable at τl . This can be guaranteed by requiring D(λ ,τ) to
be differentiable w.r.t τ at ( jωlh,τl) [8]. Indeed, provided that
(33) is satisfied, it is easy to see

Inc(ωlh,τl) = sgn
(
ℜ
(
λ
′
lh(τl)

))
, (34)

if τl > τ l . On the other hand, if τl = τ l , we have

Inc(ωlh,τl) = max
{

0,sgn
(
ℜ
(
λ
′
lh(τl)

))}
. (35)

If (33) is violated, and D(λ ,τ) is differentiable to a suffi-
ciently high order at ( jωlh,τl), then it follows from equation
(8) in Assumption III and the implicit function theorem that the
derivatives of λ (τ) exist up to a sufficiently high order at the
point ( jωlh,τl) [8]. Consequently we may express Inc(ωlh,τl)
using higher order derivatives. Suppose

ℜ

(
dkλ (τ)

dτk

)
τ=τl

= 0, k = 1,2, . . . ,m−1,

ℜ

(
dmλ (τ)

dτm

)
τ=τl

6= 0.

Then, if τl > τ l , then

Inc(ωlh,τl) =

{
sgn
(

ℜ

(
dmλ (τl)

dτm

))
, if m is odd,

0, if m is even.
(36)

If τl = τ l , on the other hand, then

Inc(ωlh,τl) = max
{

0,sgn
(

ℜ

(
dmλ (τl)

dτm

))}
. (37)

If the condition (8) in Assumption III is violated for some
imaginary characteristic root λ = jω∗, we are then faced with
a characteristic root with multiplicity and cannot regard it as a
locally differentiable function of τ . In this case, the trajectory
of characteristic roots parameterized by τ may have several
branches passing through the point jω∗ on the imaginary
axis. One may still determine the increment in the number
of unstable roots based on these branches of curves, which
can be locally characterized by the Newton-Puiseux series.
Comprehensive analysis of this problem can be found in [23],
[24] and [25]. An eigenvalue perturbation approach is taken
in [23] and [24], which applies also to systems represented by
the state-space matrices, whilst the analysis in [25] is based
on the characteristic equations.

We will now give an explicit expression of sgn
(
ℜ
(
λ ′lh(τl)

))
and leave the high-order analysis to future work. The ex-
pression is similar to that given in [12], but our derivation
here is more succinct. For this purpose, we henceforth replace
Assumption III by the following one:
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Assumption IIIa. Any pair (ω∗,τ∗) ∈ R×I that satisfies
(3) must also satisfy

∂ω F(ω∗,τ∗) 6= 0. (38)

Furthermore, D(λ ,τ) is differentiable with respect to τ in a
neighborhood of ( jω∗,τ∗).

The above assumption is stronger than the first part of
Assumption III as indicated by the following Lemma.

Lemma 1. Any pair (ω∗,τ∗) that satisfies Assumption IIIa
must also satisfy (8).

Proof. At (ω∗,τ∗)

F = P̄P− Q̄Q = 0,
e−τλ = −P/Q =−Q̄/P̄,

∂λ D = ∂λ P+(∂λ Q)e−τλ − τQe−τλ = 0.

Therefore,

∂ω F = 2ℜ
(

jP̄∂λ P− jQ̄∂λ Q
)

= −2ℑ
(
P̄∂λ P− Q̄∂λ Q

)
= −2ℑ

(
P̄∂λ P− P̄

Q̄
P̄

∂λ Q+ τP̄P
)

= −2ℑ

(
P̄∂λ P+ P̄e−τλ

∂λ Q− τP̄Qe−τλ

)
= −2ℑ(P̄∂λ D) .

The above indicates that ∂ω F(ω∗,τ∗) 6= 0 implies (8).

It should be pointed out that the converse is not necessarily
true. Indeed, the proof above shows that ∂ω F(ω∗,τ∗) = 0 only
implies that ∂λ D( jω∗,τ∗) is parallel to P( jω∗,τ∗), which does
not necessarily mean ∂λ D( jω∗,τ∗) = 0.

Proposition 2. Let (ω∗,τ∗) ∈R×I satisfy (3) and Assump-
tion IIIa. Then (2) defines λ as a differentiable function of τ

in a sufficiently small neighborhood of ( jω∗,τ∗), and

sgn
(

ℜ

(
dλ

dτ

)
τ=τ∗

)
= sgn(∂ω F(ω,τ)) τ=τ∗

ω=ω∗

×sgn
(

dF θ

dτ

)
τ=τ∗
ω=ω∗

,
(39)

where

dF θ

dτ
= ∂ω θ

dF ω

dτ
+∂τ θ

is the total derivative of θ(ω,τ) with respect to τ when ω is
considered as a function of τ defined implicitly by (5) in a
sufficiently small neighborhood of (ω∗,τ∗), and dF ω

dτ
is the

derivative of the function ω(τ) so defined.

Proof. Lemma 1 and Assumption IIIa indicate that
∂λ D(λ ,τ) 6= 0 and ∂τ D(λ ,τ) exists in a neighborhood
of ( jω∗,τ∗). Therefore, the equation (2), or equivalently

S(λ ,τ) = 1, (40)

defines λ as a differentiable function of τ in a small neigh-
borhood of τ∗ in view of the implicit function theorem. A
differentiation of (40) yields

∂λ S
dλ

dτ
+∂τ S = 0,

from which
dλ

dτ
= − ∂τ S

/
∂λ S =− ∂τ S(∂λ S)

/
|∂λ S|2 .

But, at λ = jω∗,

∂λ S(λ ,τ) =
1
j
∂ω S( jω,τ)

=
1
j

[
(∂ωW )e jθ + j(∂ω θ)We jθ

]
= − j

1
W

∂ωW +∂ω θ .

In the last step, (40) and (14) have been used. Similarly, we
may obtain

∂τ S =
1

W
∂τW + j∂τ θ .

Therefore,

sgn
(

ℜ

(
dλ

dτ

))
= −sgn

(
ℜ

((
1

W
∂τW + j∂τ θ

)
×
(

∂ω θ + j
1

W
∂ωW

)))
= sgn

(
∂ωW∂τ θ −∂τW∂ω θ

W

)
. (41)

When ω is a function of τ defined implicitly by (5), or
equivalently by (17), we have:

dF ω

dτ
=− ∂τW

/
∂ωW =− ∂τ F

/
∂ω F. (42)

In view of |Q(ω∗,τ∗)|= |P(ω∗,τ∗)| , it is easy to show that

1
W

∂ωW
∣∣∣∣

τ=τ∗
ω=ω∗

=
1

|P|2
∂ω F

∣∣∣∣∣
τ=τ∗
ω=ω∗

. (43)

A substitution of (41) by (42) and (43) yields

sgn
(

ℜ

(
dλ

dτ

))
= sgn

(
1

|P|2
∂ω F

(
dF ω

dτ
∂ω θ +∂τ θ

))
,

from which (39) can be easily derived.

We now make a useful observation about the first factor in
(39).

Proposition 3. For any given i and k, the quantity

sgn(∂ω F(ω,τ))
ω=ω

(i)
k (τ)

(44)

remains constant for all τ ∈I
(i)

o .

Proof. Due to the continuity of ∂ω F(ω,τ), in order for
∂ω F(ω

(i)
k (τ),τ) to change sign, it must first vanish, which

violates the definition of I
(i)

o .

The above proposition indicates that the first factor in (39)
only needs to be checked once for each curve ω

(i)
k (τ) within
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the interval I
(i)

o . Next, we will provide an explicit expression
for the second factor.

Proposition 4. If (ω,τ) satisfies (3),

dF θ

dτ
=

1

|P|2

(
Pr

dF Pi

dτ
−Pi

dF Pr

dτ
−Qr

dF Qi

dτ
+Qi

dF Qr

dτ

)
+τ

dF ω

dτ
+ω,

where the subscripts r and i represent the real and imaginary
part of the quantities, respectively, and the total derivatives
may be calculated by

dF φ

dτ
= ∂ω φ

dF ω

dτ
+∂τ φ ,

where φ may be Pr, Pi, Qr or Qi, and

dF ω

dτ
= −∂τ F

/
∂ω F.

Proof. Consider the identity

S =We jθ =−Pe jωτ

Q
. (45)

By taking total derivative with respect to τ , with ω(τ) implic-
itly defined by (5), and noticing

W (ω(τ),τ) = 1 for all τ,

we obtain

j
dF θ

dτ
We− jθ =−dF

dτ

(
P
Q

)
e jωτ − j

(
τ

dF ω

dτ
+ω

)
Pe jωτ

Q
.

Solving the above for dF θ/dτ and using (45), we obtain

dF θ

dτ
=

1
j

(
1
P

dF P
dτ
− 1

Q
dF Q
dτ

)
+ τ

dF ω

dτ
+ω. (46)

In view of |P|2 = |Q|2, the expression in the parentheses in
(46) can be written as

1
P

dF P
dτ
− 1

Q
dF Q
dτ

=
P̄

PP̄
dF P
dτ
− Q̄

QQ̄
dF Q
dτ

=
P̄ dF P

dτ
− Q̄ dF Q

dτ

PP̄
.

A substitution of (46) by the above completes the proof.

While no explicit expression was given for dF θ/dτ in [12],
an explicit expression of S′n(τ) in [12] could be obtained by
going through the proof of Theorem 2.2 in [12]. Proposition
3 above can be considered as the consequence of Theorem
2.2 and Remark 2.2 in [12]. Indeed, It can be seen that Sn(τ)
in Theorem 2.2 in [12] is equal to (θ(τ)− 2nπ)/ω(τ) here.
Remark 2.2 in [12] indicates that the factor ω(τ) does not
affect the sign of the derivative at the crossing point.

It is interesting to apply the conclusions of Proposition 2
to the case of delay-independent coefficient polynomials, i.e.,
when P(λ ,τ) and Q(λ ,τ) are independent of τ . In this case,
F(ω,τ) is independent of τ , the curves ω

(i)
k (τ) become con-

stants, and dF θ/dτ = ω = constant. As a result, the crossing
direction given in (39) is independent of delay. This fact is
well-known in the literature on single or commensurate delay
systems with delay-independent coefficients, and have been
stated either implicitly [5] or explicitly [19] as the invariance
property.

More generally, for systems with delay-dependent coef-
ficient polynomials discussed in this paper, we may still
identify delay intervals where the crossing direction is in-
variant provided P(λ ,τ) and Q(λ ,τ) are continuously dif-
ferentiable with respect to τ . Indeed, for a given subinterval
I

(i)
o = (τ(i−1),τ(i)), and frequency curve ω

(i)
k (τ), we may

identify all the delay values τ
(i)
kl , l = 1,2, . . . ,L− 1, τ(i−1) <

τ
(i)
k1 < τ

(i)
k2 < · · ·< τ

(i)
k,L−1 < τ(i), such that (dF θ/dτ)

τ=τ
(i)
kl

= 0.

Let τ
(i)
k0 = τ(i−1), τ

(i)
k,L = τ(i). Then, we may conclude, by

continuity, that the crossing direction at the curve ω
(i)
k (τ)

remains invariant for all τ ∈ (τ
(i)
k,l−1,τ

(i)
kl ), l = 1,2, . . . ,L. Note

that the intervals for invariant crossing direction (τ
(i)
k,l−1,τ

(i)
kl )

are different for different frequency curves in general.

V. NUMERICAL EXAMPLES

In this section, we present three examples to illustrate the
method developed in this paper.

Example 1. We first consider the stellar dynamos model
mentioned in the introduction. The system characteristic equa-
tion is given in (1). Therefore,

P(λ ,τ) = λ
2 +2c2λ + c2

2,

Q(λ ,τ) = −c1c3e−c2τ .

The parameters are set as: c1 = −10, c2 = 2, c3 = 3. We are
concerned with the stability of the system for τ ∈I = [0,2].
Since ord(Pτ) = 2 and ord(Qτ) = 0, Assumption I holds.
Assumption II requires the following two equations do not
hold simultaneously for real ω and τ ∈I :

−ω
2 +2 jc2ω + c2

2 = 0,
−c1c3e−c2τ = 0,

which is obviously true. The other assumptions can be verified
as we carry out the remaining analysis. The function F in this
case is

F(ω,τ) = ω
4 +2c2

2ω
2 + c4

2− c2
1c2

3e−2c2τ . (47)

Only one pair of parameters (ω,τ) = (0,τ(1)) simultaneously
satisfies (5) and (9), where

τ
(1) =− 1

2c2
ln(

c4
2

c2
1c2

3
)≈ 1.006.

Therefore, Assumption IV is satisfied. The interval I is thus
partitioned into two subintervals I (1) = [τ(0),τ(1)], I (2) =
[τ(1),τ(2)], where τ(0) = 0, τ(2) = 2. There is one positive real
root ω

(1)
1 (τ) of Fτ(ω) for τ ∈ (0,τ(1)). As τ reaches τ(1), this

solution merges with the negative solution −ω
(1)
1 (τ), and they

become complex as τ enters I (2), and Fτ(ω) does not have
any real solution for τ in I (2). In this case, we have

ω
(1)
1 (τ) =

√
|c1c3|e−c2τ − c2

2.

Corresponding to ω = ω
(1)
1 (τ), θ

(1)
1 (τ) defined in (26) is

plotted against τ in the top diagram of Figure 1. It can be seen
that the curve intersects the horizontal line 2π at τ1 ≈ 0.2748
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and τ2 ≈ 0.5314. Therefore, H1 = 1, ω11 = ω
(1)
1 (τ1)≈ 3.6490,

and H2 = 1, ω21 =ω
(1)
1 (τ2)≈ 2.5228. Since both τ1 and τ2 are

different from τ(1), it is easy to verify that Assumption IIIa
holds because (9) does not hold for each (ωlh,τl). Assumption
III is further implied by Assumption IIIa.

0 0.5 1 1.5 2
3
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7

θ(1
)

1
(τ

)

0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

2.5

N
u (τ

)

τ

2 pi

τ(1)
θ(1)

1

Fig. 1. The stability analysis of the stellar dynamos. The two intersections
between the graph of θ

(1)
1 and the black-dashed line located at 2π corresponds

to the two delay values for which the system has a pair of imaginary roots.
Nu is the number of unstable roots of the stellar dynamos.

It can be verified that ∂ω F(ω
(1)
1 (τ),τ) > 0 for τ = 0.5,

and the above inequality holds for all τ ∈I
(1)

o according to
Proposition 3. It can be easily calculated that

d
dτ

θ
(1)
1 (τ1)> 0,

d
dτ

θ
(1)
1 (τ2)< 0,

which are also obvious from the top diagram in Figure 1.
Therefore, we conclude from (39) that a pair of characteristic
roots cross the imaginary axis from the left-half plane to the
right-half plane as τ increases through τ1, and this pair of
characteristic roots return to the left-half plane as τ further
increases through τ2. In other words, Inc(ω11,τ1) = 1, and
Inc(ω21,τ2) = −1. Some simple calculation shows that the
system is asymptotically stable for τ = 0. A plot of Nu(τ)
is shown in the bottom diagram of Figure 1, from which we
conclude that the system is stable for τ ∈ [0,τ1)∪ (τ2,τ

(2)]; it
is unstable for τ ∈ (τ1,τ2).

Example 2. Consider the following characteristic equation
representing the population dynamics in [13],

λ
2 +aλ + c+(b(τ)λ +d(τ))e−λτ = 0, (48)

where

b(τ) = k1e−mτ , d(τ) = k2e−mτ .

The parameters are set as:

a = 2, c = 1, k1 = 4, k2 = 2, m = 3.5.

We analyse the stability of the system for I = [0,2.5]. By
definiton, we have

P(λ ,τ) = λ
2 +aλ + c,

Q(λ ,τ) = b(τ)λ +d(τ).

Since ord(Pτ) = 2 and ord(Qτ) = 1, Assumption I holds.
Assumption II requires the following two equations do not
hold simultaneously for real ω and τ ∈I :

−ω
2 +a jω + c = 0,

b(τ) jω +d(τ) = 0,

which can be easily verified to be true. The function F in this
case is

F(ω,τ) = ω
4 +(a2−b2(τ)−2c)ω2 + c2−d2(τ). (49)

Solving (5) and (9) together for (ω,τ) ∈ R+×I , we obtain
two pairs of solutions approximately equal to (0,1.981) and
(0.720,2.391). The interval I is thus partitioned into three
subintervals I (1) = [τ(0),τ(1)], I (2) = [τ(1),τ(2)], I (3) =
[τ(2),τ(3)], where τ(0) = 0, τ(1) ≈ 1.981, τ(2) ≈ 2.391, τ(3) =
2.5. The polynomial Fτ(ω) has one positive real root, namely
ω

(1)
1 (τ), in the interval (τ(0),τ(1)) and two positive roots,

namely ω
(2)
1 (τ) and ω

(2)
2 (τ), in the interval (τ(1),τ(2)). It

has no real root for τ ∈ (τ(2),τ(3)). We have the following
expressions:

ω
(1)
1 (τ) = 2−1/2

√
(b2(τ)+2c−a2)+∆1/2(τ), τ ∈I (1),

ω
(2)
1 (τ) = 2−1/2

√
(b2(τ)+2c−a2)+∆1/2(τ), τ ∈I (2),

ω
(2)
2 (τ) = 2−1/2

√
(b2(τ)+2c−a2)−∆1/2(τ), τ ∈I (2),

where ∆(τ) = (b2(τ)+2c−a2)2−4(c2−d2(τ)). We observe
that ±ω

(2)
2 (τ) emerge as a pair of real roots of Fτ(ω) at

τ = τ(1) and ω
(2)
2 (τ(1)) = 0 . As τ approaches τ(2) from the

left, the solution ω
(2)
1 (τ) merges with ω

(2)
2 (τ). These two

positive roots become complex as τ increases beyond τ(2).
The corresponding phase functions θ

(1)
1 (τ), θ

(2)
1 (τ), θ

(2)
2 (τ)

are plotted against τ in the top diagram of Figure 2. These
curves intersect the horizontal line 0 at τ1 ≈ 0.7576 and
τ2 ≈ 2.1745. Therefore, H1 = 1, ω11 = ω

(1)
1 (τ1)≈ 2.7556 and

H2 = 1, ω21 = ω
(2)
1 (τ2) ≈ 1.1837. Since both τ1 and τ2 are

different from either τ(1) or τ(2), it is easy to see that (9)
does not hold for each (ωlh,τl). Consequently we deduce that
Assumption IIIa must hold, which also implies Assumption
III.

It can be verified that

∂ω F(ω
(1)
1 (1),1)> 0, ∂ω F(ω

(2)
1 (2),2)> 0,

therefore ∂ω F(ω
(1)
1 (τ),τ) > 0 for τ ∈ (τ(0),τ(1)) and

∂ω F(ω
(2)
1 (τ),τ) > 0 for τ ∈ (τ(1),τ(2)). Computation shows

that
d

dτ
θ
(1)
1 (τ1)> 0,

d
dτ

θ
(2)
1 (τ2)< 0,

which also follows from the graph of phase functions plotted
in the top diagram of Fig.2. We deduce by using (39) that a
pair of characteristic roots cross the imaginary axis from the
left-half plane to the right-half plane as τ increases through
τ1. Another pair of characteristic roots cross the imaginary
axis from the right-half plane to the left-half plane as τ

increases through τ2. Consequently, we have Inc(ω11,τ1) = 1
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Fig. 2. The stability analysis of the population dynamics (48). The graphs
of θ

(1)
1 and θ

(2)
1 intersect the black-dashed line located at 0 at τ1 and τ2

respectively, which correspond to the two delay values for which the system
has a pair of imaginary characteristic roots. Nu is the number of unstable
roots of (48).

and Inc(ω21,τ2) =−1. It is easy to verify that (48) is asymp-
totically stable for τ = 0. Therefore, we conclude that the
system is asymptotically stable for τ ∈ [0,τ1)∪ (τ2,2.5]; it is
unstable for τ ∈ (τ1,τ2). The plot of Nu(τ) is given in the
bottom diagram of Figure 2.

In these two examples, after all the crossing pairs have been
identified, the method in [12] may also be used to determine
the crossing directions of each such pairs and thus completing
the stability analysis. However, a systematic method to identify
such pairs, which requires us to divide the delay interval of
interest into sub-intervals, has not been considered in [12].
The following example shows that it is not always necessary
to divide the interval of interest even if the condition (11),
which is assumed in [12], is violated.

Example 3. Consider a system with the following charac-
teristic equation for I = [0,1]:

λ
2 +4+((1−2e−2τ)λ +1−4e−2τ)e−λτ = 0. (50)

We notice that P( jω,τ) + Q( jω,τ) = 0 when τ = 1
2 ln(2)

and ω =
√

3. Therefore Condition (11), which is assumed in
[12], is not satisfied. However we can verify that all of our
assumptions are satisfied. We have

F(ω,τ) = ω
4− (4e−4τ −4e−2τ +9)ω2 +12+16e−4τ +8e−2τ .

We find that no (ω,τ) ∈ R+×I simultaneously satisfies (5)
and (9), which means I (1) =I . There are two positive roots
of Fτ(ω) for all τ ∈I (1), therefore ω

(1)
1 (τ), ω

(1)
2 (τ) are de-

fined in I (1). With the corresponding phase functions plotted
in the upper diagram of Figure 3, we observe that θ

(1)
1 (τ)

intersects the horizontal line 0 at τ1 ≈ 0.1982 and θ
(1)
2 (τ)

intersects the horizontal line 2π at τ2 ≈ 0.6933. We also have
ω11 = ω

(1)
1 (τ1)≈ 1.4945 and ω12 = ω

(1)
2 (τ2)≈ 2.2656. Com-

putation shows that ∂ω F(ω11,τ1) < 0 and ∂ω F(ω12,τ2) > 0.
From Figure 3 it is easy to see that d

dτ
θ
(1)
1 (τ1) > 0 and

d
dτ

θ
(1)
2 (τ2) > 0. Accordingly we can deduce that the charac-

teristic root jω11 moves toward the left-half plane and the
characteristic root jω12 moves towards the right-half plane as τ

increases and goes through τ1 and τ2 respectively. The system
has two unstable characteristic roots for τ = 0, therefore
it is asymptotically stable for τ ∈ (τ1,τ2) and unstable for
τ ∈ [0,τ1)∪ (τ2,1].
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Fig. 3. The stability analysis of Example 3. The graph of θ
(1)
1 intersects

the black-dashed line located at 0 at τ1 and the graph of θ
(1)
2 intersects the

black-dashed line located at 2π at τ2. Therefore the system admits imaginary
roots at τ1 and τ2. Nu is the number of unstable roots of the system.

VI. CONCLUSION

A method of stability analysis for time-delay systems with
coefficients depending on the delay has been developed. The
method is an extension of the one given in [12] to a more
general case. The method partitions the range of interest for the
delay into subintervals so that the magnitude condition yields
a fixed number of solutions of frequencies ω as functions of
the delay τ within each subinterval. The crossing conditions
is expressed in a general form, and a simplified derivation for
the first order derivative crossing criterion is obtained.
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