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ABSTRACT: There is rich literature on the separation of binary
azeotropic mixtures, whereas few studies exist on the separation of
biazeotropic ternary mixtures. In this work, we propose a
systematic approach for energy-efficient extractive distillation
processes for the separation of a biazeotropic mixture that involves
thermodynamic insights via residue curve maps and the
univolatility line to find the optimal entrainer and operating
pressure, global optimization based on a proposed two-step
optimization procedure, and double-effect heat integration to
achieve further saving of energy consumption. An energy-saving
reduced-pressure extractive distillation (RPED) with a heat
integration flowsheet is then proposed to achieve the minimum
total annual cost (TAC). The results show that the TAC, energy
consumption, and exergy loss of the proposed RPED with heat integration are reduced by 75.2%, 80.5%, and 85.8% compared
with literature designs.

1. INTRODUCTION

Tetrahydrofuran (THF) and methanol are important organic
solvents in chemical, pharmaceutical, and biochemical
engineering, etc. The related processes produce large amounts
of THF−methanol−water mixture, and economically separat-
ing this mixture is an urgent mission in reducing energy cost
and CO2 emissions.1−3 However, it is impossible to separate
THF−methanol−water mixture by simple distillation, due to
the presence of two binary azeotropes. At atmosphere, THF−
methanol forms a minimum azeotrope at 332.94 K with 50.79
mol % THF, and THF−water gives another minimum
azeotrope at 336.58 K with 82.87 mol % THF. Therefore, a
special technique like extractive distillation (ED) is needed.
ED is realized by feeding an additional entrainer, which

could keep the relative volatility of the azeotrope components
far away from unity. For the separation of binary azeotropes,
Modla4 investigated conventional ED, thermally integrated
ED, and extractive dividing-wall columns for separating the
minimum azeotropic mixture of methanol−toluene with the
intermediate entrainer trimethylamine and found that the
extractive dividing-wall column could reduce the energy cost
by 45%. However, Luyben5 improved Modla’s conventional
ED process by largely reducing the entrainer flow rate and
concluded that the improved process gives a 50% reduction in

energy consumption compared to the conventional ED
process. The result reminds us that it is necessary to find the
optimal conventional ED design before further considering
energy-saving configurations.
For the separation of ternary azeotropes, Timoshenko et al.6

proposed a set of comprehensive alternative ED configurations
including both a conventional three-column flowsheet and a
partially thermally coupled flowsheet for ternary mixtures of
different phase equilibriums. Luyben7 investigated the ED
process for the ternary mixture of benzene−cyclohexane−
toluene and explored the dynamic controllability of the
process. Zhao et al.8 compared the heterogeneous azeotropic
distillation and ED processes for the mixture of ethanol−
toluene−water and declared that ED is much more attractive
in terms of total annual cost (TAC). Further, mixed entrainers
are employed to reduce the energy cost for the separation of
THF−ethanol−water azeotropic mixture.9

Since distillation is still energy-intensive,10 from the view of
thermodynamic insight for extractive distillation, we propose
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for the first time, as far as we know, a new three-step strategy
to reduce the energy consumption and improve the perform-
ance of the ED process. (1) Find a better entrainer. This
includes a heuristic method (based on the literature, molecular
classification,11 selectivity and capacity,12,13 thermodynamic
insight,14 and computer-aided molecular design15,16). The
issues of why one extractive column could break two
biazeotropes and how to select a better entrainer without
tedious optimization are solved. (2) Improve the design. This
refers to changing operating pressure17−19 and using different
optimization methods, such as a sequential iterative
optimization procedure,9,20 a two-step optimization proce-
dure,21,22 mixed integer nonlinear programming,13,23 a genetic
algorithm,24−27 and an artificial neural network.28 How to find
the possible direction for reducing energy consumption is
illustrated by a ternary map and univolatility line. (3) Integrate
the heat. This covers product to feed stream heat integration
(HI),29,30 double-effect HI,31,32 thermal coupling scheme and
dividing-wall column,33−38 heat pump,39,40 and so on. It
involves how to choose the configurations of heat integration,
which one is better, and if there is a potential advantage when
changing operating pressure.
For a ternary mixture of THF−methanol−water, Raeva and

Sazonova2 tried to use ethylene glycol (EG) as entrainer with
the aim of validating their entrainer selection rule, but no
further optimization and heat integration techniques were
considered. In this study, the above three aspects are
systematically investigated: first, DMSO is used for the first
time, as far as we know, as a better entrainer for the THF−
methanol−water system, and the conventional three-column
extractive distillation process at atmospheric pressure is
optimized by the two-step optimization procedure with total
energy consumption per product unit (FEC) as an objective
function and TAC as the decision-determining criterion. The
reason for selecting the specific flowsheet is given. Second, the
conventional ED (CED) design is improved by considering
thermodynamic insight. The reason why reduced pressure ED
(RPED) could save energy consumption for the studied system
is illustrated and the optimal pressure is obtained. Third,
double-effect HI (DEHI) is applied to the RPED process to
further improve the energy efficiency and reduce TAC and
CO2 emissions. A comparison between DEHI−RPED and
−CED is done to explain the potential advantages of RPED
over CED when considering the DEHI process.

2. METHODS

2.1. Extractive Distillation Process Flowsheet. The
extractive distillation process flowsheet for the separation of
THF−methanol−water with DMSO as entrainer is displayed
in Figure 1. There are three columns: extractive column (C1),
distillation column (C2), and entrainer regeneration column
(C3). The entrainer and azeotropic mixture are fed at different
trays of C1, and thus, a new extractive section is raised. In this
extractive section, the entrainer interacts differently with the
components and breaks the two binary azeotropes at the same
time. THF with little impurities is recovered from the top of
C1. Methanol, water, and entrainer are discharged from the
bottom of C1 and then fed into C2. In column C2, methanol is
obtained in the top, and water and entrainer are discharged
from the bottom and then fed into C3. In column C3, water
with impurities is recovered as top product and entrainer is
discharged from the bottom for cyclic utilization after cooling
down. For entrainer makeup stream, it is set equal to the

entrainer loss in the three products and calculated by the
calculator model built in Aspen Plus.
The flow rate of the ternary azeotropic mixture is 500 kmol/

h, with a content of 25 mol % THF, 37.5 mol % methanol, and
37.5 mol % water. The purity of product THF, methanol, and
water in the distillates are all set to be 99.9 mol %. The vapor−
liquid equilibrium of THF−methanol−water−DMSO is
described by the nonrandom two liquid (NRTL) property
model with Aspen Plus built-in binary parameters (see Table
S2 in the Supporting Information).

2.2. Energy Consumption, TAC, and Exergy Loss.
Energy consumption is one of the main criteria for comparing
different designs of the extractive distillation. In order to
simultaneously take the three columns into account, we use a
new objective function full energy consumption equation
(FEC), which represents the energy cost per unit product (kJ/
kmol)
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where QRi and QCi are the reboiler and condenser duties of the
column Ci (i = 1, 2, 3), D1 and D2 are the distillate flow rate of
C1 and C2, respectively. Qcooler is the heat duty of the heat
exchanger for cooling down the entrainer recycling stream.
Factor m reflects the price difference between the condenser
and reboiler heat duties (m = 0.036: energy price index).
Factor M reflects the prices of heat steams and equals 1, 1.065,
or 1.280 when low-, middle- or high-pressure steams are used,
respectively. Factor k means the weight coefficient of the two
products THF and methanol, which equals 11.9. There are
three advantages of using FEC as an objective function: (1) it
represents not only the amount of the energy consumption but
also the grade of the steam. (2) The energy cost of the
condenser and the reboiler are united. (3) It has the ability of
optimizing the three columns simultaneously rather than
sequentially.

Figure 1. Simulation setup and optimal design of THF−methanol−
water extractive distillation with DMSO (the design of case 2).



TAC is helpful for judging different designs from an
economic view. Therefore, TAC has been commonly
employed as the decision-determining criterion for different
designs. It is calculated by the following equation:

TAC
capital cost

payback period
operating cost= +

(2)

The cost formulas used in our previous study41 are
employed for the capital cost calculation, and a three-year
payback period is used (see Table S1 in the Supporting
Information). For the capital cost, only the major equipment
like column shell, tray, condenser, reboiler, and heat exchanger
(for cooling down the recycled entrainer stream) are
considered while other costs such as the pumps, pipes, and
valves are neglected. For the energy cost, the heat duties in
condenser and reboiler of the three columns are considered as
well as the heat exchanger for cooling the recycling entrainer.
The pressure drop per tray is assumed as 0.0068 atm42 and the
tray efficiency is 85%43 for calculating the capital cost of the
columns.
Exergy loss,44,45 as an important indicator for the judgment

of an ED process, is employed to evaluate the thermodynamic
efficiency of different designs of the ED process. The exergy
loss, denoted as Exloss, is the difference between the exergy
entering the system and the exergy leaving the system (see eq
3). The lower the exergy loss of a process, the higher the
thermodynamic efficiency and the less the energy required.
Suphanit et al.45 proposed that the exergy loss of a distillation
column could be calculated on the basis of a simple overall
exergy balance across the column. For the studied three-
column system, the exergy input is provided by the exergy of
the fresh feed flow and the entrainer makeup flow plus the
exergy input from the reboilers. The exergy output of the
system is given by the exergy of the three products flow and
the exergy leaving the condenser.
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2.3. Two-Step Optimization Procedure. We extended
the two-step optimization procedure for two columns22,46 to a
three-column extractive distillation process for the studied
system. The procedure is shown in Figure 2. First, the
sequential quadratic programming (SQP) method built in the
Aspen Plus simulator is used for the optimization of the
process by minimizing FEC under product purity and recovery
constraints over the continuous variables: reflux ratio (RR1,
RR2, RR3) and the entrainer flow rate (FE). Second, the
sensitivity analysis is performed for the discrete variables: the
four feed locations (NFE, NF1, NF2, NF3) and the three
distillates (D1, D2, D3), while step 1 (SQP) is run for each set
of discrete variables. The optimal one is the one with lowest
energy consumption, and the TAC of each separation
sequence is calculated for comparison.

3. CONVENTIONAL EXTRACTIVE DISTILLATION

3.1. Why the Specific Flowsheet Is Selected. For the
separation of a ternary mixture with two binary azeotropes, two
extractive columns and one regeneration column are usually
employed to break the two binary azeotropes in sequence;
hence, two entrainers are needed and normally mixed
entrainers are more economic for the process.9 However, if
there is one entrainer that could make the two binary
azeotropes disappear, one entrainer is feasible to separate the
ternary mixture in two independent extractive columns. More
specifically, one entrainer with one extractive column, one
distillation column, and one entrainer regeneration column, as
shown in Figure 1, is feasible to separate a ternary mixture with
two binary azeotropes if the one special entrainer could first
separate the shared component of the two binary azeotropes.
To illustrate this feasibility, the ternary maps with the
univolatility line, residue curve, and volatility order for
methanol−THF−water with EG and DMSO in a 2D
model47 are shown in Figure 3.
Let us recall the general feasibility criterion for binary

mixture in the extractive distillation under infinite reflux
ratio.14 It states that “homogeneous extractive distillation of A−B
mixture with entrainer (E) feeding is feasible if there exists a
residue curve connecting to A or B, following a decreasing
(increasing) temperature direction inside the region where A or B is

Figure 2. Two-step optimization procedure for the extractive
distillation process with a given entrainer.



the most volatile (the heaviest) component of the mixture”. Taking
EG as example, as shown in Figure 3b for methanol−THF
azeotrope, the univolatility line divides the ternary map into
ABE (upper side) and BAE (lower side). In region ABE,
although A is the most volatile component, there is no residue
curve connecting A. Therefore, region ABE is unfeasible.
However, in region BAE, there is a residue curve connecting B
following the increasing temperature direction where B is the
most volatile, so this region is feasible as it satisfies the general
feasibility criterion. Meanwhile, we could confirm that B
(THF) is the top distillate of the extractive column, a direct
split should be employed, and there is minimum entrainer-to-
feed flow rate ratio depending on xp (the intersection of the
univolatility line and the triangle side). Differently, for THF−

water, as displayed in Figure 3d, the process is feasible in upper
region BCE while unfeasible in lower region CBE. Fortunately,
in region BCE, B (THF) is also the top distillate in a direct
split flowsheet with the limiting condition of minimum
entrainer usage. This is why one entrainer could break two
binary azeotropes in one extractive column. The entrainer
DMSO, as shown in Figure 3c,e is the same as entrainer EG.
Once the shared component THF is distillated out, there is

no azeotrope among the rest of the ACE system, as shown in
Figure 3f,g, and it could be separated by two simple distillation
columns in a direct split.

3.2. Why DMSO is Better than EG. From Figure 3, the
ternary maps of methanol−THF with EG and DMSO belong
to class 1.0−1a−m2, while that of THF−water with EG and

Figure 3. Thermodynamic features and univolatility lines of methanol−THF−water with EG (a, b, d, f) and DMSO (a, c, e, g).



DMSO pertains to class 1.0−1a−m1. The distinction is that
the univolatility line (αAB = 1) reaches the AE side (lower
boiling temperature azeotropic component and entrainer) or
BE side (higher boiling temperature azeotropic component
and entrainer). Following the general feasibility criterion,14 for
class 1.0−1a−m2, the feasibility criterion is satisfied in the
volatility order region BAE (Figure 3b,c). In region BAE,
component B THF is a saddle (Srcm) in the residue curve map
(RCM) and cannot be obtained by azeotropic distillation.48

Thanks to the entrainer (EG or DMSO) feeding at an upper
tray rather than the main feed tray, an extractive section occurs
among them in the extractive column. The stability of the
singular points in the extractive composition profile is the
reverse of that in the residue curve map.48 So the unstable
node of RCM originated from the azeotropic point is the stable
node of the extractive section (SNext), which is located at the
univolatility curve αAB = 1 and the segment of [xp, apex E],
depending on the usage of entrainer. With the adding of
entrainer, SNext moves from the azeotropic point to the xp
point. Once the entrainer usage is higher than that at point xp,
the relative volatility αBA is always greater than 1. The
azeotropic point disappears and the process becomes feasible.
Therefore, component B (THF) can be obtained as a distillate
product by a direct split configuration with a minimum
entrainer flow rate. For class 1.0−1a−m1 shown in Figure 3d,e,
the situation is similar and region BCE would be the feasible
region for obtaining B (THF) as distillate in the direct split
with another minimum entrainer flow rate. The higher one of
the two minimum entrainer flow rates would be the critical
value for separating the ternary mixture ABC in the extractive
column.
Following the general feasibility criterion, DMSO is a better

entrainer than ethylene glycol for separating the studied system
because of two aspects. On the one hand, for methanol−THF
azeotrope, THF is the top distillate product of the extractive
column when EG and DMSO are entrainers, and the extractive
region is at BAE in Figure 3b,c. The difference lies on the
location of xp, which indicates the minimum entrainer content
at the entrainer feeding tray. The minimum entrainer content
for methanol−THF with EG is xp,a = 0.51, as shown in Figure
3b, while that with DMSO is only xp,b = 0.25, as displayed in
Figure 3c. The fact that xp,b is much less than xp,a indicates that
DMSO is a much more effective entrainer than EG for
separating methanol−THF azeotrope. On the other hand, for
THF−water azeotrope, THF is also the top distillate of the
extractive distillation when EG and DMSO are entrainers, but
the extractive region changes to BCE, as shown in Figure 3d,e.
Similarly, xp,c = 0.18 for EG, whereas xp,d = 0.11 for DMSO.
This also suggests that DMSO is a better entrainer than EG for
separating THF−water azeotrope.
Furthermore, rectifying profiles approximately follow a

residue curve near the EB side. There is no need for too
many trays in this rectifying section; otherwise, the rectifying
profile would turn off at the vertex B (saddle node) following a
residue curve if too many trays are employed in the rectifying
section. In addition, the purity of recycling entrainer should be
high enough to drag the SNext close enough to the EB side,
where SNext could intersect a residue curve to achieve high-
purity product B. If a low-purity recycling entrainer is used, the
SNext can only intersect a residue curve apart from the EB side,
which could not achieve the high-purity product because the
residue curves are not intersected with each other.

3.3. Optimization of the Total Number of Trays for
C1, C2, and C3. On the basis of the two-step optimization
procedure, the optimal total number of trays for C1, C2, and
C3 (N1, N2, and N3) are determined in terms of the energy
cost of FEC and the TAC. The effects of N1, N2, and N3 on the
FEC and TAC are displayed in Figure 4. From Figure 4, we

can observe that the trends of FEC and TAC for the three
columns are similar. Following the increase of the total number
of trays, the FEC value decreases all the time, but the TAC
value first decreases and then increases. Taking the extractive
column shown in Figure 4a as example, the energy
consumption FEC decreases when N1 increases. This agrees
with the rule of simple distillation. For the trends of TAC, it
decreases mainly because of the sharp decrease of FEC and
energy cost which could overwhelm its penalty in term of
increasing capital cost. And then N1 reaches its optimal value
of 57. If N1 increases further, the decrease of FEC and energy
cost becomes smooth and fails to overcome the increase of
capital cost. This leads to the increase of TAC. From Figure 4,
the optimal values of N2 and N3 are 41 and 16, respectively.

Figure 4. Effects of total number of trays N1, N2, and N3 on TAC and
FEC.



It is worth mentioning that, for each optimized point (at
given total number of trays) shown in Figure 4, the other 11
variables (NFE, NF1, NF2, NF3, FE, RR1, RR2, RR3, D1, D2, D3)
are all optimized under product purity constraints. The results
of our optimal design with DMSO as entrainer (named as case
2) are displayed in Table 1, along with a literature design2 with
EG as entrainer (named as case 1).
From Table 1, (1) the entrainer-to-feed flow rate ratio for

EG in case 1 is 4, while that for DMSO in case 2 is only 0.572.
This means a dramatic decrease of entrainer usage and
suggests a large reduction in FEC and energy cost. (2) The
diameters of the three columns are reduced by 37%, 48%, and
49% due to the decrease of reflux ratios and entrainer flow rate.
This character not only overcomes the increasing capital cost
caused by the increase of total number of trays but also leads to
the large decrease of capital cost from 6.558 to 3.492 (106$),
saving by 47%. (3) Energy cost is reduced by 73%. This is
attributed to the huge decrease of entrainer flow rate and reflux
ratios. (4) FEC, exergy loss, and TAC show savings of 73.2%,
74.7%, and 68.5%, respectively. This demonstrates that DMSO
is a much better entrainer than EG for the studied system.

4. REDUCED-PRESSURE EXTRACTIVE DISTILLATION
PROCESS

4.1. Why Reduced Pressure Is Better than Atmos-
phere. The univolatility line at different pressures of
methanol−THF and THF−water with DMSO as entrainer is

shown in Figure 5. From Figure 5, we can see one drawback
and two advantages for reduced pressure. The drawback is that
the top temperature of the extractive column is reduced, which
could lead to an increase of heat exchanger area and capital
cost. The first advantage is that the azeotropic composition
moves toward the targeted product THF, which means that the
separation becomes much easier for the two azeotropes.48 The
other advantage is that the xp point also moves near to the
THF vertex, which infers that the feasible regions BAE and
BCE becomes larger and the minimum entrainer flow rate
becomes smaller. Therefore, reduced pressure is a possible way
to reduce FEC and TAC.

4.2. Finding the Optimal Pressure. Since the two binary
azeotropes (THF−water, THF−methanol) of the THF−
methanol−water mixture are pressure-sensitive,49,29,50 the
effect of operating pressure (P1, P2, and P3) on the total ED
process should be studied. In this section, N1 = 57, N2 = 41,
and N3 = 16 are kept the same as that in case 2 for comparison.
With the aim of using cheap cooling water for the condenser,
the top temperature of the columns should not be higher than
310 K; hence, the related lower boundary of the operating
pressures P1, P2, and P3 are set as 0.35, 0.30, and 0.07 atm,
depending on the boiling point of the top product THF,
methanol, and water, respectively. The upper boundary of the
operating pressure is 1 atm. Sensitivity analysis is performed
over the three pressures, as shown in Figure 6. For each
possible pressure, the two-step optimization procedure is

Table 1. Comparison of Optimal Designs for THF−Methanol−Water Mixture with EG and DMSO as Entrainers

case 1 (EG)2 case 2 (DMSO)

parameter C1 C2 C3 C1 C2 C3

N 45 30 20 57 41 16

P (atm) 1 1 1 1 1 1

FAB (kmol/h) 500 − − 500 − −

FE (kmol/h) 2000 − − 286 − −

D (kmol/h) 124.9 187.3 187.7 125.08 187.51 187.49

NF 30 12 9 34 30 7

NFE 5 − − 4 − −

RR 3.5 1.9 0.24 2.168 0.947 0.324

diameter (m) 2.709 2.565 2.974 1.701 1.316 1.504

CO2 emissions (kg/h) 17105.2 4538.5 (−73.4%)

energy cost (106$/year) 10.130 2.706 (−73.2%)

capital cost (106$) 6.558 3.492 (−46.7%)

FEC (kJ/kmol) 107857.8 28903.8 (−73.2%)

exergy loss (MW) 14.872 3.751 (−74.7%)

TAC (106$/year) 12.318 3.871 (−68.5%)

Figure 5. Thermodynamic features and the univolatility line of methanol−THF and THF−water with DMSO under different pressures.



performed. The cost data and design parameters of the optimal
design at reduced pressure are shown in Table 2 and Figure 8.
From Figure 6, the optimal pressures for C1, C2, and C3 are

0.5, 0.7, and 0.1 atm. The effects of three operating pressures
P1, P2, and P3 on the process FEC and TAC are similar. With
the decrease of P1, for instance, the value of TAC first
decreases until the optimal pressure and then increases, while
the value of energy cost FEC always decreases. The decrease of
FEC is attributed to three advantages of reduced pressure. (1)
The entrainer flow rate decreases at lower pressure, as shown
in Figure 5, which leads to the reduction of reboiler duties and
FEC. (2) The relative volatilities of the five binary systems
(THF−DMSO, THF−water, water−DMSO, THF−methanol,
and methanol−water) are all increased when operating
pressures decrease, as displayed in Figure 7. (3) Low-pressure
steam is capable of heating the reboiler of the regeneration
column C3 at reduced pressure (case 3 in Table 2), while high-
pressure steam is needed for that at atmosphere (case 2 in
Table 1). The trend of decreasing TAC when pressure is
higher than its optimal value is due to the saving of FEC, while
the trend of increasing TAC when pressure is lower than its
optimal value is because of the two penalties caused by

reduced pressure. First, the diameters of the columns at
reduced pressure (case 3) increase compared to that at
atmosphere (case 2), although the entrainer flow rate and
reflux ratios are reduced. Second, the heat exchanger areas of
condensers increase due to the decrease of temperature driving
force at reduced pressure. In a word, comparing case 3 with

Figure 6. Effect of operating pressures P1, P2, and P3 on the TAC and
FEC for the total process.

Table 2. Optimal Design for Reduced-Pressure Extractive
Distillation

case 3

parameter C1 C2 C3

N 57 41 16

P (atm) 0.5 0.7 0.1

FAB (kmol/h) 500 − −

FE (kmol/h) 192.4 − −

D (kmol/h) 125.05 187.55 187.55

NF 35 31 6

NFE 3 − −

RR 2.155 0.858 0.198

diameter (m) 1.898 1.425 1.998

CO2 emissions (kg/h) 3666.1

energy cost (106$/year) 2.176

capital cost (106$) 3.960

FEC (kJ/kmol) 23299.8

exergy loss (MW) 2.879

TAC (106$/year) 3.498

Figure 7. Percent increment of relative volatilities from 1 to 0.5 atm
for five binary mixtures; j means the first component of the binary
mixture.

Figure 8. Simulation setup and optimal reduced-pressure design of
THF−methanol−water extractive distillation with DMSO (the design
of case 3).



case 2, the two penalties lead to the increase of capital cost by
13.4%, whereas the three advantages result in the decrease of
energy cost by 19.6%, which gives a reduction of TAC, CO2

emissions, FEC, and exergy loss by 9.6%, 19.2%, 19.4%, and
23.2%, respectively.

5. DOUBLE-EFFECT HEAT-INTEGRATED EXTRACTIVE
DISTILLATION

On the basis of the optimal design of reduced-pressure
extractive distillation (case 3), the double-effect heat
integration (DEHI) method is considered for further
improving energy efficiency and reducing energy cost. The
principal of DEHI is to use the heat duty of the condenser(s)
to heat the reboiler(s) via adjusting the operating pressure to
supply enough temperature driving force so as to save the
energy cost and capital cost of one reboiler and reduce the
TAC of the total process. In the studied extractive distillation
process, there are three condensers and three reboilers, but
there is no temperature driving force from any condenser to
any reboiler, so the operating pressure has to be elevated to
increase the temperature in the condenser(s) to implement the
heat integration. Theoretically, there are six possible locations
to conduct the DEHI, but not all of them are practical, since
the bottom temperature for the high-pressure column should
not exceed the temperature of the high-pressure steam. Table 3
shows all the possible configurations for implementing DEHI
in a three-column flowsheet.

After several trials, we finally find two potential config-
urations for DEHI, as shown in Figure 9: model 1 is to
integrate the condenser heat duty of C2 to the reboiler heat
duty of C1, and model 2 is to employ the condenser of C3 to
heat up the reboiler of C1. In addition, the triple-effect heat
integration (TEHI) method (integrating QC2 and QR1

meanwhile integrating QC3 and QR2) is failed because the
bottom temperature of C3 would be higher than the upper-
limit temperature of high-pressure steam.
5.1. Double-Effect Heat Integration of Model 1. For

this configuration, the key parameter is the operating pressure
P2 of C2. It is increased to provide the temperature driving
force between the condenser of C2 and the reboiler of C1.
Meanwhile, the reflux ratio of C2 is adjusted to satisfy the
product purity of methanol. There are three possible
conditions for the DEHI process: direct partial heat integration
(DPHI), direct full heat integration (DFHI), and optimal heat
integration (OHI).41 The OHI process goes one step further
than the DPHI and DFHI processes by optimizing the eight
variables (NFE, NF1, NF2, NF3, FE, RR1, RR2, RR3) together via a
two-step optimization procedure, but under the minimization
of an improved full energy consumption (FEC2), as shown in
eq 6. The meaning of the variables and the value of the factors
are the same as in section 2.3.
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One thing that should be mentioned is that although the
optimal design of RPED (case 3) in Figure 8 shows that QC2 is
less than QR1 for the studied process, QC2 would be higher than
QR1 after adjusting the operating pressure, because the increase
of reflux ratio (RR2) caused by reaching product purity
constraints. Therefore, the heat duty required in the bottom of
C1 could be totally supplied by part of the heat duty from the
top of C2 and there is no need to perform DFHI processes.
The results corresponding to selecting the optimal value of P2
for DPHI and OHI designs are displayed in Table 4.
From Table 4, there are two strange but reasonable

phenomenons. First, why RR3 and RR2 are increased when
only P2 is adjusted from case 4a to case 4f at DPHI
configurations? The superficial reason is that the purity of
water in C3 could not satisfy the specification, even when all
the other design parameters are kept the same as that in case 3.
The essential reason is that the feeding temperature of C3 at
the DEHI configuration is much higher than that at the RPED
configuration, resulting in the decrease of the reboiler heat
duty of C3 following the principle of distillation and further the

Table 3. All Possible DEHI Configurations for Three-
Column Extractive Distillation Flowsheet

model 1 2 3 4 5 6

cold source QR1 QR1 QR2 QR2 QR3 QR3

heat source QC2 QC3 QC1 QC3 QC1 QC2

comment yes yes no no no no

Figure 9. Sketch for double-effect heat-integrated extractive
distillation process: (a) model 1 and (b) model 2.



subquality product purity in C3. Second, why is the heat duty
of the reboiler in C3 (QR3) reduced while the reflux ratio
(RR3) is increased? It is because more heat duty is taken into
C3 by the feed stream W2 (see Figure 9a) at a higher value of
P2, leading to the increase of RR3 and the decrease of QR3.
Compared with case 3 in Table 2, cases 4a−4g in Table 4 for

DEHI configurations perform much better since FEC2, CO2

emissions, exergy loss, and TAC are reduced drastically.
Following the increase of P2, energy consumption FEC2 and
CO2 emissions increase all the time because increasing P2
would reduce the relative volatility of the studied system, as
shown in Figure 7. The exergy loss increase with the increasing
of P2 is due to the increase of the temperature difference of the
integrated heat exchanger. However, TAC first decreases to a
minimum value when P2 is at its optimal value (2.9 atm) and
then increases. The reason is that the ΔT (temperature driving
force) for the heat exchanger increases at higher P2 and the
heat exchange area (AHI) decreases quickly, leading to the
saving of capital cost and TAC. When ΔT is high enough, the
benefit of increasing P2 is overwhelmed by its penalty (the
decrease of relative volatility and the increase of energy cost

caused by high-pressure steam) and TAC increases. Most
importantly, at the optimal value of P2 (2.9 atm), case 4g in the
OHI condition, gives a further reduction in TAC, FEC2, and
CO2 emissions compared to case 4c in the DPHI condition.
This demonstrates that the OHI condition could perform
better than the DPHI condition for the studied system, which
is consistent with the literature.40

5.2. Double-Effect Heat Integration of Model 2. In the
DEHI of model 2, the QC3 would be employed as heat source
for QR1, so the operating pressure (P3) of C3 has to be
increased to supply enough temperature driving force between
the top of C3 and the bottom of C1. Meanwhile, RR3 is
adjusted to overcome the drawback caused by the high
pressure and to reach the product purity specification. DPHI is
first conducted to find the optimal value of P3 by minimizing
TAC, and then DFHI and OHI processes are evaluated for
comparison. The full energy consumption is amended as eq 7,
the meaning of the variables and the value of the factors are
also the same as in section 2.3. The effect of P3 on the DPHI
condition and the results of DFHI and OHI at optimal P3 are
displayed in Table 5.

Table 4. Key Cost Data of DPHI and OHI for Double-Effect Heat Integration Model 1 Based on RPED Case 3

parameter case 4a case 4b case 4c case 4d case 4e case 4f case 4g

condition DPHI DPHI DPHI DPHI DPHI DPHI OHI

P2 (atm) 2.6 2.8 2.9 3.0 3.2 3.5 2.9

RR2 1.285 1.310 1.322 1.340 1.371 1.418 1.313

RR3 0.260 0.265 0.268 0.271 0.276 0.283 0.269

QR2 (MW) 5.159 5.234 5.271 5.317 5.398 5.519 5.250

QC3 (MW) 2.839 2.851 2.857 2.864 2.875 2.891 2.859

QR3 (MW) 2.253 2.216 2.214 2.203 2.179 2.145 2.208

Qcooler (MW) 0.657 0.657 0.657 0.657 0.657 0.657 0.661

ΔT (K) 5.7 8.0 9.1 10.1 12.1 15.0 9.1

AHI (m
2) 1219.7 869.0 764.0 688.4 574.6 463.5 764.2

QHI (MW) 3.949 3.949 3.949 3.949 3.949 3.949 3.950

QC2 (MW) 0.013 0.035 0.046 0.067 0.101 0.154 0.029

QR1 (MW) 0 0 0 0 0 0 0

CO2 emissions (kg/h) 2678.3 2696.8 2705.8 2718.8 2740.5 3156.0 2696.0

FEC2 (kJ/kmol) 20862.3 20998.5 21067.1 21164.5 21328.4 21572.2 20993.7

exergy loss (MW) 2.099 2.113 2.120 2.130 2.147 2.650 2.118

TAC (106$/year) 3.103 3.071 3.066 3.071 3.09 3.153 3.057

Table 5. Key Cost Data of DPHI, DFHI, and OHI for Double-Effect Heat Integration Model 2 Based on RPED Case 3

parameter case 5a case 5b case 5c case 5d case 5e case 5f case 5g

condition DPHI DPHI DPHI DPHI DPHI DFHI OHI

P3 (atm) 0.7 0.9 1.0 1.1 1.5 1.0 1.0

RR2 0.858 0.858 0.858 0.858 0.858 0.858 0.855

RR3 0.197 0.197 0.197 0.197 0.197 0.854 0.190

QC2 (MW) 3.461 3.461 3.461 3.461 3.461 3.461 3.455

QR2 (MW) 3.909 3.909 3.909 3.909 3.909 3.909 3.906

QR3 (MW) 3.127 3.218 3.259 3.296 3.427 4.658 3.246

Qcooler (MW) 1.084 1.167 1.204 1.238 1.358 1.204 1.212

ΔT (K) 5.0 11.8 14.7 17.4 26.5 14.7 14.7

AHI (m
2) 907.7 381.8 305.4 257.2 167.1 16.4 305.8

QHI (MW) 2.578 2.559 2.550 2.542 2.515 3.949 2.536

QC3 (MW) 0 0 0 0 0 0 0

QR1 (MW) 1.371 1.391 1.4 1.408 1.435 0 1.404

CO2 emissions (kg/h) 3207 3253.7 3274.7 3293.7 3360.2 3396.4 3269.8

FEC3 (kJ/kmol) 20471.5 20764.6 20894.5 21015.6 21435.0 21736.7 20864.5

exergy loss (MW) 2.608 2.648 2.665 2.681 2.737 2.839 2.665

TAC (106$/year) 3.291 3.209 3.204 3.205 3.226 3.331 3.199
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From Table 5, the DEHI model 2 could also reduce the
TAC, FEC3, exergy loss, and CO2 emissions compared with
RPED (case 3) in Table 2, but it shows a higher TAC value
than DEHI model 1 in Table 4, which means that DEHI model
1 is superior to DEHI model 2.
For DPHI processes, FEC and CO2 emissions increase with

the increase of P3. This is mainly because of the decrease of
relative volatility between water and DMSO at high pressure.
The exergy loss is also increased with the increasing of P3; this
is because the increase of temperature difference of the
integrated heat exchanger. TAC first decreases and then
increases when P3 increases. This is due to the trade-off
between the energy cost and capital cost. When P3 is at a lower
value, the temperature difference for heat transfer is relatively
small (e.g., 5.0 K at 0.7 atm in case 5a), and the heat exchanger
area decreases quickly as the temperature driving force
increases from a small value, leading to the decrease of capital
cost and TAC until the optimal value of P3 (1 atm). However,
when P3 and the temperature difference are high enough, the
benefit of increasing the temperature difference is lessened.
Meanwhile, the operating cost in the column C3 caused by the
increase of operating pressure augments gradually until the
benefit of increasing P3 is overwhelmed by its penalty, resulting
in the increase of TAC.
For the DFHI process named case 5f in Table 5, it is

performed on the basis of case 5c through the design
specification tool in Aspen Plus by setting the specification
of (QR1 − QC3) as zero and RR3 as variable. Compared with

case 5c in DPHI condition, the TAC, FEC3, and CO2

emissions of case 5f in the DFHI condition are not saved
but enlarged by 3.9%, 4.0%, and 3.7% despite the integrated
heat duty increasing by 55%. The reason is that RR3 has to be
increased to make QC3 increase until (QR1 − QC3) is zero.
Meanwhile, the corresponding QR3 has to be increased to
supply the energy requirement and the price of the needed
steam is higher than that in QR2, which results in the increase
of FEC3 and TAC. This result reminds us that it is unsuitable
to pursue more heat duty being integrated when considering
the DEHI process. Furthermore, there should be optimal heat
duty for the DEHI process, which corresponds to the
minimum TAC.
The OHI process is one useful way to find the optimal heat

duty.40 The result for the OHI condition is displayed in Table
5 as case 5g. Compared with cases 5a−5f, the TAC, FEC3, and
CO2 emissions in case 5g are all decreased and the optimal
heat duty is 2.536 MW for the studied process. Again, the OHI
condition leads to the best design (lowest TAC).
In summary, DEHI model 1 outperforms DEHI model 2 for

RPED design from both economic and environmental views,
and the best design is case 4g. Compared with the RPED
design (case 3) without heat integration, the TAC, FEC2, and
CO2 emissions of our best design (case 4g) are cut down by
12.6%, 9.8%, and 26.3%, respectively. In addition, compared
with the optimal CED design (case 2), the TAC, FEC2, and
CO2 emissions of our best design are reduced by 21.0%, 27.3%,
and 40.5%, respectively. Compared with the design in the
literature (case 1), the TAC, FEC2, and CO2 emissions of our
best design are decreased by 75.1%, 80.5%, and 84.2%,
respectively. The detailed results of the final design flowsheet
of case 4g are shown in Figure 10.

6. CONCLUSIONS

In this work, an energy-efficient RPED with heat integration
was proposed for the separation of the biazeotropic ternary
mixture THF−methanol−water, and we built a systematic
approach that involves the selection of entrainer and the
determination of operating pressure based on a thermody-
namic insight study of residue curve maps and the univolatility

Figure 10. Optimal heat integration extractive distillation for THF−methanol−water with DMSO (the design of case 4g).



line, global optimization based on a two-step optimization
procedure, and double-effect heat integration to achieve
further energy savings.
From the study of thermodynamic insight, three conclusions

are obtained: (1) it feasible to simultaneously break the two
azeotropes in one extractive column, which is illustrated by the
distinction of classes 1.0−1a−m1 and 1.0−1a−m2 based on
the general feasibility criterion; (2) DMSO is a much better
entrainer for the studied ternary mixture by the prediction of
its xp location, which represents the minimum entrainer usage
for breaking the azeotropic points; and (3) reduced pressure,
which affects the location of xp, is a better choice.
On the basis of the analysis above, two flowsheets are

proposed and optimized by the two-step optimization
procedure: conventional extractive distillation (CED) and
reduced pressure extractive distillation (RPED). For CED,
compared with the literature design, the TAC, FEC, and exergy
loss of our optimal CED process (case 2) are decreased by
73%, 69%, and 74.7%. For RPED, the optimal pressures for the
three columns are P1 = 0.5 atm, P2 = 0.7 atm, and P3 = 0.1 atm.
The three benefits and two penalties of reducing the operating
pressure are illustrated. The RPED process exhibits great
reductions of TAC, CO2 emissions, exergy loss, and FEC by
9.6%, 19.2%, 23.2%, and 19.4% compared with the CED
process.
RPED with a heat integration flowsheet is proposed to

further reduce energy consumption. Two new objective
functions (FEC2 and FEC3) are defined to conduct
optimization. The results showed that the OHI process in
the configuration of model 1 performs best in terms of
economy. Two strange phenomenons of the increase of RR3

and the decrease of QR3 are explained reasonably. The optimal
RPED with a heat integration process (case 4g) gives a massive
reduction in TAC, energy consumption, exergy loss, and CO2

emissions by 75.2%, 80.5%, 85.8%, and 84.2% compared with
the literature design (case 1).
It is worth mentioning that the proposed systematic

approach could be widely applied for separating other complex
biazeotropic ternary mixtures to recover the valuable resources
and pursue sustainable development.
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■ NOMENCLATURE

AC condenser heat transfer area (m2)
AR reboiler heat transfer area (m2)
AHI heat transfer area for heat-integrated heat exchanger of

the DEHI process (m2)
C1 the first column
C2 the second column
C3 the third column
D1 distillate flow rate of column C1 (kmol/h)
D2 distillate flow rate of column C2 (kmol/h)
D3 distillate flow rate of column C3 (kmol/h)
DEHI double-effect heat integration
DFHI direct full heat integration
DPHI direct partial heat integration
FAB flow rate of the original azeotropic mixture (kmol/h)
FE flow rate of the entrainer (kmol/h)
FEC full energy consumption for process without heat

integration
FEC2 full energy consumption for DEHI model 1
FEC3 full energy consumption for DEHI model 2
N1 number of theoretical stages of column C1
N2 number of theoretical stages of column C2
N3 number of theoretical stages of column C3
NFE feed location of entrainer
NFAB feed location of original azeotropic mixture
NF2 feed location of column C2
NF3 feed location of column C3
OHI optimal heat integration
P1 pressure of column C1 (atm)
P2 pressure of column C2 (atm)
P3 pressure of column C3 (atm)
QC1 condenser heat duty of column C1 (MW)
QC2 condenser heat duty of column C2 (MW)
QC3 condenser heat duty of column C3 (MW)
QR1 reboiler heat duty of column C1 (MW)
QR2 reboiler heat duty of column C2 (MW)
QR3 reboiler heat duty of column C3 (MW)
QHI integrated heat duty for the DEHI process (MW)
RR1 reflux ratio of column C1
RR2 reflux ratio of column C2
RR3 reflux ratio of column C3
SQP sequential quadratic programming
TAC total annual cost (106 $/year)
TC1 top temperature of column C1 (K)
TC2 top temperature of column C2 (K)
TC3 top temperature of column C3 (K)
TR1 bottom temperature of column C1 (K)
TR2 bottom temperature of column C2 (K)
TR3 bottom temperature of column C3 (K)
xD1 distillate fraction of column C1
xD2 distillate fraction of column C2
xD3 distillate fraction of column C3

Greek Letters

αi‑j volatility of component i relative to component j
γi activity coefficient of component i
τ binary interaction parameter in the NRTL model
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Antonio, C.; Briones-Ramírez, A. Design and optimization, using
genetic algorithms, of intensified distillation systems for a class of
quaternary mixtures. Comput. Chem. Eng. 2009, 33, 1841−1850.
(26) You, X.; Rodriguez-Donis, I.; Gerbaud, V. Investigation of
Separation Efficiency Indicator for the Optimization of the Acetone−
Methanol Extractive Distillation with Water. Ind. Eng. Chem. Res.
2015, 54, 10863−10875.
(27) You, X.; Gu, J.; Gerbaud, V.; Peng, C.; Liu, H. Optimization of
pre−concentration, entrainer recycle and pressure selection for the
extractive distillation of acetonitrile−water with ethylene glycol.
Chem. Eng. Sci. 2018, 177, 354−368.
(28) Osuolale, F. N.; Zhang, J. Energy efficiency optimization for
distillation column using artificial neural network models. Energy
2016, 106, 562−578.
(29) Li, L.; Tu, Y.; Sun, L.; Hou, Y.; Zhu, M.; Guo, L.; Li, Q.; Tian,
Y. Enhanced Efficient Extractive Distillation by Combining Heat−
Integrated Technology and Intermediate Heating. Ind. Eng. Chem. Res.
2016, 55, 8837−8847.
(30) Ghuge, P. D.; Mali, N. A.; Joshi, S. S. Comparative Analysis of
Extractive and Pressure Swing Distillation for Separation of THF−
water Separation. Comput. Chem. Eng. 2017, 103, 188−200.
(31) Knapp, J. P.; Doherty, M. F. Thermal Integration of
Homogeneous Azeotropic Distillation Sequences. AIChE J. 1990,
36, 969−984.
(32) Luyben, W. L. Comparison of Extractive Distillation and
Pressure−Swing Distillation for Acetone−Methanol Separation. Ind.
Eng. Chem. Res. 2008, 47, 2696−2707.
(33) Agrawal, R.; Fidkowski, Z. T. Are Thermally Coupled
Distillation Columns Always Thermodynamically More Efficient for
Ternary Distillations? Ind. Eng. Chem. Res. 1998, 37, 3444−3454.
(34) Brito, K. D.; Cordeiro, G. M.; Figueired̂o, M. F.; Vasconcelos,
L. G. S.; Brito, R. P. Economic evaluation of energy saving alternatives
in extractive distillation process. Comput. Chem. Eng. 2016, 93, 185−
196.
(35) Uwitonze, H.; Hwang, K. S.; Lee, I. A new design method and
operation of fully thermally coupled distillation column. Chem. Eng.
Process. 2016, 102, 47−58.
(36) Bravo-Bravo, C.; Segovia-Hernańdez, J. G.; Gutieŕrez-Antonio,
C.; Durań, A. L.; Bonilla-Petriciolet, A.; Briones-Ramírez, A.
Extractive dividing wall column, design and optimization. Ind. Eng.
Chem. Res. 2010, 49, 3672−3688.
(37) Wu, Y. C.; Hsu, P. H. C.; Chien, I. L. Critical assessment of the
energy−saving potential of an extractive dividing−wall column. Ind.
Eng. Chem. Res. 2013, 52, 5384−5399.
(38) Kiss, A. A.; Ignat, R. M. Innovative single step bioethanol
dehydration in an extractive dividing−wall column. Sep. Purif. Technol.
2012, 98, 290−297.
(39) Luo, H.; Bildea, C. S.; Kiss, A. A. Novel heat−pump−assisted
extractive distillation for bioethanol purification. Ind. Eng. Chem. Res.
2015, 54, 2208−2213.
(40) You, X.; Rodriguez-Donis, I.; Gerbaud, V. Reducing Process
Cost and CO2 Emissions for Extractive Distillation by Double−effect
Heat Integration and Mechanical Heat Pump. Appl. Energy 2016, 166,
128−140.



(41) Gu, J.; You, X.; Tao, C.; Li, J.; Shen, W.; Li, J. Improved design
and optimization for separating tetrahydrofuran−water azeotrope
through extractive distillation with and without heat integration by
varying pressure. Chem. Eng. Res. Des. 2018, 133, 303−313.
(42) Luyben, W. L.; Chien, I. L. Design and Control of Distillation
Systems for Separating Azeotropes; John Wiley & Sons, 2011.
(43) De Figueiredo, M. F.; Brito, K. D.; Ramos, W. B.; Sales
Vasconcelos, L. G. S.; Brito, R. P. Effect of solvent content on the
separation and the energy consumption of extractive distillation
columns. Chem. Eng. Commun. 2015, 202, 1191−1199.
(44) De Koeijer, G.; Rivero, R. Entropy production and exergy loss
in experimental distillation columns. Chem. Eng. Sci. 2003, 58, 1587−
1597.
(45) Suphanit, B.; Bischert, A.; Narataruksa, P. Exergy loss analysis
of heat transfer across the wall of the dividing-wall distillation column.
Energy 2007, 32, 2121−2134.
(46) You, X.; Rodriguez-Donis, I.; Gerbaud, V. Improved Design
and Efficiency of the Extractive Distillation Process for Acetone−
Methanol with Water. Ind. Eng. Chem. Res. 2015, 54, 491−501.
(47) Modla, G. Reactive pressure swing batch distillation by a new
double column system. Comput. Chem. Eng. 2011, 35, 2401−2410.
(48) Gerbaud, V.; Rodriguez-Donis, I. Chapter 6. Extractive
Distillation. In Distillation: Equipment and Processes; Gorak, A.,
Olujic, Z., Eds.; Elsevier: Oxford, 2014; p 201.
(49) Lee, J.; Cho, J.; Kim, D. M.; Park, S. Separation of
tetrahydrofuran and water using pressure swing distillation: Modeling
and optimization. Korean J. Chem. Eng. 2011, 28, 591−596.
(50) Wang, Y.; Cui, P.; Zhang, Z. Heat−Integrated Pressure−Swing-
Distillation Process for Separation of Tetrahydrofuran/Methanol with
Different Feed Compositions. Ind. Eng. Chem. Res. 2014, 53, 7186−
7194.




