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The spread of disease, information or opinion on networks has been one of the most studied problems in mathematical network science over the past decade. There has been tremendous progress related to a variety of spreading processes and underlying network models. For the vast majority of these studies the network has been assumed to be fixedat least on the time scales of the processes running on the network. Real networks however undergo change and this change is often on a similar time scale as the spreading processes running on the networks. The problem of temporal variability of the networks, and how this variability can interfere with processes on the network has received little attention so far in the mathematical literature. The aim of this paper is therefore to investigate the possible effects of stationary dynamics of a network on the spread of an infection by offering an extensive case study based on the following basic assumptions:

• Scale-free network model. We look at the class of sparse inhomogeneous random graphs. For this class vertices are labelled by indices from {1, . . . , N } and edges exist independently with the probability of an edge {i, j} given as 1 N p(i/N, j/N )∧1 for a suitable kernel p : (0, 1] × (0, 1] → (0, ∞). We focus on two universal types of kernel, which produce scale-free networks. The factor kernel reproduces the asymptotic connection probabilities of most standard scale-free network models without significant correlations when the vertices are ordered by decreasing strength. This includes the Chung-Lu [START_REF] Lu | Complex Graphs and Networks[END_REF], Norros-Reittu [START_REF] Norros | On a conditionally Poissonian graph process[END_REF] and configuration models [START_REF] Molloy | A Critical Point for Random Graphs with a Given Degree Sequence[END_REF]. The preferential attachment kernel reproduces the connection probabilities of various preferential attachment models [START_REF] Barabási | Emergence of scaling in random network[END_REF][START_REF] Dereich | Random networks with concave preferential attachment rule[END_REF], see [START_REF] Van Der Hofstad | Random Graphs and complex netwroks[END_REF] for a recent survey of static network models.

• Fast network evolution. We focus on fast dynamics, which arise, for example, as a rough approximation of migration effects in networks where links correspond to physical proximity. In our network dynamics all edges adjacent to a vertex are updated simultaneously at a rate that may depend increasingly on the vertex strength, so that the most relevant vertices can update relatively quickly. Upon updating a vertex loses all its connections and new connections are built independently. The connection probabilities of a vertex remain the same before and after the update, so that the network evolution is stationary.

• SIS type epidemic process on the network. We investigate the contact process, or SIS infection. The key feature which makes this process interesting from our point of view is that in order to survive the infection travels many times along individual edges, so that temporal changes in the status of edges become relevant for the behaviour of the infection. For the contact process on scale-free networks with the factor kernel this feature leads to different qualitative behaviour of the static model and its classical mean-field approximation, as explained in [START_REF] Chatterjee | Contact processes on random graphs with power law degree distributions have critical value zero[END_REF], see also [START_REF] Berger | On the spread of viruses on the internet[END_REF][START_REF] Ganesh | The effect of network topology on the spread of epidemics[END_REF]. It is therefore a natural question to ask how the contact process behaves for dynamic models that interpolate between the static and the mean-field case.

An evolving network is a (random) family (G (N ) t : t ≥ 0, N ∈ N) of graphs, where G (N ) t has vertex set {1, . . . , N }. Conditionally on this network evolution, the contact process on (G (N ) t : t ≥ 0) is a time-inhomogeneous Markov process that can be defined as follows: Every vertex v may be healthy or infected; if infected, every adjacent healthy vertex gets infected with rate λ up until the recovery of v, which happens at rate one. When a vertex recovers it is again susceptible to infection. We write X t (v) = 1 if the vertex v ∈ {1, . . . , N } is infected at time t and X t (v) = 0 otherwise. The state when every vertex is healthy is absorbing and can be reached at any time from every other state in finite time with positive probability. Hence there exists a finite time T ext , called the extinction time, which is the infimum over all times where the contact process is in the absorbing state. If the evolving network is itself a (time-homogeneous) Markov process, then (G (N ) t , X t ) t≥0 is also a (time-homogeneous) Markov process, and we will work within this context. More precisely, the evolving network we consider is a stationary Markov process, and unless otherwise specified, we start the process with the network distributed according to the stationary measure, and the contact process with every vertex infected. Our interest is in the size of the extinction time in that case.

We say that the system experiences fast extinction if, for some sufficiently small infection rate λ > 0, the expected extinction time is bounded by a power of the network size. We say that we have slow extinction if, for every infection rate λ > 0, the expected extinction time is at least exponential in the network size with high probability, more precisely there exists a positive constant c such that, uniformly in N > 0, we have

P(T ext ≤ e cN ) ≤ e -cN .
Slow extinction is a phenomenon of metastability, a physical system reaching its equilibrium very slowly because it spends a lot of time in states which are local energy minima, the so-called metastable states. Metastability in our model suggests, informally, that starting from all vertices infected the density of infected vertices is likely to decrease rapidly to a metastable density, and stay close to this density up to the exponential survival time of the infection. Metastable densities for the contact process have been studied in the case of static networks by Mountford et al in [START_REF] Mountford | Metastable densities for the contact process on power law random graphs[END_REF]. Our interest in metastable densities stems from the fact that, when seen as a function of small λ, they reflect which is the optimal survival strategy for the infection. As we shall see, the optimal survival strategies changes as we vary the network parameters, defining phase transitions.

To understand the mechanisms behind slow extinction we follow [START_REF] Berger | On the spread of viruses on the internet[END_REF] and first look at a star graph, ie a single central vertex connected to k neighbouring vertices of degree one. If only the centre is initially infected, at the time of its first recovery it has on average λk λ+1 ∼ λk infected neighbours. The probabiliy that none of these neighbours reinfects the centre is therefore approximately

1 1+λ
λk ∼ e -λ 2 k .

Hence the infection survives for a long time on the star graph if k λ -2 and in this case the survival time is exponential in λ 2 k.

If now the central vertex in the star graph updates at fixed rate κ, and upon updating is connected to k uninfected vertices, at the time r of the first recovery we have on average order λk infected neighbours. The probability that none of them reinfects the centre before it updates is κ λ 2 k + κ and in this case we call r a true recovery (as opposed to simple recovery) since then (and only then) the infection becomes extinct. Again the infection survives for a long time on the star graph if k κλ -2 but now the survival time in this case is of order λ 2 k, ie linear in the degree of the central vertex as opposed to exponential as in the case of the star graph without updating.

To understand the survival of infections on a (static or evolving) inhomogeneous random graph we classify vertices as stars and connectors where stars have large degree and connectors do not. Assuming that the kernel p is decreasing in every component, we use a function a(λ) ↓ 0 to perform such a classification, where the set of stars S is S := 1, . . . , a(λ)N , and its elements have degree asymptotically bounded from below by 1 0 p(a(λ), x) dx. We think of stars acting locally like the centres in a star graph (hence the name) with most of their neighbours in the complementary set C of connectors. In particular, an individual star can hold the infection for a long time if

1 0 p a(λ), x dx λ -2 .
Slow extinction of the infection is based on a collective strategy such that, given that a positive proportion of vertices in the set S is infected, up to an exponentially small error probability a positive proportion of vertices in S will again be infected after a time span given by the recovery cycle of the stars. The existence of such a strategy ensures that the infection is kept alive on S for an exponentially long time, making this set the skeleton of the infection. To obtain the metastable density associated to any given survival strategy we find first a maximal function a(λ) ↓ 0 (which defines S ) such that the strategy holds, and obtain the density as the number of infected direct neighbours of S divided by the total number N of vertices.

We have identified four relevant survival strategies for the infection:

(i) Quick direct spreading Stars directly infect sufficiently many other stars before simple recoveries, so that the infection can be kept alive for a long time on the subgraph of stars alone. The connectors play no role for the survival of the infection.

(ii) Delayed direct spreading As described for the star graph above, in this mechanism a star can retain an infection on a longer time scale if the lower bound on its degree is of larger order than λ -2 . Operating on this longer time-scale stars spread the infection directly to other stars and keep the infection alive.

(iii) Quick indirect spreading Stars infect a large number of their neighbours before a simple recovery, and these neighbours then pass on the infection to other stars. In this way stars indirectly infect sufficiently many other stars keeping the infection alive.

(iv) Delayed indirect spreading As described for the delayed direct mechanism, a star retains the infection on a longer time scale if the lower bound on its degree is of larger order than λ -2 . On this time-scale stars pass the infection to other stars via their infected neighbours, as in the quick indirect mechanism.

Assume now that G (N ) 0 is an inhomogeneous random graph with a kernel p and suppose that in the evolving network (G (N ) t : t ≥ 0) every vertex updates with rate κ and upon updating it receives a new set of adjacent edges with the same probability as before, given by the kernel p. We now formulate and explain heuristically our results for the case of updating with constant rate κ in the case of the factor and preferential attachment kernel. Results for more general kernel and update rules will be formulated in the next section when we present our main results.

Define

I N (t) := 1 N E N v=1 X t (v) ,
to be the expected density of infected vertices at time t. Using the self-duality of the contact process [9, Chapter VI] we get

I N (t) = 1 N N v=1 P v T ext > t , (1) 
where P v refers to the contact process started with only vertex v infected. We say that the contact process has lower metastable density ρ -(λ) and upper metastable density ρ + (λ) if, whenever t N is going to infinity slower than exponentially, we have

1 0 < ρ -(λ) = lim inf N →∞ I N (t N ) ≤ lim sup N →∞ I N (t N ) = ρ + (λ).
We say that ξ is the metastability exponent of the process if the lower and upper metastability densities exist for sufficiently small λ > 0 and satisfy

ξ := lim λ↓0 log ρ -(λ) log λ = lim λ↓0 log ρ + (λ) log λ .
Loosely speaking the metastability exponent measures the rate of decay of the metastable density as the infection rate λ approaches the critical value zero.

We first look at the factor kernel p(x, y) = βx -γ y -γ , for some β > 0 and 0 < γ < 1.

It is easy to see that the inhomogeneous networks with kernel p are scale free with powerlaw exponent τ = 1 + 1 γ . Our first result shows that in the case of factor kernels there are two phase transitions in the behaviour of the contact process with small infection rates. Proposition 1. Suppose p is a factor kernel with parameter 0 < γ < 1.

(a) If 0 < γ < 1 3 we have fast extinction, and if 1 3 < γ < 1 we have slow extinction. (b) If 1 3 < γ < 1 the metastability exponent exists and equals

ξ = 2 3γ-1 if 1 3 < γ < 2 3 , γ 2γ-1 if 2 3 < γ < 1 (a)
is the main result of Jacob and Mörters [START_REF] Jacob | The contact process on scale-free networks evolving by vertex updating[END_REF].

We argue now informally that in the regime 1/3 < γ < 2/3 the strategy of delayed direct spreading prevails, whereas for γ > 2/3 it is quick direct spreading that is most successful. For γ < 1/3 none of the strategies succeed.

Under quick direct spreading the infection can be sustained on S if a(λ) satisfies

a(λ) 0 a(λ) 0 λp(x, y) dx dy ≈ a(λ),
which arises from equating the initial amount of infected stars with the vertices in S infected by those stars before one unit time, which is the average time it takes to have simple recoveries. This equation yields a(λ) ≈ λ 1 2γ-1 which is admissible if γ > 1 2 . We hence get a lower bound for the lower metastable density

ρ -(λ) ≈ a(λ) 0 1 0 λp(x, y) dx dy ≈ λa(λ) 1-γ ≈ λ γ 2γ-1 .
For the delayed mechanism, on the other hand, we note that the lower bound on the expected degree of a star is a(λ) -γ and hence the infection can be held at a star on a time scale of T (λ) = λ 2 a(λ) -γ , which the average time until a true recovery. Now by the same principle as in the quick mechanism a(λ) has to satisfy

T (λ) a(λ) 0 a(λ) 0 λp(x, y) dx dy ≈ a(λ), hence a(λ) ≈ λ 3 3γ-1 which is admissible if γ > 1 3
. This yields a lower bound of the form

ρ -(λ) ≈ λa(λ) 1-γ ≈ λ 2 3γ-1 .
Comparing both densities, the delayed strategy therefore wins if

1 3 < γ < 2 3 , but if γ > 2 3
the quick strategy wins. The other two strategies we have identified turn out to be inferior in any case. If γ < 1 3 none of the strategies succeeds, ie gives an admissible value of a(λ).

The situation is quite different for preferential attachment kernels given by p(x, y) = β(x ∧ y) -γ (x ∨ y) γ-1 , for some β > 0 and 0 < γ < 1.

As before the networks with kernel p are easily seen to be scale free with the same power-law exponent τ = 1 + 1 γ .

Proposition 2. Suppose p is a preferential attachment kernel with parameter 0 < γ < 1.

(a) For all 0 < γ < 1 there is slow extinction.

(b) The metastability exponent exists and equals

ξ = 3-2γ γ if γ < 3 5 , 3-γ 3γ-1 if γ > 3 5 .
We now explain heuristically that in the regime γ < 3/5 the strategy of delayed direct spreading prevails, whereas for γ > 3/5 it is delayed indirect spreading that is most successful.

For delayed direct spreading a(λ) again has to satisfy

T (λ) a(λ) 0 a(λ) 0 λp(x, y) dx dy ≈ a(λ),
for the time scale T (λ) = λ 2 a(λ) -γ . For the preferential attachment kernel this gives a(λ) ≈ λ 3/γ , which is always admissible. This mechanism then yields

ρ -(λ) ≈ λa(λ) 1-γ ≈ λ 3-2γ γ .
For the indirect mechanism the equation for a(λ) changes to

T (λ) a(λ) 0 1 a(λ) a(λ) 0 λ 2 p(x, y)p(y, z) dx dy dz ≈ a(λ),
where the term on the left represents the amount of stars infected by connectors that where in turn infected by the initially infected stars in a time-scale of order T (λ). This gives a(λ) ≈ λ 4 3γ-1 for γ > 1/2, which is admissible and yields

ρ -(λ) ≈ λa(λ) 1-γ ≈ λ 3-γ 3γ-1 .
Comparing once again the resulting densities, the indirect strategy therefore wins if γ > 3/5, otherwise the direct strategy wins.

To better understand the metastability phenomenon and explore the full range of possible optimal strategies we move in the next section to a model where update rates can depend on the vertex strength. A rich and beautiful picture emerges from this.

Statement of the main results

Recall that for N ∈ N the inhomogeneous random graph G (N ) has vertex set {1, . . . , N } and every edge {i, j} exists independently with probability p i,j := 1 N p i N , j N ∧ 1, where p : (0, 1] × (0, 1] → (0, ∞) is a kernel for which we make the following assumptions:

(1) p is symmetric, continuous and decreasing in both parameters, (2) there is some γ ∈ (0, 1) and constants 0 < c 1 < c 2 such that for all a ∈ (0, 1),

c 1 a -γ ≤ p(a, 1) ≤ 1 0 p(a, s)ds < c 2 a -γ . (2) 
Observe that for every f : (0, 1] → (0, ∞) decreasing, continuous and integrable, the kernel p(s, t) = (s ∧ t) -γ f (s ∨ t) satisfies conditions (1) and ( 2). The choices f (x) = βx -γ and f (x) = βx γ-1 give the factor and preferential attachment kernels, respectively.

We take G (N ) 0 = G (N ) and obtain the evolving network (G (N ) t : t ≥ 0) using the following dynamics: Each vertex i updates independently with rate

κ i = κ 0 N i γη for i ∈ {1, . . . , N },
where η ∈ R and κ 0 > 0 are fixed constants. When vertex i updates, every unordered pair {i, j}, for j = i forms an edge with probability p i,j , independently of its previous state and of all other edges. The remaining edges {k, l} with k, l = i remain unchanged.

Observe that this evolution is stationary. The expected degree of vertex i does not depend on time and is of order (N/i) γ so κ i is proportional to its degree raised to the power η. If η > 0 powerful vertices update more quickly and as η passes from zero to ∞ we interpolate between the evolving networks with fixed update rates and the mean field model in which no memory of edges present is retained. We call this a fast evolving dynamics. Conversely if η < 0 powerful vertices update slowly and we can consider the connection between them as fixed during long periods of time. As η passes to -∞ we interpolate between evolving networks with fixed update rates and the static model. In this work we only consider the fast evolving case η ≥ 0 as the slowly evolving case requires additional techniques.

We say the contact process on the evolving graphs (G

(N ) t
) exhibits • metastability if there there exists ε > 0 such that whenever t N is going to infinity slower than e εN , we have lim inf

N →∞ I N (t N ) > 0.
whenever s N and t N are going to infinity slower than e εN , we have

I N (s N ) -I N (t N ) -→ N →∞ 0.
In that case, we can unambiguously define the lower metastable density ρ -(λ) = lim inf I N (t N ) > 0 and the upper metastable density ρ + (λ) = lim sup I N (t N ).

• a metastable density ρ(λ) if there is metastability and ρ -(λ) = ρ + (λ) = ρ(λ). Equivalently, whenever t N is going to infinity slower than e εN , we have lim I N (t N ) = ρ(λ) > 0.

In the following theorem we identify conditions on the kernel p for the four survival strategies identified in the first section to successfully sustain the infection. We deduce slow extinction and metastability and derive lower bounds on the lower metastable densities in each case. We also believe that there is a metastable density as soon as there is slow extinction, but we do not prove this.

Theorem 1. Define θ = exp(-2(1 + κ 0 2 γη )). For a, λ > 0 define T = T (a, λ) by T log 2 (T ) = c 1 θ 20κ 2 0 λ 2 a -γ(1-2η) , (3) 
where c 1 is as in [START_REF] Berger | On the spread of viruses on the internet[END_REF]. There exist positive and finite universal constants

M (i) , M (ii) , M (iii) , M ( 
iv) , such that slow extinction and metastability for all λ ∈ (0, 1) are guaranteed as soon as one can find a = a(λ) ∈ (0, 1/2) satisfying at least one of the following conditions:

(i) (Quick Direct Spreading) λap(a, a) > M (i) .
(ii) (Quick Indirect Spreading) λ 2 ap(a, 1) 2 > M (ii) .

(iii) (Delayed Direct Spreading)

T (a, λ) > M (iii) and λaT (a, λ) p(a, a) > M (iii) .

(iv) (Delayed Indirect Spreading)

T (a, λ) > M (iv) and λ 2 aT (a, λ)p(a, 1) 2 > M (iv) .

Moreover, in each of these cases we have

ρ -(λ) ≥ c (λap(a, 1) ∧ 1), (4) 
where c > 0 is a universal constant (independent of λ).

While the lower bounds above can be verified by investigating each of the four explicit survival strategies separately, upper bounds require a general, more implicit, method that yields information independent of any chosen strategy. Our approach is a supermartingale technique which gives upper bounds based on the choice of a scoring function. By carefully selecting a proper scoring function the technique will produce upper bounds which match the lower bounds in each of the cases investigated here.

Theorem 2. Fix λ > 0 small and define the time-scale function T λ : (0, 1) → (0, ∞) as

T λ (x) = max λ 2 x -γ(1-2η) , 1 . Fix D > 0 such that D ≤ min κ 0 4 , κ 2 0 (1 -γ) 64β , 1 16 . (5) 
(1) Suppose there is some function S : (0, 1] → (0, ∞) with

1 0 S(x) dx < ∞ and T λ (x) ≤ cS(x) δ , (6) 
for some c > 0 and 0 < δ < 1. Suppose further that, for N sufficiently large,

λT λ x N N y=1 p x,y S y N ≤ DS x N for all x ∈ {1, . . . , N }. (7) 
Then, for sufficiently small λ > 0, there is some ω = ω (λ) such that, for large N , E T ext ≤ ω N δ , and in particular there is fast extinction.

(2) If there exists some a = a(λ) > 0 and some continuous function S : [a, 1] → (0, ∞) such that, for all N large,

λT λ x N N y=1 p x,y S y∨ aN N ≤ DS x N for all x ∈ { aN + 1, . . . , N }, (8) 
then there exists ω > 0 and a function ε = ε(N ) converging to 0 as N ↑ ∞ such that, for all N , δ > 0 and all t ≥ 0, we have

I N (t) ≤ a + 1 S(a) 1 a S(y) dy + 1 δωt 1 a S(y) δ dy + ε(N ). ( 9 
)
In particular, if there is metastability, then the upper metastable density satisfies

ρ + (λ) ≤ a(λ) + 1 S(a(λ)) 1 a(λ) S(y) dy. (10) 
Applying these two theorems to the kernels considered yields our main result.

Theorem 3.

(a) Suppose p is the factor kernel.

(i) If η < 1 2 and γ < 1 3-2η , or if η ≥ 1 2 and γ < 1 2 , there is fast extinction. (ii) if η < 1 2 and γ > 1 3-2η , or if η ≥ 1 2 and γ > 1 2
, there is slow extinction and metastability, and the metastability exponent satisfies

ξ =    2-2γη 3γ-2γη-1 if γ < 2 3+2η , γ 2γ-1 if γ > 2 3+2η . (11) 
(b) Suppose p is the preferential attachment kernel.

(i) If η ≥ 1 2 and γ < 1 2 , there is fast extinction. (ii) If η < 1 2 , or if η ≥ 1 2 and γ > 1 2 , there is slow extinction and metastability, and the metastability exponent satisfies

ξ =          3-2γ-2γη γ-2γη if η < 1 2 and 0 < γ < 3 5+2η , 3-γ-2γη 3γ-2γη-1 if η < 1 2 and 3 5+2η < γ < 1 1+2η , 1 2γ-1 if 1 1+2η < γ. ( 12 
)
Figure 1. The figures summarise Theorem 3 in the form of phase diagrams for the factor kernel (left) and the preferential attachment kernel (right).

Remark 1. For both kernels, when η > 1 2 and γ < 1 2 we have T λ (x) ∼ 1 and hence (6) holds for any δ > 0. By Theorem 2 (1) we then get that E[T ext ] is even subpolynomial in N .

Remark 2. The different exponents for the metastable densities in Theorem 3 are indicative of different survival strategies for the infection, as indicated in Figure 1. Propositions 1 and 2 follow from Theorem 3 by letting η = 0. Remark 3. In the cases of slow extinction, our results are actually slightly more precise than stated in Theorem 3. In particular, the upper metastable density always satisfies ρ + (λ) ≤ cλ ξ for some constant c. In the phases when quick direct/indirect spreading prevails, the lower metastable density also satisfies ρ -(λ) ≥ cλ ξ for some c > 0, so in these phases we obtain the metastable densities up to a bounded multiplicative factor.

The rest of this paper is organized as follows; In Section 3 we introduce a graphical representation of the evolving network and contact process which allows us to define the process rigorously, yielding at the same time useful properties such as self-duality and monotonicity. In Sections 4 and 5 we give the proofs of Theorems 1 and 2 respectively, and finally in Sections 6 and 7 we apply those theorems to deduce Theorem 3.

Graphical representation

The evolving network model (G (N ) t : t ≥ 0, N ∈ N) is represented with the help of the following independent random variables;

(1) For each x ∈ N, a Poisson point process U x = (U x n ) n≥1 of intensity κ x , describing the updating times of the vertex x. Given x = y we also write U x,y = (U x,y n ) n≥1 for the union U x ∪ U y , which is a Poisson point process of intensity κ x + κ y , describing the updating times of the potential edge {x, y}.

(2) For each {x, y} with x = y and x, y ≤ N , a sequence of independent random variables (C x,y n ) n≥0 , all Bernoulli with parameter p x,y , describing the presence/absence of the edge in the network after the successive updating times of the potential edge {x, y}. More precisely, if t ≥ 0 then {x, y} is an edge in

G (N ) t if and only if C x,y n = 1 for n = |[0, t] ∩ U x,y |. We denote C x := (C x,y n : y ≤ N, n ∈ N).
Given the network we represent the infection by means of the following set of independent random variables;

(3) For each x ∈ N, a Poisson point process R x = (R x n ) n≥1 of intensity one describing the recovery times of x. (4) For each {x, y} with x = y, a Poisson point process I x,y 0 with intensity λ describing the infection times along the edge {x, y}. Only the trace I x,y of this process on the set

∞ n=0 {[U x,y n , U x,y n+1 ) : C x,y n = 1} ⊂ [0, ∞)
can actually cause infections. Write (I x,y n ) n≥1 for the ordered points of I x,y . If just before time I x,y n vertex x is infected and y is healthy, then x infects y at time I x,y n . If y is infected and x healthy, then y infects x. Otherwise, nothing happens.

The infection is now described by a process (X t (x), x ∈ {1, . . . , N } : t ≥ 0) with values in {0, 1} N , such that X t (x) = 1 if x is infected at time t, and X t (x) = 0 if x is healthy at time t. More formally, the infection process associated to this graphical representation and to a starting set A 0 of infected vertices, is the càdlàg process with X 0 (x) = 1 A 0 (x) evolving only at times t ∈ R x ∪ ∞ n=1 I x,y n , according to the following rules:

• If t ∈ R x , then X t (x) = 0 (whatever X t-(x)). • If t ∈ I x,y , then (X t (x), X t (y)) = (0, 0) if (X t-(x), X t-(y)) = (0, 0). (1, 1) otherwise.
The process (G (N ) t , X t : t ≥ 0) is a Markov process describing the simultaneous evolution of the network and of the infection. We call (F t : t ≥ 0) its canonical filtration.

Using the graphical representation we obtain monotonicity and duality properties of the contact process on the evolving graph. The proof of the following proposition is standard within the context of the contact process, see [START_REF] Liggett | Interacting Particle Systems[END_REF], and therefore omitted here.

Proposition 3.

(1) Monotonicity. If (X 1 t : t ≥ 0), (X 2 t : t ≥ 0) are processes constructed as above with X 1 0 ≤ X 2 0 and infection rates

λ 1 ≤ λ 2 , then X 1 t ≤ X 2 t stochastically. (2) Self-Duality. If X A , X B correspond to the process with initial condition X 0 = 1 A
and X 0 = 1 B respectively, then for all t > 0,

P ∃x ∈ A, X B t (x) = 1 = P ∃x ∈ B, X A t (x) = 1 .
The only added subtlety in the proof of the proposition above when compared to [START_REF] Liggett | Interacting Particle Systems[END_REF] is that the duality property combines both the duality property of the contact process, and that of the network dynamics.

Slow extinction and lower bounds

In this section we prove Theorem 1 by showing four different survival strategies which can sustain the infection exponentially long. All these strategies are based on a division between powerful and weak vertices given by a parameter a = a(λ) ∈ (0, 1/2) as

S := {1, 2, . . . , aN }, C := { aN + 1, . . . , N }.
The elements of S are called stars and the elements of C are called connectors. Notice that when λ decreases, any vertex with fixed degree has a lower chance of infecting its neighbours. Our definition of a star changes accordingly, that is, a(λ) ↓ 0 as λ ↓ 0. We denote by S 0 = {x ∈ S , X 0 (x) = 1} the set of initially infected stars, and by S 0 = |S 0 | its cardinality. We start the proof with a relatively simple lemma, which already contains the flavour of the kind of inequalities we will use throughout the proof.

Lemma 1. Fix r > 0 and suppose one is given an initial condition (X 0 , G 0 ) such that S 0 ≥ raN . Then there exists a constant C > 0 (independent of λ, a, N ) such that, for all t ∈ [2, 3],

E N v=1 X t (v) X 0 , G 0 ≥ C(λap(a, 1) ∧ 1)rN. ( 13 
)
Remark 4. Lemma 1 remains true if t is in an arbitrary compact set bounded away from zero, changing only the value of C. For our purposes the above formulation suffices.

Proof. We introduce a terminology specific to this proof as follows:

S := {x ∈ S : R x ∩ [0, 2] = ∅, U x ∩ [0, 1] = ∅}, C := {y ∈ C : R y ∩ [1, 3] = ∅, ∃x ∈ S , I x,y ∩ [1, 2] = ∅}.
Each x ∈ S 0 belongs to S independently with probability e -2 (1 -e -κx ) ≥ e -2 (1 -e -κ 0 ). Therefore the cardinality S of S dominates a binomial random variable with parameters S 0 and e -2 (1 -e -κ 0 ). For y ∈ C , the event R y ∩ [1, 3] = ∅ has probability e -2 and is independent of the event E y := {∃x ∈ S , I x,y ∩ [1, 2] = ∅}, whose probability we want to estimate. Conditionally on x ∈ S , a sufficient condition for the event E y to be satisfied is that (1)

I x,y 0 ∩ [1, 2] = ∅, which happens with probability 1 -e -λ . (2) At time t = min (I x,y 0 ∩ [1, 2]
), the edge {x, y} belongs to the network. This happens with probability p x,y , independently of the configuration of the network at time 0, as vertex x has updated on the time interval [0, 1]. The probabilities here obtained are independent from each other and from the realization chosen for the U x , R x , hence x infects y on time interval [START_REF] Barabási | Emergence of scaling in random network[END_REF][START_REF] Berger | On the spread of viruses on the internet[END_REF] 

(namely I x,y ∩ [1, 2] = ∅)
with probability at least p x,y (1 -e -λ ), which we can bound below by (1 -e -λ )p(a, 1)/N , by the definition of p x,y and the monotonicity of p(•, •). If we now condition on S , the events I x,y ∩ [1, 2] = ∅ are independent and we get

P(E y S ) ≥ 1 -1 -(1 -e -λ ) p(a,1) N S ≥ 1 -exp -(1 -e -λ ) p(a,1)S N ≥ λp(a,1)S 4N ∧ 1 2
, where in the last inequality we used twice the inequality 1 -e -x ≥ (x ∧ 1)/2 for x ≥ 0 (we also used λ < 1). Finally we obtain that, given the initial condition of the network and the infection and conditionally on S , the cardinality of C dominates a binomial random variable with parameters |C | ≥ N/2 and

ρ = e -2 λp(a,1)S 4N ∧ e -2
2 . To conclude, we first consider the case λap(a, 1) < 1. Then we always have ρ = e -2 λp(a,1)S 4N , and we easily get that the expectation of |C | is bounded from below by e -3 (1 -e -κ 0 ) 8 λap(a, 1)rN.

In the case λap(a, 1) > 1, we have ρ ≥ e -2 S 4aN , and we get a bound of e -3 (1 -e -κ 0 ) 8 rN.

This altogether proves (13) with C = e -3 (1 -e -κ 0 )/8.

Denoting by S k the set of infected stars at time k ∈ N, and by S k = |S k | its cardinality, we aim to prove that for some r > 0 the events E r k := {S k > raN } hold for a sufficiently long time. With this in mind we say that a family of events E k depending on k ∈ N holds exponentially long if there exists c > 0 such that, for all N ,

P k≤e cN E k ≥ 1 -e -cN .
As E r k ⊂ {T ext > k}, if the events E r k hold exponentially long, we have slow extinction. Moreover, from Lemma 1 we have

Cλap(a, 1)P |{x ∈ S : X t -1 (x) = 1}| > raN ≤ I N (t)
for any t > 2, so if E r k holds exponentially long, the left hand side above is bounded from below by Cλap(a, 1)(1 -e -cN ) for some c > 0, and hence we deduce the lower bound (4) on the metastable density. Our aim is therefore not only to prove slow extinction, but the stronger result that under any of the conditions given in Theorem 1, the events E r k hold exponentially long. Actually, we will also allow a conditioning on any intial configuration included in the event E r 0 , and still show that the events E r k hold exponentially long. The proof of metastability, on the other hand, will also follow from this result. First, note that from (1) ot is easy to see that I N (•) is decreasing, and hence it suffices to show that, whenever t N ≤ e εN , lim sup

N →∞ |I N (t) -I N (t N )| -→ t→∞ 0.
Using self-duality, we can write

I N (t) -I N (t N ) = 1 N N v=1 P v t < T ext < t N ,
where we recall that P v stands for the probability measure corresponding to the infection starting with only vertex v infected. So metastability follows if we can prove that P v (t < T ext < e εN ) converges to 0 as t → ∞, uniformly in N and v ∈ {1, . . . , N }. We separate this proof into three steps:

(1) For every n ≥ 0, uniformly in N and v, P v (max S k < n, T ext > t) -→ t→∞ 0.

(2) Uniformly in N and v, P v (max

S k ≥ raN | max S k ≥ n) -→ n→∞ 1.
(

) Uniformly in v, P v (T ext ≥ e εN | max S k ≥ raN ) -→ N →∞ 1. 3 
These three steps easily give the result. Indeed, for any given ε > 0, choosing N 0 as in (3), then n as in (2), then t as in (1), we obtain that for any N ≥ N 0 and v ∈ {1, . . . , N },

P v (t < T ext < e εN ) ≤ 3ε.
The first step is fairly easy and relies on the observation that there is some constant c > 0 depending only on n such that for all k ≥ 0,

P v (S k+1 ≥ n|F k ) ≥ c1 {S k >0} , We deduce P v (max S k < n, S t > 0) ≤ (1 -c) t ,
which proves the first step.

For the second step, we introduce the stopping time K := inf{k ≥ 0, S k ≥ n} and prove P v (max S k ≥ raN |K < +∞, F K ) → ∞ uniformly on N , v and on the σ-field F K . In other words, we provide a uniform bound in all the possible configurations (G (N ) K , X K ) for which S K ≥ n. This bound follows from the analysis of the process (S k ) below (see in particular Lemma 3.(1) and Lemma 4.( 1)), and concludes the second step.

Finally, the third step also follows from the analysis of the process (S k ). If the stopping time K := inf{k ≥ 0, S k ≥ raN } is finite, then the event E r K holds, and further the events E r k+ K hold exponentially long, proving the third step.

We now provide the detailed analysis of the process (S k ). A useful tool, which we will use repeatedly, is the following large deviation estimate, which can be directly derived from Chernoff's inequality.

Lemma 2. Let X be a binomial random variable with parameters n and q. Then P(X < snq) ≤ e -Dn where D = sq log(s) + (1 -sq) log 1-sq 1-q and s < 1.

4.1. Quick Direct Spreading. Let us start with quick direct spreading, which is arguably the simplest mechanism, that makes no use of connectors and is only based on stars infecting directly other stars before recovery. This strategy can only succeed when the subgraph S is sufficiently connected. In this case, for x, y ∈ S and small λ > 0, our choice η ≥ 0 implies that there is typically an updating event U x,y between two infections in I x,y 0 so the times I x,y when infections pass the edge {x, y} can therefore be approximated by a Poisson point process with rate λp x,y . If λ is small and N large, these rates tend to zero and hence, during a brief interval of time, the infection starting from a single vertex is unlikely to infect twice the same vertex, resulting in the infection spreading like a Galton-Watson process.

We use, specifically in this quick direct spreading subsection, the terminology

S k := {x ∈ S k : R x ∩ [k, k + 1] = ∅},
and S k = |S k |. Clearly, S k ⊂ S k+1 and thus S k ≤ S k+1 , as infected stars that do not recover on [k, k + 1] are still infected at time k + 1. Further, we let

S k := {x ∈ S \S k : U x ∩ [k, k + 1/2] = ∅, R x ∩ [k + 1/2, k + 1] = ∅, ∃y ∈ S k , I x,y ∩ [k + 1/2, k + 1] = ∅}, and S k = |S k |.
Clearly, we also have S k ⊂ S k+1 , as the stars in S k have been infected on [k + 1/2, k + 1] and did not recover on that time interval.

An advantageous property of S k and S k , compared to S k+1 , is that their conditional laws knowing (G (N ) k , X k ), depend only on S k , and not on the network structure G (N ) k . So, the cardinality S k of S k is (conditionally) a binomial random variable with parameters S k and e

-1 . Now, if x is in S \S k , then it satisfies U x ∩ [k, k + 1/2] = ∅ and R x ∩ [k + 1/2, k + 1] = ∅ with probability e -1/2 (1 -e -κx/2 ) ≥ e -1/2 (1 -e -κ 0 /2
). Conditioning on this event and on S k , a similar argument to the one used in the proof of Lemma 1 gives that x belongs to S k with probability at least

1 -1 -λp(a,a) 4N S k ≥ 1 -exp - λp(a,a)S k 4N ≥ λp(a,a)S k 8N ∧ 1 2 .
As a consequence, S k dominates a binomial random variable with parameters S -S k and

e -1/2 (1 -e -κ 0 /2 ) λp(a,a)S k 8N ∧ 1 2 .
Gathering these results with S k+1 ≥ S k + S k , we obtain a stochastic lower bound for the conditional distribution of S k+1 given F k , which we exploit in the following lemma.

Lemma 3. Suppose ρ, ρ and c are three positive constants such that ρρ > 1. Suppose M 0 , M 0 , M 1 , M 1 , . . . is a process on {0, 1, . . . , n}, adapted to a filtration (F 0 , F 0 , F 1 , F 1 , . . .), such that

• given F k the random variable M k is binomially distributed with parameters M k and ρ;

• given F k the random variable M k+1 -M k dominates a binomially distributed random variable with parameters n -M k and ρ

M k n+1 ∧ c.
Then there exist positive constants r, l, ε > 0 such that for large n:

(1) For every initial condition M 0 = m 0 , the probability that the process M k goes above value rn is at least 1 -e -lm 0 . (2) For every initial condition M 0 = m 0 ≥ rn, with probability at least 1 -e -εn , the process (M k ) stays above value rn at all times k ≤ e εn .

Under the hypothesis λap(a, a) > 8e/e -1/2 (1 -e -κ 0 /2 ), we can apply Lemma 3 with the choice

M k = S k M k = S k , F k = σ(F k , S k ), n = aN , ρ = e -1 , ρ = e -1/2 (1-e -κ 0 /2 ) 8 λap(a, a) and c = e -1/2 (1-e -κ 0 /2 ) 2 .
Item (2) then completes the proof of slow extinction, while items (1) and (2) complete the proof of metastability. Thus, using Lemma 3, we have proven the quick direct spreading part of Theorem 1, with M (i) = 8e/e -1/2 (1 -e -κ 0 /2 ).

Proof of Lemma 3. We first prove the second item. Choose r < c ∧ 1 ρ , which, together with For the first item we let K := inf{k ≥ 0, M k = 0 or M k ≥ r n}, where r is a constant to be determined later. We possibly have r < r, but (2) still holds if we replace2 r by r ∧ r . Under the hypothesis r < η/ρ and k < K, we can bound below the law of M k+1 knowing M k by a binomial random variable with parameters (1 -r )n and ρ M k /(n + 1). We now prove that for some well-chosen l > 0, the process (e -lM k∧K ) k≥0 is a positive supermartingale. Note that the result then follows from a standard stopping theorem.

ρρ > 1, implies r < ρ. If M k ≥ r n with r > r/ρ, then Lemma 2 implies M k+1 ≥ M k ≥ rn with probability at least 1 -e -cn , for some constant c > 0. If rn ≤ M k ≤ r n, choosing ι in the nonempty interval ( 1 ρ , ρ ∧ c rρ ),

It suffices to prove the inequality

E[e -lM 1 |F 0 ] ≤ e -lM 0
on the event M 0 < r n. But on this event, the Laplace transform of Binomial random variables easily gives the following:

E[e -lM 1 |F 0 ] ≤ 1 - ρ M 0 n+1 (1 -e -l ) (1-r )n ≤ exp -(1-r )n n+1 ρ M 0 (1 -e -l ) .
Thus, a further Laplace transform gives

E[e -lM 1 |F 0 ] ≤ 1 -ρ 1 -e -(1-r )n n+1 ρ M 0 (1-e -l ) M 0 ≤ exp -ρM 0 1 -e -(1-r )n n+1 ρ (1-e -l )
.

When l goes to 0, the last expression is exp(-l (1-r )n n+1 ρρ M 0 (1 + o(1))). Choosing r > 0 small and n large so that (1-r )n n+1 ρρ > 1, and then l > 0 small, we can guarantee E[e -lM 1 |F 0 ] ≤ e -lM 0 , and this completes the proof. 4.2. Quick Indirect Spreading. Quick indirect spreading is a mechanism similar to quick direct spreading in the sense that stars spread the infection before seeing a simple recovery event, but in this case the infection spreads to connectors which in turn infect stars again. Being a two stage mechanism, quick indirect spreading can be less efficient than its direct version as we see in the case of the factor kernel. However, as it relies on the connectedness of the whole network rather than the connectedness among stars it can be advantageous when the latter is scarce. As with the direct version, the quick update of stars allows us to think of valid infections as Poisson point processes with parameter λp x,y and then approximate the behaviour of X t as a Galton-Watson process.

We keep from the quick direct spreading subsection the notation S k = |S k | as well as

S k = |S k | = |{x ∈ S k : R x ∩ [k, k + 1] = ∅}|.
Again, conditionally on the network and infection evolution up to time k, the cardinality S k of S k is binomial with parameters S k and e -1 . In order to consider indirect spreading, we now introduce the following terminology, specific to this subsection:

C k := {y ∈ C : U y ∩ [k, k + 1/3] = ∅, R y ∩ [k + 1/3, k + 1] = ∅, ∃x ∈ S k , I x,y ∩ [k + 1/3, k + 2/3] = ∅}, S k := {x ∈ S \S k : R x ∩ [k + 2/3, k + 1] = ∅, ∃y ∈ C k , I x,y ∩ [k + 2/3, k + 1] = ∅}.
We also denote the cardinality of these sets by 

C k = |C k |,
e -2/3 (1 -e -κ 0 /3 ) 1 -(1 -e -λ/3 ) p(a,1) N S k ≥ e -2/3 (1 -e -κ 0 /3 ) λp(a,1)S k 6N ∧ 1 2 .
Hence C k dominates a binomial random variable with parameters (1 -a)N and e -2/3 (1e -κ 0 /3 )(λp(a, 1)S k /(6N ) ∧ 1 2 ). Similarly, conditionally on S k , S k and C k , we can bound the random variable S k from below by a binomial random variable with parameters aN -S k and e -1/3 (λp(a, 1)C k /(6N ) ∧ 1 2 ). Lemma 3 has to be replaced by the following lemma. Lemma 4. Suppose ρ, ρ , ρ , ρ and c, c are positive constants such that ρρ ρ ρ > 1, and M 0 , M 0 , M 0 , M 1 , M 1 , M 1 , . . . is a process on {0, 1, . . . , n} adapted to the filtration

(F 0 , F 0 , F 0 , F 1 , F 1 , F 1 , . . .) such that
• given F k the random variable M k is binomially distributed with parameters M k and ρ;

• given F k the random variable M k is dominating a binomially distributed random variable with parameters ρ n and ρ n+1 M k ∧ c; • given F k the random variable M k+1 -M k dominates a binomially distributed random variable with parameters n -M k , and ρ n+1 M k ∧ c . Then there exist positive constants r, l, ε > 0 such that for large n:

(1) For every initial condition M 0 = m 0 , the probability that the process M k goes above value rn is at least 1 -e -lm 0 . (2) For every initial condition M 0 = m 0 ≥ rn, with probability at least 1 -e -εn , the process (M k ) stays above value rn at all times k ≤ e εn .

The proof is similar to that of Lemma 3. It just involves more calculation, which is not so informative, so we omit it. We can now apply this lemma with the parameters 3 (1 -e -κ 0 /3 )λap(a, 1)/12, ρ = e -1/3 λap(a, 1)/12, and ρ = (1 -a)/a, under the condition ρρ ρ ρ > 1, which is satisfied if a < 1/2 and λ 2 ap(a, 1) 2 > 288e 2 /(1 -e -κ 0 /3 ). We now conclude the quick indirect spreading part of Theorem 1 just like the quick direct spreading part, with M (ii) = 288e 2 /(1 -e -κ 0 /3 ). 4.3. Delayed Direct Spreading. Delayed direct spreading is a mechanism similar to quick direct spreading in the sense that the infection spreads directly from star to star. The main difference is that the infection is kept alive at a star on a longer time scale with the aid of connectors. A single vertex, if powerful enough, can survive a recovery event by infecting a connector which in turn infects it back before an updating event (where the connection is lost with a high probability) thus prologing the recovery cycle of stars. In contrast with the stars studied at [START_REF] Berger | On the spread of viruses on the internet[END_REF] which survive for an amount of time exponential in their degree, the survival time here is roughly linear in this parameter, which is explained by the cost of maintaining the right conditions on the network for this effect to take place.

M k = S k , M k = S k , M k = C k , F k = σ(F k , S k ), F k = σ(F k , C k ), n = aN , ρ = e -1 , ρ = e -2/
To begin our proof, for each k ∈ N, k ≥ 1 define Ck as

Ck := {y ∈ C : [U y ∪ R y ] ∩ [k, k + 2] = ∅} that is, Ck is the set of all stable connectors in the interval [k, k + 2].
As each y ∈ C , y > N/2 belongs to Ck independently with probability at least θ = exp(-2(κ 0 2 γη + 1)), Lemma 2 shows that P(| Ck | > θN/4) > 1 -e -cN for some fixed c > 0 and hence these events hold exponentially long. For the entire remainder of this section we therefore fix a realization of U y , R y , y ∈ C such that {| Ck | > θN/4} holds exponentially long and all probabilities will be taken to be conditional on such a realization.

Next we denote by S k the set of infected stars at time kT , and S k = |S k |. Note that we use the same notation as before, though the length of a recovery cycle has been modified, from one to T = T (a, λ). Our hope is that this will not confuse the reader, but rather stress the unity of the approach. 4.3.1. Properties of stars. As the probability p x,y of having a connection between a star x and a connector y is bounded from below by 1 N p(a, 1) ≥ 1 N c 1 a -γ , we deduce that for given t, the number of connectors y ∈ C t connected to x dominates a binomial random variable with parameters θN/4 and c 1 a -γ /N . By Lemma 2, one can deduce that

P {y ∈ C t , {x, y} ∈ G (N ) t } > c 1 θa -γ /5 > 1 -e -ca -γ , (14) 
for some c > 0, uniformly in a ≤ 1/2 and N ≥ c 1 a -γ . In particular, any star x maintains sufficiently many neighbouring stable connectors for an exponentially long time.

Definition 1. For any T > 0 let

Ūx T := {0} ∪ U x m ∈U x ∩[0,T ] U x m + nκ -1 x : n ∈ N 0 ∩ [0, κ x (U x m+1 -U x m )] . A star x ∈ S is T -stable if (i) | Ūx T | < 3κ
x T and, (ii) at all times t ∈ Ūx T , the vertex x has at least c 1 θ 5 a -γ neighbours in C t .

The set Ūx

T arises by adding points to U x between consecutive updating events when these are further than κ -1

x units of time apart. Loosely speaking, T -stability means that x does not update too much and that upon updating it has enough neighbouring stable connectors. The next result follows directly from (14) and a large deviation argument for | Ūx T |, we omit its easy proof. Lemma 5. lim

T →∞ lim inf N →∞ inf x∈S P(x is T -stable) = 1.
Note that the convergence when T → ∞ is uniform in the possible values of a < 1/2 and λ < 1. Since the convergence is uniform and the events {x is T -stable} x∈S are independent, we deduce that, when T and N are large, most stars will exhibit this property. We define next the concept of [L, T ]-susceptibility of x, depending only on U x , R x , which loosely speaking means that recoveries of x are not too frequent, and not too close to its updating events. Definition 2. For any L ∈ [0, T ) we say that a star

x ∈ S is [L, T ]-susceptible if (i) there are no recovery events in [L, L + κ -1 x ] or [T -κ -1 x , T ], (ii) |R x ∩ [L, T ]| < 2T , (iii) for every pair of consecutive updating times L ≤ t 1 < t 2 ∈ Ūx T , such that R x ∩ [t 1 , t 2 ] = ∅ we have (r 1 -t 1 )(t 2 -r 2 ) > [κ 2 x T log(T )] -1 , (15) 
where r 1 and r 2 are the first and last recoveries in [t 1 , t 2 ], respectively.

There is no reason most stars should be [L, T ]-susceptible, however the probability of a T -stable x ∈ S having this property is bounded away from zero, if T and N are large. Lemma 6. There exists q 1 > 0 such that lim inf

T →∞ lim inf N →∞ inf x∈S P x is [L, T ]-susceptible U x , C x > q 1 ,
for all L ∈ [0, T ) and any realization of U x , C x such that x is T -stable.

Proof. Fix a realization of U x , C x such that x is T -stable and notice that in this case [L, T ]-susceptibility depends on the process R x alone. In fact, all three conditions in Definition 2 are decreasing with R x . By Harris' inequality the three conditions are therefore positively correlated and hence P x is [L, T ]-susceptible Ūx T is larger than the product of the individual probabilities, which we now calculate. It is easy to see that conditions (i) and (ii) are independent of U x , C x and their probability is bounded from below by e -2 and 1/2 respectively (the latter value is obtained from a rough Markov inequality). For the bound on (iii) we take two consecutive t i , t i+1 ∈ Ūx T with R x ∩ [t i , t i+1 ] = ∅ and find an upper bound for the event that (15) fails at [t i , t i+1 ]. We split this event in two scenarios:

First suppose r 1 -t i > 1/(2κ x ) so for (15) to fail we necessarily have t i+1 -r 2 ≤ 2/(κ x T log T ). This way we can bound the probability from above by

1 -e -2/(κxT log(T )) ≤ 2 κ x T log(T ) ≤ 2 κ x T .
By symmetry the treatment for the case t i+1 -r 2 > 1/(2κ x ) is the same.

Second suppose r 1 -t i ≤ 1/(2κ x ) and t i+1 -r 2 ≤ 1/(2κ x ). In this case, the random variables r 1 -t i and t i+1 -r 2 are dominated by independent exponential random variables. We deduce that the probability of this scenario is bounded by

1 2κx 0 ∞ 0 e -y-z 1 {z<[yκ 2 x T log(T )] -1 ∧[2κx] -1 } dz dy.
Dividing the integral as to which expression is smaller in the indicator function yields

2 κxT log(T ) 0 1 2κx 0 e -y-z dz dy + 1 2κx 2 κxT log(T ) 1 yκ 2
x T log(T ) 0 e -y-z dz dy.

The first term is smaller than 1/(κ 2 x T log(T )) ≤ 1/(κ x T ) while the second is equal to

1 2κx 2 κxT log(T ) e -y 1 -e - 1 yκ 2 x T log(T ) dy ≤ 1 2κx 2 κxT log(T ) 1 yκ 2 x T log(T ) dy ≤ 2 κ x T .
We have deduced that the probability that (15) fails in [t i , t i+1 ] is bounded from above by 3/(κ x T ). We thus obtain a lower bound for the probability that (iii) holds of the form

1 -3 κxT | Ū x T ∩[L,T ]| ≥ 1 -3 κxT 3κxT ≥ e -10 ,
where the first inequality holds by T -stability of x, and the second holds if κ x T is large.

Definition 3. A star x ∈ S is T -infectious if t ∈ U x ∩ [0, T ] : (U x ∪ R x ) ∩ [t, t + κ -1 x ) = {t} > 1 2 e -1-κ -1 0 κ x T.
This property does not imply that the star actually infects other vertices but rather that upon survival on [0, T ] it is infected for a sufficiently large proportion of the time, hence giving it a larger chance of doing so. A large deviation argument yields that lim inf T →∞ lim inf N →∞ P(x is T -infectious) = 1, so most of the stars will have this property. Gathering all the results obtained here we obtain the following lemma. Lemma 7. There exists q 1 > 0 as in Lemma 6 such that, for all large T and L ∈ [0, T ), lim inf

N →∞ inf x∈S P(x is T -infectious, T -stable and [L, T ]-susceptible) > q 1 .

Survival and spreading.

The star properties mentioned in the last lemma are useful to bound from below the probability that a star maintains the infection on [0, T ] and infects another star.

Definition 4. A star x ∈ S is [L, T ]-infected if X L (x) = X T (x) = 1 and for all t ∈ Ūx T ∩ [L, T ], X t (x) = 1.
If x is [0, T ]-infected, we say the infection is maintained at x on [0, T ] (although the star may of course have recovered several times on this time interval). For the next lemma we take T = T (a, λ) defined as in Theorem 1. Lemma 8. There exists q 2 > 0 independent of N , such that for all λ and a making T = T (a, λ) sufficiently large, and for all x ∈ S and L ∈ [0, T ),

P x is [L, T ]-infected X L (x) = 1, x is T -stable and [L, T ]-susceptible > q 2 .
(16)

Proof. Fix a realization of U x , R x and (C x,y n ) y∈C making x a T -stable and [L, T ]-susceptible star, and assume that X L (x) = 1. Let t j be the first event in Ūx T after L, which by definition lies in [L, L + κ -1

x ]; from the first condition of [L, T ]-susceptibility there are no recoveries in this interval and hence X t j (x) = 1. Since X t j (x) = 1, using conditional probabilities and the Markov property we can bound from below the probability in the statement by

t i ∈ Ū x T ∩[L,T ] R x ∩[t i ,t i+1 ] =∅ P(X t i+1 (x) = 1 X t i (x) = 1), ( 17 
)
where the restriction in the product follows since we trivially have P(X t i+1 (x) = 1 X t i (x) = 1) = 1 when there are no recoveries in [t i , t i+1 ]. Now, in the case R x ∩ [t i , t i+1 ] = ∅, we define r 1 and r 2 as the first and last element in that intersection, respectively, and notice that a sufficient scenario for X t i+1 (x) = 1 is that

• x infects some neighbour y ∈ C t i during [t i , r 1 ],
• since y ∈ C t i , it remains infected (and also a neighbour of x) up until time t i+1 ,

• y infects x back during [r 2 , t i+1 ]. The scenario above follows from the event

x∼y at time t i y∈ C t i I x,y 0 ∩ [t i , r 1 ] = ∅ and I x,y 0 ∩ [r 2 , t i+1 ] = ∅ , (18) 
and using independence we can calculate its probability as 1 -

x∼y at time t i y∈ C t i 1 -1 -e -λ(r 1 -t i ) 1 -e -λ(t i+1 -r 2 ) . Since t i+1 -t i < κ -1
x the exponents in the expression above tend to zero and hence we can use the bound

(1 -e -λ(r 1 -t i ) )(1 -e -λ(t i+1 -r 2 ) ) ≥ λ 2 (r 1 -t i )(t i+1 -r 2 ) 4 ≥ λ 2 4κ 2
x T log T , which follows from the third condition of [L, T ]-susceptibility, to obtain that (18) has probability at least 1 -

x∼y at time t i y∈ C t i 1 - λ 2 4κ 2 x T log(T ) ≥ 1 -exp - λ 2 c 1 θa -γ 20a -2γη κ 2 0 T log(T ) = 1 - 1 T ,
where the inequality follows from the T -stability of x and the monotonicity of κ and the equality from the definition of T . This allows us to bound the argument in ( 17) by (1-1/T ), and from [L, T ]-stability there are at most 2T recoveries, giving

|{t i ∈ Ūx T ∩ [L, T ] : R x ∩ [t i , t i+1 ] = ∅}| ≤ 2T, so we finally obtain t i ∈ Ū x T ∩[L,T ] R x ∩[t i ,t i+1 ] =∅ P(X t i+1 (x) = 1 X t i (x) = 1) ≥ 1 -1 T 2T ≥ e -4 ,
which holds if T is large, giving the result.

Denote by S 0 ⊂ S 0 the set of initially infected stars, that are also T -infectious, Tstable, [0, T ]-susceptible, and [0, T ]-infected. From Lemmas 7 and 8, when T and N are large, conditionally on S 0 , the random variable S 0 = |S 0 | dominates a binomial random variable with parameters S 0 and q 1 q 2 . Further, we bound from below the number of initially uninfected stars, that get infected by some star in S 0 , and are still infected at time T . Lemma 9. We have, uniformly in λ < 1 and a < 1/2, lim inf

T →∞ lim inf N →∞ inf x∈S \S 0 P ∃y ∈ S 0 , t ∈ I x,y ∩ [0, T ] : X t (y) = 1 S 0 > λT p(a,a)S k 8e 1+1/κ 0 N ∧ 1 2 . ( 19 
)
Proof. Fix y ∈ S 0 and consider

t i ∈ U y ∩ [0, T ] such that [t i , t i + κ -1 x ] ∩ (R y ∪ U y ) = ∅, which exists since y is T -infectious.
As y ∈ S 0 , it satisfies the condition in Lemma 8 and hence it is infected throughout the interval [t i , t i + κ -1

x ], which gives a small time interval for y to infect x. To find a lower bound for the event {I x,y ∩ [t i , t i + κ -1 x ] = ∅} it is enough that I x,y 0 ∩ [t i , t i + κ -1 x ] = ∅ and that at the first infection event the edge {x, y} belongs to the graph, but this happens with probability p x,y 1 -e -λκ -1

x ≥ 1 -e -λpx,y 2κx .

Using independence we deduce

P(∃t ∈ I x,y ∩ [0, T ] : X t (y) = 1) ≥ 1 - [t i ,t i +κ -1 x ]∩R y =∅ exp - λpx,y 2κx ≥ 1 -exp - λpx,yT 4e 1+1/κ 0 ,
where the last inequality is due to the fact that y ∈ S 0 and hence it is T -infectious. Finally, to deduce (19), we use independence one last time to deduce

P (∃y ∈ S 0 , t ∈ I x,y ∩ [0, T ], X t (y) = 1) ≥ 1 -exp -λT 4e 1+1/κ 0 y∈S 0 p x,y ≥ 1 -exp - λT p(a,a)S k 4e 1+1/κ 0 N > λT p(a,a)S k 8e 1+1/κ 0 N ∧ 1 2 .
Using Lemma 9 we get that, when T and N are large, each x ∈ S \S 0 has probability at least λT p(a,a)S k 8e 1+1/κ 0 N ∧ 1 2 to receive an infection in [0, T ]. Calling T x ∈ [0, T ] the first time when this occurs, we can use Lemma 6 to deduce that with probability at least q 1 the star x is T -stable and [T x , T ]-susceptible. Now, being infected at time T x , Lemma 8 gives that with probability at least q 2 , the star x will be infected at time T . Since all these events are independent for different values of x, we deduce that S 1 -S 0 dominates a binomial random variable with parameters aN -S 0 and q 1 q 2 λT p(a,a)S k 8e 1+1/κ 0 N ∧ 1 2 . Finally, the same reasoning applies for the whole process S k , which can now be studied similarly as for quick direct spreading. More precisely, if T is large and under the hypothesis

q 2 1 q 2 2 λT ap(a,a) 8e 1+1/κ 0 > 1,
we can apply Lemma 3 with n = aN , ρ = q 1 q 2 , ρ = q 1 q 2 λT ap(a,a) 8e 1+1/κ 0 . In that case, slow extinction and metastability follow just as before. To actually deduce the lower bound for the lower metastable density, Inequality (4), we need not only that the events S k ≥ raN hold exponentially long for some r > 0 (as we get from Lemma 3), but that the events |{x ∈ S : X k (x) = 1}| ≥ r aN with k ∈ N, hold exponentially long, for some r > 0. However it is clear from our proofs that we do get this, for some r < r. This altogether proves the case of delayed direct spreading of Theorem 1. 4.4. Delayed Indirect Spreading. In the delayed indirect spreading strategy stars survive during long periods of time, and the spreading between stars does not occur directly but using connectors as intermediaries. The proof in this case takes most of the work already done for the other mechanisms, with the sole exception being that infections on connectors have a very limited lifespan, which forces us to be a little more careful.

In particular, we introduce a more restrictive notion of stability for connectors. For every k ≥ 1, we introduce Ck := {y ∈ Ck :

U y ∩ [k -1, k] = ∅},
and we use these connectors in the spreading mechanism. Similarly as for stable connectors, the events {| Ck | > θ N/4} hold exponentially long, where θ = θ(1 -e -κ 0 ). We now work conditionally on a realization of U y , R y , y ∈ C such that both {| Ck | > θN/4} and {| Ck | > θ N/4} hold exponentially long. Recall the concepts of T -stability and [L, T ]susceptibility as given in Definitions 1 and 2. We replace the concept of T -infectiousness used for spreading among stars, by the following definition.

Definition 5. We say that

x ∈ S is T -C -infectious if k ∈ N ∩ [0, T -1] : R x ∩ [k, k + 1] = ∅ > T 3 .
Using Lemma 2 we know that each x ∈ S is T -C -infectious with probability 1 -e -cT for some c > 0 and hence lim inf T →∞ lim inf N →∞ P(x is T -C -infectious) = 1, which is why we can obtain the following result, in analogy to Lemma 7.

Lemma 10. There exists q 1 > 0 as in Lemma 6 such that for all large T and L ∈ [0, T ), lim inf

N →∞ inf x∈S P(x is T -C -infectious, T -stable and [L, T ]-susceptible) > q 1 ,
and these events are independent for different x ∈ S .

We set S 0 ⊂ S 0 to be the subset of the initially infected stars that are also T -stable, T -C -infectious, [0, T ]-susceptible and [0, T ]-infected. If a is small and N large, its cardinality S 0 dominates a binomial random variable with parameters S 0 and q 1 q 2 . Moreover, for x ∈ S 0 , the event x ∈ S 0 is increasing in the processes I x,y , y = x, and thus by Harris' inequality, it is positively correlated with every event which is increasing in the processes I x,y , y = x. Further, let

K := k ∈ N ∩ [0, T ] : {x ∈ S 0 , R x ∩ [k, k + 1] = ∅} ≥ S 0 /6 .
We necessarily have

S 0 T 3 ≤ k∈N∩[0,T ] x∈S 0 1 {R x ∩[k,k+1]=∅} ≤ |K|S 0 + (T -|K|) S 0 6 ,
where the left inequality follows from the definition of T -C -infectiousness, and the right inequality from the definition of K. It follows |K| ≥ T /5. We use this set to search for times in which stars can infect sufficiently many stable connectors. More precisely, we let

P 0 := {(k, y), k ∈ K, y ∈ Ck , ∃x ∈ S 0 , I x,y ∩ [k, k + 1] = ∅}.
Conditionally on k ∈ K, y ∈ Ck and x ∈ S 0 , we have I x,y 0 ∩[k, k +1] = ∅ with probability at least 1 -e -λ , thanks to the positive correlation with the event x ∈ S 0 , and at time t = min(I x,y 0 ∩ [k, k + 1]) we have {x, y} ∈ G (N ) t with probability at least p x,y ≥ p(a, 1)/N , thanks to the update of y on time interval [k -1, k].

Proceeding as before, we obtain that for large T and large N and conditionally on S 0 , on K and on (C k ) k∈K , the cardinality P 0 of P 0 dominates a binomial random variable with parameters θ T N 20

and λp(a,1) 24N S 0 ∧ 1 2 . Finally, we define S 0 := {x ∈ S \S 0 : ∃(k, y) ∈ P 0 , I x,y ∩ [k + 1, k + 2] = ∅, X T (x) = 1} and S 0 = |S 0 |, and observe that S 1 ≥ S 0 + S 0 . Conditionally on S 0 , S 0 and P 0 , we have, independently for each (k, y) ∈ P 0 ,

P(I x,y ∩ [k + 1, k + 2] = ∅) ≥ λp(a,1)
2N , whence the probability that there exists (k, y)

∈ P 0 such that I x,y ∩ [k + 1, k + 2] = ∅ is at least λP 0 p(a,1) 4N ∧ 1 
2 . Now, the probability that x gets infected on [0, T ] is at least λP 0 p(a,1) 4N ∧ 1 2 . Conditionally on this, writing T x the first time when it gets infected, we have that with probability at least q 1 q 2 (when T and N large), the star x is T -stable, [T x , T ]-susceptible and [T x , T ]-infected, whence X T (x) = 1. In other words, we can bound S 0 from beow by a binomial random variable with parameters aN -S 0 and q 1 q 2 λp(a,1)

4N P 0 ∧ 1 2 .
Gathering the results, when T is large we can use Lemma 4 with n = aN , ρ = q 1 q 2 , ρ = λ 24 ap(a, 1), ρ = λq 1 q 2 ap(a, 1)/4, and ρ = θ T /20a, under the condition ρρ ρ ρ > 1. This condition is satisfied if λ 2 T (a, λ)ap(a, 1) 2 is large enough, which concludes the proof of the delayed indirect spreading case of Theorem 1.

Fast extinction and upper bounds

To obtain upper bounds we need to show that no mechanism can outperform the ones examined in the lower bounds. This cannot be done explicitly, but requires a more abstract supermartingale argument, which we now introduce. We start by coupling our process to a simpler process which is a stochastic upper bound. 5.1. A coupling. We construct a coupling between the contact process on the dynamic network, described by the pair of processes (X, G (N ) ), and a process Y , which we call the 'wait-and-see' process. The process (Y t : t > 0) takes values in {0, 1} N × {0, 1} N ⊗N , where N ⊗ N is the set of potential edges, ie. unordered pairs of distinct vertices in {1, . . . , N }. We say a vertex x is infected at time t (for the wait-and-see process) if Y t (x) = 1, and we say a potential edge {x, y} is revealed at time t if Y t (x, y) = 1. Informally, a potential edge is unrevealed at time t if we have no information about its presence in the dynamic network G (N ) t . The wait-and-see model evolves according to the following rules: • Every infected vertex x recovers at rate 1.

• If x is infected then it infects every uninfected vertex y, with rate λ if {x, y} is revealed (ie. if Y t (x, y) = 1) and with rate λp x,y if it is unrevealed (ie. if Y t (x, y) = 0). In the latter case, when x infects y, the value of Y t (x, y) immediately turns to 1.

• If x and y are both infected and {x, y} is unrevealed, it gets revealed at rate λp x,y .

• Finally, each vertex updates at rate κ x . Updating of x means that all its adjacent potential edges turn to unrevealed.

Lemma 11. Fix deterministic initial conditions X 0 (v) ≤ Y 0 (v) for all v ∈ {1, . . . , N }.
There exists a coupling of • the dynamic random network (G (N ) t : t ≥ 0), • the original infection process on this network (X t : t ≥ 0), and • the wait-and-see process (Y t : t ≥ 0), started from vertices in Y 0 infected and all its edges unrevealed, such that, at all times t ≥ 0, we have X t (v) ≤ Y t (v) for all v ∈ {1, . . . , N }, and every revealed edge is an edge in G (N ) t . The proof of this lemma is similar to the proof of Proposition 6.1 in [START_REF] Jacob | The contact process on scale-free networks evolving by vertex updating[END_REF], so we omit it. 5.2. Proof of Theorem 2. In this section we prove Theorem 2 for the vertex component of Y , and hence for X since we have that X ≤ Y stochastically. We use the function S, given in the assumptions of the theorem, to define a function m t which, based on the state of Y , attaches a score to every vertex. We take the accumulated score of the vertices in the network, raise to the power δ, and subtract a suitable drift to get a supermartingale. We then exploit optional stopping at the extinction time to get upper bounds and prove both statements of the theorem.

To prove the first statement, assume there exists S and D satisfying ( 5), ( 6) and [START_REF] Van Der Hofstad | Random Graphs and complex netwroks[END_REF], and introduce the notation s(x) = S(x/N ) and t(x) = c[T λ (x/N )κ x ] -1 s(x), for vertices x ∈ {1, . . . , N }, where c = min{κ 0 ,

κ 2 0 16c 2 , 1
4 }, which by hypothesis is larger than 4D. Given these functions, we define the score of a configuration as y) is the number of revealed neighbours of x at time t.

M t := N x=1 m t (x), where m t (x) = s(x) + (2κ -1 x λN t (x) ∧ 1 2 )(2t(x)) if Y t (x) = 1, (2κ -1 x λN t (x) ∧ 1)(s(x) + t(x)) if Y t (x) = 0. and N t (x) = y =x Y t (x,
Even though it may seem a bit obscure at first glance, the score is actually natural; every infected vertex has a base score of s(x) or 0 (depending on whether it is infected or not) and m t (x) increases linearly on the amount of its revealed neighbours, which reflects the fact that revealed neighbours make the propagation of the infection easier. In both cases the score grows linearly up until some maximal cap at which m t is the same for infected and non-infected vertices; a natural choice since from a certain amount of revealed neighbours on, we can think of vertices as permanently infected.

Our aim is to prove that Z t := M δ t + δωt defines a supermartingale, for some suitable ω, by showing that the expected infinitesimal change of M t is less than -ωM 1-δ t . We start with a few basic observations on the score function m t and on the functions t and s.

• From its definition and our choice of c, we have t(x) ≤ s(x) and from the hypothesis on S, we have that s(x) 1-δ ≤ c c κ x t(x). • The score of a vertex is monotone with respect to the value of Y t (x) and of N t (x).

• The maximal value m t (x) = s(x) + t(x) is obtained if either Y t (x) = 1 and N t (x) ≥ λ -1 κ x /4, or Y t (x) = 0 and N t (x) ≥ λ -1 κ x /2. Based on these observations, we can easily obtain upper bounds for the expected infinitesimal change in the score m t (x), knowing the infection process up to time t. We give the bounds depending on the values of Y t (x) and N t (x).

(i) Y t (x) = 1, N t (x) ≥ λ -1 κ x /4. In this case the score of x can only decrease (or remain unchanged) with each possible change, so we obtain the bound considering only an update event at x, which yields

1 dt E[m t+dt (x) -m t (x)|F t ] ≤ -κ x t(x). (ii) Y t (x) = 1, N t (x) < λ -1 κ x /4.
In this case we can bound the infinitesimal change by the expression

2κ -1 x λN t (x)[s(x) -t(x)] -s(x) + 4λ 2 κ -1 x t(x) y : Yt(x,y)=0 p x,y ,
where the first term comes from the recovery at x and the second one from the possible revealing of a neighbouring edge. As t(x) ≤ s(x) and N t (x) < λ -1 κ x /4 the first term is bounded by

- s(x) + t(x) 2 ≤ - s(x) 2 ≤ - 1 2c κ x t(x)T λ ( x N ).
On the other hand, since y p x,y can be bounded by p( x N , t)dt ≤ c 2

x N -γ , we can bound the second term by

4c 2 κ -2 0 (κ x t(x)) λ 2 x N -γ+2γη ≤ 4c 2 κ -2 0 κ x t(x)T λ x N ,
so by our choice of c we obtain

1 dt E[m t+dt (x) -m t (x)|F t ] ≤ - κ x t(x)T λ ( x N ) 4c ≤ -κ x t(x). (iii) Y t (x) = 0, N t (x) ≥ λ -1 κ x /2.
As in the first scenario, the score is maximal in this case. We obtain the bound again considering only an update event at x, which yields

1 dt E[m t+dt (x) -m t (x)|F t ] ≤ -κ x m t (x). (iv) Y t (x) = 0, N t (x) ≤ λ -1 κ x /2.
In this case we can bound every positive increment of m(x) by the maximal score s(x) + t(x), hence we can bound the infinitesimal change by

-κ x m t (x) + λN t (x)[s(x) + t(x)] + y : Yt(y)=1 λp x,y [s(x) + t(x)].
where the first term comes from possible updates of x, the second from infections coming through neighbouring revealed edges and the third from infections coming through unrevealed edges. Since N t (x) ≤ λ -1 κ x /2, the second term is exactly κx 2 m t (x) and hence, since t(x) ≤ s(x), we obtain

1 dt E[m t+dt (x) -m t (x)|F t ] ≤ - κ x 2 m t (x) + 2λ y : Yt(y)=1
p x,y s(x). Now, we can consider the whole score, and write For the last term, we can reverse the role of x and y obtaining the expression

1 dt E[M (t + dt) -M (t)|F t ] = x 1 dt E[m t+dt (x) -m t (x)|F t ] ≤ x : Y t (x)=0 N t (x)≥λ -1 κ/2 -κ x m t (x) + x : Yt(x)=1 -κ x t(x) + x : Y t (x)=0 N t (x)<λ -1 κ/2 - κ x 2 m t (x) + x : Y t (x)=0 N t (x)<λ -1 κ/2
x : Yt(x)=1 2λ y p x,y s(y) ≤ 2D x : Yt(x)=1 s(x) T λ (x/N ) ≤ 1 2 x : Yt(x)=1 κ x t(x),
where the first inequality comes from our hypothesis on S for sufficiently large N .

We thus arrive at

1 dt E[M (t + dt) -M (t)|F t ] ≤ - 1 2 
x : Yt(x)=0 κ x m t (x) -1 2

x : Yt(x)=1

κ x t(x), (20) 
which is clearly negative and hence (M (t) : t ≥ 0) is a supermartingale. To show that (Z t : t ≥ 0) is a supermartingale note that the second term satisfies -1 2

x : Yt(x)=1

κ x t(x) ≤ - 1 2 x : Yt(x)=1 c c s(x) 1-δ ≤ - c 4c x : Yt(x)=1 m t (x) 1-δ . ( 21 
)
On the other hand, since S is bounded from below by some positive constant, say s 0 , we can bound the first term as follows,

- 1 2 x : Yt(x)=0 κ x m t (x) ≤ - 1 2 x : Yt(x)=0 mt(x) =0 2λs(x) ≤ -λs δ 0 x : Yt(x)=0 mt(x) =0 s(x) 1-δ
where the last inequality comes from s(x)/s 0 > 1. Since m t (x) ≤ 2s(x) we deduce that this term is bounded by -1 2 λs δ 0 x:Yt(x)=0 m t (x) 1-δ so, together with (21) we conclude that there exists some ω > 0 depending on λ but not on N such that

1 dt E[M (t + dt) -M (t)|F t ] ≤ -ω x m t (x) 1-δ ≤ -ωM (t) 1-δ , (22) 
where the last inequality is due to 0 < δ < 1, and hence Z t∧Text defines a positive supermartingale which converges almost surely to Z Text . Since T ext is increasing in the initial condition of Y it is enough to take Y (0) = 1 to prove the theorem. We infer from the optional stopping theorem that

δω E[T ext ] = E[Z Text ] ≤ E[Z 0 ] = E M δ 0 = N δ 1 N N x=1 s(x) δ , (23) 
but the expression inside the brackets converges to 1 0 S(x)dx which is a fixed constant and hence the first statement of Theorem 2 is proved.

In order to prove the second statement we use the duality described in Proposition 3 to deduce I N (t) = 1 N N x=1 P x (X t = 0) where P x corresponds to the law of the process with initial condition X 0 = δ x . Since Y t stochastically bounds X t from above, I N (t) ≤ 1 N N x=1 P x (t < T ext ), where in this context T ext is the extinction time of Y . Defining T hit as the first time that Y t (x) = 1 for some x ≤ aN , and T := T ext ∧ T hit , we obtain

P(t < T ext ) ≤ P(T hit < T ext ) + P(t < T ), (24) 
which leads us to use the stopped process Y t∧T instead of Y t . We extend the function S defined on [a, 1] to the whole interval [0, 1] by setting S(x) = S(x ∨ aN N ). This function satisfies condition (6) for x ≥ a as well as condition [START_REF] Van Der Hofstad | Random Graphs and complex netwroks[END_REF] for x ∈ { aN + 1, . . . , N }. A close look at the latter proof shows that if we start with Y 0 = 0 on {1, . . . , aN } and define s, t, m, and M and Z as before, then the stopped processes M t∧T and Z t∧T are positive supermartingales. As M t∧T converges almost surely to M T = M T hit 1 {T hit <Text} ≥ s( aN )1 {T hit <Text} , by the optional stopping theorem we get

P x (T hit < T ext ) ≤ E x (M 0 ) s(aN ) = s(x) s( aN ) . ( 25 
)
On the other hand, since Z t∧T is a positive supermartingale, it converges almost surely to Z T = M δ T + δωT ≥ δωT, so by the optional stopping theorem,

P x (t < T ) ≤ 1 t E x T ≤ 1 δωt E x [Z 0 ] = s(x) δ δωt . (26) 
Gathering ( 24), ( 25) and ( 26), and bounding the probability of survival by 1 whenever

x ≤ aN , we obtain

I N (t) ≤ aN N + 1 N s( aN ) N x= aN +1 s(x) + 1 δωtN N x= aN +1 s(x) δ .
Noticing that all these terms converge when N → ∞, we have that for all N and t ≥ 0,

I N (t) ≤ a + 1 S(a) 1 a S(x)dx + 1 δωt 1 a S(x) δ dx + ε(N ),
with ε(N ) → 0, which concludes the result when taking t large enough (note both integrals are finite since S is continuous on [a, 1]).

Application to the factor kernel

In this section we prove the first half of Theorem 3 applying both Theorem 1 and 2 to the factor kernel p(x, y) = βx -γ y -γ . Our proof is structured as follows:

(1) For each of the four strategies in Theorem 1 we find the function a(λ) of maximal order satisfying the respective condition given in the theorem.

(2) We define a 0 (λ) as the maximum of these functions over the four strategies. This function gives for each λ the definition of the set of stars. Using Theorem 1 we derive from it a lower bound of order λa 0 p(a 0 , 1) ∧ 1, or more simply λa 0 (λ) 1-γ , for the lower metastable density.

(3) We search for a nonincreasing function S and for a 1 = a 1 (λ) ∈ [0, 1] as small as possible such that the following inequality is satisfied for small λ, λT λ (x)

1 0 p(x, y)S(y ∨ a 1 )dy ≤ DS(x), x ∈ [a 1 , 1]. ( 27 
)
Observe that this is a continuous version of Inequality [START_REF] Jacob | The contact process on scale-free networks evolving by vertex updating[END_REF], and actually implies Inequality [START_REF] Jacob | The contact process on scale-free networks evolving by vertex updating[END_REF], as by the monotonicity of p and S, we have, for i ≥ a 1 N ,

λT λ i N N j=1 p i,j S j∨ a 1 N N ≤ λT λ i N i N -γ 1 0
S(y ∨ a 1 )y -γ dy.

If we can take a 1 = 0 in (8), then we apply Theorem 2, (1), and deduce fast extinction. In the other cases we will always have proven already metastability, and Theorem 2, (2) then gives us an upper bound on the upper metastable density as

ρ + (λ) ≤ a 1 (λ) + 1 S(a 1 (λ)) a 1 (λ)
S(y)dy.

Note we have not discussed how to choose the function S. This will be further discussed in the examples below.

To avoid cluttered notation we henceforth assume β = 1, which does not affect the results.

The function a 0 (λ). Our aim is to find for each strategy the maximal function satisfying the respective condition in Theorem 1.

• Quick Direct Spreading: We study the expression λap(a, a) = λa 1-2γ and check whether it is bounded away from zero. If γ ≤ 1/2 this is never satisfied. If γ > 1/2 we impose that the expression be constant and obtain

a(λ) = rλ 1 2γ-1
for some r > 0.

• Delayed Direct Spreading: We study the expression λT ap(a, a) = λT a 1-2γ with T as in Theorem 1. To facilitate our study we impose T → ∞ instead of just being large, but this translates into T log 2 (T ) = Cλ 2 a -γ(1-2η) → ∞ which can only occur if η < 1/2. To ensure boundedness of the expression from zero we observe that λT a 1-2γ ≤ λ 3 a 1-3γ+2γη and hence it suffices that 1 -3γ + 2γη < 0. Assuming this and η < 1/2 we find a(λ) by imposing that λT a 1-2γ be constant, say equal to c, and deduce from the definition of T that log(c) -log λa 1-2γ 2 = C c λ 3 a 1-3γ+2γη . Since T → ∞, the expression on the left goes to infinity, and hence a is of the form

a(λ) = λ 3 3γ-2γη-1 f (λ),
for some function f going to zero as λ → 0. Replacing this new expression for a we obtain [log(c) - 1-3γ+2γη . The expression on the right tends to infinity polynomially in f , so the equality holds only if log λ dominates log f (λ) giving f (λ) of order [-log(λ)] 2 1-3γ+2γη . We finally get the maximal a of the form

c 1 log(λ) -c 2 log(f (λ))] 2 = C c f (λ)
a(λ) = r λ 3 (log λ) 2 1 3γ-2γη-1
for some r > 0.

• Quick Indirect Spreading: We study the expression λ 2 a 1-γ p(a, 1) = λ 2 a 1-2γ .

If γ ≤ 1/2 this inevitably tends to zero and otherwise we obtain that the maximal a is of the form a(λ) = rλ 2 2γ-1 for some r > 0.

• Delayed Indirect Spreading: In this case, we need to consider the expression λ 2 T a 1-γ p(a, 1) = λ 2 T a 1-2γ whose study is analogous to what was done in the delayed direct spreading case, obtaining that condition (iv) can only hold when η < 1/2 and 1 -3γ + 2γη < 0 and in this case a must be of the form

a(λ) = r λ 4 (-log(λ)) 2 1 3γ-2γη-1
for some r > 0.

For the final form of a 0 , we notice first that on the set

(γ, η) : γ ≤ 1 3-2η , η ≤ 1 2 or γ ≤ 1 2 , η ≥ 1 2 (28)
none of the conditions of Theorem 1 hold, so we expect that fast extinction occurs for parameters inside this region. For the construction of a 0 on the complement of this set, we note that all of the functions a have the form λ e +o (1) , and since λ < 1, for each λ small the dominant survival strategy (that is, the one which gives the largest lower bound for the density) corresponds to the expression with the smallest exponent. If η < 1/2 this gives

a 0 (λ) =        r λ 3 (-log(λ)) 2 1 3γ-2γη-1 if 1 3-2η < γ < 2 3+2η , rλ 1 2γ-1 if 2 3+2η < γ < 1, while in the case η > 1/2 we obtain a 0 (λ) = rλ 1 2γ-1 if γ > 1 2 .
Computing the lower bound for the density as λa 1-γ 0 for the values of the parameter where a 0 is defined gives the lower bound in [START_REF] Mountford | Metastable densities for the contact process on power law random graphs[END_REF].

The function S. In the case of the factor kernel, Inequality (27) takes the simple form

λT λ (x)x -γ 1 0 y -γ S(y ∨ a)dy ≤ DS(x).
Since the integral does not depend on x, a natural choice is to consider the function

S(x) = T λ (x)x -γ .
This scoring function is also somehow natural, as we now explain. The average degree of x is of order x -γ and if x is infected, we should wait on average at most time T λ (x) before x turns to healthy and surrounded by unrevealed edges. More precisely, this should happen roughly at time max{T (x, λ), 1}, where T (x, λ) is as in (3), but this is bounded by T λ (x), and even of the same order, up to logarithmic terms 3 . Thus λS(x) should be a reasonable upper bound for the average number of infections sent by vertex x before the first time when it is healthy and surrounded by unrevealed edges (namely the first time t for which m t (x) = 0), and thus S seems a reasonable scoring function.

Using this choice of S, Inequality (27) becomes Using that T λ (x) ≤ 1 + λ 2 x -γ(1-2η) , the left hand side can be bounded as follows,

λ 1 0 y -γ S(y ∨ a)dy = λa 1-2γ T λ (a) + λ 1 a S(y)y -γ dy ≤ λa 1-2γ T λ (a) + λ 3 1 a y -γ(3-2η) dy + λ 1 a y -2γ dy ≤ ρ(λ 3 a 1-γ(3-2η) + λa 1-2γ + λ),
for some constant ρ > 0 depending only on γ, η, under the hypothesis γ / ∈ { 1 2 , 1 3-2η }. Note that in the last inequality we have used that 1 a y ι dy ≤ 1

|1+ι| (1 + a 1+ι ) for ι = -1, and the upper bound is sharp up to a multiplicative constant.

We now consider three different cases.

(1) The case η < 1 2 and γ < 1 3-2η , or η ≥ 1 2 and γ < 1 2 . Here we can take a 1 = 0. Indeed, we have λ 1 0 y -γ S(y)dy ≤ ρλ, therefore Inequality ( 27) is satisfied if λ ≤ D/ρ. Moreover, the function S satisfies T λ (x) ≤ S(x) δ for

• δ ≥ 1-2η 2-2η whenever 0 ≤ η < 1/2, • δ > 0 in the case η > 1/2.
Using Theorem 2, (1), we deduce fast extinction for small λ. More precisely, when η < 1/2, we get E[T ext ] ≤ ω N 1-2η 2-2η for some ω < +∞. In the case η ≥ 1/2, for every δ > 0, there is some ω < +∞ such that E[T ext ] ≤ ω N δ . In particular, the extinction time grows even slower than polynomially.

(2) The case η < 1 2 and 1 3-2η < γ < 2 3+2η . A sufficient condition for Inequality (27) to be satisfied is max(λ 3 a 1-γ (3-2η) , λa 1-2γ , λ) ≤ D/3ρ. This requires, in particular, that a ≥ a 1 (λ) := rλ 3 3γ-2η-1 , 3 The discrepancy between the time-scale function T λ (x) used in Theorem 2 and that in Theorem 1 explains why, as we will see, the lower bounds for ρ -(λ) and the upper bounds for ρ + (λ) that we get match only up to logarithmic terms. They match indeed up to a constant multiplicative term when T λ (x) = 1.

where r = (D/(3ρ)) 1 3γ-2η-1 < ∞. One can check this is also a sufficient condition for small λ when γ < 2 3+2η . Applying Theorem 2, (2), we deduce that

ρ + (λ) ≤ a 1 (λ) + 1 S(a 1 (λ)) 1 a 1 (λ)
S(y) dy.

From now on, we write f (λ) g(λ) if the function g(λ)/f (λ) is bounded from below by a positive constant, and similarly for . One can check the following:

1 a 1 (λ) S(y) dy 1 a 1 (λ) λ 2 y -γ(2-2η) + y -γ dy λ 2 a 1 (λ) 1-2γ+2γη + 1 λ 1+2γη 3γ-2γη-1 + 1 1.
This, together with S(a

1 (λ)) ≥ λ 2 a -γ(2-2η) 1 λ - 2-2γη 3γ-2γη-1 , gives ρ + (λ) ≤ cλ 2-2γη 3γ-2γη-1 ,
for some constant c < ∞. Thus we obtain the upper bound [START_REF] Mountford | Metastable densities for the contact process on power law random graphs[END_REF] in this region.

(3) The case η ≥ 1 2 and γ > 1/2, or η ≥ 1/2 and γ > 1/2. Similarly as in the previous case, it suffices for small λ to require a ≥ a 1 (λ) := rλ 1 2γ-1 , with r = (D/(3ρ)) 1 2γ-1 . We have S(x) = x -γ for x ≥ a 1 (λ), and Theorem 2, (2), yields

ρ + (λ) ≤ a γ 1 1 0 y -γ dy ≤ cλ γ 2γ-1 ,
for some constant c < ∞. This gives again the upper bound [START_REF] Mountford | Metastable densities for the contact process on power law random graphs[END_REF] and concludes our study of the metastable densities for the factor kernel.

Application to the preferential attachment kernel

In this section we derive results for the preferential attachment kernel given by p(x, y) = β min{x, y} -γ max{x, y} γ-1 following the programme set out at the beginning of Section 6. Again, we assume β = 1 for simplicity. Taking into account that p(a, a) = a -1 and p(a, 1) = a -γ straightforward calculations allow us to deduce the values of the maximal order functions a(λ) summarised in the table below. The third column gives the conditions needed to define the maximal function a(λ).

Strategy a(λ) Condition

Quick Direct Spreading ----Delayed Direct Spreading

λ 3 (-log(λ) 2 ) 1 γ(1-2η) η < 1/2 Quick Indirect Spreading λ 2 2γ-1 γ > 1/2 Delayed Indirect Spreading λ 4 (-log(λ) 2 ) 1 3γ-2γη-1 η < 1 2 and γ > 1 3-2η
Taking the maximum over permissible strategies we deduce a 0 (λ). If η < 1/2 we get

a 0 (λ) =                    r λ 3 (-log(λ)) 2 1 γ(1-2η) if 0 < γ < 3 5+2η , r λ 4 (-log(λ)) 2 1 3γ-2γη-1 if 3 5+2η < γ < 1 1+2η , rλ 2 2γ-1 if 1 1+2η < γ < 1.
If η > 1/2 and γ > 1/2 we get a 0 (λ) = rλ 2 2γ-1 , but if η > 1/2 and γ < 1/2 none of the strategies succeed. Calculating λa 0 (λ) 1-γ gives the lower bounds as in [START_REF] Norros | On a conditionally Poissonian graph process[END_REF] and there is slow extinction for all parameters except for the case η > 1/2 and γ < 1/2, as expected.

To get upper bounds in the case of the preferential attachment kernel, the choice of a scoring function S is much more delicate. Our initial approach has been to search for a function S giving equality in (27), or in the related Fredholm equation of the second kind 

as such an S is a plausible candidate to give the best possible bounds in Theorem 2.

To carry out this programme requires extensive calculations with Bessel functions and modified Bessel functions. However, it turns out that relatively crude approximations to these functions also suffice and this is the approach we now follow.

The upper bound for γ > 1/2. We start with the case γ > 1/2, and we define S by

S(x) = T λ (x)(x γ-1 + ρλx -γ ),
where ρ > 0 is a constant to be chosen later. To argue why S may be a "reasonable scoring function", it is useful to note that the cardinality of the sets {y ≤ x : y ∼ x} and {y ≤ x : ∃z ≥ x, y ∼ z ∼ x} are of order x γ-1 and x -γ , respectively. Thus, λS(x) might be a reasonable upper bound for the number of other strong vertices a strong vertex x can typically infect, either directly or indirectly, before it totally recovers (namely m t (x) = 0). Using this function, Inequality (27) becomes λ x γ-1 + ρλx -γ 1 0 p(x, y)S(y ∨ a)dy ≤ D.

We denote the left hand side by I(x, a), and observe that the hypothesis γ > 1/2 implies p(x, y) ≤ x γ-1 y -γ + x -γ y γ-1 ≤ 2p(x, y). (y 2γ-2 + ρλy -1 + λ 2 y 2γ-2-α + ρλ 3 y -1-α ) dy, At this point, we observe that the bounds we used are tight up to a multiplicative constant. Indeed, replacing a "max" by a sum can multiply the result by 2 at worst. The last inequality is tight because taking x = 1 gives at least 1/(1 + ρλ) ≥ 1/2 times the first term (for λ < 1/ρ), while taking x = a gives at least 1/2 times the second term, if we further suppose ρλa -γ > a γ-1 or a ≤ (ρλ)

1
2γ-1 (one can check a posteriori that a 1 below will always satisfy this property).

For simplicity 4 , we now suppose that the exponents in the integrals are different from -1, and use again the inequality 1 a y ι dy ≤ 1 |1+ι| (a 1+ι + 1) for ι = -1. This allows to give a relatively simple upper bound for I(x, a) (again tight up to a multiplicative constant) as I(x, a) 1 ρ + ρλ 2 + λ| log a| + ρλ 2 a 1-2γ + λ 3 a -α + ρλ 4 a 1-α-2γ + 1 ρ a 2γ-1 + 1 ρ λ 2 a 2γ-1-α .

We want this to be smaller than D. To this end, we now fix ρ = 2/D, so the first term is smaller than D/2. Now, we can ensure I(x, a) is smaller than D by requesting • a > rλ 3/α with r large, • a > rλ 2/(2γ-1) with r large, • a > rλ 4/(2γ+α-1) with r large, • a > rλ 2/(α+1-2γ) with r large (only in the case α + 1 -2γ > 0). We then choose a 1 = a 1 (λ) the smallest value making all these requests satisfied. After some more computations, these give

• a 1 (λ) = rλ 3/α in the case 1/2 < γ < 3/(5 + 2η),

• a 1 (λ) = rλ 4/(2γ+α-1) in the case 3/(5 + 2η) < γ < 1/(1 + 2η),

• a 1 (λ) = rλ 2/(2γ-1) in the case γ > 1/(1 + 2η). Theorem 2, (2), now gives the upper bound for the upper metastable density ρ + (λ) ≤ a 1 (λ) + 1 S(a 1 (λ)) The reader can check that in all three cases, S is integrable and the integral gives a constant term, while S(a 1 (λ)) -1 is of same order as λa 1-γ 1 . Actually the expression λa 1-γ S(a) appears in the upper bound of I(1, a), and the choice of a 1 made it small, but of constant order. Finally we get an upper bound of order λa 1-γ 1 , which matches [START_REF] Norros | On a conditionally Poissonian graph process[END_REF]. The upper bound for γ < 1/2 and η < 1/2. Here, we define the scoring function S by S(x) = (x -γ + λx γ-1 )T λ (x). and avoid to use the inequality p(x, y) ≤ x γ-1 y -γ + x -γ y γ-1 , as it is not sharp anymore. Now Inequality ( 27 x -γ y γ-1 S(y) dy ≤ λx γ-1 x -γ + λx γ-1 a 1-γ S(a)

1 -γ +

x a (y -2γ + λy -1 + λ 2 y -2γ-α + λ 3 y -1-α ) dy + λx -γ x -γ + λx γ-1 1 x (y -1 + λy 2γ-2 + λ 2 y -1-α + λ 3 y 2γ-2-α ) dy ≤ I 1 (x, a) + I 2 (x).

We again suppose for simplicity that the exponents do not equal -1, and after tedious but straightforward calculations we obtain the following simple upper bounds for x ∈ [a, 1], I 1 (x, a) λ| log a| + λ 3 a -α + λ 2 a 1-2γ-α , I 2 (x)) λ| log x| + λ 3 x -α .

For example, one of the terms of I 2 (x) is λx -γ x -γ + λx γ-1 1 x λ 3 y 2γ-2-α dy λx -γ x -γ + λx γ-1 λ 3 + λ 3 x 2γ-1-α λ 4

x -γ x -γ + λx γ-1 + λ 3 x -α λx γ-1 x -γ + λx γ-1 λ 4 + λ 3 x -α λ| log x| + λ 3 x -α , and we bound the other terms similarly. As in the case γ > 1/2 we search for the minimal value making I 1 and I 2 small, and find that in the region γ < 1/2, η < 1/2, we can always take a 1 (λ) = rλ 3/α . Finally, as in the case γ > 1/2, we obtain the upper bound ρ + (λ) ≤ a 1 (λ) + 1 S(a 1 (λ)) Again, the integral is of constant order, while S(a 1 (λ)) -1 is of same order as λa 1 (λ) 1-γ , yielding an upper bound matching [START_REF] Norros | On a conditionally Poissonian graph process[END_REF].

The upper bound for γ < 1/2 and η > 1/2. In this case, none of the scoring functions introduced before enable us to prove slow extinction. Besides, the time-scale function is simply T λ (x) = 1. We define the scoring function S(x) = x -γ , with γ ∈ (γ, 1 -γ). Inequality (27) for a 1 = 0 becomes 

≤ λx -γ 1 1 -γ -γ + 1 γ -γ ,
thus Inequality ( 27) is satisfied for small λ. Moreover T λ (x) = 1 satisfies (6) for every δ > 0, thus we have fast extinction, and the expected extinction time grows subpolynomially. This completes our analysis for the preferential attachment kernel.

Conclusions

We have investigated the effect of fast network dynamics on the behaviour of the contact process on scale-free networks modelled as inhomogeneous random network with suitable connection kernels. The stationary network dynamics consists of vertices updating their neighbourhoods independently of the contact process. Variation of a parameter η, which controls the rate at which the most powerful vertices update, allows an interpolation between a scenario where vertices update on the time-scale of the contact process (η = 0) and a mean-field model where updates occur on a time scale of much faster order (η ↑ ∞). We develop general techniques to study the behaviour of the extinction time and metastable densities at small infection rates for this class of models. Lower bounds are based on the identification of four core survival strategies for the contact process, and upper bounds are using coupling and supermartingale techniques.

Our focus is on two paradigmatic connection kernels, the factor kernel and the preferential attachment kernel, which exhibit very different behaviour. For the factor kernel we identify a phase transition between fast and slow extinction, and, in case η < 1 2 , a further transition within the slow extinction phase between two types of metastable densities. For the preferential attachment kernel a phase transition between fast and slow extinction only occurs when η > 1 2 . For η < 1 2 we always have slow extinction and two phase transitions in the behaviour of the metastable densities. The analytical work necessary in the case of the preferential attachment kernel is particularly delicate.

In a future paper we will discuss slowly evolving networks. This will include updating edges individually as well as vertex updating in the case where the most powerful vertices update very slowly (η < 0) and will allow us to interpolate between a scenario where vertices update on the time-scale of the contact process (η = 0) and the case of static networks (η ↓ -∞). The mathematical problems emerging in this work will require, in part, significantly different methods from those explained in this paper.

  a further application of Lemma 2 yields M k ≥ ιM k , with error probability bounded by some e -cn (possibly with a new value of c > 0).Further, we can bound ρ M k n+1 from below by ιρ n n+1 r, which is in (r, c) for large n. A last application of Lemma 2 yields M k+1 -M k ≥ r(n -M k ) and then M k+1 ≥ rn, with error probability bounded by e -εn . This easily gives item (2) of the Theorem (dividing ε by 2 if needed).

  and S k = |S k |, respectively. It should be clear that S k+1 ≥ S k + S k . Indeed, for each star x ∈ S k , we can find a star z ∈ S k that infects a connector y ∈ C k on time interval [k + 1/3, k + 2/3], which stays infected until it infects x on time interval [k + 2/3, k + 1]. Note that the condition that connectors in C k should update on [k, k + 1/3], is useful for the law of C k , conditionally on S k and on the network and infection evolution up to time k, to actually only depend on S k . More precisely, each y ∈ C belongs to C k with probability at least

2λy:

  Yt(y)=1 p x,y s(x).

λ 1 0y

 1 -γ S(y ∨ a)dy ≤ D.

1 a 1

 11 (λ) T λ (x)p(x, y)S(y) dy = D λ S(x),

0 y -γ dy + 1 a-γ + 1 a(y - 1 +-γ 1 a(y 2γ- 2 + 1 aρ 1 a

 01111211 If x ≥ a, we can bound I using the notation α = γ(1 -2η) asI(x, a) = λ x γ-1 + ρλx -γ a 0 p(x, y)S(a)dy + 1 a p(x, y)T λ (y)(y γ-1 + ρλy -γ ) dy ≤ λ x γ-1 + ρλx -γ x γ-1 S(a) a p(x, y)(1 + λ 2 y -α )(y γ-1 + ρλy -γ ) dy ≤ λ x γ-1 + ρλx -γ x γ-1 a 1-γ S(a)1 ρλy -2γ + λ 2 y -1-α + ρλ 3 y -α-2γ ) dy+ x ρλy -1 + λ 2 y 2γ-2-α + ρλ 3 y -1-α ) dy ≤ λ a 1-γ S(a) 1 -γ + (y -1 + ρλy -2γ + λ 2 y -1-α + ρλ 3 y -α-2γ ) dy + 1

1 a 1

 11 (λ) S(y) dy.

  ) is equivalent to the inequality I(x, a) ≤ D for x ≥ a, whereI(x, a) := λ x -γ + λx γ-1 x 0 y -γ x γ-1 S(y ∨ a) dy + 1 x

1 a 1

 11 (λ) S(y) dy.

λ 1 0 1 0 1 x

 111 p(x, y)y -γ dy ≤ Dx -γ . But simple calculations give λ p(x, y)y -γ dy = λx γ-1 x 0 y -γ-γ dy + λx -γ y γ-1-γ dy

Actually, a more precise and slightly stronger metastability definition is given in next section.

Also, the reader can check that once the process has gone above level r n, it is actually likely to go above level rn, too.

We get an additional factor log a when the exponent is -1. However, the reader can check this actually never concerns the leading term, so our results also hold when one of the exponents equals -1.
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