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It is mathematical folklore that

1 + 2 + 3 + 4 + • • • = - 1 12
This result is usually achieved using elaborate analytical methods, such as zeta function regularization or Ramanujan summation [Hardy, 1949]. However, in its notebooks, Ramanujan has also provided a very simple derivation which relied instead on algebraic manipulations. Recently, a video 1 from Numberphile has presented a similar derivation of the result (provoking lots of discussions and debates about the meaning of such an equality 2 ). It can be sketched as follows.

Consider the infinite sums:

A = 1 -1 + 1 -1 + 1 -1 + • • • B = 1 -2 + 3 -4 + 5 -6 + • • • S = 1 + 2 + 3 + 4 + 5 + 6 + • • •
We first have

A = 1 -(1 + 1 -1 + 1 -1 + 1 -1 + • • • ) = 1 -A so that A = 1 2 . Then, B -A = 1 -2 + 3 -4 + 5 -6 + • • • -1 + 1 -1 + 1 -1 + 1 + • • • = 0 -1 + 2 -3 + 4 -5 + • • • = -B so that B = 1 2 A = 1 4 . Finally, S -4S = 1 + 2 + 3 + 4 + 5 + 6 + • • • -4 -8 -12 -• • • = 1 -2 + 3 -4 + 5 -6 + • • • = B 1 An Algebraic Construction
In the following, (A, ⊗) will denot a unital commutative algebra over a field K.

Definition 1 Let M be a subalgebra of A. A vector subspace

F of A is M - stable if: M ⊆ F and ∀ m ∈ M, u ∈ F , m ⊗ u ∈ F Moreover, an M -form on F is a linear form ϕ : F → K such that ϕ(1) = 1 and ∀ m ∈ M, u ∈ F , ϕ(m ⊗ u) = ϕ(m)ϕ(u)
Consider now an M -form ϕ defined on an M -stable subspace F . Given m ∈ M and x ∈ A, if ϕ(m) = 0 and m ⊗ x ∈ F , we define

ϕ m (x) = ϕ(m ⊗ x) ϕ(m)
If n ∈ M is also such that ϕ(n) = 0 and n ⊗ x ∈ F , then

ϕ n (x) = ϕ(n ⊗ x) ϕ(n) = ϕ(m)ϕ(n ⊗ x) ϕ(m)ϕ(n) = ϕ m ⊗ (n ⊗ x) ϕ(m ⊗ n) = ϕ n ⊗ (m ⊗ x) ϕ(n ⊗ m) = ϕ(n)ϕ(m ⊗ x) ϕ(n)ϕ(m) = ϕ(m ⊗ x) ϕ(m) = ϕ m (x)
This observation suggests the following definition.

Definition 2 Given a subalgebra M of A, an M -stable subspace F of A and an M -form ϕ on F , we define the M -extension of F w.r.t. ϕ as

Ext M (F, ϕ) = ( F , ϕ) where F = x ∈ A ∃ m ∈ M : ϕ(m) = 0 and m ⊗ x ∈ F
and, for all x ∈ F , ϕ(x) is the common value of all the ϕ m (x) for m ∈ M such that ϕ(m) = 0 and m ⊗ x ∈ F .

The next result justifies the term "extension":

Proposition 1 If F is M -stable, then for ( F , ϕ) = Ext M (F, ϕ), we have F ⊆ F and ϕ| F = ϕ.
Proof For all x ∈ F , 1 ⊗ x ∈ F so that, as ϕ(1) = 1 = 0, x ∈ F , and

ϕ(x) = ϕ 1 (x) = ϕ(1 ⊗ x) ϕ(1) = ϕ(x)
Moreover, clearly, if F 1 ⊆ F 2 are two M -stables subspaces, and if ϕ is an M -form on F 2 , then ϕ| F1 is an M -form on F 1 and for (

F 1 , ϕ 1 ) = Ext M (F 1 , ϕ| F1 ) and ( F 2 , ϕ 2 ) = Ext M (F 2 , ϕ), we have F 1 ⊆ F 2 and ϕ 1 = ϕ 2 | F1
Proposition 2 With the previous notations, F is a vector subspace of A and ϕ is linear.

Proof Let u, v ∈ F , and let m, n ∈ M be such that ϕ(m) = 0, ϕ(n) = 0, m ⊗ u ∈ F and n ⊗ v ∈ F . Let moreover λ ∈ K. One has (m ⊗ n) ⊗ (λu + v) = (m ⊗ n) ⊗ λu + (m ⊗ n) ⊗ v = n ⊗ (m ⊗ λu) + m ⊗ (n ⊗ v) = λ n ⊗ (m ⊗ u) + m ⊗ (n ⊗ v) so that λu + v ∈ F . Moreover, ϕ(λu + v) = ϕ (m ⊗ n) ⊗ (λu + v) ϕ(m ⊗ n) = ϕ n ⊗ (m ⊗ λu) + m ⊗ (n ⊗ v) ϕ(m ⊗ n) = λ ϕ(n)ϕ(m ⊗ u) ϕ(m)ϕ(n) + ϕ(m)ϕ(n ⊗ v) ϕ(m)ϕ(n) = λ ϕ(u) + ϕ(v)
As M is stable by product, it is M -stable, so that one can define M = Ext M (M, ϕ| M ) (we drop the reference to the extension of ϕ| M as it is the restriction of ϕ to M ).

Proposition 3 F is M -stable and ϕ is an M -form on F . Proof Given u ∈ F , m ∈ M , we want to show that m ⊗ u ∈ F , i.e. that there exists an n ∈ M such that n ⊗ m ⊗ u ∈ F . Let a, b ∈ M be such that ϕ(a) = 0, ϕ(b) = 0, a ⊗ u ∈ F and b ⊗ m ∈ M and let n = a ⊗ b. We have n ⊗ (m ⊗ u) = (b ⊗ m) ∈M ⊗ (a ⊗ u) ∈F ∈ F so that m ⊗ u ∈ F , as ϕ(a ⊗ b) = 0. Now, ϕ(m ⊗ u) = ϕ (a ⊗ b) ⊗ (m ⊗ u) ϕ(a ⊗ b) = ϕ (b ⊗ m) ⊗ (a ⊗ u) ϕ(a ⊗ b) = ϕ(b ⊗ m)ϕ(a ⊗ u) ϕ(b)ϕ(a) = ϕ(m) ϕ(u)
Corollary 4 M is a unital subalgebra of A and ϕ is an algebra homomorphism from M to K.

Proof It is M -stable, so that it is stable by product in addition to being a vector subspace of A. Similarly, ϕ is linear and preserves products.

As F is M -stable and ϕ is an M -form on F , one might want to consider the M -extension of F w.r.t. ϕ. The next result shows that this is useless.

Proposition 5 If ( F , ϕ) = Ext M ( F , ϕ), then ( F , ϕ) = ( F , ϕ). Proof It is sufficient to prove that F ⊆ F . For any x ∈ F , there exists m ∈ M such that m ⊗ x ∈ F . But then, there exists n ∈ M such that n ⊗ m ⊗ x ∈ F . Finally, as m ∈ M , there exists p ∈ M such that p ⊗ m ∈ M . As a consequence, p ⊗ n ⊗ m ⊗ x ∈ F . Now, p ⊗ m ∈ M so that p ⊗ n ⊗ m ∈ M and hence x ∈ F . Proposition 6 (Cancellation Property) If m ∈ M is such that ϕ(m) = 0, then ∀ x ∈ A, x ∈ F ⇐⇒ m ⊗ x ∈ F Proof Obviously, as F is M -stable, we have x ∈ F =⇒ m ⊗ x ∈ F . Con- versely, if m ⊗ x ∈ F , as ϕ(m) = 0, we deduce that x ∈ F , i.e. x ∈ F .
Finally, we provide a simple criteria for proving that an element of A is not in M .

Proposition 7 For all

x ∈ A, if there exists m ∈ M such that ϕ(m) = 0, m ⊗ x ∈ F and ϕ(m ⊗ x) = 0, then x ∈ F .
Proof Suppose otherwise, and let n ∈ M such that ϕ(n) = 0 and n ⊗ x ∈ F . One then has

0 = ϕ(m) ϕ(n ⊗ x) = ϕ(m ⊗ n ⊗ x) = ϕ(n) ϕ(m ⊗ x) = 0
which is clearly absurd.

Numerical Series and the Cauchy Product

A context where the previous construction appears naturally is the algebra of complex-valued sequences equipped with the Cauchy product defined as

∀ n ∈ N, (u ⊗ v) n = n k=0 u k v n-k
In this context, the Mertens theorem states that given two convergent sequences u and v, if at least one of them is absolutely convergent, then their Cauchy product u ⊗ v is convergent and verifies

∞ k=0 (u ⊗ v) k = ∞ i=0 u i ∞ j=0 v j
Moreover, if both u and v are absolutely convergent, then so is u ⊗ v.

Let now Co (resp. AC) denote the set of convergent (resp. absolutely convergente) series and define:

∀ u ∈ Co, Σ(u) = ∞ k=0 u k
The Mertens theorem tells us that AC is a unital subalgebra of C N , that Co is AC-stable, and that Σ is an AC-form on Co. It is then possible to define

( Co, Σ) = Ext AC (Co, Σ)
Proposition 8 This extension is regular, linear and stable.

Proof The regularity (which states that ∀ u ∈ Co, Σ(u) = Σ(u)) and linearity follow directly from propositions 1 and 2. Stability, which states that (u 0 , u 1 , u 2 , . . .) ∈ F ⇐⇒ (0, u 0 , u 1 , u 2 , . . .) ∈ F and that they have the same sum, follows directly from the cancellation property: as ϕ(e 1 ) = 0, if u = (u 0 , u 1 , u 2 , . . .) and v = (0, u 0 , u 1 , u 2 , . . .)

then we have e 1 ⊗ u = v, hence u ∈ F ⇐⇒ v = e 1 ⊗ u ∈ F and, of course, ϕ(v) = ϕ(e 1 ) ϕ(u) = ϕ(u).
In the following, the extension of Σ will also be denoted Σ, dropping the tilde.

Particular Sequences

Let us now review some notable elements of Co and, even, of AC which, we recall, is a unital subalgebra of C N . Definition 3 (Geometric sequences) For α ∈ C, let us define the geometric sequence G α = α k k∈N = (1, α, α 2 , α 3 , . . .).

Proposition 9 For all α = 1,

G α ∈ AC with Σ(G α ) = 1 1 -α .
Proof This is a direct consequence of having G α ⊗ (e 0αe 1 ) = e 0 .

For α = -1, we recognize Grandi's series, so that we have shown that

G -1 ∈ AC with Σ(G -1 ) = Σ(e 0 ) Σ(e 0 + e 1 ) = 1 2 Proposition 10 G 1 ∈ Co
Proof This follows from proposition 7, as

G 1 ⊗ (e 0 -e 1 ) = e 0 ∈ Co
with Σ(e 0 ) = 1 = 0 while Σ(e 0e 1 ) = 0.

Definition 4 For n ∈ N, let us define

T n = (-1) k n + k n k∈N = (-1) k (k + 1) n n! k∈N AP n = (-1) k (k + 1) n k∈N = 1, -2 n , 3 n , -4 n , 5 n , . . .
where x n denotes the rising factorial of x to the n :

x n = x × (x + 1) × • • • × (x + n -1)
It can be remarked that

T 0 = AP 0 = (-1) k ) k∈N = G -1 .
Proposition 11 For all n ∈ N, we have

T n ∈ AC with Σ(T n ) = 1 2 n+1 .
Proof This is a direct consequence of the fact that AC is stable by product and that

T n = n k=0 G -1
Let (B + n ) denote the second Bernoulli numbers, and n k the Stirling numbers of the second kind.

Proposition 12 For all n ∈ N, AP n ∈ AC with

Σ(AP n ) = 2 n+1 -1 n + 1 B + n+1
Proof From the equality

∀ x ∈ R, ∀ n ∈ N, x n = n k=0 (-1) n-k n k x k ,
we directly deduce that

∀ n ∈ N, AP n = n k=0 (-1) n-k k! n k T k
so that AP n ∈ AC, and the value (AP n ) follows from the representation of second Bernoulli numbers B + n using Worpitzky numbers [Worpitzky, 1883]:

B + n = n 2 n+1 -2 n-1 k=0 (-2) -k k! n k + 1
Definition 5 (Powers) For all n ∈ N, we define

P n = (k + 1) n k∈N = (1, 2 n , 3 n , . . .)
Proposition 13 P 1 ∈ Co Proof We have P 1 ⊗ (e 0 -2e 1 + e 2 ) = e 0 , with ϕ(e 0 -2e 1 + e 2 ) = 0 and ϕ(e 0 ) = 0.

The previous proposition shows that considering extension Co is not sufficient for affecting a sum to P 1 . This is obviously not suprising as it is well know that a stable extension assigning a sum to P 1 would lead to inconsistencies such as 1 = 0. However, other extensions, based on other products, can be considered.

A second product

In this section, we will consider the following product:

(u ⊛ v) n = ij=n+1 u i-1 v j-1
In terms of e k , this corresponds to having e i ⊛ e j = e k with k + 1 = (i + 1)(j + 1). This product is associative and commutative, and has e 0 as neutral element. Moreover, the set Fin of finite sequences is a unital subalgebra of (C N , ⊛).

It is clear that if x ∈ Co (resp. AC, Fin) then so is x ⊛ e k and hence, by linearity, that Co (resp. AC, Fin) is Fin-stable w.r.t. ⊛ and we have Σ(x ⊛ e k ) = Σ(x)Σ(e k ).

Proposition 14 Co (resp. AC) is Fin-stable w.r.t. ⊛ and ϕ is a Fin-form on Co with regard to ⊛.

Proof Let is first remark that for all i, j, k ∈ N, 

This suggests to consider the extension of Σ on Co to

Ext ⊛

Fin Co This extension is linear and preservative but it is not stable, as we will see after the next result.

Proposition 15 For all n ∈ N, P n ∈ Ext ⊛ Fin Co with

Σ(P n ) = - B + n+1 n + 1 = ζ(-n) Proof We have P n ⊛ (e 0 -2 n+1 e 1 ) = (1, -2 n , 3 n , -4 n , 5 n , -6 n , . . .) = AP n so that P n ∈ Ext ⊛ Fin Co and Σ(P n ) = Σ(AP n ) Σ(e 0 -2 n+1 e 1 ) = - B + n+1 n + 1 = ζ(-n)
We thus have

1 + 1 + 1 + 1 + • • • = Σ(P 0 ) = - 1 2 1 + 2 + 3 + 4 + • • • = Σ(P 1 ) = - 1 12 1 + 4 + 9 + 16 + • • • = Σ(P 2 ) = 0 1 + 8 + 27 + 64 + • • • = Σ(P 3 ) = 1 120
and we can now rigorously express the chain of reasoning, presented in the introduction, that leads to the sum of all the integers, i.e. to S = Σ(P 1 ):

1. G -1 ⊗ (e 0 + e 1 ) = e 0 so that G -1 ∈ Co and

A = Σ(G -1 ) =
Σ(e 0 ) Σ(e 0 + e 1 ) = 1 2 ;

2. AP 1 ⊗ (e 0 + e 1 ) = G -1 so that AP 1 ∈ Co and

B = Σ(AP 1 ) = Σ(G -1 ) Σ(e 0 + e 1 ) = 1 4 ;
3. P 1 ⊛ (e 0 -4e 1 ) = AP 1 so that P 1 ∈ Ext ⊛ Fin ( Co) and S = Σ(P 1 ) = Σ(AP 1 ) Σ(e 0 -4e 1 ) = -1 12

Since Ext ⊛ Fin ( Co) is based on the ⊛-product, its is irrelevant to consider the Cauchy product u ⊗ v of two sequences u and v, unless they both belong to Co (and at least one belongs to AC). Otherwise, even if w = u ⊗ v ∈ Ext ⊛ Fin ( Co), it is irrelevant to see w as u ⊗ v so that one need not have Σ(w) = Σ(u)Σ(v).

For instance, we have P 0 , P 1 ∈ Ext ⊛ Fin ( Co) and P 1 = P 0 ⊗ P 0 but Σ(P 1 ) = -1 12 = 1 4 = Σ(P 0 ) 2 .

This also entails that stability -which, in ⊗-extensions, was a direct consequence of the cancellation property -is not a general property of the ⊛-extension.

For instance, even though Ext ⊛ Fin ( Co) contains both P 0 = (1, 1, 1, 1, . . .) and P 0 ⊗ e 1 = (0, 1, 1, 1, 1, . . .), we have Σ(0, 1, 1, 1, 1, . . .) = Σ(1, 1, 1, 1, . . .) since one has to write (0, 1, 1, 1, 1, . . .) = P 0e 0 (rather than P 0 ⊗ e 1 ) so that Σ(0, 1, 1, 1, 1, . . .) = Σ(P 0 ) -Σ(e 0 ) = -3 2

  (e i ⊛ e k ) ⊗ (e j ⊛ e k ) = e (ik+i+k)+(jk+j+k) = (e i ⊗ e j ) ⊛ e k ⊗ e k As a consequence, given x ∈ Co and m ∈ AC such that m ⊗ x ∈ Co, for all k ∈ N, we have (m ⊛ e k ) ⊗ (x ⊛ e k ) = (m ⊗ x) ⊛ e k ⊗ e k ∈ Cowith m ⊛ e k ∈ AC, so that x ⊛ e k ∈ Co. By linearity, for all p ∈ Fin, one has x ⊛ p ∈ Co.

Similarly, 0 + 1 + 2 + 3 + 4 + 5 + • • • = Σ(P 1 -P 0 ) = 5 12

Let us show a few more examples of sum calculations:

Finally, we present a last result showing that it is not possible to assign a sum to the harmonic sequence in Ext ⊛ Fin ( Co).

Proposition 16 The harmonic sequence H = 1 n+1 n∈N is not in Ext ⊛ Fin ( Co).

Proof We have

, -1 6 , 1 7 , . . . ∈ Co with Σ(e 0e 1 ) = 0 while Σ H ⊛ (e 0e 1 ) = ln 2 = 0.