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Abstract

Basis Pursuit (BP), Basis Pursuit DeNoising (BPDN), and LASSO are popular methods for identifying

important predictors in the high-dimensional linear regression model Y = Xβ + ε. By definition, when

ε = 0, BP uniquely recovers β when Xβ = Xb and β 6= b implies ‖b‖1 > ‖β‖1 (identifiability condition).

Furthermore, LASSO can recover the sign of β only under a much stronger irrepresentability condition.

Meanwhile, it is known that the model selection properties of LASSO can be improved by hard-thresholding

its estimates. This article supports these findings by proving that thresholded LASSO, thresholded BPDN

and thresholded BP recover the sign of β in both the noisy and noiseless cases if and only if β is identifiable

and large enough. In particular, if X has iid Gaussian entries and the number of predictors grows linearly

with the sample size, then these thresholded estimators can recover the sign of β when the signal sparsity is

asymptotically below the Donoho-Tanner transition curve. This is in contrast to the regular LASSO, which

asymptotically, recovers the sign of β only when the signal sparsity tends to 0. Numerical experiments show

that the identifiability condition, unlike the irrepresentability condition, does not seem to be affected by the

structure of the correlations in the X matrix.

Keywords: Multiple regression, Basis Pursuit, LASSO, Sparsity, Active set estimation, Sign estimation,

Identifiability condition, Irrepresentability condition

1 Introduction

Let us consider the high dimensional linear model

Y = Xβ + ε, (1)

∗Corresponding author: tardivel@math.uni.wroc.pl
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where X = (X1| . . . |Xp) is a n × p design matrix with n ≤ p, ε is a random vector in Rn, and β ∈ Rp is an

unknown vector of regression coefficients. The sign vector of β is S(β) = (S(β1), . . . S(βp)) ∈ {−1, 0, 1}p, where

for x ∈ R, S(x) = 1x>0 − 1x<0. Our main goal is to recover S(β). This goal is somewhat more general than

the goal of recovering the active set, supp(β) := {i ∈ {1, . . . , p} | βi 6= 0}. Indeed, given S(β) one may recover

supp(β) since supp(β) := {i ∈ {1, . . . , p} | S(βi) 6= 0} but conversely, given supp(β), one cannot recover S(β).

Moreover, some theoretical works recommend sign recovery instead of active set recovery [17, 27].

1.1 BP, BPDN and LASSO

First introduced in signal processing [7], BP estimator is a solution of the following optimization problem

β̂BP := argmin ‖b‖1 subject to Y = Xb,

which can be solved using linear programming. In the noiseless case, when ε = 0 and Y = Xβ, we say that β

is identifiable with respect to X and the `1 norm if β̂BP uniquely recovers β i.e. if b 6= β, Xb = Xβ implies

‖b‖1 > ‖β‖1. Note that a geometric characterization of the identifiability condition, depending on X and the

sign of β, is given in [26]. This condition implies that β is sparse. Indeed, Lemma 3 in Tardivel et al. [30]

shows that card{i ∈ {1, . . . , p} | β̂BP
i 6= 0} ≤ n i.e. β̂BP has at least p − n zeros. Consequently having k ≤ n,

where k is the number of non-zero elements in β, is necessary for the identifiability condition. On the other

hand, some assumptions on the sparsity of β guarantee that β is identifiable with respect to the `1 norm. For

example, the identifiability condition holds if the number of non-zero elements of β satisfies the mutual coherence

condition [12, 16, 19]. In the special case where the elements of X are iid normal variables, the transition curve

ρ : (0, 1) 7→ (0, 1) [11] characterizes the identifiability condition with respect to the signal sparsity ξ = k/n. In

particular, it is known that the identifiability condition is satisfied with probability converging to 1 if ξ < ρ(δ)

or converging to 0 if ξ > ρ(δ).

In the case where ε has a continuous distribution, almost surely BP has n non-zero components and thus

BP cannot recover the sign of β once k 6= n. To account for noise, when ε has iid N (0, σ2) entries for some

σ > 0, Chen and Donoho [7] extended BP by proposing the following estimation algorithm:

β̂L := argmin
b∈Rp

1

2
‖Y −Xb‖22 + λ‖b‖1 with λ = σ

√
2 log p. (2)

In the seminal work of Tibshirani [31], the algorithm was extended for fitting the general multiple regression

models where different values of λ are often more appropriate. The method gained great popularity in the

statistical community under the name LASSO (Least Absolute Shrinkage and Selection Operator), while in the

signal processing community it is often called Basis Pursuit Denoising (BPDN). In this paper, we will use the
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term BPDN for a slightly different form of this estimator, where association with BP is even clearer

β̂BPDN := argmin
b∈Rp

‖b‖1 subject to ‖Y −Xb‖22 ≤ R,where R ≥ 0. (3)

Note that X is fixed but Y is random, and that for a given λ > 0 for LASSO we cannot choose a fixed R > 0 for

BPDN under which the two estimators are almost surely equal. To illustrate this fact, we note that β̂BPDN = 0

if and only if ‖Y ‖22 ≤ R, while for LASSO β̂L = 0 if and only if ‖X ′Y ‖∞ ≤ λ.

1.2 Sign recovery by LASSO

Properties of the LASSO sign estimator S(β̂L(λ)) :=
(
S(β̂L

1 (λ)), . . . , S(β̂L
p (λ))

)
(or properties of the active set

estimator supp(β̂L(λ)) := {i ∈ {1, . . . , p} | β̂L
i (λ) 6= 0}) have been intensively studied [14, 21, 22, 35, 39, 40].

According to Theorem 2 of Wainwright [35], the irrepresentability condition is necessary for LASSO to recover

S(β) with high probability. Indeed, if ker(XI) = {0}, ‖X ′
I
XI(X

′
IXI)

−1S(βI)‖∞ > 1 and both ε and −ε

have the same distribution, then for any choice of the tuning parameter λ > 0, P(S(β̂L(λ)) = S(β)) ≤ 1/2.

This result also holds for the noiseless case, in which LASSO does not recover S(β). Moreover, Bühlmann

and van de Geer [4] (pp. 192-194) have shown that if ε = 0 and the irrepresentability holds strictly (i.e. if

‖X ′
I
XI(X

′
IXI)

−1S(βI)‖∞ < 1) then the nonrandom set supp(β̂L(λ)) is equal to supp(β) as long as the non-zero

components of β are sufficiently large. The proof given in [4] can be easily adapted for sign recovery.

Proposition 1, proved in the Appendix, shows that the identifiability condition is weaker than the irrepre-

sentability condition.

Proposition 1 Let X be an n × p matrix with p ≥ n columns in general position. Moreover, let β ∈ Rp,

I := supp(β) and suppose that ker(XI) = {0}. If the irrepresentability condition holds, then the parameter β is

identifiable with respect to the `1norm.

For the case where the elements of X are iid random variables from the normal distribution, the irrepre-

sentability condition is satisfied with high probability if and only if k < n
2 log p (see [35]). This implies that

LASSO cannot recover S(β) when k/n→ ξ > 0, even if ξ < ρ(δ).

1.3 Sign recovery by thresholded LASSO

It is well known that LASSO can consistently estimate β under much weaker assumptions than the irrepre-

sentability condition (see, e.g., [23] or [34]). This suggests that an appropriately thresholded version of LASSO

can recover S(β) under weaker assumptions than the irrepresentability condition [24]. Concerning sign recovery

by thresholded BP, first theoretical results were given by Saligrama and Zhao [25]. More recently, Descloux and

Sardy [9] show that the stable null space property is a sufficient condition to recover the sign of β by thresholded

BP.

3



To our knowledge, the stable null space property has so far been the weakest sufficient condition known to

guarantee the recovery of S(β). In Theorem 1, we show that “identifiability”, a weaker condition than the stable

null space property, is sufficient to recover S(β) by thresholded BP, thresholded BPDN or thresholded LASSO

when the non-zero elements of β are large enough. We also show that “identifiability” is a necessary condition

for the recovery of S(β) by these methods, regardless of the signal magnitude.

Theorem 1 implies that in the linear sparsity regime of [11] for Gaussian matrices, thresholded BP, thresh-

olded BPDN and thresholded LASSO recover S(β) if, asymptotically, k < nρ(n/p) holds and the signal magnitude

tends towards infinity. Table 1 summarizes known conditions for sign or support recovery by LASSO and related

methods, when ε 6= 0 and the signal is large enough.

Method Conditions Type Related articles
Regular Mutual coherence sufficient [6, 21]
LASSO Irrepresentability necessary and sufficient [14, 22, 35, 39, 40]

Thresholded Stable null space sufficient [9]
LASSO, BP Identifiability necessary and sufficient current article

Table 1: Some theoretical conditions under which LASSO and related methods can recover the sign or the
support of β when ε 6= 0 and non-zero elements of β are large enough. Additional comments related to these
conditions are given in Appendix.

1.4 Graphical illustration of the main result

By definition, the irrepresentability condition depends on β by S(β). Moreover, as asserted in Proposition 2, the

identifiability condition similarly depends only on S(β). Thus, the comparison of these two conditions can be per-

formed by considering parameter vectors such that β = S(β). In Figure 1, we plot the irrepresentability and iden-

tifiability curves representing the proportion of sign vectors for which the identifiability condition or the irrepre-

sentability condition is satisfied among k−sparse sign vectors. For each value of k, this proportion was estimated

by generating 1000 sign vectors from a uniform distribution on the set {u ∈ {−1, 0, 1}p | card(supp(u)) = k}.

Figure 1 shows a large potential for improvement in sign detection by thresholded LASSO compared to the

base LASSO. If the columns of the design matrix are independent Gaussian vectors, then the irrepresentability

condition is satisfied with high probability only if k ≤ 10, which is also a limiting sparsity for the recovery of

S(β) by LASSO. Instead, the identifiability condition, which provides the limiting sparsity for the recovery of

S(β) by the thresholded LASSO, holds as long as k ≤ 30. The simulations are in strong agreement with the

asymptotic results in [35] and [13], which predict the upper bounds for k such that the irrepresentability and

identifiability conditions hold for Gaussian design matrices with independent entries.

The difference between identifiability and irrepresentability curves becomes even more apparent when there

are strong correlations between different columns in the design matrix. As expected, the irrepresentability curve

shrinks towards zero. Instead, and rather unexpectedly, the simulated identifiability curve remains intact.
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Figure 1: Simulated identifiability and irrepresentability curves for two specific design matrices of dimensions
100 × 300. In both cases the rows of X were generated as iid random vectors from the multivariate normal
distribution N(0,Σ), with Σ = I in the left panel and Σ in the second panel having a compound symmetry
form with Σii = 1 and Σij = 0.9 for i 6= j. The x-axis represents the sparsity k and the y-axis the fraction
of sign vectors that satisfy the identifiability condition (respectively, irrepresentability condition). In the left
panel, the vertical lines represent the values k = 100

2 log(300) and k = 100× ρ(100/300). These values correspond

to the asymptotic upper bounds for k so the irrepresentability and identifiability conditions hold for Gaussian
design matrices with independent entries.

1.5 Organization of the article

In Section 2, Theorem 1 shows that identifiability is a necessary and sufficient condition for LASSO to separate

the non-zero components of β from the noise and to recover asymptotically S(β) with thresholded LASSO and

thresholded BPDN. Corollary 1 shows that under the asymptotic linear sparsity regime for Gaussian matrices

thresholded LASSO and thresholded BPDN can recover the sign of β when asymptotically k < nρ(n/p).

In Section 3, Proposition 2 shows that the identifiability condition depends only on S(β) and not on the

size of the non-zero components of β. Here we also introduce the irrepresentability and identifiability curves,

which respectively give the fraction of k−sparse sign vectors satisfying the irrepresentability condition and the

identifiability condition. Section 4 is devoted to numerical experiments showing that sign estimators derived

from the thresholded LASSO and the thresholded BPDN are better than sign estimators derived from LASSO

and the adaptive LASSO, and that the knockoff method allows appropriate threshold selection for both methods.

The proofs are in the Appendix. In this section, we also formulate Proposition 3 providing a tight upper bound

on the probability of recovering S(β) through LASSO.

1.6 Notation and assumptions

In this article we always assume that the design matrix X has columns in general position1 (see, e.g., [32] or

the supplementary material for this manuscript). This assumption guarantees that the minimizer of (2) (resp.

minimizer of (3)) is unique and that therefore the LASSO estimator (resp. BPDN estimator) is well-defined.

1Actually, general position is just a sufficient condition under which, for a fixed X ∈ Rn×p, independently of Y ∈ Rn the
LASSO minimizer is unique. Recently, this condition was relaxed by Ewald and Schneider [15] to a geometric criterion which is
both sufficient and necessary.
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This assumption is very weak and generically holds. Indeed, when X is a random matrix such that the entries

(X11, X12, . . . , Xnp) have a density on Rnp then, almost surely, X is in general position [32].

Notation used in the following sections is as follows:

• Let I be a subset of {1, . . . , p}. We denote by I the complement of I, namely I := {1, . . . , p} \ I.

• The notation XI stands for a matrix whose columns are indexed by the elements of I: (Xi)i∈I .

• For b ∈ Rp, bI denotes the subvector containing elements of b with indices in I.

• The symbols supp(b), supp+(b) and supp−(b) denote, respectively, the sets {i ∈ {1, . . . , p} | bi 6= 0}, {i ∈

{1, . . . , p} | bi > 0} and {i ∈ {1, . . . , p} | bi < 0}.

• LASSO and BPDN estimators depend on X,β, ε and the tuning parameter λ > 0 or the regularization

parameter R ≥ 0. When appropriate, we use the parentheses to indicate these dependencies. The estimator

β̂ indiscriminately represents the LASSO estimator or the BPDN estimator.

To formulate our asymptotic results, we will often consider a sequence of regression parameters β(r) ∈ Rp,

r ∈ N, for which non-zero components tend to infinity in the following way.

Assumption 1

1) The sign of β(r) is invariant, namely there exists a sign vector s0 ∈ {−1, 0, 1}p such that for any r ∈

N, S(β(r)) = s0.

2) The following limit holds limr→+∞min{|β(r)
i |, i ∈ supp(s0)} = +∞.

3) There exists q > 0 such that

∀r ∈ N,
min{|β(r)

i |, i ∈ supp(s0)}
‖β(r)‖∞

≥ q.

2 Identifiability is a necessary and sufficient condition for the sign

recovery

If β does not satisfy the irrepresentability condition, then the LASSO sign estimator S(β̂L(λ)) is very unlikely

to recover S(β). However, one may relax this condition. In fact, Theorem 1 shows that an appropriately

thresholded version of LASSO (or thresholded version of BPDN) recovers S(β) if only the non-zero elements of

β are sufficiently large and the identifiability condition is satisfied.

Theorem 1 Let X be a n×p matrix in general position and such that rank(X) = n and let β̂ be the LASSO or

BPDN estimator with any fixed value of the tuning parameter λ > 0 or with any fixed regularization parameter
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R ≥ 0.

Necessary condition for sign recovery: If S(β) is unidentifiable with respect to the `1 norm, then the sign

estimator derived from the thresholded LASSO or thresholded BPDN cannot recover S(β). Indeed, for each fixed

ε ∈ Rn, the sign of at least one non-zero component of β is not correctly estimated by β̂(ε):

∃i ∈ supp(β) such that β̂i(ε)βi ≤ 0.

Sufficient condition for sign recovery: Let β(r) be a sequence in Rp satisfying Assumption 1. If s0 is

identifiable with respect to the `1 norm, then for any fixed ε ∈ Rn and sufficiently large r > r0(ε) the estimator

β̂(ε, r) separates negative components of β(r) (i.e i ∈ supp−(β(r))), zero components of β(r) (i.e i /∈ supp(β(r)))

and positive components of β(r) (i.e i ∈ supp+(β(r))):

i)

∀i ∈ supp(β(r)), β̂i(ε, r)β
(r)
i > 0.

ii)

max
i∈supp−(β(r))

{
β̂i(ε, r)

}
< min
i/∈supp(β(r))

{
β̂i(ε, r)

}
≤ max
i/∈supp(β(r))

{
β̂i(ε, r)

}
< min
i∈supp+(β(r))

{
β̂i(ε, r)

}
.

Let us note that the assumptions about X are very weak and hold in general if n ≤ p. The assumption that

rank(X) = n ensures that the BPDN estimator is well-defined for any R ≥ 0. The general position condition

ensures uniqueness of both the LASSO and the BPDN estimator (see, e.g., Proposition 1 in the Supplementary

Material).

Theorem 1 emphasises that one cannot recover S(β) with a sign estimator derived from LASSO or BPDN

if β is not identifiable with respect to the `1 norm. If β is identifiable with respect to the `1norm, Theorem

1 implies that S(β) can be recovered by deriving sign estimators from the thresholded LASSO or thresholded

BPDN. In Section 4, we show how the appropriate thresholds can be obtained using control variables constructed

by the knockoff method (see, e.g., [1, 5]).

In the asymptotic linear sparsity regime for Gaussian matrices, the transition curve ρ(·) described in [11]

allows us to characterize the identifiability condition, and so Theorem 1 yields the Corollary 1.

Corollary 1 Let X be a n×pn standard Gaussian matrix and let kn denote the number of non-zero components

of β(n) ∈ Rpn .

Necessary condition for sign recovery: If n/pn → δ ∈ (0, 1), kn/n → ξ ∈ (0, 1) and ξ > ρ(δ) then

asymptotically the sign of at least one non-zero component of β(n) is incorrectly estimated by β̂:

lim
n→+∞

PX,ε
(
∃i ∈ supp(β(n)) such that β̂iβ

(n)
i ≤ 0

)
= 1.
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Sufficient condition for sign recovery: Given n, let (β(n,r))r∈N be a sequence satisfying the Assumption 1

(where q does not depend on n). If n/pn → δ ∈ (0, 1), kn/n → ξ ∈ (0, 1) and ξ < ρ(δ) then the estimator β̂

asymptotically separates the negative components of β(n,r), zero components of β(n,r) and positive components

of β(n,r):

i)

lim
n→+∞

lim
r→+∞

PX,ε
(
∀i ∈ supp(β(n,r)), β̂iβ

(n,r)
i > 0

)
= 1.

ii)

lim
n→+∞

lim
r→+∞

PX,ε
(

max
i∈supp−(β(n,r))

{
β̂i

}
< min
i/∈supp(β(n,r))

{
β̂i

}
≤ max
i/∈supp(β(n,r))

{
β̂i

}
< min
i∈supp+(β(n,r))

{
β̂i

})
= 1.

3 Identifiability and irrepresentability curves

Given a certain design matrix X, we now define the irrepresentability indicator of the sign vector s.

Sign irrepresentability indicator:

ΦXIC : s ∈ {−1, 0, 1}p 7→


1 if s = (0, . . . , 0)

1 if ker(XI) = {0} and ‖X ′
I
XI(X

′
IXI)

−1sI‖∞ ≤ 1 where I := supp(s)

0 otherwise

.

This irrepresentability indicator shows whether the LASSO sign estimator can recover S(β). Namely, if φXIC(S(β)) =

0 then S(β) cannot be recovered using the LASSO sign estimator, even if the non-zero components of β are ex-

tremely large.

Proposition 2 shows that the identifiability condition also depends only on S(β) and not on the sizes of the

non-zero components of β.

Proposition 2 Consider two vectors b ∈ Rp and b̃ ∈ Rp such that S(b) = S(b̃). Then b̃ is identifiable with

respect to the matrix X and the `1 norm if and only if b is identifiable with respect to the matrix X and the `1

norm.

Given a certain design matrix X, the sign identifiability indicator is defined as follows.

Sign identifiability indicator:

ΦXIdtf : s ∈ {−1, 0, 1}p 7→


0 if s 6= argmin

b∈Rp
‖b‖1 subject to Xb = Xs

1 otherwise

.
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This identifiability indicator shows whether the sign estimators obtained by thresholded LASSO and thresholded

BPDN can recover S(β). Namely, if φXIdtf(S(β)) = 0 then the thresholded LASSO (respectively, thresholded

BPDN) sign estimator fails to recover S(β) even if the non-zero components of β are extremely large.

According to Proposition 2 in the Supplementary Material, β does not satisfy the identifiability condition if

the columns (Xi)i∈supp(β) are not linearly independent. Consequently, if card(supp(β)) > n then φXIC(S(β)) =

φXIdtf(S(β)) = 0. Let us give some basic properties and comments about the two indicator functions.

1. Both φXIC and φXIdtf are even.

2. Given Proposition 1, for each s ∈ {−1, 0, 1}p, ΦXIC(s) ≤ ΦXIdtf(s).

3. The computation of ΦXIC requires only a simple matrix calculus; the computation of ΦXIdtf requires only

solving the basis pursuit problem.

3.1 Graphs of identifiability and irrepresentability curves

The number of sign vectors is very large (3p) and therefore we cannot explicitly specify ΦXIdtf and ΦXIC for each

sign vector. Instead, we define the identifiability and irrepresentability curves as the following functions of the

sparsity k of the vector β, k = card(supp(β)) ∈ {1, . . . , n}:

• identifiability curve is defined as pXIdtf(k) := EU (ΦXIdtf(U)),

• irrepresentability curve is defined as pXIC(k) := EU (ΦXIC(U)),

where U is uniformly distributed on {u ∈ {−1, 0, 1}p | card(supp(u)) = k}. Figure 1 in the Introduction

provides identifiability curves k ∈ {1, . . . , 60} 7→ pXIdtf(k) and irrepresentability curves k ∈ {1, . . . , 60} 7→ pXIC(k)

for two specific 100×300 matrices (one generated with iid N (0, 1) entries and the other generated with positively

correlated N (0, 1) entries). In addition, for the case where the design matrix X has positively correlated entries,

we also consider a situation where U is uniformly distributed on {u ∈ {0, 1}p | card(supp(u)) = k}. Specifically,

we consider the following setting:

Positively correlated entries and positive components: X is a fixed design matrix with n = 100, p =

300, whose rows are generated by independent draws from the multivariate normal distribution N (0,Γ),

with Γii = 1 for i ∈ {1, . . . , p} and Γij = 0.9 when i 6= j (the same matrix as the one used for the right

panel in Figure 1). The distribution of the sign vectors is uniform on {u ∈ {0, 1}p | card(supp(u)) = k}.

Figure 2 shows an interesting behavior of the irrepresentability and identifiability curves (k 7→ pXIC+(k) and

k 7→ pXIdtf+(k)) in the above setting. Here we observe that the irrepresentability condition becomes even more

stringent than in the case when the distribution of the elements of the sign vector is symmetric. At the same

time, the identifiability condition now becomes much weaker and is satisfied under a much wider range of sparsity

levels compared to the identifiability curve in the right panel of Figure 1.
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Figure 2: Graphs of functions k 7→ pXIdtf+(k) and k 7→ pXIC+(k) where X is described in the setting above. The

vertical lines represent the values k = 100
2 log(300) and k = 100× ρ(100/300).

4 Numerical comparisons of sign estimators

Theorem 1 states that the sign estimators provided by thresholded LASSO or thresholded BPDN can recover

S(β) as long as the identifiability condition is satisfied. Another way to recover S(β) is to use a sign estimator

provided by the adaptive LASSO proposed in [40]. Indeed, as claimed in [40] or [20], if the weights for adaptive

LASSO are based on an accurate estimator for β one obtains a sign estimator that is consistent for S(β) under

much weaker assumptions than the irrepresentability condition. In this section, we numerically compare the sign

estimators obtained by LASSO, thresholded LASSO, thresholded BP and adaptive LASSO. We also include a

comparison with LASSO-zero [9], which is a modification of the thresholded BP aimed at controlling the number

of false discoveries.

4.1 Selection of the tuning parameter

As explained in [38, 36], a value of the optimal tuning parameter for sign recovery by thresholded LASSO is

much smaller than the optimal value of the tuning parameter for LASSO sign estimator. Specifically:

• For the LASSO sign estimator, the tuning parameter must be large enough to prevent the inclusion of false

detections.

• For the thresholded LASSO sign estimator, the tuning parameter should be chosen to achieve good sepa-

ration between zero and non-zero elements of β. This requires good estimation rather than good selection

properties. Here, the tuning parameter does not need to be large, as the threshold allows false detections
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to be eliminated.

4.1.1 The tuning parameter for the LASSO sign estimator

If S(β) satisfies the irrepresentability condition, then Proposition 3 in the Appendix implies that one can choose

a tuning parameter λL such that, for sufficiently large β, P(S (β(λL)) = S(β)) is arbitrarily close to a given value

from (0, 1) (e.g. 0.95). According to the irrepresentability curve in Figure 1, the irrepresentability condition

is satisfied with probability close to 1 if the elements of X are iid N (0, 1) random variables and β contains

k = 5 non-zero elements. Therefore, in this setting, we choose λL such that the probability of sign recovery

converges to 0.95 and the probability of at least one false discovery (Family Wise Error Rate, FWER) converges

to 0.05 when the signal magnitude tends to infinity. Since the irrepresentability condition is not satisfied for

the remaining scenarios in our simulation study and thus the FWER cannot be controlled at a low level, the

performances of LASSO are not reported.

4.1.2 The tuning parameter for the thresholded LASSO sign estimator

The tuning parameter can be chosen using the asymptotic theory of the Approximate Message Passing (AMP)

algorithm for LASSO provided, for example, in [2, 28, 38]. In this theory, the elements of the design matrix are

iid Gaussian N (0, 1) variables and the components of β are iid random variables from the mixture distribution

Π = (1 − γ)δ0 + γΠ?, where δ0 is a point mass distribution concentrated at 0 and Π? is an arbitrary fixed

distribution. The asymptotic mean squared error of LASSO is derived under the assumption that the number

of observations n and the number of explanatory variables p tend to infinity and that n/p tends to δ > 0. Then

the tuning parameter λAMP is chosen such that the asymptotic mean squared error is minimal (see, e.g., the

prescription in [38, 36]). As discussed in [38, 36], such a tuning parameter for any fixed value of Type I error

allows maximizing the asymptotic power of the LASSO. In our simulation study, we used this asymptotically

optimal λAMP (k, t) for the parameter values: δ = n/p = 100/300, γ = k/p = k/300 and Π? = 1/2δt + 1/2δ−t,

where δt is a point mass distribution at t. The values λAMP (k, t) were then used for the simulations in the

independent case. In the “correlated” case, these values proved to be sub-optimal, so in this case we additionally

obtained results for tuning parameters equal to 0.5λAMP (k, t), which provide much better empirical performance.

4.2 Selection of the threshold

We define the thresholded LASSO estimator (or the thresholded BP estimator) to be

∀i ∈ {1, . . . , p}, β̂τi := β̂i1{|β̂i|>τ} . (4)
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Given a threshold τ > 0, we now define FWER as

FWER(τ) := P
(
∃i /∈ supp(β),

∣∣∣β̂τi ∣∣∣ 6= 0
)
.

By taking τα as the 1 − α quantile of the distribution of max
{
|β̂i|, i /∈ supp(β)

}
we would control FWER

exactly at the α level. However, τα cannot be readily determined since β is not known.

To obtain a threshold greater than τα (and thus control for FWER at the α level), it seems appealing to

consider the distribution of the supremum norm of the LASSO estimator (or BP estimator) in the complete null

model when β = 0 [18]. For the BP estimator, Descloux and Sardy [9] propose the threshold τ fnα defined as the

1− α quantile of max
{∣∣∣β̂fn

1

∣∣∣ , . . . , ∣∣∣β̂fn
p

∣∣∣} where β̂fn is the following estimator

β̂fn := argmin ‖β‖1 subject to Xβ = ε, where ε ∼ Nn(0, σ2I).

Unfortunately, if the vector β contains some non-zero elements, this intuitive method yields a threshold τ fnα

smaller than τα and thus FWER(τ fnα ) > α (see also Su et al. [28] for further explanation).

The recently developed knockoff methodology [1, 5] provides control of False Discovery Rate (FDR). This

control is achieved by adding additional control variables to the design matrix. Originally designed to control

the FDR, the control variables also allow us to approximate the distribution of estimators corresponding to the

zero components of β. In this numerical study, we informally use the model-free knockoffs proposed in [5] to

approximate a threshold that controls the FWER at a certain level. The approach developed below is suitable

for the situation when X is a random matrix whose distribution is invariant to the permutation of the columns.

In this setting, we can generate the knockoff variables one by one instead of generating the full n × p knockoff

matrix (see Weinstein et al. [37] for a similar approach). Since adding the controlled variables may change some

relevant properties (e.g. the identifiability condition for β), we should ideally add only one knockoff variable at

a time when computing LASSO estimates. However, this would lead to a heavy computational burden on the

procedure for estimating the relevant threshold. Therefore, in our simulation study, we use model-free knockoffs

[5, 37] to generate 30 = p/10 controlled variables. Then Lasso or BP is run on the matrix augmented with

these additional columns and the maximum of the absolute values of the regression coefficients over 30 controlled

variables is stored. This step is repeated 10 times and the total maximum of p = 300 absolute values of regression

coefficients over controlled variables is calculated. The whole procedure is repeated many times (1000 in this

case) and the 0.95-quantile of the obtained maxima is used as a threshold to identify zero components of β. To

be consistent with the setup of the simulations used to derive the irrepresentability and identifiability curves, we

used the same two fixed design matrices X as in Figure 1, while the positions of the k sparse signals and the

error terms were randomly generated for each of the 1000 replicates.
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4.2.1 LASSO and Adaptive LASSO

In our numerical experiments, we chose the following values of tuning parameters for LASSO and adaptive

LASSO:

• For LASSO, we chose λL = 81.18 to control for FWER at the 0.05 level when k = 5 and the covariates

are independent.

• For adaptive LASSO, the weights are derived using initial estimates β̂L(λAMP ), where the tuning parame-

ter is chosen according to the AMP theory, described above. For i ∈ {1, . . . , p}, the weights wi are defined

as wi := 1/(|β̂i
L

(λAMP )| + 10−7). With these weights and the tuning parameter λL described above, the

adaptive LASSO has the following expression

β̂adapt := argmin
β∈Rp

1

2
‖Y −Xβ‖22 + λL

p∑
i=1

wi|βi|. (5)

In all our simulations, LASSO is computed using glmnet R package.

4.2.2 LASSO-zero from [9]

Given iid n× q standard Gaussian matrices G(1), . . . , G(M), we consider the following basis pursuit minimizers:

∀k ∈ {1, . . . ,M}, (β̂(k), γ̂(k)) := argmin
b∈Rp,c∈Rq

‖b‖1 + ‖c‖1 subject to y = Xb+G(k)c.

Now, given a threshold τ > 0, we can define the LASSO-zero estimator β̂
lass0(q,M)
τ as follows:

∀i ∈ {1, . . . , p}, β̂medi = median{β̂(1)
i , . . . , β̂

(M)
i } and β̂

lass0(q,M)
τ,i = β̂medi 1(|β̂medi | > τ).

One can use the knowledge that σ = 1, to compute the QUT threshold τ as the 1−α quantile of ‖β̂med‖∞ when

β = 0. Otherwise, one can also pivotize the ‖β̂med‖∞ statistic to compute this threshold (see [9] for details).

4.3 Numerical comparisons

All numerical experiments are performed with the two 100×300 design matrices X already used in Figure 1 and

in Section 3.1. We set β ∈ Rp such that k := card(supp(β)) with k ∈ {5, 20} and the k elements of supp(β) are

drawn without replacement from {1, . . . , p}. The non-zero components of β are sampled from the distribution

P (βi = t) = P (βi = −t) = 0.5 with t > 0. Additionally, when the columns of X are correlated, we consider the

constellation in which all non-zero coefficients are equal to t. In all simulations, the error term is generated as

ε ∼ N (0, Idn).

Figures 3-4 show the comparison between the following sign estimators.
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• The sign estimator L from LASSO with λ = λL.

• The sign estimator aL from the adaptive LASSO, described in (5).

• The sign estimator BPk from the thresholded BP, where the threshold is given by the ”knockoff” method

described above.

• The sign estimator Lk from the thresholded LASSO with λ = λAMP and with a threshold given by the

“knockoff” method described above.

• The sign estimator Lks from the thresholded LASSO with λ = 0.5λAMP and with a threshold given by the

”knockoff” method described above.

• The sign estimator Lz of LASSO-zero, where M = 30, q = n. The QUT threshold is not data driven and

is computed as the 0.95 quantile of ‖β̂med‖∞ when β = 0.

• The sign estimator Lzp of LASSO-zero when M = 30, q = n. The QUT threshold is data-driven and is

computed by pivotizing the statistic ‖β̂med‖∞, as explained in [9].

We give the curves representing the following statistical properties as a function of t > 0:

• Probability is the proportion of 1000 replicates for which the sign is recovered.

• FWER is the proportion of 1000 replicates for which at least one zero component of β is not estimated

to be zero.

FWER is directly related to the probability of sign recovery, namely FWER ≥ α implies that the probability of

sign recovery is less than 1−α. The sign estimators L, BPk, Lk and Lks were specifically designed to control

for FWER at the 0.05 level.

If k = 5 and the elements of X are iid normal variables, then the irrepresentability condition holds and

LASSO can recover the true model. Figure 3 shows that in this case the upper bound on the probability of

recovering the sign given in Proposition 3 is achieved by LASSO and the FWER is controlled. However, for

moderately large signals, the probability of recovering S(β) by LASSO is much smaller than by the thresholded

versions of BP and Lasso, as well as by Lasso-zero. If k = 20, the irrepresentability condition is not satisfied,

but the identifiability condition holds, thus the thresholded LASSO and the thresholded BP identify the sign of

β when non-zero elements are large and the threshold is properly calibrated.

Figure 3 shows that thresholds for BP or Lz, which are not data-driven and are computed in the complete

null model (i.e. when β = 0) do not control the FWER when β has many large components (intuitively, when

β is far from 0). Consequently, BP or Lz cannot recover S(β) with a large probability. Instead, our heuristic

application of the knockoff method, as well as LASSO-zero when the threshold is data-driven, allow us to almost

perfectly control FWER at 0.05. Consequently, when the non-zero components of β are large enough, the sign

14



Figure 3: This figure shows the FWER and the probability of recovering S(β) for each sign estimator and when
X contains iid N (0, 1) entries. The graphs on the left show the probability of recovering S(β) (on the y-axis)
as a function of t (on the x-axis), where t indicates how large the non-zero components of β are. The graphs
on the right show the FWER (on the y-axis) as a function of t (on the x-axis).

15



estimators derived from Lk, BPk, and Lzp recover S(β) with probability close to 0.95. Among these methods,

the thresholded LASSO estimator Lk with λ selected by AMP theory systematically has the highest probability

of recovering S(β) for moderately large signals.

Figure 4: This figure shows the FWER and the probability of recovering S(β) for each sign estimator when X
has strongly correlated columns. The plots on the left show the probability of recovery of S(β) (on the y-axis)
as a function of t (on the x-axis), where t measures how large the non-zero components of β are. The graphs
on the right show the FWER (on the y-axis) as a function of t.

Figure 4 shows the results of the simulation study for the design matrix X with very highly correlated

columns. In this setting, the probability of recovering S(β) by LASSO-zero was very close to zero, and for

clarity of presentation, LASSO-zero is not included in Figure 4.

Figure 4 confirms the numerical experiments given in Figure 3. In particular, thresholded BP and thresholded

LASSO can recover S(β) when the threshold is well calibrated and the non-zero components of β are large

enough. If the tuning parameter is chosen correctly, thresholded LASSO recovers S(β) with a higher probability

than thresholded BP. Similar to the case of independent entries, our heuristic knockoff approach allows to control

FWER at the 0.05 level.
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4.4 Numerical experiments with the design matrix from the riboflavin dataset

In this section, we consider the same simulation setting as in [9], which deals with the riboflavin dataset

[3]. The design matrix X contains expression levels of p = 4088 genes for n = 71 Bacillus subtilis bac-

teria. The matrix is mean-centered (for each j ∈ {1, . . . , p},
∑n
i=1Xij = 0) and standardized (for each

j ∈ {1, . . . , p}, 1
n−1

∑n
i=1X

2
ij = 1). Figure 5 shows irrepresentability and identifiability curves of this design

matrix.

Figure 5: Graphs of the functions k 7→ pXIdtf(k) and k 7→ pXIC(k) where k ∈ {1, . . . , 12} and X is the matrix from
the riboflavin dataset. The equation of the vertical line is k = nρ(n/p).

The identifiability and irrepresentability curves shown in Figure 5 confirm the numerical experiments reported

in Descloux and Sardy [9]. In particular, the probability of sign recovery by LASSO reported in panel (c) of Figure

6 in [9] is below the irrepresentability curve from Figure 5 and the probability of sign recovery by LASSO-zero

is below the identifiability curve.

We also ran the simulations comparing LASSO-zero and thresholded LASSO on the riboflavin dataset. In

this study, we set k := card(supp(β)) ∈ {1, 2, 3} (so that the identifiability condition holds), and the non-zero

coefficients are set to 2 with random signs. In addition to the probability of sign recovery and the FWER, we

also estimate the False Discovery Rate (FDR) and the True Positive Rate (TPR).

• FDR is the mean of 1000 replicates of the False Discovery Proportion (FDP), where the FDP is defined

as follows:

FDP =
card({i /∈ supp(β)|β̂i 6= 0})

max{card(supp(β̂)), 1}
.

• TPR is the mean of 1000 replicates of the True Positive Proportion (TPP), where the TPP is defined as
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follows:

TPP =
card(supp(β) ∩ supp(β̂))

card(supp(β))
.

For the thresholded LASSO, we selected the tuning parameter by cross-validation. To estimate the threshold, we

used the heuristic knockoff procedure described above, where for each run of LASSO we added q = p/8 = 511

columns to the design matrix X, drawn from the multivariate normal distribution N(0,Γ), where Γii = 1 and

Γij = 1
p(p−1)(n−1)

∑
i 6=j X

′
iXj = 0.0292.

Figure 6: This figure provides the probability of sign recovery, FWER, FDR and TPR of LASSO-zero (Lzp)
and thresholded LASSO (Lk) as a function of the sparsity k ∈ {1, 2, 3}.

Figure 6 shows that LASSO-zero and thresholded LASSO have FWER above the assumed value of 0.05. This

is not surprising since the gene expressions are not exactly normally distributed. However, the FWER of both

methods is still quite low (below 0.3) and the FDR is kept close to 0.1. Since the correlations between columns

in the design matrix are not too large, the thresholded LASSO and LASSO-zero show similar performance.

However, the probability of sign recovery and TPR is systematically larger for thresholded LASSO, which also

has smaller FWER and FDR.
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5 Conclusion

The focus of this article is on the theoretical properties of sign estimators derived from LASSO, thresholded

LASSO, and thresholded BPDN . When S(β) is identifiable with respect to the `1 norm and when non-zero

components of β tends to infinity, we have shown that sign estimators derived from thresholded LASSO and

thresholded BPDN recover S(β). On the other hand, if S(β) is not identifiable with respect to the `1 norm, sign

estimators derived from thresholded LASSO and thresholded BPDN cannot recover S(β).

We introduced irrepresentability and identifiability curves that provide information about the probability of

sign recovery by LASSO or thresholded LASSO and thresholded BPDN as a function of the number of non-zero

elements in the vector of regression coefficients.

The performances of the sign estimators derived from LASSO, thresholded LASSO and thresholded BPDN

obviously depend on the tuning parameters and the threshold. We have illustrated that AMP theory and the

knockoff method are useful to select these parameters. Our simulations show that thresholded LASSO and

thresholded BPDN sign estimators outperform the adaptive LASSO and LASSO sign estimators.

Acknowledgments

We would like to thank Emmanuel J. Candès and Wojciech Rejchel for helpful comments. Ma lgorzata Bogdan’s

research was supported by NCN grant 2016/23/B/ST1/00454. We gratefully acknowledge the grant from the

Wroc law Center of Networking and Supercomputing (WCSS), where most of the computations were performed.

6 Appendix

6.1 Sign recovery with LASSO sign estimator

The upper bound for sign recovery given in Proposition 3 appears in Lemma 3 of Wainwright [35] as a technical

result establishing the irrepresentability condition (Theorem 2 in Wainwright [35]). According to Proposition 3,

if β is identifiable with respect to the `1-norm, this upper bound is asymptotically reached as soon as min{|βi|, i ∈

supp(β)} tends to +∞.

Lemma 1 (Lemma 3 from [35] ) Let I := supp(β) and let XI , XI be matrices whose columns are (Xi)i∈I

and (Xi)i/∈I , respectively. Let us assume that ker(XI) = {0} and let ζX,λ,S(β) := X ′
I
XI(X

′
IXI)

−1S(βI) +

1
λX
′
I

(
Id−XI(X

′
IXI)

−1X ′I
)
ε.

The following upper bound for the sign recovery holds.

P
(
S(β̂L(λ)) = S(β)

)
≤ P

(∥∥ζX,λ,S(β)∥∥∞ ≤ 1
)
.
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Proposition 3 Assume that the assumptions of Lemma 1 hold. Moreover, assume that the sequence (β(r)) in

Rp satisfies Assumption 1. If s0 is identifiable with respect to the `1-norm, then the following asymptotic results

hold.

Sharpness of the upper bound: Asymptotically, the upper bound is obtained.

lim sup
r→+∞

P
(
S(β̂L(λ, r)) = s0

)
≤ P

(∥∥ζX,λ,s0∥∥∞ ≤ 1
)
,

lim inf
r→+∞

P
(
S(β̂L(λ, r)) = s0

)
≥ P

(∥∥ζX,λ,s0∥∥∞ < 1
)
.

Asymptotic control of FWER: Let us define P
(∥∥ζX,λ,s0∥∥∞ < 1

)
= γ and P

(∥∥ζX,λ,s0∥∥∞ ≤ 1
)

= γ̄. The

sign of the non-zero elements of β(r) is correctly identified with probability converging to 1 and the FWER

is controlled at the 1− γ level.

lim
r→+∞

P
(
∀i ∈ I, S(β̂L

i (λ, r)) = s0i

)
= 1,

lim sup
r→+∞

P
(
∃i /∈ I, β̂L

i (λ, r) 6= 0
)
≤ 1− γ,

lim inf
r→+∞

P
(
∃i /∈ I, β̂L

i (λ, r) 6= 0
)
≥ 1− γ̄.

Remark 1 The results in Proposition 3 are quite straightforward when X is orthogonal (i.e. when X ′X = I).

Indeed, in this case the upper bound is simply the probability that zero components of β are simultaneously

estimated to 0, namely P(∀i /∈ supp(β), β̂L
i (λ) = 0)

If ε has a covariance matrix σ2Idn, one can obtain asymptotic results by fixing β and letting σ tend to 0.

However, unlike in our asymptotic setting described in Assumption 1, such asymptotic results are very poor and

give no information about the FWER. Indeed, when σ tends to 0, the upper bound tends to 0 or 1, depending

on whether the irrepresentable condition for β holds or not.

Let us remind that the FWER is equal to P(∃i /∈ supp(β), β̂Li 6= 0). According to Proposition 3, when

non-null components of β are infinitely large, the FWER is controlled at level 1 − P
(∥∥ζX,λ,sign(β)∥∥∞ < 1

)
. To

our knowledge, it is first theoretical result providing a formula for the FWER. Hereafter, let us provide some

comments about the FWER control.

• To provide a specific value for λ allowing to control the FWER one needs to know the distribution of ε.

For example, when the distribution of ε is known and β = 0 one controls the FWER at level α by taking

λ as the 1 − α quantile of ‖X ′ε‖∞. Let us point out that when ε1, . . . , εp are iid and the variance σ2 of

these components is unknown then σ2 can be consistently estimate as explained in [10].
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• It is easier to control the FWER when X is a random matrix whose distribution is symmetric and invariant

by columns permutation than when X is a fixed design matrix. Indeed, when X is random, the distribution

of ζX,λ,S(β) just depends from the sparsity of β and not on S(β).

• Let k ∈ {1, . . . , p} and let Uk be the set {u ∈ {−1, 0, 1}p | card(supp(u)) = k} and let us assume that β ∈

Uk. When X is a random matrix whose distribution is symmetric and invariant by columns permutation

by taking λα such that P(‖ζX,λα,u0‖ < 1) = 1−α one controls asymptotically the FWER at level α (where

u0 := (1, . . . , 1, 0, . . . , 0) ∈ Uk). Such a tuning parameter λα is easy to infer by Monte Carlo simulations.

When X is fixed, by taking λα as follows

1

card(Uk)

∑
u∈Uk

P(‖ζX,λα,u‖ < 1) = 1− α, (6)

then the average value of the FWER with respect to β ∈ Uk is 1 − α (where non-null components of β

are infinitely large). Again λα is easy to infer. In the numerical experiment, the tuning parameter was

selected by solving equation (6).

6.2 Proof of the Proposition 3

First, let us provide lemmas which are useful to prove both Proposition 3 and Theorem 1. Lemma 3 partially

proves Proposition 3. Indeed, according to this Lemma, when (β(r))r∈N is a sequence of Rp satisfying assumptions

1 then the following asymptotic result holds

lim
r→+∞

P
(
∀i ∈ supp(s0), S(β̂L

i (λ, r)) = s0i

)
= 1.

Lemma 2 Let (β(r))r∈N be a sequence of Rp satisfying the conditions 1) and 2) of Assumption 1, let us assume

that s0 is identifiable with respect to the `1 norm and let us set ur = ‖β(r)‖1 then

lim
r→+∞

β̂L(ε, r)− β(r)

ur
= 0.

Proof: Because β̂L(ε, r) is the LASSO estimator as defined in (2) then the following inequality occurs

1

2
‖Y −Xβ̂L(ε, r)‖22 + λ‖β̂L(ε, r)‖1 ≤

1

2
‖Y −Xβ(r)‖22 + λ‖β(r)‖1.

Since Y −Xβ(r) = ε one may deduce the following inequalities

λ‖β̂L(ε, r)‖1 ≤
1

2
‖ε‖22 + λ‖β(r)‖1,

⇒ ‖β̂L(ε, r)/ur‖1 ≤
‖ε‖22
2λur

+ 1. (7)
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In addition, Cauchy-Schwarz inequality gives the following implications

1

2
‖ε+Xβ(r) −Xβ̂L(ε, r)‖22 + λ‖β̂L(ε, r)‖1 ≤

1

2
‖ε‖22 + λ‖β(r)‖1,

⇒ −‖ε‖2‖Xβ(r) −Xβ̂L(ε, r)‖2 +
1

2
‖Xβ(r) −Xβ̂L(ε, r)‖22 + λ‖β̂L(ε, r)‖1 ≤ λ‖β(r)‖1,

⇒ −‖ε‖2
ur

∥∥∥∥∥X
(
β̂L(ε, r)− β(r)

ur

)∥∥∥∥∥
2

+
1

2

∥∥∥∥∥X
(
β̂L(ε, r)− β(r)

ur

)∥∥∥∥∥
2

2

+
λ

ur

∥∥∥∥∥ β̂L(ε, r)

ur

∥∥∥∥∥
1

≤ λ

ur
. (8)

Because ur tends to +∞ then, according to (7), the sequence ((β̂L(ε, r) − β(r))/ur)r∈N∗ is bounded since the

following superior limit is finite

lim sup
r→+∞

∥∥∥∥∥ β̂L(ε, r)− β(r)

ur

∥∥∥∥∥
1

≤ 2.

Consequently, to prove that limr→+∞(β̂L(ε, r) − β(r))/ur = 0 it is sufficient to show that 0 is the unique

limit point of this sequence. Let ((β̂L(ε, φ(r)) − β(φ(r)))/uφ(r))r∈N∗ be a converging subsequence to l (with

φ : N∗ → N∗ strictly increasing) and without loss of generality, let us assume limr→+∞ β̂L(ε, φ(r))/uφ(r) = v

and limr→+∞ β(φ(r))/uφ(r) = v′ so that l = v − v′. By (7) and (8) one may deduce that

Xv = Xv′ and ‖v‖1 ≤ 1.

Since, whatever r ≥ 0, we have S(β(φ(r))/uφ(r)) = s0 where s0 is identifiable with respect to the `1 norm then,

according to Proposition 2, one may deduce that β(φ(r))/uφ(r) is an unitary vector satisfying the identifiability

condition. Consequently, ‖v′‖1 = 1 and v′ is identifiable with respect to the `1 norm. Consequently, v = v′ and

thus l = 0 is the unique limit point, which implies that

lim
r→+∞

β̂L(ε, r)− β(r)

ur
= 0.

�

For the proof of Lemma 2, we have not used the third condition of Assumption 1. This condition, under

which the smallest non-null component of β(r) is not asymptotically infinitely smaller than ‖β(r)‖∞, is useful

to prove Lemma 3.

Lemma 3 Let (β(r))r∈N be a sequence of Rp satisfying Assumption 1, then

lim
r→+∞

P(∀i ∈ supp(s0), S(β̂L
i (λ, r)) = s0i ) = 1.
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Proof: Let ε be a fixed vector in Rp. According to the third condition of Assumption 1 we have min{|β(r)
i |, i ∈

supp(s0)}/‖β(r)‖∞ ≥ q > 0, consequently the following inequalities occur

∀i ∈ supp(s0), s0i
β̂L
i (ε, λ, r)− β(r)

i

‖β(r)‖∞
=
s0i β̂

L
i (ε, λ, r)

‖β(r)‖∞
− |β(r)

i |
‖β(r)‖∞

≤ s0i β̂
L
i (ε, λ, r)

‖β(r)‖∞
− q.

According to Lemma 2, the following inequality occurs

0 = lim inf
r→+∞

s0i
β̂L
i (ε, λ, r)− β(r)

i

‖β(r)‖∞
≤ lim inf

r→+∞

s0i β̂
L
i (ε, λ, r)

‖β(r)‖∞
− q.

Which implies that for r large enough s0i β̂
L
i (ε, λ, r) > 0 and thus S(β̂L

i (ε, λ, r)) = s0i . When ε is no longer fixed

then, for i ∈ supp(s0), almost surely S(β̂L
i (r)) converges to s0i and consequently

lim
r→+∞

P
(
∀i ∈ supp(s0), S(β̂L

i (λ, r)) = s0i

)
= 1.

�

Proof of Proposition 3:

Let us remind that the vector β̂L(λ) is the LASSO estimator if and only if the following two inequalities occur

simultaneously.

X ′A(Y −Xβ̂L(λ)) = λS(β̂L
A(λ)), where A = supp(β̂L(λ)), (9)

‖X ′
A

(Y −Xβ̂L(λ))‖∞ ≤ λ. (10)

Sharpness of the upper bound) Since the upper bound depends only on s0 and not on how large the non-null

components β(r) are then

lim sup
r→+∞

P
(
S(β̂L(λ, r)) = s0

)
≤ P

(∥∥ζX,λ,s0∥∥∞ ≤ 1
)
.

Finally, it must be proven that lim infr→+∞ P
(
S(β̂L(λ, r)) = s0

)
≥ P

(∥∥ζX,λ,s0∥∥∞ < 1
)
. Let us remind that

I = supp(s0) and let us assume that the following events hold simultaneously

X ′I(Y −Xβ̂L(λ)) = λs0I and
∥∥X ′

I
XI(X

′
IXI)

−1λs0I +X ′
I

(
Id−XI(X

′
IXI)

−1X ′I
)
ε
∥∥
∞ < λ︸ ︷︷ ︸

=‖ζX,λ,s0‖∞<1

. (11)

We aim to show that the inequalities given above imply that β̂L
I

(λ) = 0. For convenience, let us set H be the

projection matrix H := XI(X
′
IXI)

−1X ′I . When (11) occurs then the following inequalities holds
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∥∥∥X ′IH(Y −Xβ̂L(λ)) +X ′
I

(Id−H) ε
∥∥∥
∞

< λ,∥∥∥X ′I (H(Y −Xβ̂L(λ)) + (Id−H)ε
)∥∥∥
∞

< λ,∥∥∥X ′I (Y −Xβ̂L(λ) +XI β̂
L
I

(λ)−HXI β̂
L
I

(λ)
)∥∥∥
∞

< λ. (12)

Inequality (12) comes from the following two identities

HY = H(Xβ(r)) +Hε = H(XIβ
(r)
I ) +Hε = XIβ

(r)
I +Hε = X(β(r)) +Hε and,

HXβ̂L(λ) = HXI β̂
L
I (λ) +HXI β̂

L
I

(λ) = XI β̂
L
I (λ) +HXI β̂

L
I

(λ) = Xβ̂L(λ)−XI β̂
L
I

(λ) +HXI β̂
L
I

(λ).

Let v be the vector v := X ′
I

(
Y −Xβ̂L(λ) +XI β̂

L
I

(λ)−HXI β̂
L
I

(λ)
)

. We are going to see that inequality (12)

implies that β̂L
I

(λ) = 0. Let us assume that β̂L
I

(λ) 6= 0 then, on the one hand, the following inequality occurs

β̂L
I

(λ)′v ≤ ‖β̂L
I

(λ)‖1‖v‖∞ < λ‖β̂L
I

(λ)‖1. (13)

According to (9) the identity β̂L
i (λ)X ′i(Y −Xβ̂L(λ)) = λ|β̂L

i (λ)| occurs. Consequently, on the other hand, the

following inequalities hold

β̂L
I

(λ)′v = β̂L
I

(λ)′X ′
I

(
Y −Xβ̂L(λ) +XI β̂

L
I

(λ)−HXI β̂
L
I

(λ)
)
,

= λ‖β̂L
I

(λ)‖1 + β̂L
I

(λ)′X ′
I
(Id−H)XI β̂

L
I

(λ),

≥ λ‖β̂L
I

(λ)‖1. (14)

The last inequality occurs because the projection matrix Id −H is positive semi-definite. Inequalities (13) and

(14) provide a contradiction which implies that β̂L
I

(λ) = 0.

According to (9), the following implication holds

S(β̂L
I (λ, r)) = s0I ⇒ X ′I(Y −Xβ̂L(λ, r)) = λs0I .

Because s0 is identifiable with respect to the `1 norm then, according to Lemma 3, the following convergence in

probability occurs

lim
r→+∞

P(S(β̂L
I (λ, r)) = s0I) = lim

r→+∞
P(X ′I(Y −Xβ̂L(λ, r)) = λs0I) = 1. (15)

Using this asymptotic result and since when (11) occurs then β̂L
I

(λ, r) = 0, one may deduce the following
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inequalities

lim inf
r→+∞

P
(
S(β̂L(λ, r)) = s0

)
= lim inf

r→+∞
P
(
S(β̂L

I (λ, r)) = s0I and β̂L
I

(λ, r) = 0
)
,

= lim inf
r→+∞

P(β̂L
I

(λ, r) = 0),

≥ lim inf
r→+∞

P
(
X ′I(Y −Xβ̂L(λ, r)) = λs0I and

∥∥ζX,λ,s0∥∥∞ < 1
)
,

≥ lim inf
r→+∞

P
(∥∥ζX,λ,s0∥∥∞ < 1

)
.

Asymptotic full power and asymptotic control of the FWER) According to (15), asymptotically the

power is equal to 1, namely limr→+∞ P(∀i ∈ I, S(β̂L
i (λ, r)) = s0i ) = 1. Now let us prove that the FWER is

controlled asymptotically. Let us remind that P
(∥∥ζX,λ,s0∥∥∞ < 1

)
= γ and P

(∥∥ζX,λ,s0∥∥∞ ≤ 1
)

= γ̄. Using

asymptotic results given above one may deduce the following inequalities.

γ̄ ≥ lim sup
r→+∞

P(S(β̂L(λ, r)) = s0),

≥ lim sup
r→+∞

P
(
∀i ∈ I, S(β̂Li (λ, r)) = s0i and ∀i /∈ I, β̂Li (λ, r) = 0

)
,

≥ lim sup
r→+∞

P(∀i /∈ I, β̂Li (λ, r) = 0). (16)

The last inequality comes from (15). Similarly, we have

γ ≤ lim inf
r→+∞

P(∀i /∈ I, β̂Li (λ, r) = 0). (17)

Consequently, by taking the complement to 1 of the inequalities given in (16) and (17), one may deduce that

lim inf
r→+∞

P(∃i /∈ I, β̂Li (λ, r) 6= 0) ≥ 1− γ̄ and lim sup
r→+∞

P(∃i /∈ I, β̂Li (λ, r) 6= 0) ≤ 1− γ.

�

Proof of Theorem 1

Lemma 4 provides the same result for BPDN as does Lemma 2 for LASSO. These both lemmas are the keystones

to prove Theorem 1.

Lemma 4 Let (β(r))r∈N be a sequence of Rp satisfying conditions 1) and 2) of Assumption 1, let us assume

that s0 is identifiable with respect to the `1 norm and let set ur = ‖β(r)‖1 then

lim
r→+∞

β̂BPDN(ε, r)− β(r)

ur
= 0.
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Proof: Let us define u(ε) ∈ Rp as follows

u(ε) := argmin
b∈Rp

‖b‖1 subject to Xb = ε.

Because X(u(ε)) = ε, we have Y (ε) = X(β(r) + u(ε)) and because β̂BPDN(ε, r) is an admissible point of (3),

one deduces the following inequality

∥∥∥∥ 1

ur
Xβ̂BPDN(ε, r)− 1

ur
Xβ(r)

∥∥∥∥
2

≤
∥∥∥∥ 1

ur
Xβ̂BPDN(ε, r)− 1

ur
Y

∥∥∥∥
2

+

∥∥∥∥ 1

ur
Y − 1

ur
Xβ(r)

∥∥∥∥
2

≤
√
R

ur
+
‖Xu(ε)‖2

ur
. (18)

Because β(r) + u(ε) is an admissible point of problem (3) and because β̂BPDN(ε, r) is the minimizer of (3), one

may deduce that the following inequalities hold

1

ur
‖β̂BPDN(ε, r)‖1 ≤

1

ur
‖β(r) + u(ε)‖1 ≤ 1 +

‖u(ε)‖1
ur

. (19)

Because ur tends to +∞ then, according to (19), the sequence ((β̂L(ε, r) − β(r))/ur)r∈N∗ is bounded since the

following superior limit is finite

lim sup
r→+∞

∥∥∥∥∥ β̂BPDN(ε, r)− β(r)

ur

∥∥∥∥∥
1

≤ 2.

Consequently, to prove that limr→+∞(β̂BPDN(ε, r) − β(r))/ur = 0 it is sufficient to show that 0 is the unique

limit point of this sequence. Let ((β̂L(ε, φ(r)) − β(φ(r)))/uφ(r))r∈N∗ be a converging subsequence to l (with

φ : N∗ → N∗ strictly increasing) and without loss of generality, let us assume limr→+∞ β̂BPDN(ε, φ(r))/uφ(r) = v

and limr→+∞ b(φ(r))/uφ(r) = v′ so that l = v − v′. By (18) and (19) one may deduce that

Xv = Xv′ and ‖v‖1 ≤ 1.

Since, whatever r ≥ 0, we have S(β(φ(r))/uφ(r)) = s0 where s0 is identifiable with respect to the `1 norm then,

according to Proposition 2, one may deduce that β(φ(r))/uφ(r) is an unitary vector satisfying the identifiability

condition. Consequently, ‖v′‖1 = 1 and v′ is identifiable with respect to the `1 norm. Consequently, v = v′ and

thus l = 0 is the unique limit point, which implies that

lim
r→+∞

β̂BPDN(ε, r)− β(r)

ur
= 0.

�

Lemma 5 is useful to prove in Theorem 1 that when s0 is not identifiable then sign estimator derived from

thresholded LASSO cannot recover s0.
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Lemma 5 Let X be a matrix in general position, then the random vector β̂ is identifiable with respect to X

and the `1 norm.

Proof: Let us remind that when X is in general position then the minimizer β̂ is unique. Let us assume that

β̂ is not identifiable with respect to X and the `1 norm, then there exists b ∈ Rp such that Xb = Xβ̂ and

‖b‖1 ≤ ‖β̂‖1. Consequently, for LASSO, one may deduce that

‖Y −Xb‖2 + λ‖b‖1 ≤ ‖Y −Xβ̂L‖2 + λ‖β̂L‖1.

This inequality contradicts β̂L as the unique minimizer of (2). Similarly, when β̂BPDN is not identifiable with

respect to the `1 norm then β̂BPDN is not the unique minimizer of (3), which provides a contradiction. �

For the proofs of Theorem 1 and the proof of Proposition 2 we need to introduce the following inequality which

characterizes the identifiability condition [8]. A vector b ∈ Rp is identifiable with respect to X and the `1 norm

if and only if the following inequality holds

∀h ∈ ker(X) \ {0},

∣∣∣∣∣∣
∑

i∈supp(b)

S(b)hi

∣∣∣∣∣∣ <
∑

i/∈supp(b)

|hi|. (20)

Proof of Theorem 1:

Necessary condition: Let us assume that S(β) is not identifiable with respect to the `1 norm. Let us show

that when the following events hold

supp−(β) ⊂ supp−(β̂(ε)) and supp+(β) ⊂ supp+(β̂(ε)), (21)

then inequality (20) occurs which contradicts that S(β) is not identifiable with respect to the `1 norm. Let

h ∈ ker(X) \ {0}. On the one hand, when (21) occurs, we have

∣∣∣∣∣∣
∑

i∈supp(β)

S(βi)hi

∣∣∣∣∣∣ =

∣∣∣∣∣∣−
∑

supp−(β)

hi +
∑

supp+(β)

hi

∣∣∣∣∣∣ ,
=

∣∣∣∣∣∣−
∑

i∈supp−(β̂(ε))

hi +
∑

i∈supp−(β̂(ε))\supp−(β)

hi +
∑

i∈supp+(β̂(ε))

hi −
∑

i∈supp+(β̂(ε))\supp+(β)

hi

∣∣∣∣∣∣ ,
≤

∣∣∣∣∣∣−
∑

i∈supp−(β̂(ε))

hi +
∑

i∈supp+(β̂(ε))

hi

∣∣∣∣∣∣+
∑

i∈supp(β̂(ε))\supp(β)

|hi|.
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On the other hand, according to Lemma 5, β̂(ε) is identifiable with respect to the `1 norm then (20) occurs

implying the following inequality

∣∣∣∣∣∣−
∑

i∈supp−(β̂(ε))

hi +
∑

i∈supp+(β̂(ε))

hi

∣∣∣∣∣∣+
∑

i∈supp(β̂(ε))\supp(β)

|hi|

<
∑

i/∈supp(β̂(ε))

|hi|+
∑

i∈supp(β̂(ε))\supp(β)

|hi| =
∑

i/∈supp(β)

|hi|.

Consequently the following inequality holds

∀h ∈ ker(X) \ {0},

∣∣∣∣∣∣
∑

i∈supp(β)

S(βi)hi

∣∣∣∣∣∣ <
∑

i/∈supp(β)

|hi|,

which, according to (20), contradicts that S(β) is not identifiable with respect to the `1 norm.

Sufficient condition: Let us remind that according to condition 3) of Assumption 1 the following inequality

holds

∀r ∈ N,
min{|β(r)

i |, i ∈ supp(s0)}
‖β(r)‖∞

≥ q > 0.

According to Lemmas 2 and 4, when s0 is identifiable with respect to the `1 norm then

lim
r→+∞

β̂(ε, r)− β(r)

‖β(r)‖∞
= 0.

Therefore, there exists r0(ε) ≥ 0 such that

∀r ≥ r0(ε),

∥∥∥∥∥ β̂(ε, r)− β(r)

‖β(r)‖∞

∥∥∥∥∥
∞

< q/2⇔ ∀i ∈ {1, . . . , p},∀r ≥ r0(ε),

∣∣∣∣∣ β̂i(ε, r)− β(r)
i

‖β(r)‖∞

∣∣∣∣∣ < q/2.

Consequently, when r ≥ r0(ε), whatever i /∈ supp(s0) (thus when β
(r)
i = 0) the following inequalities hold

∀i /∈ supp(s0),

∣∣∣∣∣ β̂i(ε, r)‖β(r)‖∞

∣∣∣∣∣ < q/2,

⇒ −‖β(r)‖∞q/2 < min
i/∈supp(s0)

{
β̂i(ε, r)

}
≤ max
i/∈supp(s0)

{
β̂i(ε, r)

}
< ‖β(r)‖∞q/2.
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Whatever i ∈ supp+(s0) (thus when β
(r)
i > 0) the following inequalities hold

∀i ∈ supp+(s0),
β̂i(ε, r)

‖β(r)‖∞
≥ −

∣∣∣∣∣ β̂i(ε, r)− β(r)
i

‖β(r)‖∞

∣∣∣∣∣+
β
(r)
i

‖β(r)‖∞
,

⇒ min
i∈supp+(s0)

{
β̂i(ε, r)

‖β(r)‖∞

}
> −q/2 + q = q/2,

⇒ min
i∈supp+(s0)

{
β̂i(ε, r)

}
> ‖β(r)‖∞q/2.

Whatever i ∈ supp−(s0) (thus when β
(r)
i < 0) the following inequalities hold

∀i ∈ supp+(s0),
β̂i(ε, r)

‖β(r)‖∞
≤

∣∣∣∣∣ β̂i(ε, r)− β(r)
i

‖β(r)‖∞

∣∣∣∣∣+
β
(r)
i

‖β(r)‖∞
,

⇒ max
i∈supp−(s0)

{
β̂i(ε, r)

‖β(r)‖∞

}
< q/2− q = −q/2,

⇒ max
i∈supp−(s0)

{
β̂i(ε, r)

}
< −‖β(r)‖∞q/2.

Finally, when r ≥ r0(ε) we have

i)

supp−(s0) ⊂ supp−(β̂i(ε, r)) and supp+(s0) ⊂ supp+(β̂i(ε, r)).

ii)

max
i∈supp−(s0)

{
β̂i(ε, r)

}
< min
i/∈supp(s0)

{
β̂i(ε, r)

}
≤ max
i/∈supp(s0)

{
β̂i(ε, r)

}
< min
i∈supp+(s0)

{
β̂i(ε, r)

}
.

These achieve the proof of the sufficient condition. �

Proof of propositions

The proof of Proposition 1, provided below, is the one reported in the PhD manuscript of Tardivel [29].

Proof of Proposition 1: From Daubechies et al. [8], β is a parameter having a minimal `1 norm, namely

Xβ = Xγ ⇒ ‖γ‖1 ≥ ‖β‖1 holds if and only if the following inequality occurs

∀h ∈ ker(X),

∣∣∣∣∣∑
i∈I

S(βi)hi

∣∣∣∣∣ ≤∑
i/∈I

|hi|. (22)

We are going to show that when the irrepresentable condition holds for β then the inequality (20) holds.

Let h ∈ ker(X) and let us remind that hI and hI denote respectively vectors (hi)i∈I and (hi)i/∈I . Then the

following equality holds ∑
i∈I

S(βi)hi = h′IS(βI) = h′IX
′
IXI(X

′
IXI)

−1S(βI).
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Because 0 = Xh = XIhI +XIhI , one may deduce the following inequalities

|h′IS(βI)| =
∣∣h′
I
X ′
I
XI(X

′
IXI)

−1S(βI)
∣∣ ,

≤ ‖hI‖1‖X
′
I
XI(X

′
IXI)

−1S(βI)‖∞. (23)

Consequently, when the irrepresentable condition holds for β, namely when ‖X ′
I
XI(X

′
IXI)

−1S(b∗I)‖∞ ≤ 1, then

the inequality (23) gives |h′IS(βI)| ≤ ‖hI‖1. Thus, by the equivalence given in (22), β is a solution of the

following basis pursuit problem

minimize ‖γ‖1 subject to Xγ = Xβ

Because X is in general position the previous optimisation problem has a unique solution (see, e.g., Proposition

1 in Appendix) thus Xβ = Xγ and γ 6= β implies that ‖γ‖1 > ‖β‖1, namely β is identifiable with respect to the

`1 norm. �

Let us notice that when the inequality in the irrepresentable condition is strict, Theorem 1 remains true without

assuming that X is in general position.

Proof of Proposition 2: Because b is identifiable with respect to the `1 norm and because S(b̃) = S(b)

implies supp(b̃) = supp(b), then the following inequality holds

∀h ∈ ker(X) \ {0},

∣∣∣∣∣∣
∑

i∈supp(b̃)

S(b̃i)hi

∣∣∣∣∣∣ <
∑

i/∈supp(b̃)

|hi|.

Consequently, according to (20), parameter b̃ is identifiable with respect to the `1 norm. �

6.3 Comparisons of conditions for sign recovery and support recovery

Let X = (X1| . . . |Xp) ∈ Rn×p and β ∈ Rp.

• When ‖X1‖2 = · · · = ‖Xp‖2 = 1, we say that β satisfies the mutual coherence condition once the following

inequalities occurs

card(supp(β)) <
1 + 1/M(X)

2
, where M(X) = max

i 6=j
|X ′iXj |.

• We say that β satisfies the irrepresentability condition once

‖X ′
I
XI(X

′
IXI)

−1sign(βI)‖∞ < 1, where I = supp(β).
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Moreover, we say that the irrepresentability condition uniformly hold on the support I of β once

∀θ ∈ {−1, 1}|I|, ‖X ′
I
XI(X

′
IXI)

−1θ‖∞ < 1.

• We say that β satisfies the stable nullspace property once

∀h ∈ ker(X) \ {0},
∑

i∈supp(β)

|hi| <
∑

i/∈supp(β)

|hi|.

• We remind that β is identifiable with respect to X and the `1 norm once

∀h ∈ ker(X) \ {0},

∣∣∣∣∣∣
∑

i∈supp(β)

sign(βi)hi

∣∣∣∣∣∣ <
∑

i/∈supp(β)

|hi|

Table 2 summarizes comparisons between above conditions

Mutual coherence
[33]
=⇒ Irrepresentability

⇓[19] ⇓ Uniform irrepresentability
[9]

=⇒ Stable nullspace
Stable nullspace =⇒ Identifiability

Table 2: This figure provides implication between above conditions. The implication “stable nullspace ⇒ iden-
tifiability” is straightforward and the implication “Irrepresentability ⇒ Identifiability” is given in Proposition
1. Other implications are proved in [9, 19, 33]. Note that an exhaustive scheme is given in [4, 33].

One may observe that the mutual coherence is a very strong condition once two columns of X are almost

equal (namely when M(X) is close to 1). As an example, M(X) = 0.99 when X is the matrix from the

riboflavin dataset and thus the mutual coherence condition is extremely strong. Nevertheless, when β has only

one non null component, the mutual coherence condition holds and thus β satisfies both the irrepresentability

and identifiability conditions as illustrated on Figure 5.

Finally when X is a n×p standard Gaussian matrix and n < p are both very large then β is identifiable with

respect to X and the `1 norm with a very large probability (resp. very small probability) once card(supp(β)) <

nρ(n/p) (resp. once card(supp(β)) > nρ(n/p)), where ρ(·) is the transition curve of Donoho and Tanner [13],

presented in Figure 7.

Supplementary material

We have already said that when X is in general position the minimizer of problem (2) (resp. problem (3)) is

unique. Concerning LASSO, a sketch of proof given in Tibshirani [32] shows the uniqueness of the LASSO

estimator when X is in general position. In order to provide a self-contained article, we show that when X

is in general position, the minimizer of problem (3) is unique when R = 0 as well as when R > 0. We have

31



Figure 7: This figure illustrates the transition curve of Donoho and Tanner [13].

already stressed that when β is identifiable with respect to the `1 norm then β is sparse. We show that when the

identifiability holds for β then the family (Xi)i∈supp(β) is linearly independent and thus the number of components

of β equal to 0 is larger than p− n. Finally, a proof that the stable nullspace property implies the identifiability

condition is given
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