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Exponential stability of PI control

for Saint-Venant equations with a friction term

Georges Bastin∗ and Jean-Michel Coron†

Dedicated to Roland Glowinski, a master and a friend, on the occasion of his 80th birthday

Abstract

We consider open channels represented by Saint-Venant equations that are monitored and
controlled at the downstream boundary and subject to unmeasured flow disturbances at the
upstream boundary. We address the issue of feedback stabilization and disturbance rejection
under Proportional-Integral (PI) boundary control. For channels with uniform steady states,
the analysis has been carried out previously in the literature with spectral methods as well
as with Lyapunov functions in Riemann coordinates. In this article, our main contribution is
to show how the analysis can be extended to channels with non-uniform steady states with a
Lyapunov function in physical coordinates.

Introduction

The hyperbolic Saint-Venant equations are commonly used for the description of water flow dynam-
ics in open channels and for the design of management and control systems in irrigation networks
and navigable rivers. In particular, the exponential stabilization of Saint-Venant equations by
boundary feedback control has been a recurring research topic in the literature for more than
twenty years.

The earlier results dealt with static proportional control. In the simplest case of horizontal
channels with negligible friction, the stability analysis was carried out in [6] with an entropy
Lyapunov function, in [16, 11] with the method of characteristics, and in [7, Section VI] with a
Lyapunov function in Riemann coordinates. The stability analysis was then extended to channels
with slope and friction. In the special case of a uniform steady state, the stability analysis was
carried out with a spectral method for linearized equations in [17, Section 6]. However the linearized
system stability does not directly imply the stability of the steady state for the nonlinear Saint-
Venant equations (see e.g. [8]). For this nonlinear case, the stability analysis is done in [4, 13] with
a Lyapunov function in Riemann coordinates. More recently, the case of channels with friction
and slope and non-uniform steady state was considered in [3] and [15] with dedicated Lyapunov
functions expressed in physical coordinates.

The boundary feedback stabilization of Saint-Venant equations by Proportional-Integral (PI)
control has received much less attention in the literature. It has been analyzed for channels with
uniform steady states in [5] with a spectral method and in [14, Section 4], [2, Section 5.5] with
Lyapunov functions in Riemann coordinates. In the present article, our main contribution is to
show how the analysis of [3] can be extended to channels with non-uniform steady states under PI
control, using a Lyapunov function in physical coordinates.

Obviously, in principle, stabilization is also possible with more sophisticated control laws. In
particular, the recent backstepping method for 2 × 2 hyperbolic systems, see e.g. [10, 1, 12],
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allows to design stabilizing boundary output feedbacks in observer-controller form for Saint-Venant
equations. However, it is clear that such advanced solutions are far from being used in practice and
that PI controllers are the only regulators that are really implemented in the vast majority of field
applications. The reason is obviously that PI regulators, besides their great ease of implementation,
are the simplest solution to cancel off-set errors and attenuate load disturbances. In a PI regulator,
the parameter ki is a measure of the disturbance attenuation efficiency, but too large values may
produce instability. The analysis of the stability of a closed-loop system under PI control, as we
present in this article, is therefore an important and relevant issue.

Saint-Venant equations

We consider a pool of a prismatic horizontal open channel with a rectangular cross section, as
shown in Fig.1. The dynamics of the system are described by the Saint-Venant equations

Ht + (HV )x = 0, (1a)

Vt +

(
gH +

1

2
V 2

)
x

+ Sf (H,V ) = 0, (1b)

with the state variables H(t, x) = water depth and V (t, x) = horizontal water velocity at the time
instant t and the location x along the channel. L is the length of the pool and g is the gravity
acceleration. Sf (H,V ) is the friction term for which various empirical models are available in the
engineering literature. In this article, we adopt the simple model

Sf (H,V ) , C
V 2

H
(2)

with C a constant friction coefficient.

x
L0

H(t, x)
V (t, x)

Q0(t)

H(t, L) U(t)

Figure 1: Pool of an open channel with an overflow gate at the downstream side.

The system is subject to the following boundary conditions:

H(t, 0)V (t, 0) = Q0(t), (3a)

H(t, L)V (t, L) = υG
(
H(t, L)− U(t)

)
. (3b)

The first boundary condition (3a) imposes the value of the canal inflow rate which is an unknown
disturbance denoted Q0(t). The second boundary condition (3b) is a simple linear model of a
spillway outflow gate with U(t) the gate elevation used as control input and υG a constant gate
parameter.
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Proportional-Integral control

In this article we are concerned with the case where the outflow gate is provided with a Proportional-
Integral (PI) control law

U(t) , Ur + kp(Hsp −H(t, L)) + ki

∫ t

0

(Hsp −H(τ, L))dτ (4)

where Hsp denotes the set-point for the downstream level H(t, L) which is assumed to be measured
on line. The first term Ur is an arbitrary constant value for the gate elevation. The second term
is the proportional correction action with the tuning parameter kp. The last term is the integral
action with the tuning parameter ki.

With this control law, defining Z(t) , U(t) + kpH(t, L), the boundary conditions are written
in differential form as follows:

H(t, 0)V (t, 0) = Q0(t), (5a)

H(t, L)V (t, L) = υG
[
(1 + kp)H(t, L)− Z(t)

]
, (5b)

dZ

dt
= ki(Hsp −H(t, L)). (5c)

When U(t) is the feedback command signal (4), the system (1), (5) is a closed loop boundary
control system.

In this article, our main purpose is to analyze the exponential stability of this closed loop
control system.

Remark 1. It would be interesting to know if, as in the case of a single linear transport equation
(see [9, Theorem 2.2]), the control system (1) subject to Proportional-Integral-Derivative (PID)
boundary controls is always unstable.

Fluvial steady state

In case of a constant positive disturbance Q0 > 0 and a constant positive set point Hsp > 0,
a steady state of the closed loop control system is a time-invariant solution H∗(x), V ∗(x), Z∗,
x ∈ [0, L], given by:

H∗(x) solution of (gH∗3 −Q2
0)H∗x + CQ2

0 = 0, H∗(L) = Hsp, (6a)

V ∗(x) =
Q0

H∗(x)
, (6b)

Z∗ = (1 + kp)Hsp −
Q0

υG
. (6c)

The existence of a solution to (6a) requires that gH3
sp 6= Q2

0. If gH3
sp > Q2

0, then (6a) has a solution
(note that H∗ is then decreasing) and the steady state flow is subcritical (or fluvial). In such case,
from (6a) and (6b), according to the physical evidence, the state (H∗, V ∗) is positive :

H∗(x) > 0, V ∗(x) > 0, for all x ∈ [0, L], (7)

and satisfies the following inequality:

0 < gH∗(x)− V ∗2(x) = gH∗3(x)−Q2
0, ∀x ∈ [0, L]. (8)

In the case where gH3
sp < Q2

0, the steady state, if it exists, is said to be supercritical (or torrential).
We do not consider that case in the present article.
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Linearization

In order to linearize the model, we define the deviations of the states H(t, x), V (t, x) and Z(t)
with respect to the steady states H∗(x), V ∗(x) and Z∗:

h(t, x) , H(t, x)−H∗(x), v(t, x) , V (t, x)− V ∗(x), z = Z(t)− Z∗. (9)

Then the linearized Saint-Venant equations around the steady-state are(
ht

vt

)
+

(
V ∗ H∗

g V ∗

)(
hx

vx

)
+

 V ∗x H∗x

−C V
∗2

H∗2
V ∗x + 2C

V ∗

H∗

(h
v

)
= 0, (10)

and the linearized boundary conditions are

v(t, 0) = −b0h(t, 0) with b0 =
V ∗(0)

H∗(0)
, (11a)

v(t, L) = bLh(t, L)− bzz(t), bL =
υG(1 + kp)− V ∗(L)

H∗(L)
, bz =

υG
H∗(L)

, (11b)

zt = −kih(t, L). (11c)

Exponential stability of the linearized system

Let us consider the linearized system (10), (11) under an initial condition

h(0, x) = ho(x), v(0, x) = vo(x), z(0) = zo, (12)

such that
(ho, vo) ∈ L2((0, L);R2), zo ∈ R. (13)

The Cauchy problem (10)-(11)-(12) is well-posed (see [2, Appendix A]).
Our concern is to analyze the exponential stability of the system (10)-(11) according to the

following definition.

Definition 1. The system (10)-(11) is exponentially stable (for the L2-norm) if there exist ν > 0
and Co > 0 such that, for every initial condition (ho, vo) ∈ L2((0, L);R2), zo ∈ R, the solution to
the Cauchy problem (10), (11), (12) satisfies

‖(h(t, ·), v(t, ·))‖L2 + |z(t)| 6 Coe
−νt
[
‖(ho, vo)‖L2 + |zo|

]
. (14)

We now prove that the linearized control system (10)-(11) is exponentially stable if the steady
state is subcritical and the control tuning parameters are positive: kp > 0 and ki > 0. For this
stability analysis, the following candidate Lyapunov function is considered:

V(h, v, z) =

∫ L

0

(gh2 +H∗v2)dx+ qz2, (15)

where q > 0 is chosen later on. Note that there exists C1 > 0 such that

1

C1

(
‖(h, v)‖2L2 + |z|2

)
≤ V(h, v, z) ≤ C1‖(h, v)‖2L2 + |z|2, ∀(h, v, z) ∈ L2(0, L)× L2(0, L)× R.

(16)
The time derivative of this function V along the C1 solutions of the Cauchy problem (10), (11),
(12) is

dV

dt
= 2

∫ L

0

(ghht +H∗vvt)dx+ 2qzzt. (17)
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Using the system equation (10) and the boundary condition (11c),we have

dV

dt
= −2

∫ L

0

(
gh(V ∗hx +H∗vx + V ∗x h+H∗xv)

+H∗v
(
ghx + V ∗vx − C

V ∗2

H∗2
h+ (V ∗x + 2C

V ∗

H∗
v)
))
dx− 2qkizh(t, L). (18)

Then, using integration by parts together with (6a), we have

dV

dt
= −

[(
h v

)
M(x)

(
h

v

)]L
0

−
∫ L

0

(
h v

)
N(x)

(
h

v

)
dx− 2qkizh(t, L), (19)

with

M(x) =

(
gV ∗(x) gH∗(x)

gH∗(x) H∗(x)V ∗(x)

)
, (20)

and

N(x) =


gCV ∗3

H∗(gH∗ − V ∗2)
−CV

∗2

H∗

−CV
∗2

H∗
2CV ∗3

(gH∗ − V ∗2)
+ 4CV ∗

 . (21)

We introduce the notations

h0 = h(t, 0), hL = h(t, L), v0 = v(t, 0), vL = v(t, L), (22)

H0 = H∗(0), V0 = V ∗(0), HL = H∗(L), VL = V ∗(L). (23)

Then, using the boundary conditions (11a), (11b), we have[(
h v

)
M(x)

(
h

v

)]L
0

= gVLh
2
L + 2gHLhLvL +Q0v

2
L − gV0h20 − 2gH0h0v0 −Q0v

2
0

= gVLh
2
L + 2gHLhL(bLhL − bzz) +Q0(bLhL − bzz)2 − gV0h20 + 2gH0h0(b0h0)−Q0(b0h0)2

= (gVL + 2gbLHL +Q0b
2
L)h2L + (−gV0 + 2gb0H0 −Q0b

2
0)h20 +Q0b

2
zz

2

+ (−2gbzHL − 2Q0bLbz)hLz. (24)

Consequently

dV

dt
= −m0h

2
0 −

(
hL z

)
M

(
hL

z

)
−
∫ L

0

(
h v

)
N(x)

(
h

v

)
dx− 2aqkiz

2, (25)

with
m0 = −gV0 + 2gb0H0 −Q0b

2
0, (26)

M =

(
gVL + 2gbLHL +Q0b

2
L −gbzHL −Q0bLbz + qki

−gbzHL −Q0bLbz + qki Q0b
2
z − 2aqki

)
, (27)

and a is a real positive constant to be determined.
Under the subcritical flow condition (8), using the definition of b0 (11a), we have that

m0 = −gV0 + 2gb0H0 −H0V0b
2
0 = b0(gH0 − V 2

0 ) > 0 (28)
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and that the matrix N(x) is positive definite for all x ∈ [0, L] since

det[N(x)] =

(
CV ∗2

H∗

)2(
2gH∗V ∗2

(gH∗ − V ∗2)2
+

4gH∗

(gH∗ − V ∗2)
− 1

)
> 0. (29)

On the other hand, M is positive definite if

(a) gVL + 2gbLHL +Q0b
2
L > 0, (30)

(b) det(M) = (gVL + 2gbLHL +Q0b
2
L)(Q0b

2
z − 2aqki)− (gbzHL +Q0bLbz − qki)2 > 0. (31)

It follows from (3b) that υG > VL. Hence, since kp > 0, we have from (11b)

bL =
(υG − VL) + υGkp

H∗(L)
> 0 (32)

and Condition (a) is satisfied.

Regarding condition (b), using the definition of bL, we have

det(M) = −α+ 2βkiq − k2i q2 = P(q), (33)

with
α = gb2zHL(gHL − V 2

L ) (34)

and
β = gbzHL +Q0bLbz − a(gVL + 2gbLHL +Q0b

2
L). (35)

P(q) is a degree-2 polynomial in q with discriminant

∆ = 4k2i (β2 − α). (36)

We observe that α > 0 under the subcritical flow condition (8). Moreover, it is easy to check that
the positive parameter a can be selected sufficiently small so that β > 0 and β2 − α > 0. Hence,
if ki > 0, P(q) has two positive real roots and there exists a positive value of q (depending on ki)
such that det(M) > 0 and condition (b) is satisfied. Then, it follows directly from the definition
(15) of V and from (25) that there exists a positive real constant µ such that

dV

dt
6 −µV (37)

along the C1-solutions of the system. However, since the C1-solutions are dense in the set of
L2-solutions, inequality (37) is also satisfied in the sense of distributions for L2-solutions (see [2]
for details). Consequently, V is an exponentially decaying Lyapunov function for the L2-norm and
the system (10)-(11) is exponentially stable in the sense of Definition 1.

Exponential stability of the steady state of the Saint-Venant equations

In the previous section, we have shown that the PI controller (4) stabilizes the linearized Saint-
Venant equations if the steady state is subcritical and the control tuning parameters are positive:
kp > 0 and ki > 0. In this section, we briefly explain how it can be shown that the same PI
controller is also sufficient to guarantee the local exponential stability for the H2-norm of the
steady state H∗(x), V ∗(x) of the nonlinear system of Saint-Venant equations (1), (2) under the
nonlinear boundary conditions (5).
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Let us rewrite the Saint-Venant equations in the (h, v) coordinates (see (9)),(
ht

vt

)
+

(
V ∗(x) + v H∗(x) + h

g V ∗(x) + v

)(
hx

vx

)

+

 V ∗x (x) H∗x(x)

−C V ∗2(x)

H∗(x)(H∗(x) + h)
V ∗x (x) + C

2V ∗(x) + v

H∗(x) + h

(h
v

)
= 0, (38)

with the boundary conditions (using the notations (22) and (23))

v0 = −b0h0 +
V0

H0(H0 + h0)
h20, (39a)

vL = bLhL − bzz +
(VL − υG(1 + kP ))h2L + υGhLz

HL(HL + hL)
, (39b)

zt = −kihL. (39c)

Then, we transform the system into Riemann coordinates which are defined as follows:

R =

(
R+

R−

)
=

(
v + 2η(h)

v − 2η(h)

)
with η(h) =

√
g(H∗ + h)−

√
gH∗. (40)

With these coordinates, the system (38) is written in the following characteristic form:

Rt + Λ(R, x)Rx + B(R, x) = 0, (41)

with the diagonal matrix

Λ(R, x) =

(
λ+(R, x) 0

0 λ−(R, x)

)
with λ±(R, x) = V ∗ ±

√
gH∗ + v ± η(h), (42)

and an appropriate definition of B(R, x).
The goal is to prove the H2 exponential stability of the zero steady state for the system (42)

under the boundary conditions (39) and under an initial condition

R(0, x) = Ro(x), z(0) = zo. (43)

according to the following definition.

Definition 2. The steady state R(t, x) ≡ 0 of the system (39) and (41) is exponentially stable
for the H2-norm if there exist δ > 0, ν > 0 and C0 > 0 such that, for every initial condition
Ro ∈ H2((0, L);Rn) satisfying ‖Ro‖H2((0,L);Rn) 6 δ and compatibility1 conditions of order 1 , the
solution R of the Cauchy problem (39), (41), (43) is defined on [0,+∞)× [0, L] and satisfies

‖R(t, .)‖H2((0,L);Rn) + |z(t)| ≤ C0e
−νt
[
‖Ro‖H2((0,L);Rn) + |zo|

]
. (44)

With this definition our main result is the following theorem

Theorem 1. The steady state R(t, x) ≡ 0 of the system (39) and (41) is exponentially stable for
the H2-norm.

1For an explanation of the concept of compatibility of initial conditions, see [2, Section 4.5.2]
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The proof of Theorem 1 is built in a way similar to the proof given in [2, Chapter 6] for a general
class of quasi-linear hyperbolic systems with static boundary conditions. Here we limit ourselves
to the key points of the proof and we refer the reader to [2, Section 6.2] for a comprehensive
development.

First, we consider an augmented system with state (R,Rt,Rtt) where the dynamics of Rt and
Rtt are simply obtained by taking partial time derivatives of the system equation (42) and the
boundary conditions (39).

Then the candidate Lyapunov function is defined as

VNL = V1(R, z) + V2(Rt, zt) + V3(Rtt, ztt), (45)

with

V1(R, z) =

∫ L

0

1
2H
∗RTRdx+ qz2, (46)

V2(Rt, zt) =

∫ L

0

1
2H
∗RT

t Rtdx+ qz2t , (47)

V3(Rtt, ztt) =

∫ L

0

1
2H
∗RT

ttRttdx+ qz2tt. (48)

For a vector ξ = (ξ1, . . . , ξn)T ∈ Rn, we denote |ξ|∞ = max{|ξj |; j ∈ {1, . . . , n}}. For a map
f ∈ C0([0, L];Rn), we denote |f |0 = max{|f(x)|∞; x ∈ [0, L]}. We remark that, for small |h|0,
the function V1(R, z) can be viewed as a perturbation of the Lyapunov function V(h, v, z) of the
linearized system (see equation (15)). More precisely, for |h|0 sufficiently small,

V1(R, z) =

∫ L

0

1
2H
∗RTRdx+ qz2 (49)

=

∫ L

0

(4H∗η2(h) +H∗v2)dx+ qz2

=

∫ L

0

(gh2 +H∗v2 +O(h3))dx+ qz2

= V(h, v, z) +

∫ L

0

O(|h|3)dx. (50)

Similar expressions of V2 and V3 are obtained as follows: for |h|0 sufficiently small

V2(Rt, zt) = V(ht, vt, zt) +

∫ L

0

O(|hh2t |)dx, (51)

V3(Rtt, ztt) = V(htt, vtt, ztt) +

∫ L

0

O(|h2thtt|+ |hh2tt|+ |ht|4)dx. (52)

Let us now introduce a notation to deal with “higher order terms” in the time derivative of the
Lyapunov function. We denote by O(X1;X2), with X1 > 0 and X2 > 0, quantities for which there
exist C0 > 0 and ε > 0 independent of R, Rt and Rtt, such that

(X2 6 ε) =⇒ (|O(X1;X2)| 6 C0X1).

It follows that the time derivatives of V1, V2 and V3 along the system solutions can be expressed
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in the following form

dV1

dt
= −

[(
h v

)
M(x)

(
h

v

)]L
0

−
∫ L

0

(
h v

)
N(x)

(
h

v

)
dx− 2qzzt

+O
(
|R(t, 0)|3 + |R(t, L)|3; |R(t, 0)|+ |R(t, L)|

)
+O

(∫ L

0

(|R|3 + |Rt||R|2)dx; |R(t, .)|0
)
, (53)

dV2

dt
= −

[(
ht vt

)
M(x)

(
ht

vt

)]L
0

−
∫ L

0

(
ht vt

)
N(x)

(
ht

vt

)
dx− 2qztztt

+ |Rt(t, 0)|2|R(t, 0)|+ |Rt(t, L)|2|R(t, L)|; |R(t, 0)|+ |R(t, L)|
)

+O
(∫ L

0

|Rt|2(|Rt|+ |R|)dx; |R(t, .)|0)
)
, (54)

dV3

dt
= −

[(
htt vtt

)
M(x)

(
htt

vtt

)]L
0

−
∫ L

0

(
ht vt

)
N(x)

(
ht

vt

)
dx− 2qzttzttt

+O
(
|Rtt(t, 0)|2|R(t, 0)|+ |Rtt(t, 0)||Rt(t, 0)|2 + |Rt(t, 0)|4

+ |Rtt(t, L)|2|R(t, L)|+ |Rtt(t, L)||Rt(t, L)|2 + |Rt(t, L)|4; |R(t, 0)|+ |R(t, L)|
)

+O
(∫ L

0

(
|Rtt|2(|Rt|+ |R|) + |Rtt||Rt|2

)
dx; |R(t, .)|0 + |Rt(t, .)|0

)
. (55)

We observe that, in each case, we recover the quadratic formula of the linear case augmented
with (at least) cubic terms that are negligible for small |R(t, .)|0 + |Rt(t, .)|0. It is therefore not
surprising that the local H2 stability of the nonlinear steady state can be deduced from the global
L2 stability of the linear system. By proceeding similarly to [2, Chapter 6], it can be shown that
there exist positive constants α and δ such that, for every R such that |R(t, .)|0 + |Rt(t, .)|0 < δ,
we have

dVNL

dt
6 −αVNL (56)

along the system solutions. Compared to [2, Chapter 6], note that, by (39b), vL (and its first and
second time derivatives) can be expressed in terms of hL and z (and their first and second time
derivatives) as we did in (24) for the linear case. It follows that the system steady-state is locally
exponentially stable for the H2-norm in the sense of Definition 2. This concludes the proof of
Theorem 1.

Conclusion

In this article, our main contribution was to exhibit a Lyapunov function which allows to study the
exponential stability of nonuniform steady-states for Saint-Venant equations with a friction term
under boundary feedback PI control.
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