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Introduction

The conservative case
A classical example : a column

Two sources of non linearities
The energy of the spring w(θ) = 1

2 C1θ
2 + 1

3 C2θ
3 + 1

4 C3θ4 + ....
The potential energy due to external loading : λL(1− cos θ)
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Equilibrium position : stationnarity of the total potential energy

∂E
∂θ
δθ = 0

Two positions of equilibrium

θ = 0,∀λ (1)
λ(θ) = λc + λ1θ + λ2θ

2 + ... (2)

λc =
C1

L
, λ1 = λc

C2

C1
, λ2 = λc(

C3

C1
+

1
6

)

Generic diagram of stability
Stability : Dirichlet criterion : positivity of second derivative of total
potential energy
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Generic diagram of bifurcation
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Non linear behaviour with dissipation

The energy depends now of internal parameters α
(plastic strain, cracks length, damage, ...)
u displacement, λ loading parameters
Total potential energy : E(u, α,Td) =

∫
Ω

w(ε, α) dΩ−
∫
∂ΩT

Td.u ds,

Equilibrium
∂E
∂u
.δu = 0

Dissipation Dm = −∂w
∂α

α̇ = Aα̇ ≥ 0

Evolution of α : normality rule f (A) ≤ 0

µ ≥ 0, f (A) ≤ 0, µ f (A) = 0

The evolution of the system depends essentially on the evolution of
internal parameters.
We assume that the solution at equilibrium u(λ, α) is unique.
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The constitutive law

free energy :

w(ε, α) =
1
2

(ε− α) : C : (ε− α) + wb(α)

equations of state

σ =
∂w
∂ε

= C : (ε− α),

A = −∂w
∂α

= σ − ∂wb

∂α
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Dissipation
Dm = A.α̇ ≥ 0

Yield function
f (A) ≤ 0

Normality rule :

α̇ = µ
∂f
∂A

, µ f = 0, µ ≥ 0
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Constitutive law :

σ = ρ
∂w
∂ε

= C : (ε− α)

Compatibility

ε =
1
2

(grad u + gradT u)

Boundary conditions :

over ∂Ωu : u = ud,over ∂ΩT : σ.n = λTd

Equilibrium conditions :
divσ = 0

C. Stolz Analysis of stability and bifurcation in non linear-mechanics with dissipation
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In fact the energy depends upon fields of mechanical quantities

E(ũ, α̃,Td) =

∫
Ω

ρw(ε(u), α) dω −
∫
∂ΩT

Td.u dΩ

At a given state, the equilibrium is determined by a displacement
u which minimize E . The energy at equilibrium is then :

EE(ũ(α̃, T̃d, ṽd), α̃, T̃d) = E(α̃, T̃d, ṽd)

We must solve the problem of evolution of internal state.
Generalization : it is also true for non-linear external loading
given by a potential in u, if we assume stability of reversible path.
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Ω is splitted in two parts
elastic domain : f < 0
plastic domain Ωp : f = 0

Characterisation of µ
µ̃ ∈ K

K = {β̃/β(x) ≥ 0,over Ωp, β(x) = 0,over Ω/Ωp}
Yield function

f (A) ≤ 0

N =
∂f
∂A

Normality rule implies :

α̇ = µ N , µf (A) = 0, µ ≥ 0
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Consistency condition.

K = {β̃/β(x) ≥ 0,over Ωp, β(x) = 0,over Ω/Ωp}
Ωp = {x/f = 0}

µ̃ ∈ K
Deriving this condition with respect to time

d
dt

(µf ) = 0⇒ µḟ = 0,

for x ∈ Ωp f = 0, ḟ ≤ 0.

This condition is rewritten as

for x ∈ Ωp, ∀β ≥ 0, (µ− β)ḟ ≥ 0

and by integration over Ω : towards variational inequality !

∀β̃ ∈ K
∫

Ω

(λ− β)ḟ dω ≥ 0

C. Stolz Analysis of stability and bifurcation in non linear-mechanics with dissipation
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Characterization of the evolution

Constitutive law :

σ̇ =
∂2w
∂ε∂ε

: ε̇+
∂2w
∂ε∂α

α̇

Compatibility

ε̇ =
1
2

(grad v + gradT v)

Boundary conditions :

over ∂Ωu : v = vd,over ∂ΩT : σ̇.n = Ṫd

Equilibrium conditions :
div σ̇ = 0
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Evolution of the equilibrium.

σ̇ is S.A.

div σ̇ = 0, σ̇.n = Ṫd over ∂ΩT∫
Ω

σ̇ : ε(u∗) dΩ −
∫
∂Ω

Ṫd.u∗ dS = 0

∫
Ω

ε(u∗) : (
∂2w
∂ε∂ε

: ε̇+
∂2w
∂ε∂α

α̇) dΩ−
∫
∂Ω

Ṫd.u∗ ds = 0
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Normality rule and evolution of internal state∫
Ω

(λ− β)ḟ dΩ ≥ 0

Variation of the yielding function

ḟ =
∂f
∂A

Ȧ

Constitutive law:

Ȧ = − ∂2w
∂ε∂α

: ε̇− ∂2w
∂α∂α

α̇

where α satisfies:
α̇ = µN

C. Stolz Analysis of stability and bifurcation in non linear-mechanics with dissipation



C-Stolz-CNRS UMR9219- UMR6183–Euromech Bologne 18

The evolution of the system

∫
Ω

ε∗ :
∂2w
∂ε∂ε

: ε̇+ ε∗ :
∂2w
∂ε∂α

· Nµ dΩ−
∫
∂ΩT

Ṫd.u∗ ds = 0

∫
Ω

(µ− β)(N · ∂
2w

∂α∂ε
: ε̇+N · ∂

2w
∂α∂α

· Nµ) dΩ ≤ 0

Potential upon the rate

F(ṽ, µ̃) =

∫
Ω

1
2
ε̇ :

∂2w
∂ε∂ε

: ε̇+ ε̇ :
∂2w
∂ε∂α

· Nµ

+
1
2
N · ∂

2w
∂α∂α

· Nµ2 dΩ−
∫
∂ΩT

Ṫd.v dS
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Variational inequality

The response ṽ, µ̃ is solution of

∂F
∂v

(v− v∗) +
∂F
∂µ

(µ− µ∗) ≤ 0

for any admissible fields v∗, µ∗

µ̃, µ̃∗ ∈ K, ṽ, ṽ∗ ∈ C.A

K = {β̃/β(x) ≥ 0,over Ωp, β(x) = 0,over Ω/Ωp}

C.A. = {ṽ/v = vd along∂Ωu}

Two possibilities: consider the problem upon v or the problem upon α̇

C. Stolz Analysis of stability and bifurcation in non linear-mechanics with dissipation
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Classical elimination of µ by consistency condition :

H = N · ∂
2w

∂α∂α
· N ≥ 0, µ =

1
H
< −N · ∂

2w
∂α∂ε

: ε̇ >+

Hill’s formulation, the material is hypo-elastic in sense of Hill :

U(ṽ) =

∫
Ω

1
2
ε̇ :

∂2w
∂ε∂ε

: ε̇− 1
2H

< −N · ∂
2w

∂a∂ε
ε̇ >2

+ dΩ

−
∫
∂ΩT

Ṫd.v dS

The solution v satisfies

∂U
∂ṽ
· (v− v∗) = 0

for all v∗ ∈ C.A
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Elimination of v :
F =

∫
Ω

1
2
µ · B · µ− Q̄.µ

Existence of solution ∫
Ω

µ∗.B.µ∗ dΩ > 0, µ̃∗ ∈ K

Uniqueness ∫
Ω

µ∗.B.µ∗ dΩ > 0, µ̃∗ 6= 0̃

C. Stolz Analysis of stability and bifurcation in non linear-mechanics with dissipation
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Two results :
Elimination of u, the variational inequality gives two conditions :
one for existence of a solution (Stability condition), second for
uniqueness (no-bifurcation).
Elimination of µ : Hill’s formulation :
If U(v) is convex : uniqueness of the evolution v.

Examination of the results on an example.
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The Shanley column

λ
λθ

u

Displacement u, θ,
Energy w = 1

2 (ε− α)2 + 1
2 Hα2

Strain : ε1 = u + lθ, ε2 = u− lθ
Stress : σi = E(εi − αi),
fi = (σi − Hαi)

2 − σy ≤ 0

Normality rule : α̇i = µi
∂f
∂σi

, µi ≥ 0, µifi = 0

Evolution law :

σ̇i = Eiε̇i with

{
Ei = E, fi ≤ 0
Ei = ET , fi = 0, ḟi = 0

(3)

C. Stolz Analysis of stability and bifurcation in non linear-mechanics with dissipation
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Equilibrium and discussion
Equilibrium (λ, θ = 0) is solution

−λ = σ1 + σ2 (4)
−λLθ = l(σ2 − σ1) (5)

For the evolution we derive the equation with respect to time, and
taking account of the local behaviour

u̇ = − λ̇

E1 + E2
+

E2 − E1

E1 + E2
lθ̇ (6)

˙(λθ) = Coλ̇+ C1θ̇ (7)

Along a path of equilibrium with the same condition of loading (the Ei

are given), the response of the system is obtained as

λ(θ) =
λoCo − C1θ

Co − θ
(8)

Co =
l
L

E2 − E1

E1 + E2
,C1 = 4

l2

L
E1E2

E1 + E2
.

C. Stolz Analysis of stability and bifurcation in non linear-mechanics with dissipation
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Discussion

Elastic domain: E1 = E2 = E : (critical value : Euler)

λ = λE = E
2l2

L
,∀θ

Plastic regime: E1 = E2 = ET

λ = λT = ET
2l2

L
,∀θ

Compatible with the loading if and only if θ̇ = 0 !
Elastic- Plastic regime: E1 = E,E2 = ET (θ, λ(θ)) is an hyperbole

with asymptote λR = ER
2l2

L
with the reduced modulus

ER =
2EET

E + ET

C. Stolz Analysis of stability and bifurcation in non linear-mechanics with dissipation
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This example shows that
for λT ≤ λ ≤ λR a bifurcated equilibrium path exists.
There is no transition from one bifurcated path to a close one

C. Stolz Analysis of stability and bifurcation in non linear-mechanics with dissipation
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Elastic stability
For λ < λE the displacement can be eliminate and the value of
potential energy is given by

W(αi, λ) = E(u(λ, αi), θ(λ, αi), αi, λ) (9)

with
u = − λ

2E
+
α1 + α2

2
, θ(λE − λ) =

El
L

(α2 − α1) (10)

The problem of evolution is now defined by

Ai = −∂W
∂αi

, f (Ai) ≤ 0, µi ≥ 0, µif (Ai) = 0 (11)
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The normality rule
If f = 0 then ḟ ≤ 0 and the normality rule (µf = 0) implies

µi ḟ = 0, ∀βi ≥ 0 (µi − βi)ḟ ≥ 0. (12)

The problem of evolution satisfies (Ni =
∂f
∂Ai

)

∑
i

Ni.Ȧi(µi − βi) ≥ 0 (13)

µi, βi ∈ C

C = {(β1, β2)/βi = 0 if f (Ai) < 0, βi ≥ 0 if f (Ai) = 0}

C. Stolz Analysis of stability and bifurcation in non linear-mechanics with dissipation
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On the problem of evolution

F(µ1, µ2, λ̇) =
∑

ij

1
2
µiNi

∂2W
∂αj∂αi

Njµj +
∑

i

Ni
∂2W
∂λ∂αi

λ̇ (14)

The solution µi satisfies the variational inequality∑
i

∂F
∂µi

(µi − βi) ≤ 0 (15)

on the admissible set µi, βi ∈ C

C = {(β1, β2)/βi = 0 if f (Ai) < 0, βi ≥ 0 if f (Ai) = 0}

The solution depends upon the quadratic form : Qij = Ni.
∂2W
∂αj∂αi

Nj

The solution exists if
βiQijβj > 0,∀β ∈ C

The solution is unique if

βiQijβj > 0,∀βi 6= 0

C. Stolz Analysis of stability and bifurcation in non linear-mechanics with dissipation



C-Stolz-CNRS UMR9219- UMR6183–Euromech Bologne 18

Results

The stability is obtained for λ ≤ λR

The uniqueness (no -bifurcation) λ ≤ λT

There is the main difference with conservative system : the
fundamental and the bifurcated paths are stable in the range
λT ≤ λ ≤ λR.
Connection can be made with the criterion of Hill :
The solution of the rate boundary value problem is a stationary point
of the functional

U(u̇, θ̇, λ̇)

on the set of admissible displacement.
Uniqueness if the functional is convex on the set of displacement.
On an equilibrium path (u(λ), θ(λ)), U is convex for λ < λT the
solution is unique.
At point λT , U is not strictly convex, two solutions gives the same U.
For λ > λT , U is no more convex.
Complete discussion : Petryk (1991)
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Bifurcation diagram

λ

|θ|

λR

λT

C. Stolz Analysis of stability and bifurcation in non linear-mechanics with dissipation
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A simple continuum : the Shanley column

Now the springs are uniformly distributed along the segment [−l, l].
The domain Ωp(t) is assumed to be [d(t), l]. The value of d is
determined by the condition of neutral loading

ε̇(d) = 0 = u̇− d θ̇, [α̇](d(t)) = 0 (16)

The equations of equilibrium are deduced from the potential energy

E(u(x), α(x),Td) =

∫ l

−l
w(ε, α)dx + Td(u + L(1− θ2/2)) (17)

as previously, ε(x) = u− xθ, then the state of equilibrium obeys to

0 = Td +

∫ +l

−l
E(x)(ε− α)dx (18)

0 = −TdLθ +

∫ +l

−l
E(x)x(ε− α)dx (19)

C. Stolz Analysis of stability and bifurcation in non linear-mechanics with dissipation
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Then, we obtain

0 = Ṫd +

∫ d

−l
Eε̇dx +

∫ l

d
ET ε̇dx (20)

0 = −L ˙Tdθ +

∫ +d

−l
Exε̇dx +

∫ l

d
ETxε̇dx (21)

A non trivial solution in θ is obtained by introducing the time-scale τ
such that the velocity x1 = ḋ of propagation of the unloading domain
is finite. The domain Ωp(τ) = [xτ , l] is parametrized with

d = xτ =
∑

i

xiτ
i. (22)

C. Stolz Analysis of stability and bifurcation in non linear-mechanics with dissipation



C-Stolz-CNRS UMR9219- UMR6183–Euromech Bologne 18

At point xτ , the condition [α̇(xτ , τ)] = 0 where α(x, t) =
∑

i αi(x)τi

gives conditions on the asymptotic expansion.

0 = [α1(xo)]

0 = [α2(xo)] + x1[α′1(xo)] (23)
0 = [α3(xo)] + 2x1[α′2(xo)] + (2x2

1 + x2)[α′1(xo)]

A non trivial solution is then obtained as

α∗(τ) = α(τ) + m(τ)x (24)

We can take the time-derivative of the equilibrium equations taking
account of the position of xτ and of discontinuities of the mechanical
quantities on this boundary. It is obvious that we have:

d
dt

∫ l

−l
f (x, τ)dx =

∫ l

−l
ḟ (x, τ)dx + [f (x, τ)]

x+
τ

x−τ
ẋτ (25)
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We find Tc = TT =
2l3E
3L

=
H

E + H
TE, m1 = 0 and m2 = −T2/2Hl2,

x2
1 =

4l2

3
T2

TE − TT

T = TT + T2
τ 2

2

θ =
ElT2

3LH(TE − TT)

τ 2

2
+ ...

This is a bifurcated path. The condition of stability of the fundamental
path (θ = 0,T) is preserved for loading near T = Tc but for T ≥ Tc

another path exists which is also a stable path.
Hutchinson (1978)

C. Stolz Analysis of stability and bifurcation in non linear-mechanics with dissipation
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General cases

Example contain essentially two main ideas
The existence of the potential energy
The evolution law for the internal variable given by the normality
rule associated with a convex domain of reversibility.
Elastoplastic beam has been studied by many authors
(Hutchinson,...Nguyen, Potier Ferry, CS,...) with different
techniques, critical loading and bifurcated solution have been
obtained : along the bifurcated path the equilibrium solution is
governed by the shape of the unloading part.
In the same idea, other mechanisms of dissipation have been
discussed : delamination of laminates, a set of cracks, damage
zones, moving interfaces.
The critical load is easy to obtained. The post-critical behaviour
must be studied to confirm existence of bifurcated path.

C. Stolz Analysis of stability and bifurcation in non linear-mechanics with dissipation
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Example in fracture : a set of straight cracks

Consider n cracks in an elastic body.

E(u, li, λ) =

∫
Ω

1
2
ε(u) : Co : ε(u) dΩ−

∫
∂ΩT

λTd.u dS (26)

The driving force associated to the propagation of a cracks is the
release rate of energy Gi, and we have

Gi =

∫
Γ

n.(w I− σ.∇u).ei ds = −∂E
∂li

(27)

The quadratic functional for the rate of displacement and propagation
of cracks has been given in Eur.J. Mech. A/Solids 9(2),157-173,1990

C. Stolz Analysis of stability and bifurcation in non linear-mechanics with dissipation
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A clamped beam

A beam in flexure, clamped at extremities. Vertical displacement w
and local strain is ε = w”(x)y.
Loading :w(o) = V is imposed or T(o) = F is prescribed.
For an elastic beam, the energy due to flexure is given by

W(l1, l2,V) =
3
2

EIV2 (l1 + l2)3

l31l32
=

1
2

K(l1, l2)V2,Gi = −∂W
∂li

The evolution is governed by the quadratic form

Qij =
∂2W
∂lilj

(28)

which is always positive, when l1 = l2, the propagation is stable with
no bifurcation

W∗(l1, l2,F) = − 1
2K

F2 (29)

The quadratic form Q is always negative definite . The symmetric
equilibrium is unstable with possible bifurcation.

C. Stolz Analysis of stability and bifurcation in non linear-mechanics with dissipation
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Moving Interface: damage

A material 1 changes to material 2 along a moving interface Γ
Consider two linear isotropic elastic materials with moduli Ci

Along the interface

[[ u ]]Γ = 0, [[σ ]]Γ .n = 0, [[ w ]]Γ 6= 0 (30)

When the surface is moving with normal velocity φ(s), a change of the
global strain energy occurs

Dm =

∫
Γ

([[ w ]]Γ − [[σ ]]Γ : [[∇u ]]Γ)φ(s) ds =

∫
Γ

G(s)φ(s) ds (31)

Given a normality rule (Griffith) to define the evolution φ(s)

φ(s) ≥ 0, G(s) ≤ Gc, (G(s)− Gc) φ(s) = 0 (32)

we obtain a quadratic functional to described the evolution of damage.

C. Stolz Analysis of stability and bifurcation in non linear-mechanics with dissipation
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S(X, t) = 0

Ω2 Ω1

X + a(s)ndt = X(t+ dt)

a(s)n

S(X(t+ dt), t+ dt) = 0

To follow the evolution of mechanical quantity f along Γ the convected
derivative Dφ(f ) is introduced

Dφ(f ) = lim
τ→0+

f (XΓ + anτ, t + τ)− f (XΓ, t)
τ

(33)

Then the normality rules implies

G(s) = Gc,

∫
Γ

(a(s)− β(s))Dφ(G)(s, t) ds ≤ 0. (34)

and Dφ([[ u ]]
Γ
) = 0,Dφ([[σ ]]

Γ
.n) = 0

C. Stolz Analysis of stability and bifurcation in non linear-mechanics with dissipation
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Models of fracture and damage

Linear Frac. Mech. Total damage Graded Damage

W(u, l) W(u,Γ) W(u, φ)

G = −∂W
∂l

G(s) = −∂W
∂Γ

Ḡ = −∂W
∂φ

G ≤ Gc G ≤ Gc Ḡ ≤ Ḡc

a ≥ 0 a(s) ≥ 0 a(s) ≥ 0, φ̇+ a∇φ.n = 0
aDl(G − Gc) = 0. a(s)Dφ(G − Gc) = 0. a(s)(DφḠ−DφḠc) = 0.

Solution of evolution v, a satisfies a variational inequality

∂F
∂v

(v− v∗) +
∂F
∂a

(a− a∗) + (
∂F

∂
da
ds

.
d(a− a∗)

ds
) ≥ 0

Analysis of stability and bifurcation (existence and uniqueness)
(CS 1985-2012)
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Example: the Blister Test

Modelization
Rate boundary value problem
Analysis of the solution

C. Stolz Analysis of stability and bifurcation in non linear-mechanics with dissipation
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Modelization

E(u, S, p) =

∫
S

1
2

K∇u2 − pu dS

Boundary condition
u = 0, over ∂S

The equilibrium gives
K∆u + p = 0
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Evolution of the interface

d
dt
E =

∫
S

K∇u.∇v− pv− ṗu dS +

∫
∂S

(
1
2

K∇u2 − pu)φ ds

On the boundary u = 0

Dφ(u) = 0, v + φ∇u.n = 0

Dissipation and energy release rate :

G = −(
1
2

K∇u2 − pu) + K∇u.n∇u.n, G =
1
2

K(∇u.n)2
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Rate Boundary Value Problem

DφG = K∇u.n(∇v.n + φ∇∇u.n.n)

As Dφu = v + φ∇u.n we obtain

DφG = K(v +∇u.nφ)∇∇u.n.n

Introducing the potential

F =

∫
S

1
2

K∇v.∇v− ṗv dS +

∫
Γ

φKv ∇∇u.n.n

+

∫
Γ

1
2
φ2K∇u.n ∇∇u.n.n ds
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Equilibrium
T∆v + ṗ = 0

Continuity
v + φ∇u.n = 0

Criterion
σ = K∇u.n = σc

Evolution law

K∇v.n + Kφ∇∇u.n.n + K∇uDφn = 0
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Properties of solutions.

For circular initial geometry: u = −p/4K(r2 − R2)

pR < pcR = 2
√

2KGc.

Analysis by Fourier series

δφ = ao +
∑

i

ai cos(iθ) + bi sin(iθ)

The displacement solution is given by

u =
pR
2K

(ao +
∑

i

(ai cos(iθ) + bi sin(iθ))(
r
R

)i

Then the quadratic form W(φ) = F(v(φ), φ) can be evaluated.
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Under prescribed pressure
The condition of stability is

W = 2πGc(−2a2
o +

∑
i

(i− 1)(a2
i + b2

i )) ≥ 0

then the circular shape is unstable
Under controlled volume

∫
S udS = V the changes to

W = 2πGc(2a2
o +

∑
i

(i− 1)(a2
i + b2

i )) ≥ 0

the position is stable.
But bifurcation is possible : (i = 1) φ = ao + a1cosθ + b1sinθ ≥ 0 can
be solution.
The post-critical behaviour must be studied.
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Conclusion

In presence of dissipation the concept of stability-bifurcation has
different properties than for conservative system.
Two types of non linearities are present : the local behaviour and the
potential of external forces.
For standard generalized materials (Plasticity, Fracture, Damage) the
rate boundary value problem is governed by a variational inequality
and hypo-elastic potential in sense of Hill is obtained : hence the
critical value for loss of uniqueness can be evaluated.
Post critical behaviour must be studied to ensure the existence of
bifurcated path.
The analysis shows that fundamental and bifurcated path can be
stable paths
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