
HAL Id: hal-01957173
https://hal.science/hal-01957173v1

Submitted on 17 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal-Cost Reachability Analysis Based on Time
Petri Nets

Hanifa Boucheneb, Didier Lime, Olivier Henri Roux, Charlotte Seidner

To cite this version:
Hanifa Boucheneb, Didier Lime, Olivier Henri Roux, Charlotte Seidner. Optimal-Cost Reachability
Analysis Based on Time Petri Nets. 18th International Conference on Application of Concurrency
to System Design (ACSD 2018), Jun 2018, Bratislava, Slovakia. �10.1109/acsd.2018.000-1�. �hal-
01957173�

https://hal.science/hal-01957173v1
https://hal.archives-ouvertes.fr

Optimal-cost reachability analysis based on time

Petri nets

Hanifa Boucheneb

École Polytechnique de Montréal,

P.O. Box 6079, Station Centre-ville,

Montréal, Québec, Canada, H3C 3A7

hanifa.boucheneb@polymtl.ca

Didier Lime and Olivier H. Roux

École Centrale de Nantes,

1, rue de la Noe – BP 92101

44321 Nantes Cedex 3, France

{didier.lime,olivier-h.roux}@ec-nantes.fr

Charlotte Seidner

Université de Nantes

2 avenue du Pr Jean Rouxel – BP 539

44475 Carquefou Cedex, France

Charlotte.Seidner@univ-nantes.fr

Abstract—This paper investigates the optimal-cost reachability
problem in the context of time Petri nets, where a rate cost is
associated with each place. This problem consists in deciding
whether or not there exists a sequence of transitions reaching,
with minimal cost, a given goal marking. This paper shows
that for some subclasses of cost time Petri nets, the optimal-
cost reachability problem can be solved more efficiently using
a method based on the state classes, without resorting to linear
programming or splitting state classes.

I. INTRODUCTION

Time Petri nets (TPNs for short) are a simple yet powerful

formalism useful to model and verify real-time, concurrent

systems that are therefore subject to time constraints. In TPNs,

a firing interval, associated with each transition, specifies the

minimum and maximum duration it must be maintained en-

abled before its firing. Thus, TPNs can model time constraints,

even when the exact delays or durations of events are not

known. The verification of a TPN is based on the state space

abstraction that takes into account the time constraints of the

model, while preserving its markings and firing sequences.

This paper deals with the cost time Petri nets (cTPNs for

short) and investigates the optimal cost reachability problem.

A cTPN is a TPN extended with rate costs associated with

its places. The rate cost of a place p is the sojourn cost (per

time unit) of each token in place p. These rate costs do not

affect the behaviour of the TPN but they allow to determine

the sojourn cost in each marking and also the cost of firing a

sequence of transitions.

The optimal cost reachability problem can be stated as the

problem of deciding if there exists a sequence of transitions ω
that allows to reach with minimal cost a given goal marking.

Starting from the initial marking, the marking of the model

evolves by firing transitions. Each time a transition is fired,

some tokens are consumed and some others are produced. We

define, for each transition t, a rate cost called incidence rate

cost of t as the sum of rate costs of tokens produced by t
minus the sum of rate costs of tokens consumed by t. We

show that for sequences such that the incidence rate costs

of their transitions are all non-negative or all non-positive,

their optimal-costs can be computed more efficiently based

on the state class method without using techniques of linear

programming or decomposing state classes, as done previ-

ously. Moreover, we show how to compute the optimal-cost of

sequences such that the firing interval of their transitions are

all singular. Therefore, the optimal cost reachability problem

can be solved more efficiently for some subclasses of cTPNs.

Such subclasses might seem restrictive but can in fact model

a wide range of applications. Consider for instance a leak in

a pressure pipe: until its fixing, the rate at which the water

leaks will surely increase, as the leak keeps getting larger.

The subclass of model can also describe any economic system

based on rarefying resources such as oil or Bitcoins, where the

cost of things keep increasing.

The optimal-cost reachability problem has been addressed

for Priced Timed Automata (PTAs for short) in [1]–[5] using

the region graphs and the zone based graphs. In [1], the authors

have proved the decidability of the optimal-cost problem for

PTAs with non-negative costs. In [2]–[4], the computation of

the optimal-cost to reach a goal location is based on a forward

exploration of zones extended with linear cost functions. The

linear cost function of a zone gives the optimal-costs to reach

each state within the zone. In [5], the authors have improved

the approach, developed in [2]–[4], so as to ensure termination

of the forward exploration algorithm, even when clocks are not

bounded and costs are negative, provided that the PTA is free

of negative cost cycles.

For priced timed/time Petri nets, the optimal-cost reach-

ability problem has been addressed in [6], [7]. In [6], the

considered model is a timed arc Petri net, under weak firing

semantics, extended with rate costs and firing costs associated

with places and transitions, respectively. The computation of

the optimal-cost for reaching a goal marking is based on

similar techniques to those of PTAs [1]. In [7], the authors

have investigated the optimal-cost reachability problem for

time Petri nets where each transition has a firing cost and

each marking has a rate cost (represented as a linear rate cost

function over markings). To compute the optimal-cost to reach

a goal marking, the authors have first revisited, to include

costs, the state class graph method and then reduced the

computation, as all other techniques, to a linear programming

problem.

The rest of the paper is organised as follows. Section II is

devoted to the TPN model, its semantics and its state class

graph method. Section III presents the TPN extended with

costs considered here and then defines the cost of a run and

the optimal-cost of a sequence. It also shows how to rewrite the

cost of a run based on the incidence rate costs of its transitions.

Section IV investigates efficient computation procedures of the

optimal-cost of firing a sequence of transitions from a state

class that need neither minimisation techniques nor splitting

state classes. Section V shows by means of a case study

how the optimal-costs are computed. Section VI concludes

the paper by some future work.

II. TIME PETRI NETS

A. Definition and semantics

Syntactically, a time Petri net is a Petri net where a firing

time intervals is associated with each transition.

Let N, Z, Q+ and R+ be the set of non-negative integers,

the set of integers, the set of non-negative rational numbers

and the set of non-negative real numbers, respectively. Let Q+
[]

be the set of non-empty intervals of R+ whose bounds are in

Q+ and Q+∪{∞}, respectively. For an interval I ∈ Q+
[], ↓ I

and ↑ I denote its lower and upper bounds, respectively.

Formally, a TPN is a tuple N = (P, T, pre, post,M0, Is)
where P and T = {t1, ..., tm} (with m > 0) are finite sets of

places and transitions such that P ∩ T = ∅, pre and post are

the backward and the forward incidence functions (pre, post :
P × T −→ N), M0 is the initial marking (M0 : P −→ N),

and Is is the static firing interval function (Is : T → Q+
[]).

Let N = (P, T, pre, post,M0, Is) be a TPN, M : P −→ N

a marking and ti a transition of T . Transition ti is enabled for

M iff all required tokens for firing ti are present in M , i.e.,

∀p ∈ P,M(p) ≥ pre(p, ti).
In this paper, we use the original semantics of the TPN [8]:

If a transition is multi-enabled in some state, only one instance

of this transition is considered (single-server semantics), and

when a transition is fired, all transitions disabled and enabled

again, during this firing, are newly enabled.

We denote En(M) the set of all transitions enabled for M ,

i.e., En(M) = {ti ∈ T | ∀p ∈ P, pre(p, ti) ≤M(p)}.
If M results from firing some transition tf from some

marking, Nw(M, tf) denotes the set of all transitions newly

enabled in M , i.e., Nw(M, tf) = {ti ∈ En(M) | ti =
tf ∨ ∃p ∈ P,M(p)− Post(p, tf) < pre(p, ti)}.

The TPN state is defined as a pair s = (M, I), where M is

a marking and I is a firing interval function (I : En(M) →
Q+

[]). The initial state of the TPN model is s0 = (M0, I0)

where I0(ti) = Is(ti), for all ti ∈ En(M0). The TPN state

evolves either by elapsing time or by firing transitions. When

a transition ti becomes enabled, its firing interval is set to

its static firing interval Is(ti). The bounds of this interval

decrease synchronously with time, until ti is fired or disabled

by another firing. ti can fire if the lower bound of its firing

interval reaches 0 but must fire, without any additional delay,

as far as any conflict avoids it, if the upper bound of its firing

interval reaches 0. The firing of a transition takes no time and

leads to a new marking.

Let (M, I) and (M ′, I ′) be two interval states of the TPN

model, θ ∈ R+ and tf ∈ T . We write (M, I)
θ
−→ (M ′, I ′),

also denoted (M, I) + θ, iff from state (M, I), we reach the

state (M ′, I ′) by a time progression of θ units, i.e.,

∀ti ∈ En(M), θ ≤ ↑ I(ti),M
′ = M and

∀tj ∈ En(M ′), I ′(tj) = [Max(↓ I(tj)− θ, 0), ↑ I(tj)− θ]

We write (M, I)
tf
−→ (M ′, I ′) iff from state (M, I), we reach

the state (M ′, I ′) by firing immediately the transition tf , i.e.,

tf ∈ En(M), ↓ I(tf) = 0

∀p ∈ P,M ′(p) = M(p)− pre(p, tf) + post(p, tf) and

∀ti ∈ En(M ′), I ′(ti) =

{

Is(ti) if ti ∈ Nw(M ′, tf)

I(ti) otherwise.

We also use the abbreviation (M, I)
θtf
−→ (M ′, I ′) for

(M, I)
θ
−→ (M, I) + θ

tf
−→ (M ′, I ′).

The TPN state space is the transition system (S,−→, s0),
where s0 is the initial state of the TPN and S = {s|s0

∗
−→ s}

(
∗
−→ being the reflexive and transitive closure of the relation

−→ defined above) is the set of reachable states of the model.

A run in the TPN state space (S,−→, s0), starting from a

state s1, is a sequence σ = s1
θ1t1−→ s2

θ2t2−→ s3 Sequences

θ1t1θ2t2 . . . and t1t2 . . . are the timed trace and the trace

(firing sequence) of σ, respectively. A marking M is reachable

iff ∃s ∈ S s.t. its marking is M . The runs of a TPN are all

the maximal runs starting from its initial state s0.

B. State class graphs

Among the TPN state space abstractions proposed in the

literature, we consider here the state class graph (SCG) [9],

[10]. A SCG state class α consists of a marking M and a

conjunction F of atomic constraints1 over the firing dates of

the enabled transitions in marking M and the firing date,

denoted by t0 of the transition leading to α. It represents

an over-approximation of the set of states reached by the

same firing sequence from the initial TPN state. Note that

for convenience purposes, firing delays in the classical SCG

state classes in [9] are replaced by firing dates. The formula F
characterises the union of the firing date domains of all states

within α, reached by the same firing sequence from the initial

state of the TPN.

The initial SCG state class of the TPN is the pair α0 =
(M0, F0), where M0 is the initial marking and F0 =

∧

ti∈En(M0)

↓ Is(ti) ≤ ti − t0 ≤ ↑ Is(ti),

where ti is a non-negative real valued variable representing the

firing date of the transition ti and t0 is a variable representing

the date of α0, which is supposed to be 0 for the initial state

class.

From the practical point of view, F is represented by a

Difference Bound Matrix (DBM in short) [11]. The DBM of

F is a square matrix D, indexed by variables of F . Each entry

1An atomic constraint is of the form x−y ≤ c, where x, y are real valued
variables, c ∈ Q ∪ {∞} and Q is the set of rational numbers (for economy
of notation, we use operator ≤ even if c = ∞).

dij represents the atomic constraint ti − tj ≤ dij . If there is

no upper bound on ti − tj with i 6= j, dij is set to ∞. Entry

dii is set to 0. Although the same non-empty domain may be

encoded by different DBMs, they have a canonical form. The

canonical form of a DBM is the representation with tightest

bounds on all differences between variables, computed by

propagating the effect of each entry through the DBM. A DBM

can be seen as the matrix representation of a graph, called a

constraint graph [12]. Its canonical form can be computed in

O(n3), n being the number of variables in the DBM, using a

shortest path algorithm, like Floyd-Warshall’s all-pairs shortest

path algorithm [13].

Let CS be the set of all syntactically correct SCG state

classes and succ a state class successor function: CS ×T −→
CS ∪ {∅}, defined by: ∀α = (M,F) ∈ CS , ∀tf ∈ T ,

• succ(α, tf) 6= ∅ iff tf ∈ En(M) and the following for-

mula is consistent (i.e., satisfiable): F ∧(
∧

t∈En(M)

tf ≤ t).

Intuitively, it means that tf is enabled in M and tf is

firable from α before all other transitions enabled at M .

In other words, tf is enabled in M and there is, at least,

a valuation of firing dates in F s.t. tf has the smallest

firing date.

• If succ(α, tf) 6= ∅ then succ(α, tf) = (M ′, F ′), where:

∀p ∈ P,M ′(p) = M(p)− pre(p, tf) + post(p, tf) and

F ′ is computed in 3 steps:

1) Set F ′ to

F ∧
∧

t∈En(M)

tf ≤ t ∧

∧

t∈Nw(M,tf)

↓ Is(t) ≤ t− tf ≤↑ Is(t).

Notice that without loss of generality, for economy of

notations, we suppose that the transitions of En(M)
are different from those newly enabled by transition tf
from M .

2) Put F ′ in canonical form2.

3) Eliminate t0 and all variables associated with transi-

tions of CF (M, tf)− {tf} and rename tf in t0.

Canonical forms make operations over DBMs much simpler

[11]. Two state classes are said to be equal iff they have the

same canonical form (i.e., they have the same marking and

the DBMs of their formulas have the same canonical form).

Note that, in the following, we will use indifferently (M,F)
or (M,D) to refer to the state class α, and we suppose that

all DBMs are in canonical form. DBM canonical forms allow

also to reduce the complexity of the firing rule as follows [10].

Let α = (M,D) be a state class and tf ∈ T a transition.

• tf is firable from α iff

tf ∈ En(M) ∧ ∀ti ∈ En(M), dif ≥ 0.

• If tf is firable from α then its successor state class

by tf is the state class α′ = (M ′, D′), where M ′ and

2The canonical form of F ′ is the formula corresponding to the canonical
form of its DBM.

the canonical form of the DBM of D′ are computed as

follows:

∀p ∈ P,M ′(p) = M(p)− pre(p, tf) + post(p, tf) and

∀ti, tj ∈ En(M ′),

d′i0 =

↑ Is(ti) if ti ∈ Nw(M, tf),

dif if ti /∈ Nw(M, tf),

d′0j =

−↓ Is(tj) if tj ∈ Nw(M, tf),

Min
tu∈En(M)

duj if tj /∈ Nw(M, tf),

d′ij =

0 if i = j,

Min(dij , d
′
i0 + d′0j) if i 6= j ∧ ti, tj /∈ Nw(M, tf),

d′i0 + d′0j otherwise

III. COST TIME PETRI NETS

A. Definition and semantics

A cost time Petri net (cTPN for short) is a time Petri

net where a rate cost is associated with each place, giv-

ing the sojourn cost per time unit of each token in that

place. Formally, a Cost Time Petri Net is a tuple Nc =
(P, T, pre, post,M0, Is, r) where:

• N = (P, T, pre, post,M0, Is) is a TPN,

• r : P −→ Z is a rate cost function that associates a rate

cost with each place of the TPN.

Note that no cost is associated with the discrete firings

of transitions; however, these costs can be added without

affecting the results provided in this paper.

Let Nc be a cTPN, t ∈ T a transition and M a marking of

the cTPN. We denote by rm(M) the rate cost of M :

rm(M) =
∑

p∈P

M(p)× r(p).

The rate costs of places can be defined as in [7] by a linear

function over markings. We define the incidence rate cost of

t by:

rt(t) =
∑

p∈P

(post(p, t)− pre(p, t))× r(p).

Intuitively, it represents the impact of firing t on the rate cost

of a marking.

The semantics of a cTPN Nc = (P, T, pre, post,M0, Is, r)
is the semantics of the TPN N = (P, T, pre, post,M0, Is).
However, the rate costs associated with places allow to com-

pute different costs such as the costs of runs and the optimal

costs of firing a sequence from a state or a state class of N .

B. Cost of a run

Let s1 = (M1, I1) be a state of Nc and σ = (M1, I1)
θ1t1−−→

(M2, I2) · · · (Mn, In)
θntn−−−→ (Mn+1, In+1) a run of s1. The

cost of σ is defined by:

Cost(σ) =

n
∑

i=1

(θi × rm(Mi)).

Let τ0 the date at which the state s1 is reached and

τj = τ0 +
j
∑

i=1

θi be the firing date of the transition tj in σ,

for j = 1, n. Proposition 1 rewrites Cost(σ) by means of the

firing dates and incidence rate costs of transitions of σ (see

Fig. 1). As we will show, this form is more useful to deal with

the optimal-cost problem in some cases. The optimal-cost

of Cost(σ) can be also rewritten by means of the firing

dates and the rate costs of markings as shown in Proposition 2.

Proposition 1:

Cost(σ) = rm(M1)× (τn − τ0) +

n−1
∑

j=1

rt(tj)× (τn − τj).

Proof: By definition, Cost(σ) =
n
∑

i=1

(θi× rm(Mi)). For

i = 2, n, the rate cost of the successor marking Mi of Mi−1 by

ti is rm(Mi) = rm(Mi−1)+rt(ti−1). Therefore, for i = 2, n,

rm(Mi) = rm(M1) +

i−1
∑

j=1

rt(tj).

Then:

Cost(σ) = θ1× rm(M1)+
n
∑

i=2

(θi× (rm(M1)+
i−1
∑

j=1

rt(tj))).

It can be developed and rewritten as follows:

θ1 × rm(M1)+

θ2 × (rm(M1) + rt(t1)) ++

θn × (rm(M1) + rt(t1) + rt(t2) ++ rt(tn−1)).

Finally, Cost(σ) can be rewritten so as the rate cost of M1

(i.e., rm(M1)) is the coefficient of
n
∑

i=1

θi, the incidence rate

cost of t1 (i.e., rt(t1)) is the coefficient of
n
∑

i=2

θi, ..., and so on,

the incidence rate cost of tn−1 (i.e., rt(tn−1)) is the coefficient

of θn. It follows that:

Cost(σ) = rm(M1)× (

n
∑

i=1

θi) +

n−1
∑

j=1

rt(tj)× (

n
∑

i=j+1

θi).

To achieve the proof, it suffices to replace
n
∑

i=1

θi with τn − τ0

and
n
∑

i=j+1

θi with τn − τj .

Proposition 2:

Cost(σ) = (

n−1
∑

i=1

−rt(ti)× τi) + rm(Mn)× τn.

Proof: By definition, Cost(σ) =
n
∑

i=1

(θi× rm(Mi)). For

i = 1, n, θi = τi − τi−1. Then:

Cost(σ) =

n
∑

i=1

((τi − τi−1)× rm(Mi)).

For i = 1, n− 1, the rate cost of the successor marking Mi+1

of Mi by ti is rm(Mi+1) = rm(Mi) + rt(ti). Therefore, for

i = 1, n − 1, rt(ti) = rm(Mi+1) − rm(Mi). The previous

expression of Cost(σ) can be developed and rewritten as

follows:

(
n−1
∑

i=1

(rm(Mi)− rm(Mi+1)× τi) + rm(Mn)× τn.

To achieve the proof, it suffices to replace rm(Mi) −
rm(Mi+1) with −rt(ti).

C. Optimal cost of a firing sequence

Let α1 be a state class of Nc and ρ = α1
t1−→ α2 · · ·αn

tn−→
αn+1 a path of α1, ω = t1 · · · tn and Π(α1, ω) the set of runs

of α1 that support the same sequence of transitions ω and lead

to states of α = αn+1. The optimal-cost of firing ω from α1

(or the optimal-cost of ρ) is:

OptCost(α1, ω) = Min
σ∈Π(α1,ω)

Cost(σ).

The optimal-cost of firing ω from α1 can be computed

by extending state classes with costs and using linear

programming techniques as in [7].

D. Optimal-cost reachability problem

The classical forward exploration algorithm in [2]–[4], [7] is

adapted in Algorithm 1 to compute the optimal-cost to reach,

from the initial marking, a marking belonging to a given set

of markings Goal. For each state class α such that its marking

is in Goal, its optimal-cost is computed and compared with

MinCost, where the smallest cost computed so far is saved.

As usual, the lists Passed and Waiting are used to store

the already processed and not yet processed state classes,

respectively. The notation ω ≺ ω′ means that ω is a prefix

of ω′.

For bounded TPNs with no negative cost cycles, the algo-

rithm terminates as for infinite sequences only finite prefixes,

yielding the longest elementary paths, are explored.

In the following sections, we investigate cases where the

optimal-costs of firing sequences can be computed without

splitting state classes nor using linear programming tech-

niques.

IV. COMPUTING OPTIMAL COST OF FIRING SEQUENCES

Let α1 = (M1, F1) be a state class of Nc and ρ = α1
t1−→

α2 · · ·αn
tn−→ αn+1 a path of α1 and ω = t1 · · · tn. For ease of

notation, we suppose that all transitions within En(M1) and

those enabled by every transition of ω are all different. The

firing date domain of transitions of ω from α1 can be retrieved

by modifying the firing rule given in Section II-B. Indeed, it

suffices, in step 3 of succ(αi, ti), for i ∈ [1, n], to keep ti.
More precisely replace step 3 with: Eliminate all variables

associated with transitions of CF (Mi, ti) − {ti}. With this

modification, each variable ti, for i ∈ [1, n], represents the

firing date of the ith transition of ω. The variable t0 is the

τ1 τ2 ... τn−1 τnτ0

rt(t2)× (τn − τ2)

rm(M1)× (τn − τ0)

rt(tn−1)× (τn − τn−1)

rt(t1)× (τn − τ1)

Fig. 1. The cost of the run σ based on the firing dates and incidence rate costs of its transitions

Algorithm 1 Symbolic algorithm for optimal-cost reachability

problem

1: MinCost←∞
2: Passed← ∅
3: Waiting ← {((M0, D0), ǫ)}
4: while Waiting 6= ∅ do

5: select ((M,D), ω) from Waiting
6: if M ∈ Goal and OptCost((M0, D0), ω) < MinCost

then

7: MinCost← OptCost((M0, D0), ω)
8: end if

9: if (for all ((M ′, D′), ω′) ∈ Passed, ((M ′, D′) 6=
(M,D)) or ¬(ω′ ≺ ω)) then

10: add ((M,D), ω) to Passed
11: for all t ∈ Fr(M,D), add (succ((M,D), t), ωt) to

Waiting
12: end if

13: end while

14: return MinCost

date when α1 is reached. Let FG be the resulting formula.

The firing date domain of transitions of ω from α1 is the

projection of the domain of FG to ti for i ∈ [0, n].

A. Case of non-negative incidence rate costs

For this section, we suppose that the incidence rate costs of

all transitions of ω, except the last one are non-negative and

rm(M1) ≥ 0. We will show that, under these assumptions,

to compute the optimal-cost of firing ω from α1, we need to

keep track of the minimal delay between the previously fired

transitions and the coming ones, including the current one. But

we do not need to retrieve delays between the previously fired

transitions. Consequently, the relevant part of FG needed to

compute the optimal-costs can be represented by a DBM of

order (|ω|+ 1)× |En(M) ∪ {tn}|.
We denote by G the DBM in canonical form

of order (|ω| + 1) × |En(M) ∪ {tn}| defined by

∀i ∈ [0, |ω|], ∀tj ∈ En(M) ∪ {tn}, gij = Max(ti − tj |FG).
Since ti − tj ≤ 0, the value −gij is the minimal delay

between the firing dates tj and ti. Note that G is a sub-matrix

of the DBM in canonical form of FG. The size of the DBM

of FG is (|ω|+ 1 + |En(M)|)2.

Theorem 1:
OptCost(α1, ω) = −g0n × rm(M1) +

n−1
∑

i=1

rt(ti)×−gin.

Proof: Let GG be the DBM in canonical form of FG.

Recall that G is a sub-matrix of GG. To achieve the proof,

we first show that the valuation vi = gin − g0n for i ∈ [1, n]
is a feasible firing schedule for ω, i.e., for i, k ∈ [1, n],
−gg0i ≤ vi ≤ ggi0 and vi − vk ≤ ggik.

By definition, for i ∈ [1, n], vi = gin − g0n = ggin − gg0n,

then for i, k ∈ [1, n], vi−vk = gin−gkn = ggin−ggkn. Since

GG is in canonical form, it holds that ggin ≤ ggi0 + gg0n,

gg0n ≤ gg0i + ggin, and ggin ≤ ggik + ggkn. It follows that

−gg0i ≤ vi ≤ ggi0 and vi − vk ≤ ggik.

The run corresponding to this firing schedule of ω is shown

in Fig. 2. Its cost is:

−g0n × rm(M1) +
n−1
∑

i=1

rt(ti)×−gin.

By assumption, rm(M1) ≥ 0 and for i ∈ [1, n−1], rt(ti) ≥ 0.
Furthermore, for i ∈ [0, n],−gin is the minimal value of tn−ti
in FG, where tn is the firing date of last transition of ω.

Therefore, OptCost(α1, ω) =

−g0n × rm(M1) +

n−1
∑

i=1

rt(ti)×−gin.

According to the definition of G, for ω = ǫ, G
is a DBM of order 1 × (|En(M)| + 1) defined by

∀tj ∈ En(M) ∪ {t0}, g0j = d0j . Let us show now how

to compute progressively the DBM G of a nonempty sequence.

Proposition 3: Let α be the state class reached by a path ρ,

G the corresponding DBM and tf a transition firable from α
and α′ = (M ′, D′) = succ(α, tf).

Then, the DBM G′ of the path ρ
tf
−→ (M ′, D′) is the DBM in

canonical form of order (|ωtf |+1)×|En(M ′)∪{tf}| defined

by: ∀i ∈ [0, |ωtf |] and tj ∈ En(M ′) ∪ {tf}, g′ij =

Min(gij , gif + d′0j) if i ≤ |ω| ∧ tj 6∈ Nw(M, tf)

gif + d′0j if i ≤ |ω| ∧ tj ∈ Nw(M, tf)

d′0j if i = |ωtf |

where d′0j = Min
tu∈En(M)

duj , if tj /∈ Nw(M, tf) and

d′0j = − ↓ Is(tj), otherwise.

Proof: The proof is based on the constraints added to

compute succ(α, tf). Indeed, the firing condition is obtained

by adding to D, the constraints:

tf ≤ tu, for tu ∈ En(M) and

↓ Is(tj) ≤ tj − tf ≤↑ Is(tj), for tj ∈ Nw(M, tf).

Notice that all the added constraints involve tf and in

the corresponding constraint graph, they are represented by

arcs (tf , tu, 0), for tu ∈ En(M), (tj , tf , ↑ Is(tj)) and

(tf , tj ,−↓ Is(tj)), for tj ∈ Nw(M, tf).
Therefore, the shortest path connecting a node ti, for i ∈
[0, |ωtf |], to a node tj ∈ En(M ′) is:

Min(gij, gif + Min
tu∈En(M)

duj), if tj 6∈ Nw(M, tf) and

gif− ↓ Is(tj), otherwise.

By the firing rule given in II-B, it holds that:

d′0j =

−↓ Is(tj) if tj ∈ Nw(M, tf),

Min
tu∈En(M)

duj if tj /∈ Nw(M, tf),

Note that, Min
tu∈En(M)

duf = 0 as tf is firable. Consequently,

g′if = gif , for i ∈ [0, |ωtf |].
For i = |ωtf |, g′ij = d′0j as g′ij is the smallest path connecting

tf to tj .

The computation of the optimal-cost of firing ω from α1

needs to carry in the DBM G the minimal firing delay between

each fired transition of ω and the coming ones, including the

current one. Thus, the size of G grows with the size of ω:

indeed, the optimal-cost of ωtf is reached when tf is fired as

soon as possible (i.e., −gnf = −d0f) from α and the previous

ones are fired as late as possible (i.e., −gif) without causing

any delay to tf . It means that, to retrieve the firing schedule

yielding the optimal-cost of ω, the firing dates of its previous

transitions need to be updated to take into account the fact

that tf is fired as soon as possible and the previous ones are

fired as late as possible but before tf .

However, for bounded TPNs with no negative cost cycles,

each infinite sequence ω′′ of Nc, has some prefix ω followed

by a repetitive sequence ω′ that loops on a state class α
reachable from the initial state class α0 by ω. It follows that

OptCost(α0, ω) ≤ OptCost(α0, ω
′′) and OptCost(α, ω′) ≤

OptCost(α, ω′k), for k ≥ 1. The cost of a cycle is non-

negative, if the sum of the incidence rate costs of all its

transitions is non-negative and the rate cost of one of its

marking is non-negative. This sufficient condition guarantees

for a cycle a non-negative cost.

In the following, we investigate the possibility to reduce

the size of the DBM G.

B. Memoryless state classes w.r.t. optimal-costs

Let α = (M,D) be the state class reached by a sequence

ω from a state class α1 of N . The state class α is said to be

memoryless w.r.t. optimal-costs iff for each sequence ω′ of α,

OptCost(α1, ωω
′) = OptCost(α1, ω) +OptCost(α, ω′)

Therefore, for any state classes α1 and α′
1 leading by

sequences ω and ω′, respectively, to the same memoryless

state class α = (M,D) w.r.t. optimal-costs, it holds that for

each firable sequence ω′′ from α,

OptCost(α1, ω) ≤ OptCost(α′
1, ω

′)⇒

OptCost(α1, ωω
′′) ≤ OptCost(α′

1, ω
′ω′′)

Lemmas 1 and 2 provide two different sufficient conditions

for the state class α to be memoryless w.r.t. optimal-costs.

The first one depends on the DBM G of ω. The second one

depends on α.

Lemma 1: Let α = (M,D) be the state class reached by

some sequence ω = t1 · · · tn from a state class α1 = (M1, D1)
and G the DBM of its firing domain.

If ∀i ∈ [0, |ω|], ∀tj ∈ En(M), gij = gin + d0j then, α is

memoryless w.r.t. optimal-costs.

Proof: Suppose that ∀i ∈ [0, |ω|], ∀tj ∈ En(M), gij =
gin + d0j . Let us show that for every sequence ω′ of α,

OptCost(α1, ωω
′) = OptCost(α1, ω)+OptCost(α, ω′). We

consider 2 cases: 1) ω = t1...tn and ω′ = tj , and

2) ω = t1...tn and |ω′| > 1.

1) Case ω = t1...tn and ω′ = tj : Since ∀i ∈ [0, |ω|], g′ij =
gin+d0j . Consequently, if tj is firable from α = (M,D) then

the optimal-cost of the successor of α by tj is:

OptCost(α1, ω) + (rm(M1) +
∑

i∈[1,|ω|]

rt(ω(ti)))×−d0j .

Note that rm(M) = rm(M1) +
∑

i∈[1,|ω|]

rt(ω(ti)) and

rm(M)×−d0j is the optimal-cost of firing tj from (M,D).
2) Case ω = t1...tn and |ω′| > 1: Suppose that in the

DBM G′ of ω′ from α, ∀tj ∈ En(M ′), g′ij = gin + cj ,
where cj does not depend on i and is the opposite of the

minimal delay between firing dates of tj and tn. Let us

show that in any extended sequence of ω′ by any firable

transition tk leading to the state class (M ′′, D′′), it holds that

∀tj ∈ En(M ′′), g′′ij = gin + c′j , where c′j does not depend

on i and is the opposite of the minimal delay between firing

dates of tj and tn, and G′′ is the DBM of the extended path.

By Proposition 3, ∀tj ∈ En(M ′′) ∪ {tn},
if tj 6∈ Nw(M ′, tk) then,

g′′ij = Min(g′ij , g
′
ik + Min

tu∈En(M ′)
d′uj) =

gin +Min(cj, ck + Min
tu∈En(M ′)

d′uj).

Otherwise,

g′′ij = g′ik− ↓ Is(tj) = gin + ck− ↓ Is(tj).

Then, g′′ij = gin+ c′j , where c′j does not depend on i and c′j is

the opposite of the minimal delay between the firing dates of

tj and tn (the proof of this claim is similar to the one provided

for Proposition 3). Therefore, the optimal reachability cost of

any extended sequence ωω′ of ω is the sum of OptCost(α1, ω)
and the optimal cost of firing ω′ from α (i.e., OptCost(α, ω′)).

Lemma 2: Let α = (M,D) be a state class such that all

transitions of En(M) are newly enabled in M . Then, α is

memoryless w.r.t. optimal-costs.

t1 t2
... t

n−1 t
n

t0

−g2n

−g0n

−g(n−1)n

−g1n

Fig. 2. The run corresponding to the firing schedule vi = gin − g0n, for i ∈ [1, n], of ρ

Proof: Suppose that α is reached from some state class

α1 by a sequence ω = t1 · · · tn and G the DBM of its firing

domain. As all transitions of α are newly enabled, it follows

that ∀i ∈ [0, |ω|], ∀tj ∈ En(M), gij = gin + d0j . According

to Lemma 1, α is memoryless w.r.t. optimal-costs.

Thanks to lemmas 1 and 2, when a memoryless state class α
w.r.t. optimal-costs is reached, there is no need to explore its

successors, in case there is in the list Passed an identical

memoryless state class with smaller optimal-cost. Among

the identical memoryless state classes reached by different

paths, the one with the smallest optimal-cost will yield the

optimal reachable cost, for all state classes reachable from α.

Therefore, Algorithm 1 can be improved for this subclass of

cTPNs.

C. Case of non-positive incidence rate costs

For this section, we suppose that the incidence rate costs

of all transitions of ω, except the last one, are non-positive

and rm(Mn) ≥ 0.

Theorem 2: Let ρ = α1 = (M1, D1)
t1−→ α2 =

(M2, D2) · · ·αn = (Mn, Dn)
tn−→ αn+1 = (Mn+1, Dn+1)

be a path in the SCG of Nc, supporting the sequence ω =
t1 · · · tn. Let GG be the DBM in canonical form of FG (the

firing domain transitions of ω and those enabled in Mn). Then,

OptCost(α1, ω) = (

n−1
∑

i=1

rt(ti)× gg0i)− gg0n × rm(Mn).

Proof: We first show that the valuation vi = −gg0i for

i ∈ [1, n] is a feasible firing schedule for ω, i.e., for i, k ∈
[1, n], −gg0i ≤ vi ≤ ggi0 and vi − vk ≤ ggik.

By definition, for i ∈ [1, n], vi = −gg0i, then for i, k ∈ [1, n],
vi−vk = gg0k−gg0i. Since GG is in canonical form, it holds

that gg0k ≤ gg0i + ggik. It follows that −gg0i ≤ vi ≤ ggi0
and vi − vk ≤ ggik.

By assumption, rm(Mn) ≥ 0 and for i ∈ [1, n−1], rt(ti) ≤ 0.
Furthermore, for i ∈ [0, n], −gg0i is the minimal value of ti
in FG (i.e., the firing date of the ith transition of ω).

By Proposition 2, the cost of each run supporting the sequence

ω is:

(
n−1
∑

i=1

−rt(ti)× τi) + rm(Mn)× τn.

Therefore, OptCost(α1, ω) =

(
n−1
∑

i=1

rt(ti)× gg0i)− rm(Mn)× gg0n.

D. Case of singular intervals

For this section, we suppose that the firing intervals of all

transitions of ω are singular but the incidence cost rate of

each transition of ω is negative, null or positive.

Theorem 3: Let ρ = α1 = (M1, D1)
t1−→ α2 =

(M2, D2) · · ·αn = (Mn, Dn)
tn−→ αn = (Mn+1, Dn+1) be a

path in the SCG of Nc, supporting the sequence ω = t1 · · · tn.

Then,
OptCost(α1, ω) =

n
∑

i=1

−di0i × rm(Mi).

Proof: The cost of each run σ = (M1, I1)
θ1t1−−→

(M2, I2) · · · (Mn, In)
θntn−−−→ (Mn+1, In+1) supporting ω is:

n
∑

i=1

(θi × rm(Mi)).

The domain of each θi, for i ∈ [1, n], [−di0i , dii0]. As

the firing interval of all transitions of ω are singular, each

transition is fired at an exact date. Therefore, for i ∈ [1, n],
−di0i = dii0 .

V. CASE STUDY

In the French academic system, faculty positions with both

teaching and research activities can be held either by an

associate professor (maı̂tre de conférences, or MCF) or by

a full professor (professeur des universités, or PU). In this

system, a typical career path is:

• start as an associate professor at the 1st grade (échelon 1);

• get promoted to higher grades; such promotions are

automatic and usually3 happen every 34 months (that is,

2 years and 10 months after the last promotion);

• after some years, defend a habilitation thesis and obtain

a higher degree (known as the habilitation à diriger

des recherches), a qualification needed to supervise PhD

students;

• depending on the opportunities, get a promotion from

associate to full professor; keep getting automatic pro-

motions to higher grades according to seniority4.

To each grade corresponds an indice (a salary scale grade),

on which the salary is based; additionally, when promoted

from associate to full professor, the indice cannot decrease.

Let us consider the case of an associate professor who

reaches the 4th échelon when 32 years old. Let us further

3For some reason, the switch from 1st to 2nd grade only takes 12 months,
whereas the switch from 6th to 7th takes 42 months (3 years and 6 months).

4After a while, échelons are called chevrons or stripes.

suppose that the university wishes that all faculty members

become full professors and reach the last grade by the time

they are 55. Obviously, the cheapest way for the university

to reach this goal is to promote anyone at the latest possible

time: given the durations between grades, this means letting

the person reach the 9th grade after 14 years and 10 months;

keep them in that grade for 2 years and 8 months; promote

them to full professor and let them reach the last grade after

5 years and 6 months.

However, this strategy does not take into account the frus-

tration of the person, which increases each time a promotion

is denied, starting from the moment they reach the 6th grade

and begin questioning their life choices.

We propose a model for this optimisation problem, shown

in Fig. 35. Each place with a MCFxyz label corresponds to

a grade in the associate professor scale; its rate cost is equal

to xyz (and is actually equal to the indice for this grade).

Similarly, each place with a PUxyz label corresponds to a

grade in the full professor scale. In the following, we give

various values to R = r(unhappy) so as to show the interest

of our method; the rate cost of all the other places is set to 0.

The state class graph of the model is depicted in Fig.4 and

Table I; note that a total of 10 paths in the SCG lead to a

marking where goal contains 1 token; in the following, we

denote Goal the set of such markings.

To keep the model simple enough, it should be noted that

it does not guarantee that the place goal is attained when the

person is exactly 55 years old (a token could stay in place

wait for more than 0 time unit, for instance). However, we

can show that, in the following, all optimal-cost strategies are

such that the place goal is attained as early as possible, that

is, after 23 years.

Let us first setR = 0. The optimal cost of each path leading

to a marking in Goal is given in Table II and the minimum

is equal to 208 668. The computation steps of this cost are re-

ported in Fig.5: as expected, the optimal strategy is to give the

promotion at the latest possible time, thus leading to the fol-

lowing timed trace6: echelon5@34, echelon6@34, echelon7@42, echelon8@34,

echelon9@34, up6@32, PUech6@42, chevron2@12, chevron3@12, age55years@0,

end@0.

Let us now change the value of R; whenever R ≤ 32,

the optimum strategy remains the same. For R = 33, the

strategy consists in giving the promotion not too early, just

before switching from 6th to 7th grade. The timed trace, with a

total cost of 228 480, is: echelon5@34, echelon6@34, up3@42, PUech4@12,

PUech5@12, PUech6@42, chevron2@12, chevron3@12, age55years@76, end@0.

Whenever R ≥ 34, the strategy consists in giving the

promotion just before risking unhappiness, that is right before

switching from 5th to 6th grade. For R = 35, the computation

steps are reported in Fig.6 and the timed trace, with a total cost

5Note that, keeping in tune with the French spirit, unhappiness keeps
building up and that even after getting a promotion from associate to full
professor, the resentment is such that the unhappiness level is maintained.

6For the sake of legibility, we denote t1@θ1, t2@θ2 . . . the sequence
θ1t1θ2t2 . . .

of 228 660, is: echelon5@34, up2@34, PUech3@12, PUech4@12, PUech5@12,

PUech6@42, chevron2@12, chevron3@12, age55years@106, end@0.

VI. CONCLUSION

This paper deals with the optimal-cost reachability problem

in the context of time Petri Nets extended with costs (cTPNs).

It establishes, for some interesting subclasses of cTPNs, ef-

ficient algorithms that compute the optimal-cost of firing a

sequence of transitions from a given state class. Unlike the

approaches developed in [1]–[7], the algorithms, presented

here, are not based on techniques of linear programming.

Finally, a case study is provided to show the interest of the

proposed method.

As a future work, we will investigate the optimal-cost

reachability problem in the context of parametric cTPNs.

REFERENCES

[1] R. Alur, S. L. Torre, and G. J. Pappas, “Optimal paths in
weighted timed automata,” Theoretical Computer Science, vol.
318, no. 3, pp. 297 – 322, 2004. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0304397503005838

[2] G. Behrmann, A. Fehnker, T. Hune, K. Larsen, P. Pettersson, J. Romijn,
and F. Vaandrager, Minimum-Cost Reachability for Priced Timed

Automata. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp.
147–161. [Online]. Available: http://dx.doi.org/10.1007/3-540-45351-2
15

[3] G. Behrmann, K. G. Larsen, and J. I. Rasmussen, “Optimal
scheduling using priced timed automata,” SIGMETRICS Perform. Eval.

Rev., vol. 32, no. 4, pp. 34–40, Mar. 2005. [Online]. Available:
http://doi.acm.org/10.1145/1059816.1059823

[4] K. Larsen, G. Behrmann, E. Brinksma, A. Fehnker, T. Hune, P. Pet-
tersson, and J. Romijn, “As cheap as possible: Efficient cost-optimal
reachability for priced timed automata,” Lecture Notes in Computer

Science, vol. 2102, pp. 493–505, 2001.
[5] P. Bouyer, M. Colange, and N. Markey, “Symbolic optimal reachability

in weighted timed automata,” CoRR, vol. abs/1602.00481, 2016.
[Online]. Available: http://arxiv.org/abs/1602.00481

[6] P. A. Abdulla and R. Mayr, “Priced timed Petri nets,” Logical
Methods in Computer Science, vol. 9, no. 4, 2013. [Online]. Available:
http://dx.doi.org/10.2168/LMCS-9(4:10)2013

[7] H. Boucheneb, D. Lime, B. Parquier, O. H. Roux, and C. Seidner,
“Optimal reachability in cost time Petri nets,” in Formal Modeling and

Analysis of Timed Systems - 15th International Conference, FORMATS

2017, Berlin, Germany, September 5-7, 2017, Proceedings, 2017, pp.
58–73. [Online]. Available: https://doi.org/10.1007/978-3-319-65765-3
4

[8] B. Berthomieu and M. Diaz, “Modeling and verification of time de-
pendent systems using time Petri nets,” IEEE Transactions on Software

Engineering, vol. 17(3), pp. 259 – 273, 1991.
[9] B. Berthomieu and F. Vernadat, “State class constructions for branching

analysis of time Petri nets,” in 9th International Conference of Tools and

Algorithms for the Construction and Analysis of Systems, ser. LNCS, vol.
2619, 2003, pp. 442–457.

[10] H. Boucheneb and H. Rakkay, “A more efficient time Petri net state
space abstraction useful to model checking timed linear properties,”
Fundamenta Informaticae, vol. 88(4), pp. 469–495, 2008.

[11] J. Bengtsson, Clocks, DBMs and States in Timed Systems. Uppsala
University: PhD thesis, Dept. of Information Technology, 2002.

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. C. Stein, “Intro-
duction to Algorithms,” in Second Edition. The MIT Press, 2002.

[13] G. Behrmann, P. Bouyer, K. G. Larsen, and R. Pelànek, “Lower and up-
per bounds in zone-based abstractions of timed automata,” International

Journal on Software Tools for Technology Transfer, vol. 8(3), pp. 204 –
215, 2006.

MCF623 MCF673 MCF719 MCF749 MCF783 MCF821

unhappy

PU696PU658 PU734 PU776 PU821 PU881 PU916 PU963

32to55years

wait

goal

echelon5

[34, 34]
echelon6

[34, 34]
echelon7

[42, 42]
echelon8

[34, 34] age55years

[276, 276]

echelon9

[34, 34]

PUech2

[12, 12]
PUech3

[12, 12]
PUech4

[12, 12]
PUech5

[12, 12]
PUech6

[42, 42]
chevron2

[12, 12]
chevron3

[12, 12]

up1

[0, 34]
up2

[0, 34]
up3

[0, 42]
up4

[0, 34]
up5

[0, 34]

up6

[0,∞[

end

[0, 0]

Fig. 3. Possible career paths from age 32 to 55

α0 α1 α3 α6 α10 α15 α21
echelon5 echelon6 echelon7 echelon8 echelon9 up6

α2 α4 α7 α11 α16
α22

α29 α28

up1 up2 up3 up4 up5 age55years age55years
PUech6

up6

α5 α8 α12 α17 α23 α36 α35

PUech2 PUech3 PUech4 PUech5 PUech6 PUech6
age55years

chevron2

α9 α13 α18 α24 α30 α43 α42

PUech3 PUech4 PUech5 PUech6 chevron2 chevron2 age55years chevron3

α14 α19 α25 α31 α37 α48

PUech4 PUech5 PUech6 chevron2 chevron3 chevron3 age55years

α20 α26 α32 α38 α44 α53

PUech5 PUech6 chevron2 chevron3 age55years end

α27 α33 α39 α45 α49

PUech6 chevron2 chevron3 age55years end

α34 α40 α46 α50

chevron2 chevron3 age55years end

α41

α47 α51

chevron3 age55years end

age55years

α52

end

Fig. 4. The SCG of the TPN at Fig.3

t0 echelon5 echelon6 echelon7 echelon8 echelon9 up6 PUech6 chevron2 chevron3 age55years end

276 ∗ 623 = 171948

(276 − 34) ∗ 50 = 12100

(276 − 68) ∗ 46 = 9568

(276 − 110) ∗ 30 = 4980

(276 − 144) ∗ 34 = 4488

(276 − 178) ∗ 38 = 3724

(276 − 210) ∗ 0

(276 − 252) ∗ 60 = 1440

(276 − 264) ∗ 35 = 420

0 ∗ 47

0

Fig. 5. Optimal-cost of the sequence (echelon5 · · · echelon9 up6 PUech6 chevron2 chevron3 age55years end) is 208 668

α0 α1 α2 α3
MCF623 + 32to55years MCF673 + 32to55years PU658 + 32to55years MCF719 + 32to55years + unhappy

echelon5 = 34, echelon6 = 34, PUech2 = 12, echelon7 = 42,
age55years = 276, age55years = 242, 242 ≤ age55years ≤ 276 age55years = 208,

0 ≤ up1 ≤ 34 0 ≤ up2 ≤ 34 0 ≤ up3 ≤ 42

α5 α6 α7 α8
PU996 + 32to55years MCF749 + 32to55years + 2unhappy PU734 + 32to55years + unhappy PU734 + 32to55years

PUech4 = 12, echelon8 = 34, PUech4 = 12, PUech4 = 12,
230 ≤ age55years ≤ 264 age55years = 166, 166 ≤ age55years ≤ 208 196 ≤ age55years ≤ 230

0 ≤ up4 ≤ 34

α10 α11 α12 α13
MCF783 + 32to55years + 3unhappy PU776 + 32to55years + 2unhappy PU776 + 32to55years + unhappy PU776 + 32to55years

echelon = 34, 0 ≤ up5 ≤ 34, PUech5 = 12, PUech5 = 12, PUech5 = 12,

age55years = 132 132 ≤ age55years ≤ 166 154 ≤ age55years ≤ 196 184 ≤ age55years ≤ 218

α15 α16 α17 α18
MCF821 + 32to55years + 4unhappy PU821 + 32to55years + 3unhappy PU821 + 32to55years + 2unhappy PU821 + 32to55years + unhappy

0 ≤ up6, PUech6 = 42, PUech6 = 42, PUech6 = 42,

age55years = 98 98 ≤ age55years ≤ 132 120 ≤ age55years ≤ 154 142 ≤ age55years ≤ 184

α20 α21 α22 α23
PU821 + 32to55years PU821 + 32to55years + 4unhappy MCF821 + wait + 4unhappy PU881 + 32to55years + 3unhappy

PUech6 = 42, PUech6 = 42, 0 ≤ up6 chevron = 12,

194 ≤ age55years ≤ 228 0 ≤ age55years ≤ 98 56 ≤ age55years ≤ 90

α25 α26 α27 α28
PU881 + 32to55years + unhappy PU881 + 32to55years PU881 + 32to55years PU881 + 32to55years + 4unhappy

chevron2 = 12, chevron2 = 12, chevron2 = 12, chevron2 = 12,
100 ≤ age55years ≤ 142 130 ≤ age55years ≤ 164 152 ≤ age55years ≤ 186 0 ≤ age55years ≤ 56

α30 α31 α32 α33
PU916 + 32to55years + 3unhappy PU916 + 32to55years + 2unhappy PU916 + 32to55years + unhappy PU916 + 32to55years

chevron3 = 12, chevron3 = 12, chevron3 = 12, chevron3 = 12,
44 ≤ age55years ≤ 78 66 ≤ age55years ≤ 100 88 ≤ age55years ≤ 130 118 ≤ age55years ≤ 152

α35 α36 α37 α38
PU916 + 32to55years + 4unhappy PU881 + wait + 4unhappy PU963 + 32to55years + 3unhappy PU963 + 32to55years + 2unhappy

chevron3 = 12, 0 ≤ chevron2 ≤ 12 0 ≤ age55years ≤ 66 0 ≤ age55years ≤ 88

0 ≤ age55years ≤ 44

α40 α41 α42 α43
PU963 + 32to55years PU963 + 32to55years + 4unhappy PU936 + 32to55years + 4unhappy PU916 + wait + 4unhappy

0 ≤ age55years ≤ 140 0 ≤ age55years ≤ 162 0 ≤ age55years ≤ 32 0 ≤ chevron3 ≤ 12

α45 α46 α47 α48
PU963 + wait + 2unhappy PU963 + wait + unhappy PU963 + wait PU963 + wait + 4unhappy

end = 0 end = 0 end = 0

α50 α51 α52 α53
goal + 2unhappy goal + unhappy goal goal + 4unhappy

α4 α9 α14 α19
PU696 + 32to55years PU734 + 32to55years PU776 + 32to55years PU821 + 32to55years

PUech4 = 12, PUech4 = 12, PUech5 = 12, PUech6 = 42,
208 ≤ age55years ≤ 242 218 ≤ age55years ≤ 252 206 ≤ age55years ≤ 240 172 ≤ age55years ≤ 206

α24 α29 α34 α39
PU881 + 32to55years + 2unhappy PU821 + wait + 4unhappy PU916 + 32to55years PU963 + 32to55years + unhappy

chevron = 12, 0 ≤ PUech6 ≤ 42, chevron3 = 12, 0 ≤ age55years ≤ 118

78 ≤ age55years ≤ 112 140 ≤ age55years ≤ 174

α44 α49
PU963 + wait + 3unhappy goal + 3unhappy

end = 0

TABLE I
STATE CLASSES OF THE SCG IN FIG.4

t0 echelon5 up2 PUech3 PUech4 PUech5 PUech6 chevron2 chevron3 age55years end

276 ∗ 623 = 171948

(276 − 34) ∗ 50 = 12100

(276 − 68) ∗ 23 = 4784

(276 − 80) ∗ 38 = 7448

(276 − 92) ∗ 42 = 7728

(276 − 104) ∗ 45 = 7740

(276 − 146) ∗ 60 = 7800

(276 − 158) ∗ 35 = 4130

(276 − 170) ∗ 47 = 4982

0

Fig. 6. Optimal-Cost of the sequence (echelon5 up2 PUech3 · · · PUech6 chevron2 chevron3 age55years end) is 228 660

Path Optimal-Cost Path Optimal-Cost

α0 · · ·α41α47α52 234 860 α0 · · ·α40α47α52 228 660

α0 · · ·α51 221 616 α0 · · ·α50 217 088

α0 · · ·α49 213 212 α0 · · ·α15α22 · · ·α53 262 854

α0 · · ·α15α21α29 · · ·α53 262 854 α0 · · ·α15α21α28α36 · · ·α53 228 372

α0 · · ·α15α21α28α35α43 · · ·α53 218 520 α0 · · ·α15α21α28α35α42 · · ·α53 208 668

TABLE II
OPTIMAL-COST OF EACH PATH OF THE SCG IN FIG.4 THAT LEADS TO A MARKING IN Goal

