Farrukh Jamal 
  
Hassan S Bakouch 
  
Arslan Nasir 
  
A truncated general-G class of distributions with application to truncated Burr-G family

Keywords: Family of distributions, Burr distribution, Quantile function, Simulation, Estimation, Goodness-of-fit statistics. 2000 Mathematics Subject Classification:-60E05, 62E15

. Some features of the class are stated with a comprehensive study to the truncated Burr-G (TB-G) family as one of the important sub-class of the introduced class. The study includes the mixture representation in terms of baseline distribution, moments, moment generating function, stochastic ordering, stress-strength parameter, entropies, estimation by the maximum likelihood. The applicability of some new sub-models of the TB-G family is shown using two practical data sets.

Introduction

Over the last two decades, several extensions of the well-known lifetime distributions have been developed for modeling many types of practical data sets. This development is followed by many approaches for generating new families of (probability) distributions which increase chances of modeling data of various random nature. Among those families, we can mention: The beta generator (beta-G) family by [START_REF] Eugene | Beta-normal distribution and its applications[END_REF], the gamma-G (type 1) by [START_REF] Zografos | On families of beta and generalized gamma-generated distributions and associated inference[END_REF], the Kumaraswamy-G (Kw-G) by [START_REF] Cordeiro | A new family of generalized distributions[END_REF], the gamma-G (type 2) by [START_REF] Ristic | The gamma-exponentiated exponential distribution[END_REF], the log-gamma-G by [START_REF] Amini | Log-gamma-generated families of distributions[END_REF], beta weighted modified Weibull distribution using the beta generator by [START_REF] Saboor | Beta Sarhan-Zaindin modified Weibull distribution[END_REF], the generalized transmuted family of distributions by Alizadeh et al. (2017), the odd-Burr generalized family of distributions by Alizadeh et al. (2017), the odd Burr-III family of distributions by [START_REF] Jamal | The odd Burr-III family of distributions[END_REF], and the extended odd family of probability distributions by [START_REF] Bakouch | The extended odd family of probability distributions with practice to a submodel, accepted for publication at Filomat[END_REF]. In practical life problems, truncation arises in many fields, such as industry, biology, hydrology, reliability theory and medicine. An example of truncation is the progression of a disease which is not an increasing function, but will stabilize after time point. This point is called the truncation for the support of the variable of the interest which may be time, length, height etc. Therefore, many researchers are attracted to analyze such truncated data using truncated versions of the standard statistical distributions. For instance, the truncated Weibull distribution has been applied to analyze the tree diameter and height distributions in forestry, fire size and high-cycle fatigue strength prediction (see [START_REF] Zhang | On the upper truncated Weibull distribution and its reliability implications[END_REF]. In [START_REF] Zaninetti | On the truncated Pareto distribution with application[END_REF], the truncated Pareto distribution is compared to the Pareto distribution using astrophysics data and they concluded, generally, that the truncated Pareto distribution performs better than the Pareto. Recently, [START_REF] Burroughs | The Upper-Truncated Power Law Applied to Earthquake Cumulative Frequency-Magnitude Distributions[END_REF] showed the suitability of truncated power law distributions for data sets of earthquake magnitudes and forest fire areas. Additional applications of the former distributions in hydrology and atmospheric science are given by [START_REF] Aban | Parameter Estimation for the Truncated Pareto Distribution[END_REF].

Motivated by the importance of general families of distributions and truncation, we introduce a more flexible class of distributions with the cumulative distribution function (cdf)

F (x) = G(x) 0 r T (t) dt = G(x,ξ) 0 r (t) R(1) dt = R [G(x)] R(1) , ( 1 
)
where r T (t) is the probability density function (pdf) of a random variable (rv) with support [0, 1], hence it can be any truncated rv T on this support with a cumulative distribution function (cdf) R(.) and G(x) is the cdf of a real-valued rv X with pdf g(x). Table 1 gives a list of some truncated distribution in the interval [0,1]. The associated pdf of (1) is

f (x) = r [G(x)] g(x) R(1) , x > 0, (2) 
and the survival function based on (1) is given as

h(x) = r [G(x)] g(x) R(1) -R [G(x)]
.

(3)

Further, the associated quantile function based on (1) having the form

Q x (u) = G -1 R -1 [R(1) × u] (4)
Some additional motivations of the class defined by ( 2) are as follows. The class (2) can be interpreted as weighted family of distributions, for g(x), with the general weight function w(x) = r(G(x)) and normalizing constant R(1) = E{w(x)}. Also, the introduced class generalizes the beta generator family [START_REF] Eugene | Beta-normal distribution and its applications[END_REF] as beta distribution is a sub-model of r T (t) .

As it can be seen from ( 2), we have a truncated general-G class of distributions and the only sub-model we aware of is the truncated Weibull G family proposed by [START_REF] Najarzadegan | Truncated Weibull-G more flexible and more reliable than beta-G distribution[END_REF] as a powerful alternative to beta-G family of distributions. Because of having two composite general functions R(.) and G(.), we can not investigate more analytic properties and therefore we aim to study extensively the truncated Burr-G (TB-G) family of distributions by considering R(.) as the cdf of Burr distribution and G(.) is a general cdf. The reason of using Burr is due to its ability of analyzing hydrologic, environmental, survival and reliability data. Another aim is to provide an empirical evidence on the great flexibility of sub-models of the TB-G family to fit practical data from different domains and this is investigated in the application section.

Rest of the paper is outlined as follows. Section 2, concerns with some general mathematical properties of the TB-G family, including mixture representation in terms of baseline distribution, moments, incomplete moments, moment generating function, stochastic ordering of the random variables following such family, stress-strength parameter and entropies (Shannon and Renyi). Also, some new special models of the generated family are considered. In Section 3, estimation of the parameters of the family is implemented through maximum likelihood method with application to two practical data sets. Section 4 gives a simulation study for a sub-model of the family. 

(t) 1. Uniform F (x) = x θ F (x) = x 2. Exponential F (x) = 1 -e -θ x F (x) = 1-e -θ x 1-e -θ 3. Weibull F (x) = 1 -e -a x b F (x) = 1-e -a x b 1-e -a 4. Gamma F (x) = γ(a, x b ) Γ(a) F (x) = γ(a, x b ) γ(a, 1 b ) 5. Lomax F (x) = 1 -1 + x a -b F (x) = 1-(1+ x a ) -b 1-(1+ 1 a ) -b 6. log-logistic F (x) = 1 -1 + x c a -1 F (x) = 1-(1+ x c a ) -1 1-(1+ 1 a ) -1 7. Burr XII F (x) = 1 -(1 + x c ) -k F (x) = 1-(1+x c ) -k 1-2 -k 8. Burr III F (x) = (1 + x -c ) -k F (x) = (1+x -c ) -k 2 -k 9. Frechet F (x) = exp -a x b F (x) = exp -( a x ) b exp[-a b ] 10. Power function F (x) = x θ k F (x) = x k 11. Log normal F (x) = Φ ln x-µ σ F (x) = Φ( ln x-µ σ ) Φ( -µ σ )
2 The truncated Burr-G family: Some properties and sub-models

This section gives some general mathematical properties of the TB-G family, including moments, incomplete moments, moment generating function, stochastic ordering, stress-strength parameter and entropies. Further, some new sub-models of the family are obtained.

The truncated Burr-G family

In this section, we introduce the TB-G family of distributions and give its mixture representation in terms of baseline distribution.

Recall that the Burr distribution has the cdf

R(x) = 1 -(1 + x c ) -k , x > 0, (5) 
using (1), the cdf of the TB-G family is expressed as

F (x) = 1 -[1 + G c (x, ξ)] -k 1 -2 -k , ( 6 
)
where c, k are the shape parameters of the family and G(x, ξ) is a baseline cdf, which depends on a parameter vector ξ.

The pdf corresponding to (6) is given by

f (x) = c k g(x) G c-1 (x) [1 + G c (x, ξ)] -k-1 1 -2 -k , x > 0. ( 7 
)
The survival function and hazard rate are, respectively, given by

F (x) = [1 + G c (x, ξ)] -k -2 -k 1 -2 -k (8)
and

τ (x) = c k g(x) G c-1 (x) [1 + G c (x, ξ)] -k-1 [1 + G c (x, ξ)] -k -2 -k . (9)
Also, the quantile function of the TB-G family has the form

Q x (u) = G -1 1 -(1 -2 -k )u -1 k -1 1 c . (10)
Further, the shapes of the density and hazard rate functions of the TB-G family can be described analytically using their critical points as follows. The critical points of the TB-G density are the roots of the equation:

g (x) g(x) + (c -1) g(x) G(x) -c (k + 1) g(x) G c-1 (x) 1 -G c (x) = 0,
while the critical point of the hazard rate are the roots of the equation:

g (x) g(x) + (c -1) g(x) G(x) -c (k + 1) g(x) G c-1 (x) 1 -G c (x) + k c g(x) G c-1 (x) [1 + G c (x)] -k-1 [1 + G c (x)] -k -2 -k = 0.
Note that the equation above may have more than one root. Now, we close this subsection by obtaining the mixture representation of the TB-G in terms of baseline distribution as follows. Consider the series expansion

(1 -z) b = ∞ i=0 b i (-1) i z i , ( 11 
)
the cdf in equation ( 6) can be written as

F (x) = 1 1 -2 -k 1 - ∞ i=0 k + i -1 i (-1) i G i c (x) . ( 12 
)
Also, it can be rewritten in the form

F (x) = ∞ l=0 b l H l (x) ( 13 
)
where

b l = a l 1-2 -k , b 0 = a 0 1-2 -k , a l = ∞ i=0 ∞ l=0 ∞ j=l k+i-1 i c i j j l (-1) i+j+l and H l (x) = G l (x)
is the exp-G distribution function with power parameter l. Similarly, simple derivation of the equation gives the pdf

f (x) = ∞ l=0 b l h l+1 (x) (14) 
where

h l+1 (x) = l × g(x) G l+1 (x)
is the exp-G density function with power parameter l + 1. Thus, some mathematical properties of the proposed family can be derived from ( 14) and those of exp-G properties. For example, the ordinary and incomplete moments and moment generating function (mgf) of X can be obtained from those exp-G quantities, see the next subsection.

2.2 Moments and moment generating function.

In this subsection, we will discuss the r th moments, m th incomplete moments and moment generating function of the TB-G family.

The moments of the TB-G family of distributions can be obtained by using the infinite mixture representation

E(X r ) = ∞ l=0 b l ∞ 0 x r h l+1 (x)dx (15)
where b l and h q+1 (x) are defined in (14). The s th incomplete moment of the TB-G family can be obtained as

T s (x) = ∞ l=0 b l x 0 x s h l+1 (x)dx. ( 16 
)
The moment generating function of the TB-G family of distributions is

M X (t) = ∞ l=0 b l ∞ 0 e t x h l+1 (x)dx.
Bonferroni and Lorenz curves defined for a given probability π by B(π) = T 1 (q)/(π μ1 ) and

L(π) = T 1 (q)/ μ1 , respectively, where μ1 = E(X), T 1 (x) = ∞ l=0 b l x 0
x h l+1 (x)dx and q = Q(π) is the quantile function of X at π. These curves for the Truncated Burr log logistic (TBLL) distribution, see definition of TBLL in next subsection, as functions of π are plotted for some parameter values in Figure 1. These curves are very useful in economics, reliability, demography, insurance and medicine. The skewness and kurtosis measures can be calculated from the ordinary moments using well-known relationships form Eq (15). Plots of skewness and kurtosis of the TBLL distribution for θ = 1.5 are displayed in Figure 2. Based on these plots, we conclude that, if c and k increase, the skewness and kurtosis decrease. 

Stochastic ordering and reliability parameter

Comparative behavior of random variables can be measured by stochastic ordering concept [START_REF] Shaked | Stochastic Orders and Their Applications[END_REF] that is summarized in the next proposition.

Proposition 1: Let X 1 ∼ T B -G(c , k 1 , ξ) and X 2 ∼ T B -G(c , k 2 , ξ), then the likelihood ratio f (x) g(x) is. f (x) g(x) = k 1 k 2 [1 + G c (x, ξ)] k2-k1 1 -2 -k 2 1 -2 -k1 .
Taking derivative with respect to x, we have

d d x f (x) g(x) = k 1 k 2 1 -2 -k 2 1 -2 -k 1 [1 + G c (x, ξ)] k2-k1-1 (k 2 -k 1 ) c g(x) G c-1 (x), then d d x f (x)
g(x) < 0 for α 1 < α 2 . So, the likelihood ratio exists and this implies that the random variable X 1 is a likelihood ratio order than X 2 , that is X 1 ≤ lr X 2 . Other stochastic ordering behaviour follow using X 1 ≤ lr X 2 , such as hazard rate order (X 1 ≤ hr X 2 ), mean residual life order (X 1 ≤ mrl X 2 ) and stochastically greater (X 1 ≤ st X 2 ).

The stress strength model is a common approach used in various applications of engineering and physics. Let X 1 and X 2 be two independent random variables with T B-G(c , k 1 , ξ) and T B-G(c, k 2 , ξ) distributions. Then the stress strength model is given by

R = ∞ 0 f 1 (x) F 2 (x) dx
Now, by using mixture representation given in ( 14) and ( 13), we have

R = ∞ l=0 ∞ m=0 b l b m ∞ 0 h l+1 (x) H m (x) dx
where h l+1 (x) and H m (x) are already defined by equations ( 13) and ( 14).

Entropies

The entropy of a random variable X with density function f (x) is a measure of variation of the uncertainty of physical systems. Two popular entropy measures are due to Shannon (1951) andRenyi (1961). A large value of the entropy may indicate the greater uncertainty in the data; conversely, a small entropy means less uncertainty. The Renyi entropy is defined by

I δ = 1 1 -δ log   ∞ 0 f δ (x) dx   , δ > 0 and δ = 1. ( 17 
)
Let f (x) follow the TB-G family, then we have

f δ (x) = (c k) δ g δ (x) G δ(c-1) (x) [1 + G c (x, ξ)] -δ(k+1) (1 -2 -k ) δ .
After some algebra, we get

f δ (x) = c k 1 -2 -k δ ∞ j=0 δ(k + 1) + j -1 j (-1) j g δ (x) G c(j+δ)-δ (x).
Rewriting the above expression as

f δ (x) = ∞ j=0 w j (δ) g(x; δ, c(j + δ)),
where 17) becomes

w j (δ) = c k 1-2 -k δ δ(k+1)+j-1 j (-1) j and g(x; δ, c(j + δ)) = g δ (x) G c(j+δ)-δ (x). Now equation (
I δ = 1 1 -δ log   ∞ j=0 w j (δ) ∞ 0 g(x; δ, c(j + δ)) dx  
The above expression depends only for any choice of baseline distribution.

On the other side, the Shannon entropy of the TB-G family can be obtained using its definition as

η x = -E [log f (x)] . ( 18 
)
Using the pdf of the TB-G family, we have

-E [log f (x)] = log(c k) -E [log g(x)] -(c -1) E [log G(x)] + (k + 1) E [log{1 + G c (x)}] . ( 19 
)
Making use of the expansions

log(1 + x) = ∞ i=1 (-1) i+1 i x i log x = ∞ i=1 (-1) i+1 i (x -1) i ,
we obtain

E [log{1 + G c (x)}] = ∞ i=1 (-1) i+1 i E G c i (x) E [log G(x)] = ∞ i=1 (-1) i+1 i i j=0 i j (-1) j E(G i-j (x)).
Hence, equation ( 19) becomes

-E [log f (x)] = log(c k) -E [log g(x)] -(c -1) ∞ i=1 (-1) i+1 i i j=0 i j (-1) j E(G i-j (x)) + (k + 1) ∞ i=1 (-1) i+1 i E G c i (x) .
The expression above depends only on an arbitrary choice of the baseline distribution.

Some sub-models

In this subsection, we present four sub-models of the TB-G family by selecting some baseline distributions and the plots their density and hazard rate functions. The plots indicate various shapes for both functions which proves the flexibility of the family. This flexibility is also confirmed by comparing those sub-models with other competing distributions for some practical data in Section 3. Truncated Burr Uniform (TBU) distribution Consider the uniform distribution on (0, θ) as the baseline distribution with the pdf and cdf, g(x, θ) = 1 θ and G(x, θ) = x θ , respectively. Then the pdf and cdf of the TBU distribution are given by 

f (x; c, k, θ) = c k θ x θ c-1 1 -2 -k 1 + x θ c -k-1 and F (x; c, k, θ) = 1 -1 + x θ c -k 1 -2 -k . (a) (b) 0.0 0.2 0.4 0.6 0.8 1.0 0 1 2 3 4 x pdf c = 0.5 k = 1.5 θ = 1 c = 1.5 k = 3 θ = 1 c = 5 k = 6 θ = 1 c = 3 k = 6 θ = 1 c = 4 k = 12 θ = 1 0.0 0.2 0.4 0.6 0.8 0 1 2 3 4 5 6 x hrf c = 2 k = 0.5 θ = 1 c = 1.4 k = 0.5 θ = 1 c = 0.5 k = 0.3 θ = 1 c = 5 k = 1.5 θ = 1 c = 0.3 k = 0.5 θ = 1
f (x; c, k, a, b) = c, k a b x b-1 e -a x b 1 -2 -k 1 -e -a x b c-1 1 + 1 -e -a x b c k+1 ,
and e -θ x -1 G(x, θ) = θ e -θ x 1 -e -θ x -2 , respectively. Then the pdf and cdf of the TBL distribution are given by

F (x; c, k, a, b) = 1 -1 + 1 -e -a x b c -k 1 -2 -k . ( a 
f (x; c, k, θ) = c k θ e -θ x [1 -2 -k ] {1 -e -θ x } 2 1 -e -θ x 1-c 1 + 1 -e -θ x -c -k-1 ,
and

F (x; c, k, θ) = 1 -1 + 1 -e -θ x -c -k 1 -2 -k .
In Figure 5 we give the plots of density and hrf of the TBL distribution. Truncated Burr log logistic (TBLL) distribution Let log logistic be the baseline distribution with the associated pdf and cdf, g(x, θ) = θ x θ (1+x θ ) 2 and G(x, θ) = x θ 1+x θ , respectively. Then the pdf and cdf of the TBLL distribution are given by 

f (x; c, k, θ) = c k θ x θ [1 -2 -k ] (1 + x θ ) 2 x θ 1 + x θ c-1 1 + x θ 1 + x θ c -k-1 , and F (x; c, k, θ) = 1 -1 + x θ 1+x θ c -k 1 -2 -k .
= 1 k = 0.5 θ = 5 c = 1 k = 4 θ = 2 c = 1.5 k = 0.2 θ = 3 c = 1 k = 1.3 θ = 5 c = 3 k = 0.5 θ = 3 0 1 2 3 4 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 x hrf c = 0.2 k = 0.5 θ = 1 c = 1.4 k = 0.5 θ = 2 c = 5 k = 1 θ = 2 c = 5 k = 1.5 θ = 1 c = 0.3 k = 0.5 θ = 0.7

Estimation of parameters with applications

In this section, we give the maximum likelihood estimators (MLEs) of the unknown parameters of the TB-G family for complete samples. Using those estimators we check the capability of some sub-models of this family for fitting some practical data sets. Let x 1 , x 2 , ..., x n be the observed values of a random sample of size n from the TB-G family given in equation ( 7). The log-likelihood function for the vector parameter Θ = [c, k, ξ] T can be expressed as

(Θ) = -n log(1 -2 -k ) + log(c k) + ∞ i=1 g(x i ) + (c -1) ∞ i=1 log G(x i ) -(k + 1) ∞ i=1 log{1 + G c (x i )}. ( 20 
)
The components of score vector U = (U k , U c , U ξ ) T are given by

U k = -n 2 -k log 2 1 -2 -k + n k - ∞ i=1 log{1 + G c (x i )}. U c = n c + ∞ i=1 log G(x i ) -(k + 1) ∞ i=1 c g(x i ) G c-1 (x i ) 1 + G c (x i ) . U ξ = ∞ i=1 g ξ (x i ) g(x i ) + (c -1) ∞ i=1 G ξ (x i ) G(x i ) -(k + 1) ∞ i=1 c G ξ (x i ) G c-1 (x i ) 1 + G c (x i ) .
The equations above are non-linear and hence can not be solved analytically, but can be solved numerically using software like R language. The rest of this section provides two applications of four sub-models of the TB-G family, namely, the TBW, TBLL, TBU and TBL distributions given in subsection 2.5. Truncated Weibull-BXII (TW-BXII) and Truncated Weibull-Weibull (TW-W) introduced by Najarzadegan et al. ( 2017) are used as competitive models for those sub-models. For comparison purposes, we consider two practical data sets, one is taken from El-deeb ( 2015) and another from [START_REF] Hinkley | On quick choice of power transformations[END_REF]. Description of both data sets is as follows.

Data set 1 This data set is given by El-deeb ( 2015) and consists of failure times of ( 67) truncated Aircraft windshield. The windshield on an aircraft is a complex piece of equipment, comprised basically of several layers of material, all laminated under high temperature and pressure. Failures of these items are not structural failures. Instead, they typically involve damage or delimitation of the nonstructural outer ply or failure of the heating system. These failures do not result in damage to the aircraft, but do result in replacement of the windshield. The values of this data set are: 1. 866, 2.385, 3.443, 1.876, 2.481, 3.467, 1.899, 2.610, 3.478, 1.911, 2.625, 3.578, 1.912, 2.632, 3.595, 1.070, 1.914, 2.646, 3.699, 1.124, 1.981, 2.661, 3.779,1.248, 2.010, 2.688, 3.924, 1.281, 2.038, 2.82,3, 3.000, 1.281, 2.085, 2.890, 1.303, 2.089, 2.902, 1.432, 2.097, 2.934, 1.480, 2.135, 2.962, 1.505, 2.154, 2.964, 1.506, 2.190, 3.000, 1.568, 2.194, 3.103, 1.615, 2.223, 3.114, 1.619, 2.224, 3.117, 1.652, 2.229, 3.166, 1.652, 2.300, 3.344, 1.757, 2.324, 3.376.

Data set 2 This data set is given by [START_REF] Hinkley | On quick choice of power transformations[END_REF] and consists of thirty successive values of March precipitation (in inches) in Minneapolis/St Paul. In meteorology, precipitation is most commonly rainfall, but also includes hail, snow and other forms of liquid and frozen water falling to the ground and it is measured by inches in some time period. The data values are 0.77, 1. 74, 0.81, 1.2, 1.95, 1.2, 0.47, 1.43, 3.37, 2.2, 3, 3.09, 1.51, 2.1, 0.52, 1.62, 1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.9, 2.05.

For each distribution, the MLEs are computed using Quasi-Newton code for Bound Constrained Optimization (L-BFGS-B) and the log-likelihood function is evaluated. Consequently, the goodness-of-fit measures: Anderson-Darling (A * ), Cramer-von Mises (W * ), Akaike information criterion (AIC) and Bayesian information criterion (BIC) are computed. Lower values of those measures indicate better fit. The value for the Kolmogorov Smirnov (KS) statistic and its p-value are also provided. The required computations are carried out using the R software.

The obtained results are presented in Tables 2345. As we can see from Tables 2 and4 , the four sub-models of the TB-G family are strong competitor to the compared models. Moreover, among all compared models, the TBLL distribution has the smallest values of the AIC, BIC, A * , W * , and KS, and the largest value of p-value. Thus, we can conclude that the TBLL distribution is the best fit among those models. Figures 7 and8 display the plots of the fitted pdfs and cdfs of the compared distributions for visual comparison with the histogram and empirical cdf for both data sets. Those figures show the best fit of TBLL distribution. 
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 12 Figure 1: Plots of B(π) and L(π) versus π for the TB-LL distribution

Figure 3 :

 3 Figure 3: Plots for density and hrf of the TB-U Figure 3 gives the plots of density and hrf of the TBU distribution. Truncated Burr Weibull (TBW) distribution Let the Weibull distribution be the baseline one with the associated pdf and cdf, g(x, a, b) = a b x b-1 e -a x b and G(x, a, b) = 1 -e -a x b , respectively. Then the pdf and cdf of the TBW distribution are given by

Figure 4 :

 4 Figure 4: Plots for density and hrf of the TB-W Figure 4 displays the plots of density and hrf of the TBW distribution.Truncated Burr Logistic (TBL) distribution Consider the Logistic as the baseline distribution with associated pdf and cdf, g(x, θ) = 1 -e -θ x -1 G(x, θ) = θ e -θ x 1 -e -θ x -2 , respectively. Then the pdf and cdf of the TBL distribution are given by
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 65 Figure 6 portrays the plots of density and hrf of the TBLL distribution.
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 6 Figure 6: Plots for density and hrf of the TB-LL
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 810 Figure 7: Estimated pdfs and cdfs for first data set

Table 1 :

 1 List of some truncated distribution in the interval [0,1].

	S.r Distribution	r(t)	r T

Table 2 :

 2 MLEs and their standard errors (in parentheses) for Data set 1

	Distribution	c	k	θ	a	b
	TBW	0.4564	86.9870	-	9.1067	7.9149
		(1.9144)	(45.4333)	-	( 2.1784) ( 3.240467)
	TBLL	13.6258	193.8078	0.7890	-	-
		( 2.3252) (34.7291)	(0.2350)	-	-
	TBU	3.5954	498.2935	14.9104	-	-
		(0.3412)	(15.2232) (12.1123)	-	-
	TBL	23.3433	0.0024	1.6699	-	-
		(7.0993)	(0.0018)	( 0.1944)	-	-
	TW-BXII	1.2904	11.4013	32.4704	37.8343	3.4896
		( 0.3253) ( 13.4118) (35.6313) ( 40.8586)	( 2.4676)
	TB-W	2.8676	0.8444	-	31.2399	6.7846
		( 2.7877) ( 0.6816)	-	(2.1419)-	( 8.0910)

Table 3 :

 3 The Value, AIC, BIC, A*, W*, KS, P-Value values for data Set 1

	Dist		AIC	BIC	A*	W*	KS	P-Value
	TBW	75.1080 158.2162 167.0942 0.5552 0.0951 0.0992	0.5147
	TBLL	74.8708 155.7418 162.4003 0.4637 0.0740 0.0808	0.7379
	TBU	75.0909 156.1819 162.8404 0.5564 0.0954 0.0997	0.5080
	TBL	76.2189 158.4378 165.0963 0.5855 0.0859 0.0927	0.6016
	TW-BXII 75.0635 160.1271 171.2246 0.5051 0.0841 0.0893	0.6487
	TW-W	75.0454 158.0909 166.9690 0.4889 0.0798 0.0835	0.7299
	Table 4: MLEs and their standard (in parentheses) for Data set 2
	Distribution	c	k	θ	a	b
	TBW		0.3446	30.8825	-	11.9180	5.3663
			( 2.8251) (17.3728)	-	(10.6096) ( 4.4130)
	TBLL		8.6122	123.2974	0.4892	-	-
			(6.0513) (12.2964) (0.4066)	-	-
	TBU		1.8150	259.5434	40.3962	-	-
			(0.2482) (12.1122) (33.2333)	-	-
	TBL		7.7107	0.5621	1.3198	-	-
			( 2.1529)	(3.0901)	( 0.3681)	-	-
	TW-BXII	1.0579	86.6647	60.8969	0.0024	3.0599
			(1.1048) (71.9193) (69.5585) (4.5165)	(6.3469)
	TB-W		9.7190	6.2763	-	19.3190	0.2883
			(12.7756) (9.6175)	-	(46.5365) (0.4437)

Table 5 :

 5 The Value, AIC, BIC, A*, W*, KS, P-Value values for data Set 2

	Dist	AIC	BIC	A*	W*	KS	P-Value
	TBW	38.5661 85.1322 90.7370 0.1571 0.0203 0.0648	0.9996
	TBLL	38.0934 82.1868 86.3904 0.1019 0.0137 0.0576	1
	TBU	38.6334 83.2668 87.4701 0.1680 0.0217 0.0683	0.9990
	TBL	38.9520 83.9040 88.1076 0.1466 0.0185 0.0692	0.9988
	TW-BXII 38.0919 86.1839 93.1899 0.1037 0.0141 0.0605	0.9999
	TW-W	38.6431 85.2862 90.8910 0.1690 0.0219 0.0688	0.9989