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Introduction

Particle methods for the approximation of Vlasov equations mimic the miscroscopic and natural model of plasmas. In such a model, all charges are taken into account individually and interact with each other. As the number of particles at stake is far too big for the current computational capacities, one has to consider an alternative description with less particles. This is done by considering macro-particles, whose charge approximate the charge density given by Vlasov's equation. Macro-particles motion is described in a Lagrangian frame by:

               x k dt = v k , p k dt = q(E(x k , t) + µ(x k )(v k × H(x k , t))), x k (0) = x 0 k , v k (0) = v 0 k , (1) 
for k ≤ N , in which N is the number of particles.

Equation 1 is approximate in time by a leap-frog scheme, which is only of order 2, but much easier to take into account than a Runge-Kutta scheme.

Maxwell equations are given by:

ε∂ t E -∇ × H = -J, µ∂ t H + ∇ × E = 0, (2) 
and approximate by a H 1 -conform mixed spectral finite element method such as described in [START_REF] Cohen | Non spurious mixed spectral element methods for maxwell's equations[END_REF].

In order to couple this two methods, one must be able to determine the current induced by particles motion on each grid point, and conversely to determine the fields applied on each particle.

Interpolation considerations

When coupling particle methods with finite element methods, there is an obvious way to interpolate the fields on each particle. For a particle k, we have:

E k = i E i ϕ i (x k ), (3) 
with ϕ i the Lagrangian interpolation functions on quadrangles in 2D (or hexaedra in 3D), and E k the electric field value at the particle position.

For the inverse interpolation, on the other hand, the Dirac function is not sufficiently smooth to have an accurate approximation of the current (or the charge density) on the grid points. For example, if a particle is not located on a grid point, its influence won't be seen by the fields. To this aim, shape functions are introduced, which are compact and smooth distributions that approximately span the area of a cell. Traditionnally, and for a coupling with finite difference methods, splines of various orders are used, but not well suited for a coupling with high order methods on unstructured grids. In the following, we consider the choice proposed by Jacobs and Hesthaven in [START_REF] Jacobs | High-order nodal discontinuous Galerkin particle-in-cell method on unstructured grids[END_REF]:

S(r) = α + 1 πR 2 (1 -( r R ) 2 ) α . ( 4 
)
with R the influence radius, and α the order of approximation.

In order to obtain a stability condition (see pages 152 to 154 in [START_REF] Sinding | Approximation du système de Vlasov-Maxwell : étude de solveurs Maxwell pour un couplage avec une méthode particulaire[END_REF]), our interpolation strategy differs from the one described in [START_REF] Jacobs | High-order nodal discontinuous Galerkin particle-in-cell method on unstructured grids[END_REF]. We use the shape function S, for both interpolations, and for a particle k, E k and H k are then given by

       E k = Ω E(x)S k (x)dx, H k = Ω H(x)S k (x)dx. (5) 
The inverse interpolation is done in a classical way as descibed in [START_REF] Jacobs | High-order nodal discontinuous Galerkin particle-in-cell method on unstructured grids[END_REF].

In order to reduce the cost of this interpolation steps, we must determine which grid points have an effective interaction with a particle located within a given cell of the Eulerian grid.

Particles' tracking Tracking strategy

To determine in wich cell of the Eulerian grid a particle lies, one can consider various strategies. The most obvious one, is a localisation directly on the Eulerian grid. But to reduce the interpolation costs, we choose to compare two approaches (see figure 1):

• tracking domain 1: a subdivision of the Eulerian grid

• tracking domain 2: a cartesian box containing the computational domain Ω In both cases, the subdivsion step is chosen so that the cell have a size of approximately R/3.

These two methods give approximately the same results in terms of interpolation costs (see pages 131 to 133 in [START_REF] Sinding | Approximation du système de Vlasov-Maxwell : étude de solveurs Maxwell pour un couplage avec une méthode particulaire[END_REF]), the differences between them appear in the following paragraph.

Tracking algorithm

A first choice, is to map the particles coordinates onto the unit reference element for each cell of the Eulerian grid. The problem is that, for unstructured grids, this mapping is bilinear in 2D and threelinear in 3D, making this step very expensive. However for the tracking domain 2, the mapping function is linear, making it an interesting alternative.

A second choice is given by dynamic tracking algorithms such as described in [START_REF] Haselbacher | An efficient and robust particle-localization algorithm for unstructured grids[END_REF], in which no inversion of the mapping function is needed. In this algorithm, we dynamically follow the particle from cell to cell between two time-steps t and t + 1 (see figure 2). The algorithm only relies on connectivity properties of the mesh (common face between two elements, normal to a face), which are stored when reading it.
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Figure 2: Dynamic tracking of a particle.

Remark 1 Concerning the tracking of particles on a subdvision of the Eulerian grid, an interesting alternative is a two-stage algorithm.

In the first step, the particle is located on the Eulerian grid, and in the second step, the particle is located on a subdivision of the given cell. This way, the localisation cost is globally divided by N r, where N is the number of particles, and r the order of approximation.

Boundary conditions

Boundary conditions for particles can be divided into two components as suggested in [START_REF] Jacobs | High-order nodal discontinuous Galerkin particle-in-cell method on unstructured grids[END_REF]. The first one concerns boundary conditions for the particles, the second one is a boundary condition for the virtual cloud of radius R associated with the particle.

Particles boundary conditions

Boundary conditions for particles can be of three types:

• elastic (fully or partially) boundary condition,

• absorbing boundary condition,

• transparent boundary condition.

One major advantage of the dynamic tracking technique is that all boundary conditions for the particles are immediately taken into account. As we follow the particle from cell to cell by determining which face of the cell has been crossed, each time this face is a boundary face, we only have to apply the associated condition for the particle. We already know the normal to this face and no further operation is needed.

Cloud boundary condition

Cloud boundary conditions are designed so that a particle is not abruptly eliminated or introduced in the domain. An example for a metallic boundary condition is given in [START_REF] Jacobs | High-order nodal discontinuous Galerkin particle-in-cell method on unstructured grids[END_REF]: whenever the area of the shape function crosses the boundary, a virtual anti-particle of charge (-q) is placed on the other side of the boundary, so that the associated charge goes smoothly to zero as the particle encounters the metallic wall.

Unfortunately, in order to apply such a method one has to know the distance between the particle and the boundary everywhere in the computational domain. An interesting solution which has been tested is suggested in [START_REF] Jacobs | High-order nodal discontinuous Galerkin particle-in-cell method on unstructured grids[END_REF]. It consists in solving a Level Set equation in a preliminary step, so that the distance from the boundary is known on every grid point (see [START_REF] Sinding | Approximation du système de Vlasov-Maxwell : étude de solveurs Maxwell pour un couplage avec une méthode particulaire[END_REF] for numerical illustrations).

Another alternative is given by using the tracking domain 3. In this case, the tracking domain is a cartesian grid in which the computational domain is included. By choosing a box slightly larger than the domain at every boundary point, one can introduce or eliminate particles smoothly. We only need to wait until the cloud influence area has no intersection with the boundary to eliminate the particle. In the same way particles created on a boundary, are introduced outside the domain.

Numerical results

After many tests, we choose dynamic tracking of the particles on a cartesian grid slightly larger than the computational domain in order to have an efficient coupling algorithm. This way boundary conditions for the particle are immediate and we don't have to solve a LevelSet equation which can be long and expensive on very distorded meshes (oscillations near the steady-state even with a diffusion term). The charge conservation is forced whenever it is necessary, using a Boris correction [START_REF] Boris | Relativistic plasma simulationoptimization of a hybrid code[END_REF]. Numerical results for an electron beam and for Landau damping in 2D can be found in [START_REF] Sinding | Approximation du système de Vlasov-Maxwell : étude de solveurs Maxwell pour un couplage avec une méthode particulaire[END_REF].

Charge conservation for high order methods

In order to show the interest of high order methods for a coupling with an particle in cell method, figure 3 gives the L 2 error on the divergence of the electric field for the electron beam simulation. We can see that in both cases, this error remains lower than 1%, without any correction of the fields. For a strong coupling case (second figure in 3) however, the error tends to grow during the simulation, suggesting that for long time simulations a periodic correction of the fields would be necessary.
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 1 Figure 1: Influence zone of a cell.Top figure: tracking domain 1, bottom figure: cartesian box containing the computational domain Ω.
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 3 Figure 3: semi-log L 2 error on the divergence of the fields for a Q 5 approximation. Top figure: J = 1, bottom figure: J = 3000.