Pascal Helson 
email: pascal.helson@inria.fr
  
A MATHEMATICAL APPROACH ON MEMORY CAPACITY OF A SIMPLE SYNAPSES MODEL

 as part of a more ambitious aim which is to have a general mathematical framework adapted to many models of memory.

2.NETWORK MODELS OF MEMORY

Three main ingredients describes such models.

A stimulus has direct effect on neurons which then modify the synaptic weight matrix leading to a stable response of the network possessing the information sent by the stimulus.

3.AMIT-FUSI MODEL [9]

Discrete time model with two coupled binary processes, stimuli (ξ t ) t≥0 ∈ {0, 1} N and synaptic weight matrix (J t ) t≥0 ∈ {0, 1} N 2 :

Stimuli: (ξ t ) t≥0 i.i.d. random vectors ∼ Bernoulli(f ) ⊗N

Synaptic weights dynamic:

∀i J ii t = 0 and at each time step a new stimulus ξ t is received by the network. The components J ij t , i = j, jump as follows:

• if ξ i t , ξ j t = (1, 1), J ij t = 0 → J ij t+1 = 1 with probability q + ,
• if ξ i t , ξ j t = (0, 1), J ij t = 1 → J ij t+1 = 0 with probability q - 01 ,

• if ξ i t , ξ

j t = (1, 0), J ij t = 1 → J ij t+1 = 0 with probability q - 10 , • if ξ i t , ξ j t = (0, 0), J ij t+1 = J ij t . Remark:
The initial condition is not defined on synaptic weights but on the synaptic input into neurons defined as follows.

Synaptic input into neurons:

h i t t≥0
is the field induced by ξ 0 presented at time t, in neuron i:

h i t = j =i J ji t ξ j 0
In the following, we are interested in the laws of h i t |ξ i 0 = 0 and h i t |ξ i 0 = 1 , respectively called p 0 t and p 1 t . Remark: The state space of h i t depends on the size of ξ 0 : K = j =i ξ j 0 . Moreover, as neurons are similar we use notation h 1 t,K . Finally, it is easy to show p i t,K converges to a unique p ∞,K .

Initial condition:

Initially, synaptic input follows the stationary distribution:

h 1 0,K ∼ p ∞,K

4.RETRIEVAL CRITERIA

Many methods have been used to study the storage capacity of network models. The more intuitive is maybe to see stimuli to be learned as attractors of a neural dynamic [START_REF] Hopfield | Neural networks and physical systems with emergent collective computational abilities[END_REF]: the maximal number of attractors would then be the memory capacity of the model. Signal to Noise Ratio (SNR) analysis [START_REF] Benna | Computational principles of synaptic memory consolidation[END_REF][START_REF] Amit | Learning in Neural Networks with Material Synapses[END_REF] and mean first passage time to a threshold [START_REF] Elliott | Memory Nearly on a Spring: A Mean First Passage Time Approach to Memory Lifetimes[END_REF] have also been proposed. The underlying idea of these methods is that the neural dynamic is ruled by a threshold on the synaptic input: a linear decision rule. In our case, we don't impose such a rule. Our retrieval criteria holds on the knowledge of the two distributions p 0 t,K and p 1 t,K .

Decision rule [10]:

At fixed K, we aim at studying the minimal probability of error assuming the neuron 1 knows p i t and observes h 1 t . As p 1 t,K and p 0 t,K converges to p ∞,K , the error increases with time as distributions get closer: As long as the probability of error ,P e (t) defined below, is less than a given , ξ 1 0 is considered to be retrievable from h 1 t through the following decision rule. We are interested in the maximal time for which such a condition is achieved, and in particular we would like to know its dependence on the different parameters. We then define P e (t).

Let G = {g : [[0, N ]] → {0, 1}}: P e (t) = inf g∈G P g(h 1 t ) = ξ 1 0 = inf g∈G f P g(h 1 t ) = 0|ξ 1 0 = 1 + (1 -f )P g(h 1 t ) = 1|ξ 1 0 = 0 L(t,g)
Unlike the SNR analysis which requires only the first two moments of the variable h 1 t , here we need the knowledge of both p 1 t,K and p 0 t,K . Although it is more costly, it is always valid, which is not the case of SNR as it requires p 0 t and p 1 t to be approximately Gaussian and this is not the case for some parameters: , q + = 0.9, q -10 = 0.1, q -01 = 0.9

We see the difference between the two rules on the probability of error: A: f = 0.5 = q + = q -10 = q -01 . B: q + = q -01 = 0.9, q -10 = 0.1, f = 0.5. 

SNR analysis:

In [START_REF] Amit | Learning in Neural Networks with Material Synapses[END_REF], they propose an analysis based on SN R t = S 2 t R t :

• Signal:

S t = E h 1 t | ξ 1 0 = 1 -E h 1 t | ξ 1 0 = 0 • Noise: R t = Var h 1 t
Because of correlation between synapses dynamics, SNR is only computed in a specific case leading to capacity P = max{t ∈ N, SN R t > log(N )}:

f = log(N ) N , q - 01 , q - 10 ∝ f q + ⇒ P ∝ N log(N ) 2 (1)

5.FIRST RESULTS

Mathematical results:

As having the general forms of p 1 t,K and p 0 t,K is difficult, we first studied the spectrum of the transition matrix M h,K of h 1 t t≥0 and got a first result: Proposition 1 The spectrum of the transition matrix M h,K and the one of ξ t , J j1 t 1≤j≤K t≥0

, M ξ,J,K is the following:

Σ M h,K ={µ i = (1 -f )(1 -f q - 01 λ 0 ) i + f (1 -(1 -f )q - 10 -f q + λ 1 ) i , 0 ≤ i ≤ K} Σ M ξ,J,K = Σ M h,K ∪ {0}, multiplicity K -1 i for µ i , 2 K for 0
In fact, the spectrum is linked to the speed at which stimuli are forgotten. However, the slower this speed is, the less plastic the network is. It is a classical compromise in optimising storage capacity.

Sketch of the proof for Σ M ξ,J,K

We can write M ξ,J,K as a matrix by block with p ξ = P (ξ t = ξ) and M ξ the probability matrix of (J j1 t ) j knowing that ξ t = ξ:

M ξ,J,K =        p ξ 1 M ξ 1 p ξ 2 M ξ 1 . . . p ξ 2 K M ξ 1 p ξ 1 M ξ 2 p ξ 2 M ξ 2 . . . p ξ 2 K M ξ 2 . . . . . . . . . . . . p ξ 1 M ξ 2 K p ξ 2 M ξ 2 K . . . p ξ 2 K M ξ 2 K        2 2K-1 ×2 2K-1 matrix It is not difficult to show Σ (M ξ,J,K ) = Σ   M J,K = 2 K k=1 p ξ k M ξ k   ∪ {0}
In particular, if π is an invariant measure of the process with matrix transition M J,K , πM J,K = π, then

π K = p ξ 1 π p ξ 2 π . . . p ξ 2 K π is an invariant measure for ξ t , J j1 t 1≤j≤K t≥0
. One can then compute M ξ from the following 2 × 2 matrices:

M 00 = I 2 , M 01 = 1 0 q - 01 1 -q - 01 , M 10 = 1 0 q - 10 1 -q - 10 , M 11 = 1 -q + q + 0 1
Then, using Kronecker product properties, we have the lemma:

Lemma 1 With the notation ⊗ N M = M ⊗ M ⊗ . . . ⊗ M N times , M J,K =(1 -f ) ⊗ K-1 ((1 -f )M 00 + f M 01 M 0 ) + f ⊗ K-1 ((1 -f )M 10 + f M 11 M 1
)

We conclude on Σ (M ξ,J,K ) using v 0 = [1 1] T and e 2 = [0 1] T :

M 0 v 0 = v 0 = M 1 v 0 , M 0 e 2 = λ 0 e 2 and M 1 e 2 = λ 1 e 2 + f q + v 0 Let u i,K = (u 1 i,K , . . . , u K i i,K
) vectors which can be written as the Kronecker product of i vectors e 2 and (K -i -1) v 0 , u 1 i,K = ⊗ i e 2 ⊗ K-1-i v 0 , then:

M J,K u j i,K =    (1 -f )(λ 0 ) i + f (λ 1 ) i µ i    u j i,K + i-1 k=0 l α k,l u l k,K
In this basis, M J,K is triangular superior with µ i on the diagonal with the multiplicity K-1 i , it ends the proof on Σ (M ξ,J,K ).

Simulation for shaping intuition:

Thanks to simulations, we have a look to the case f and q small: The independent case is the model considering every J ij t evolves independently following the dynamic of one synapse in the model defined in 3. We can see in simulations that the behaviour of h 1 t is similar to the one in the independent case when f and q are small enough. Moreover, this model of independent synapses leads to similar results as (1) for the SNR analysis. Finally, under the assumption that synapses evolve independently, π i t ,the equivalent of p i t in the previous model, are binomial laws. In fact, J ij t converges in law to the invariant distribution π = π -, π + with speed

λ t = 1 -f 2 q + -f (1 -f )(q - 01 + q - 10 ) t
. Hence, we get the following results thanks to the generating function:

π 0 t,K ∼ B K, π + -π + q - 01 λ t , π 1 t,K ∼ B K, π + + π -q + λ t
Therefore, it seems to be possible to extend the result (1) for a larger range of parameters f and q thanks to the similarities between the independent model and the one presented in 3 when f and q are small. However, such a similarity would reduce the model to a too simple model loosing its initial interest.

6.CONCLUSION

When previous studies have considered small coding level f in order to get results on the storage capacity depending on N , such an assumption seems to make the model loose its initial interest sited in the correlations between synapses. Our approach aims at studying the synaptic input into a neuron taking correlations into account through a decision rule. It enabled us to get a first result on the speed of forgetting stimuli thanks to a spectral analysis.

7.PERSPECTIVES

• Show p ∞,K converges to π ∞,K when f , q are small • Control the probability of error thanks to the study in the independent case: f , q small

• A study of the probability of error taking into account all the vector h t

• Add neural dynamics as a feedback to maintain weights structure longer and enhance storage capacity
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  Fig: Distributions p i t when f = 0.1 and parameters q +/x = 0.5. At time t = 0, the two distributions are well separated (left) and then get closer(right).

  Distribution of p i 3 and p ∞ .

  Fig: Parameters are the following: f = 0.5, q + = 0.9, q -10 = 0.1, q

  linear rule, K=100 linear rule, K=1000 Bayes rule, K = 10 Bayes rule, K = 100 Bayes rule, K = 1000

  linear rule, K=100 linear rule, K=1000 Bayes rule, K = 10 Bayes rule, K = 100 Bayes rule, K = 1000
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  Fig: Probability of error in function of linear (SNR) and Bayes (the one we use) rules and parameters.

  distributions when f = 0.1 and K = 1000.