Supplementary material

Patrick J.C. Tardivel ${ }^{a *}$ and Małgorzata Bogdan ${ }^{a, b}$,
${ }^{a}$ Institute of Mathematics, University of Wrocław, Wrocław, Poland
${ }^{b}$ Department of Statistics, Lund University, Lund, Sweden

General position condition

Let $M_{1}, \ldots, M_{k} \in \mathbb{R}^{p}$ and let $\operatorname{Aff}\left\{M_{i}\right\}_{1 \leq i \leq k}$ denotes for the following affine subspace

$$
\operatorname{Aff}\left\{M_{i}\right\}_{1 \leq i \leq k}:=\left\{M \in \mathbb{R}^{p} \mid M=\alpha_{1} M_{1}+\cdots+\alpha_{k} M_{k} \text { where } \alpha_{1}, \ldots, \alpha_{p} \in \mathbb{R} \text { and } \alpha_{1}+\cdots+\alpha_{p}=1\right\}
$$

The definition of general position given in Tibshirani [4] is as follows.
Definition 1 (General position) The $n \times p$ matrix $A=\left(A_{1}|\ldots| A_{p}\right)$ is in general position if whatever $s \in$ $\{-1,1\}^{p}$, whatever $I \subset\{1, \ldots, p\}$ such that $\operatorname{card}(I) \leq \min \{n, p\}$, the affine space $\operatorname{Aff}\left\{s_{i} A_{i}\right\}_{i \in I}$ satisfies the following property

$$
\forall j \notin I, s_{j} A_{j} \notin \operatorname{Aff}\left\{s_{i} A_{i}\right\}_{i \in I}
$$

Example: Let $A=\left(A_{1}\left|A_{2}\right| A_{3}\right)$ and $B=\left(B_{1}\left|B_{2}\right| B_{3}\right)$ be the following 2×3 matrices

$$
A=\left(\begin{array}{ccc}
1 & 0 & -1 / 2 \\
0 & 1 & -1 / 2
\end{array}\right) \text { and } B=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right)
$$

Matrix A is not in general position since points A_{1}, A_{2} and $-A_{3}$ are aligned. Matrix B is in general position because, up to a sign, B_{1}, B_{2} and B_{3} are not aligned.

Proposition 1 shows that when X is in general position then the BPDN problem has a unique minimizer.

Proposition 1 Let X be a $n \times p$ matrix in general position, let y be an arbitrary element of \mathbb{R}^{n} and let $R \geq 0$. Let S_{1}^{R} be the solutions of the following optimization problem

$$
S_{1}^{R}:=\underset{\gamma \in \mathbb{R}^{p}}{\operatorname{argmin}}\|\gamma\|_{1} \text { subject to }\|y-X \gamma\|_{2}^{2} \leq R .
$$

[^0]If S_{1}^{R} is not empty then S_{1}^{R} is a singleton.
When $\mathbf{0}$ is an element of S_{1}^{R}, then $S_{1}^{R}=\{\mathbf{0}\}$ and thus proposition 1 holds. For this reason, hereafter, it is assumed that $\mathbf{0} \notin S_{1}^{R}$. Proposition 1 is a straightforward implication of Lemmas 1 and 2.

Lemma 1 Let $X=\left(X_{1}|\ldots| X_{p}\right)$ be a $n \times p$ matrix in general position and let S_{1}^{R} as defined in Proposition 1. If S_{1}^{R} is not empty then whatever $\bar{\gamma} \in S_{1}^{R}$, the family $\left(X_{i}\right)_{i \in \operatorname{supp}(\bar{\gamma})}$ is linearly independent.

Proof: To simplify the notation, without any loss of generality let us assume that $\operatorname{supp}(\bar{\gamma})=\left\{1, \ldots, k_{0}\right\}$. Let us assume that the family $\left(X_{i}\right)_{1 \leq i \leq k_{0}}$ is not linearly independent. What is follows is a contradiction for X in general position.

Let $b=X \bar{\gamma}$ and let $\bar{s}=\left(\operatorname{sign}\left(\bar{\gamma}_{i}\right)\right)_{1 \leq i \leq k_{0}}$. Because $\bar{\gamma} \in S_{1}^{R}$, the vector $\left(\bar{\gamma}_{1}, \ldots, \bar{\gamma}_{k_{0}}\right)$ is a solution of the following problem

$$
\underset{\gamma \in \mathbb{R}^{k_{0}}}{\operatorname{argmin}} \underbrace{\sum_{i=1}^{k_{0}}\left|\gamma_{i}\right|}_{\phi_{0}\left(\gamma_{1}, \ldots, \gamma_{k_{0}}\right)} \text { subject to the constraint } \forall i \in\{1, \ldots, n\}, \underbrace{\sum_{j=1}^{k_{0}} \gamma_{i} X_{i j}}_{\phi_{i}\left(\gamma_{1}, \ldots, \gamma_{k_{0}}\right)}=b_{i} .
$$

Because ϕ_{0} is differentiable at $\left(\bar{\gamma}_{1}, \ldots, \bar{\gamma}_{k_{0}}\right)$ (since $\left.\bar{\gamma}_{1} \neq 0, \ldots, \bar{\gamma}_{k_{0}} \neq 0\right)$, by the Lagrange multipliers theorem the following implications hold (where ∇ denotes for the gradient).

$$
\begin{align*}
& \nabla \phi_{0}\left(\bar{\gamma}_{1}, \ldots, \bar{\gamma}_{k_{0}}\right) \in \operatorname{span}\left\{\nabla \phi_{1}\left(\bar{\gamma}_{1}, \ldots, \bar{\gamma}_{k_{0}}\right), \ldots, \nabla \phi_{n}\left(\bar{\gamma}_{1}, \ldots, \bar{\gamma}_{k_{0}}\right)\right\}, \\
\Rightarrow & \exists \lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \text { such that }\left(\bar{s}_{1}, \ldots, \bar{s}_{k_{0}}\right)=\lambda_{1}\left(X_{11}, \ldots, X_{1 k_{0}}\right)+\cdots+\lambda_{n}\left(X_{n 1}, \ldots, X_{n k_{0}}\right), \\
\Rightarrow & \forall i \in\left\{1, \ldots, k_{0}\right\}, \bar{s}_{i}=\lambda_{1} X_{1 i}+\cdots+\lambda_{n} X_{n i}=X_{i}^{\prime} \lambda \tag{1}
\end{align*}
$$

Let $\left(X_{i}\right)_{i \in I}$ be a basis of the vectorial space $\operatorname{span}\left\{X_{1}, \ldots, X_{k_{0}}\right\}$ (since $\left(X_{i}\right)_{i \in I}$ is a basis of a subspace of \mathbb{R}^{n}, then $\operatorname{card}(I) \leq n$, furthermore $\operatorname{card}(I) \leq k_{0} \leq p$. Because the family $\left(X_{i}\right)_{1 \leq i \leq k_{0}}$ is not then linearly independent, there exists $j \in\left\{1, \ldots, k_{0}\right\} \backslash I$ and $\left(\alpha_{i}\right)_{i \in I}$ such that $X_{j}=\sum_{i \in I} \alpha_{i} X_{i}$. The following implication is a straightforward consequence of (1)

$$
\bar{s}_{j}=X_{j}^{\prime} \lambda=\sum_{i \in I} \alpha_{i} X_{i}^{\prime} \lambda=\sum_{i \in I} \alpha_{i} \bar{s}_{i} \Rightarrow 1=\left(\bar{s}_{j}\right)^{2}=\sum_{i \in I} \alpha_{i} \bar{s}_{i} \bar{s}_{j} .
$$

Finally, the following equality

$$
\begin{equation*}
X_{j}=\sum_{i \in I} \alpha_{i} X_{i}=\sum_{i \in I} \alpha_{i}\left(\bar{s}_{j} \bar{s}_{i}\right)^{2} X_{i}=\sum_{i \in I} \alpha_{i} \bar{s}_{j} \bar{s}_{i}\left(\bar{s}_{i} \bar{s}_{j} X_{i}\right) \tag{2}
\end{equation*}
$$

shows that X_{j} is the barycentre of the family $\left(\bar{s}_{i} \bar{s}_{j} X_{i}\right)_{i \in I}$ since $1=\sum_{i \in I} \alpha_{i} \bar{s}_{i} \bar{s}_{j}$. Consequently, equality (2) contradicts that X is in general position.

Lemma 2 Let S_{1}^{R} as defined in Proposition 1 and let us assume that whatever $\bar{\gamma} \in S_{1}^{R}$ the family $\left(X_{i}\right)_{i \in \operatorname{supp}(\bar{\gamma})}$ is linearly independent then S_{1}^{R} is a singleton.

Proof: Let $\bar{\gamma}^{1}$ and $\bar{\gamma}^{2}$ be two elements of S_{1}^{R}. In the first step, let us show that $X \bar{\gamma}^{1}=X \bar{\gamma}^{2}$. Since function $t \in \mathbb{R}^{p} \mapsto\|y-t\|_{2}^{2}$ is strictly convex, if $X \bar{\gamma}^{1} \neq X \bar{\gamma}^{2}$ then whatever $\alpha \in(0,1)$ the following inequality holds

$$
\left\|y-\alpha X \bar{\gamma}^{1}-(1-\alpha) X \bar{\gamma}^{2}\right\|_{2}^{2}<\alpha\left\|y-X \bar{\gamma}^{1}\right\|_{2}^{2}+(1-\alpha)\left\|y-X \bar{\gamma}^{2}\right\|_{2}^{2} \leq R .
$$

Let us define $\bar{\gamma}_{\alpha}:=\alpha \bar{\gamma}^{1}+(1-\alpha) \bar{\gamma}^{2}$ where $\alpha \in(0,1)$. Let us set, for example, $\alpha=1 / 2$ from the previous inequality. One may deduce that 1) $\left\|y-X \bar{\gamma}_{1 / 2}\right\|_{2}^{2}<R$. Furthermore, since the l^{1} norm is convex, one may deduce that 2) $\bar{\gamma}_{1 / 2} \in S_{1}^{R}$. Let us show that 1) and 2) provide a contradiction. Since $\left\|y-X \bar{\gamma}_{1 / 2}\right\|_{2}^{2}<R$ then there exists $t \in[0,1)$ such that $t \bar{\gamma}_{1 / 2}$ is still a feasible point, namely $\left\|y-X t \bar{\gamma}_{1 / 2}\right\|_{2}^{2} \leq R$. Because $\bar{\gamma}_{1 / 2} \neq \mathbf{0}$ (since $\mathbf{0} \notin S_{1}^{R}$), we have $\left\|t \bar{\gamma}_{1 / 2}\right\|_{1}<\left\|\bar{\gamma}_{1 / 2}\right\|_{1}$ which is contradictory with $\bar{\gamma}_{1 / 2} \in S_{1}^{R}$.

To conclude this proof it is sufficient to show that the family $\left(X_{i}\right)_{i \in I}$ where $I=\operatorname{supp}\left(\bar{\gamma}_{1}\right) \cup \operatorname{supp}\left(\bar{\gamma}_{2}\right)$ is linearly independent. It is straightforward that there exists $\alpha \in(0,1) \operatorname{such}$ that $I=\operatorname{supp}\left(\bar{\gamma}_{\alpha}\right)$. Because $X \bar{\gamma}^{1}=\sum_{i \in I} \bar{\gamma}_{i}^{1} X_{i}=\sum_{i \in I} \bar{\gamma}_{i}^{2} X_{i}=X \bar{\gamma}_{2}$ and because the family $\left(X_{i}\right)_{i \in I}$ is linearly independent (since $\left.\bar{\gamma}_{\alpha} \in S_{1}^{R}\right)$ then $\bar{\gamma}_{1}=\bar{\gamma}_{2}$.

Proposition 2 shows that once the BPDN (resp. BP) problem has a unique minimizer $\bar{\gamma}$, then the family $\left(X_{i}\right)_{i \in \operatorname{supp}(\bar{\gamma})}$ is linearly independent.

Proposition 2 Let X be a $n \times p$ matrix, let y be an arbitrary element of \mathbb{R}^{n} and let $R \geq 0$. Let us denote S_{1}^{R} be the solutions of the following optimization problem

$$
\begin{equation*}
S_{1}^{R}:=\underset{\gamma \in \mathbb{R}^{p}}{\operatorname{argmin}}\|\gamma\|_{1} \text { subject to }\|y-X \gamma\|_{2}^{2} \leq R . \tag{3}
\end{equation*}
$$

If S_{1}^{R} has a unique element $\bar{\gamma} \neq \mathbf{0}$, then the family $\left(X_{i}\right)_{i \in \operatorname{supp}(\bar{\gamma})}$ is linearly independent.

Let us assume that the family $\left(X_{i}\right)_{i \in \operatorname{supp}(\bar{\gamma})}$ is not linearly independent. We are going to provide a contradiction for the uniqueness of $\bar{\gamma}$ by constructing a feasible point $\tilde{\gamma}$ for which $\tilde{\gamma} \neq \bar{\gamma}$ and $\|\tilde{\gamma}\|_{1} \leq\|\bar{\gamma}\|_{1}$. Because $\left(X_{i}\right)_{i \in \operatorname{supp}(\bar{\gamma})}$ is not linearly independent, there exists coefficients $\left(c_{i}\right)_{i \in \operatorname{supp}(\bar{\gamma})}$ not simultaneously null such that $\sum_{i \in \operatorname{supp}(\bar{\gamma})} c_{i} X_{i}=\mathbf{0}$. This equality provides an element $h \in \operatorname{ker}(X) \backslash \mathbf{0}$ which is defined hereafter by

$$
\forall i \in \operatorname{supp}(\bar{\gamma}), h_{i}=c_{i} \text { and } \forall i \notin \operatorname{supp}(\bar{\gamma}), h_{i}=0
$$

From this element h, one defines feasible points for problem (3) by setting for all $t \in \mathbb{R}, \gamma(t)=\bar{\gamma}+t h$ (namely, whatever $\left.t \in \mathbb{R},\|y-X \gamma(t)\|_{2}^{2} \leq R\right)$. Let f be the function $\forall t \in \mathbb{R}, f(t):=\|\gamma(t)\|_{1}$.

Now, without loss of generality and to simplify the notation, let us assume that $\operatorname{supp}(h)=\left\{1, \ldots, k_{0}\right\}$ thus, $f(t)=\sum_{i=1}^{k_{0}}\left|\bar{\gamma}_{i}+t h_{i}\right|+\sum_{i=k_{0}+1}^{p}\left|\bar{\gamma}_{i}\right|$. Whatever $i \in\left\{1, \ldots, k_{0}\right\}$, let us denote $t_{i}=-\bar{\gamma}_{i} / h_{i}\left(\right.$ thus $\left.t_{i} \neq 0\right)$, the function $t \in \mathbb{R} \mapsto\left|\bar{\gamma}_{i}+t h_{i}\right|$ is coercive (i.e $\lim _{t \rightarrow+\infty}\left|\bar{\gamma}_{i}+t h_{i}\right|=\lim _{t \rightarrow-\infty}\left|\bar{\gamma}_{i}+t h_{i}\right|=+\infty$) and affine on the intervals $\left(-\infty, t_{i}\right]$ and $\left[t_{i}, \infty\right)$. Consequently, the function f is coercive and affine on the intervals $\left(-\infty, t_{(1)}\right],\left[t_{(1)}, t_{(2)}\right], \ldots,\left[t_{\left(k_{0}\right)},+\infty\right)$ where (.) is a permutation such that $t_{(1)} \leq t_{(2)} \leq \cdots \leq t_{\left(k_{0}\right)}$. Finally, the minimum of f is reached at $t_{0} \neq 0$ with $t_{0} \in\left\{t_{1}, \ldots, t_{k_{0}}\right\}$, thus there is a feasible point $\tilde{\gamma}=\gamma\left(t_{0}\right)$ such that $\tilde{\gamma} \neq \bar{\gamma}$ and $\|\tilde{\gamma}\|_{1} \leq\|\bar{\gamma}\|_{1}$ which provides a contradiction.

The stable nullspace property implies the identifiability condition

Let X be a $n \times p$ matrix, given $\rho \in(0,1)$ the vector $b \in \mathbb{R}^{p}$ satisfies the stable nullspace property if the following inequality occurs

$$
\forall h \in \operatorname{ker}(X), \sum_{i \in \operatorname{supp}(b)}\left|h_{i}\right| \leq \rho \sum_{i \notin \operatorname{supp}(b)}\left|h_{i}\right| .
$$

One may notice that the stable nullspace property implies the following inequality

$$
\forall h \in \operatorname{ker}(X) \backslash\{0\}, \quad \sum_{i \in \operatorname{supp}(b)} \operatorname{sign}\left(b_{i}\right) h_{i}<\sum_{i \notin \operatorname{supp}(b)}\left|h_{i}\right|,
$$

which characterizes that b is identifiable with respect to the L_{1} norm. Thus the stable nullspace property implies the identifiability condition. This statement is not new in the compressed sensing community. Actually, it is well known that the stable nullspace property implies L_{1} recovery by BP (see e.g. [1, 2, 3]).

Now, let us point out an exemple in which the identifiability condition holds but the stable nullspace condition does not hold. Let X and b be defined as follows

$$
X:=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right) \text { and } b:=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) .
$$

Because $\operatorname{ker}(X)$ is spanned by the vector $(1,1,-1)$, one may deduce that

$$
\forall h \in \operatorname{ker}(X), \sum_{i \in \operatorname{supp}(b)}\left|h_{i}\right|=2 \sum_{i \notin \operatorname{supp}(b)}\left|h_{i}\right|,
$$

thus the stable null space property does not hold. On the other hand,

$$
\forall h \in \operatorname{ker}(X), \sum_{i \in \operatorname{supp}(b)} \operatorname{sign}\left(b_{i}\right) h_{i}=0,
$$

thus the identifiability condition holds.

References

[1] David L Donoho and Michael Elad. Optimally sparse representation in general (nonorthogonal) dictionaries via 1 minimization. Proceedings of the National Academy of Sciences, 100(5):2197-2202, 2003.
[2] Simon Foucart and Holger Rauhut. A mathematical introduction to compressive sensing, volume 1. Springer, 2013.
[3] Rémi Gribonval and Morten Nielsen. Sparse representations in unions of bases. IEEE Transactions on Information Theory, 49(12):3320-3325, 2003.
[4] Ryan J Tibshirani et al. The lasso problem and uniqueness. Electronic Journal of Statistics, 7:1456-1490, 2013.

[^0]: * Corresponding author: tardivel@math.uni.wroc.pl

