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1.FRAMEWORK
Network models of Memory: Capacity of neural networks in
memorising external inputs is a complex problem which has
given rise to numerous research. It is widely accepted that
memory sits where communication between two neurons takes
place, in synapses [1]. It involves a huge number of chemical
reactions, cascades, ion flows, protein states and even more
mechanisms, which makes it really complex. Such a complexity
stresses the need of simplifying models: this is done in network
models of memory.
Problem: Most of these models don’t take into account both
synaptic plasticity and neural dynamic. Adding dynamics on the
weights makes the analysis more difficult which explains that
most models consider either a neural [2, 3, 4] or a synaptic weight
dynamic [5, 6, 7, 8]. We decided to study the binary synapses
model of [9], model we wish to complete with a neural network
afterwards in order to get closer to biology.
Purpose: Propose a rigorous mathematical approach of the model
of [9] as part of a more ambitious aim which is to have a general
mathematical framework adapted to many models of memory.

2.NETWORK MODELS OF MEMORY
Three main ingre-
dients describes
such models. A
stimulus has direct
effect on neurons
which then modify
the synaptic weight
matrix leading to a
stable response of the
network possessing
the information sent
by the stimulus.

3.AMIT-FUSI MODEL [9]
Discrete time model with two coupled binary processes, stimuli (ξt)t≥0 ∈

{0, 1}N and synaptic weight matrix (Jt)t≥0 ∈ {0, 1}
N2

:

Stimuli: (ξt)t≥0 i.i.d. random vectors∼ Bernoulli(f)⊗N

Synaptic weights dynamic:
∀i Jiit = 0 and at each time step a new stimulus ξt is received by the

network. The components Jijt , i 6= j, jump as follows:

• if
(
ξit, ξ

j
t

)
= (1, 1), Jijt = 0→ J

ij
t+1 = 1 with probability q+ ,

• if
(
ξit, ξ

j
t

)
= (0, 1), Jijt = 1→ J

ij
t+1 = 0 with probability q−01 ,

• if
(
ξit, ξ

j
t

)
= (1, 0), Jijt = 1→ J

ij
t+1 = 0 with probability q−10 ,

• if
(
ξit, ξ

j
t

)
= (0, 0), Jijt+1 = J

ij
t .

Remark: The initial condition is not defined on synaptic weights but on the
synaptic input into neurons defined as follows.

Synaptic input into neurons:(
hit

)
t≥0

is the field induced by ξ0 presented at time t, in neuron i:

h
i
t =

∑
j 6=i

J
ji
t ξ

j
0

In the following, we are interested in the laws of
(
hit|ξ

i
0 = 0

)
and(

hit|ξ
i
0 = 1

)
, respectively called p0t and p1t .

Remark: The state space of hit depends on the size of ξ0 : K =
∑
j 6=i ξ

j
0 .

Moreover, as neurons are similar we use notation h1
t,K . Finally, it is easy to

show pit,K converges to a unique p∞,K .

Initial condition:
Initially, synaptic input follows the stationary distribution:

h
1
0,K ∼ p∞,K

4.RETRIEVAL CRITERIA
Many methods have been used to study the storage capacity of
network models. The more intuitive is maybe to see stimuli to be
learned as attractors of a neural dynamic [3]: the maximal number
of attractors would then be the memory capacity of the model.
Signal to Noise Ratio (SNR) analysis [8, 9] and mean first passage
time to a threshold [7] have also been proposed. The underlying
idea of these methods is that the neural dynamic is ruled by a
threshold on the synaptic input: a linear decision rule. In our case,
we don’t impose such a rule. Our retrieval criteria holds on the
knowledge of the two distributions p0t,K and p1t,K .

Decision rule [10]:
At fixedK, we aim at studying the minimal probability of error assum-

ing the neuron 1 knows pit and observes h1
t . As p1t,K and p0t,K converges

to p∞,K , the error increases with time as distributions get closer:
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Fig: Distributions pit when f = 0.1 and parameters q+/−x = 0.5. At time t = 0, the two
distributions are well separated (left) and then get closer(right).

As long as the probability of error ,Pe(t) defined below, is less than a
given ε, ξ10 is considered to be retrievable from h1

t through the follow-
ing decision rule. We are interested in the maximal time for which such
a condition is achieved, and in particular we would like to know its de-
pendence on the different parameters. We then define Pe(t). Let G =
{g : [[0, N ]]→ {0, 1}}:

Pe(t) = inf
g∈G

{
P
(
g(h

1
t ) 6= ξ

1
0

)}
= inf
g∈G

{
fP
(
g(h

1
t ) = 0|ξ10 = 1

)
+ (1− f)P

(
g(h

1
t ) = 1|ξ10 = 0

)}
︸ ︷︷ ︸

L(t,g)

Unlike the SNR analysis which requires only the first two moments of the
variableh1

t , here we need the knowledge of both p1t,K and p0t,K . Although
it is more costly, it is always valid, which is not the case of SNR as it requires
p0t and p1t to be approximately Gaussian and this is not the case for some
parameters:
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We see the difference between the two rules on the probability of error:
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Fig: Probability of error in function of linear (SNR) and Bayes (the one we use) rules and parameters.

SNR analysis:
In [9], they propose an analysis based on SNRt =

S2
t
Rt

:

• Signal: St = E
[
h1
t | ξ

1
0 = 1

]
− E

[
h1
t | ξ

1
0 = 0

]
• Noise: Rt = Var

[
h1
t

]
Because of correlation between synapses dynamics, SNR is only computed in
a specific case leading to capacity P = max{t ∈ N, SNRt > log(N)}:

f =
log(N)

N
, q
−
01, q

−
10 ∝ fq

+ ⇒ P ∝
(

N

log(N)

)2

(1)

5.FIRST RESULTS
Mathematical results:
As having the general forms of p1t,K and p0t,K is difficult, we first
studied the spectrum of the transition matrix Mh,K of

(
h1
t

)
t≥0

and got a first result:

Proposition 1 The spectrum of the transition matrix Mh,K and the

one of
(
ξt,
(
Jj1t

)
1≤j≤K

)
t≥0

,Mξ,J,K is the following:

Σ
(
Mh,K

)
={µi = (1− f)(1− fq−01︸ ︷︷ ︸

λ0

)
i

+ f(1− (1− f)q
−
10 − fq

+︸ ︷︷ ︸
λ1

)
i
, 0 ≤ i ≤ K}

Σ
(
Mξ,J,K

)
= Σ

(
Mh,K

)
∪ {0}, multiplicity

(
K − 1

i

)
for µi , 2K for 0

In fact, the spectrum is linked to the speed at which stimuli are
forgotten. However, the slower this speed is, the less plastic the
network is. It is a classical compromise in optimising storage ca-
pacity.

Sketch of the proof for Σ
(
Mξ,J,K

)
We can write Mξ,J,K as a matrix by block with pξ = P (ξt = ξ)

andMξ the probability matrix of (Jj1t )j knowing that ξt = ξ:

Mξ,J,K =


pξ1Mξ1 pξ2Mξ1 . . . pξ

2K
Mξ1

pξ1Mξ2 pξ2Mξ2 . . . pξ
2K

Mξ2

.

.

.
.
.
. . . .

.

.

.
pξ1Mξ2K

pξ2Mξ2K
. . . pξ

2K
Mξ

2K


︸ ︷︷ ︸

22K−1×22K−1 matrix

It is not difficult to show

Σ (Mξ,J,K) = Σ

MJ,K =
2K∑
k=1

pξkMξk

 ∪ {0}
In particular, if π is an invariant measure of the pro-
cess with matrix transition MJ,K , πMJ,K = π, then

πK =
[
pξ1π pξ2π . . . pξ2K

π
]

is an invariant measure for(
ξt,
(
Jj1t

)
1≤j≤K

)
t≥0

. One can then compute Mξ from the

following 2× 2 matrices:

M00 = I2 , M01 =

[
1 0

q−01 1− q−01

]
, M10 =

[
1 0

q−10 1− q−10

]
,

M11 =

[
1− q+ q+

0 1

]
Then, using Kronecker product properties, we have the lemma:

Lemma 1 With the notation⊗NM = M ⊗M ⊗ . . .⊗M︸ ︷︷ ︸
N times

,

MJ,K =(1− f)⊗K−1 ((1− f)M00 + fM01︸ ︷︷ ︸
M0

)

+ f ⊗K−1 ((1− f)M10 + fM11︸ ︷︷ ︸
M1

)

We conclude on Σ (Mξ,J,K) using v0 = [1 1]T and e2 = [0 1]T :

M0v0 = v0 = M1v0, M0e2 = λ0e2 andM1e2 = λ1e2 + fq
+
v0

Let ui,K = (u1
i,K , . . . , u

(
K
i

)
i,K ) vectors which can be written

as the Kronecker product of i vectors e2 and (K − i − 1) v0,
u1
i,K = ⊗ie2 ⊗K−1−i v0, then:

MJ,Ku
j
i,K

=

(1− f)(λ0)
i

+ f(λ1)
i︸ ︷︷ ︸

µi

uji,K+

i−1∑
k=0

∑
l

αk,lu
l
k,K

In this basis, MJ,K is triangular superior with µi on the diagonal
with the multiplicity

(K−1
i

)
, it ends the proof on Σ (Mξ,J,K).

Simulation for shaping intuition:
Thanks to simulations, we have a look to the case f and q small:
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Fig: Invariant distributions when f = 0.1 andK = 1000.

The independent case is the model considering every Jijt evolves indepen-
dently following the dynamic of one synapse in the model defined in 3. We
can see in simulations that the behaviour of h1

t is similar to the one in the
independent case when f and q are small enough. Moreover, this model
of independent synapses leads to similar results as (1) for the SNR analy-
sis. Finally, under the assumption that synapses evolve independently, πit ,the

equivalent of pit in the previous model, are binomial laws. In fact, Jijt con-

verges in law to the invariant distribution π =
(
π−, π+

)
with speed

λt =
(
1− f2q+ − f(1− f)(q−01 + q−10)

)t
. Hence, we get the follow-

ing results thanks to the generating function:

π
0
t,K ∼ B

(
K,π

+ − π+
q
−
01λ

t
)
, π

1
t,K ∼ B

(
K,π

+
+ π
−
q
+
λ
t
)

Therefore, it seems to be possible to extend the result (1) for a larger range of
parameters f and q thanks to the similarities between the independent model
and the one presented in 3 when f and q are small. However, such a similarity
would reduce the model to a too simple model loosing its initial interest.

6.CONCLUSION
When previous studies have considered small coding level f in
order to get results on the storage capacity depending onN , such
an assumption seems to make the model loose its initial interest
sited in the correlations between synapses. Our approach aims at
studying the synaptic input into a neuron taking correlations into
account through a decision rule. It enabled us to get a first result
on the speed of forgetting stimuli thanks to a spectral analysis.

7.PERSPECTIVES
• Show p∞,K converges to
π∞,K when f , q are small

• Control the probability of er-
ror thanks to the study in the
independent case: f , q small

• A study of the probability of error
taking into account all the vector ht

• Add neural dynamics as a feedback
to maintain weights structure longer
and enhance storage capacity
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