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General position condition

Let My, ..., M} € RP and let Aff{M;}1<;<) denotes for the following affine subspace
AfH{M;}i<i<k :={M € R? | M = oy My + - - - + a4, M}, where a1,...,ap € Rand oy + -+ + o = 1}.

The definition of general position given in Tibshirani [4] is as follows.

Definition 1 (General position) The n x p matric A = (Ai1|...|Ap) is in general position if whatever s €
{—1,1}P, whatever I C {1,...,p} such that card(I) < min{n,p}, the affine space Aff{s;A;}ics salisfies the
following property

Vi¢lI,s;A; & Aff{s;A;}ier.

Example: Let A = (A1]|A3|A3) and B = (B;|Bz|Bs) be the following 2 x 3 matrices

1 0 -1/2 1 0 1
= and B =

01 —-1/2 01 1

Matrix A is not in general position since points A;, Ay and —Aj are aligned. Matrix B is in general position

because, up to a sign, By, By and Bs are not aligned.

Proposition 1 shows that when X is in general position then the BPDN problem has a unique minimizer.

Proposition 1 Let X be a n X p matrixz in general position, let y be an arbitrary element of R™ and let R > 0.

Let ST be the solutions of the following optimization problem

ST .= argmin ||v||; subject to ||y — Xv||3 < R.
yERP
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If SE is not empty then SE is a singleton.

When 0 is an element of Sf¥, then Sf* = {0} and thus proposition 1 holds. For this reason, hereafter, it is

assumed that 0 ¢ Sf*. Proposition 1 is a straightforward implication of Lemmas 1 and 2.

Lemma 1 Let X = (X1]...|X,) be an x p matriz in general position and let Sf as defined in Proposition 1.

If SE is not empty then whatever ¥ € SE, the family (Xi)iesupp(y) @5 linearly independent.

Proof: To simplify the notation, without any loss of generality let us assume that supp(y) = {1,...,ko}. Let
us assume that the family (X;)1<i<k, is not linearly independent. What is follows is a contradiction for X in
general position.

Let b = X7 and let 3 = (sign(9;))1<i<k,- Because ¥ € Sf, the vector (1,...,7k,) is a solution of the

following problem

k?o kD
argmin Z |vi|  subject to the constraint Vi € {1,...,n}, Z%Xij =b;.
veRko i =1

Nt o

$0( V151 Ykg) i (Y1505 Tko)

Because ¢y is differentiable at (J1,...,%%,) (since 33 # 0,...,%k, # 0), by the Lagrange multipliers theorem

the following implications hold (where V denotes for the gradient).

v¢0(’713 v a’?ko) € Span{v¢1(’717 oo 7’7160)7‘ . ‘,v¢n(’71; oo 7;)1160)}7
= dA= (/\1,. .-y An) such that (51, .. .,gko) = A (X11,--- 7X1k0) + -+ (X, - - 7Xnko)7

= VZG{L,]C()},EZ:)\th-f—+AanZ:XZ/)\ (1)

Let (X;)ier be a basis of the vectorial space span{Xi,..., Xk, } (since (X;)ier is a basis of a subspace of
R™, then card(I) < n, furthermore card(I) < ko < p). Because the family (X;)1<i<g, is not then linearly
independent, there exists j € {1,...,ko} \ [ and (a;);es such that X; = >, ; a; X;. The following implication

is a straightforward consequence of (1)
Sj = XJ//\ = ZO@X{)\ = Zaigi =1= (gj)Q = Zaigigj.
el el i€l
Finally, the following equality
Xj = ZazXz = Zai(§j§i)2Xi = Z ai§j§i(§i§in) (2)
i€l el el

shows that X is the barycentre of the family (5;5;X;):cr since 1 = . ; @;5;5;. Consequently, equality (2)

contradicts that X is in general position. a



Lemma 2 Let ST as defined in Proposition 1 and let us assume that whatever y € STt the family (X4)iesupp(¥)

is linearly independent then ST is a singleton.

Proof: Let 4! and 52 be two elements of ST. In the first step, let us show that X5' = X5%. Since function

t € RP s ||y — t||3 is strictly convex, if X4 # X542 then whatever o € (0, 1) the following inequality holds
ly — aX7' — (1 - a)X73%|3 < ally = X713 + (1~ a)lly = X7°|3 < R.

Let us define 7, = oy + (1 — a)¥* where a € (0,1). Let us set, for example, o = 1/2 from the previous
inequality. One may deduce that 1) ||y — X7, /2||§ < R. Furthermore, since the I' norm is convex, one may
deduce that 2) 75 € Sf. Let us show that 1) and 2) provide a contradiction. Since ||y — X¥;2[|3 < R then
there exists ¢ € [0,1) such that 7,/ is still a feasible point, namely ||y — Xty ,2/|3 < R. Because Y2 # 0
(since 0 ¢ Sf*), we have [[t91 /21 < ||71/2]l1 which is contradictory with 57,5 € S{.

To conclude this proof it is sufficient to show that the family (X;);c; where I = supp(¥1) U supp(72) is
linearly independent. It is straightforward that there exists o € (0,1) such that I = supp(7.). Because
XY =309 Xi = Y01 72X = X 72 and because the family (X;);c; is linearly independent (since 7, € ST*)

then ’71 = ’72. |

Proposition 2 shows that once the BPDN (resp. BP) problem has a unique minimizer %, then the family

(Xi)iesupp(5) is linearly independent.

Proposition 2 Let X be a n x p matriz, let y be an arbitrary element of R™ and let R > 0. Let us denote STt

be the solutions of the following optimization problem
ST .= argmin ||v||; subject to |ly — X~||3 < R. (3)
yERP

If SE has a unique element 5 # 0, then the family (Xi)iesupp(y) 5 linearly independent.

Let us assume that the family (X;)iesupp(s) is not linearly independent. We are going to provide a contradic-
tion for the uniqueness of § by constructing a feasible point 4 for which 4 # 4 and ||7]|1 < ||¥||1. Because

(Xi)iesupp(ﬁ) is not linearly independent, there exists coefficients (ci)iesupp@) not simultaneously null such that

Ziesupp(ﬁ) ¢;X; = 0. This equality provides an element h € ker(X) \ 0 which is defined hereafter by
Vi € supp(7), hi = ¢; and Vi ¢ supp(¥), hi = 0.

From this element h, one defines feasible points for problem (3) by setting for all t € R, v(¢) = 4 + th (namely,
whatever t € R, |ly — X7(t)||3 < R). Let f be the function Vt € R, f(¢) := ||y(¢)]]1-



Now, without loss of generality and to simplify the notation, let us assume that supp(h) = {1, ..., ko} thus,
f) = Zfil i + thil + 31y, 11 17il- Whatever i@ € {1,...,ko}, let us denote t; = —%;/h; (thus t; # 0),
the function t € R — |3; + th;| is coercive (i.e limy—, oo |7 + thy| = limy_oo |35 + th;| = +00) and affine
on the intervals (—oo,t;] and [t;,00). Consequently, the function f is coercive and affine on the intervals
(=00, tyls [t1), t2yls - - -5 [E(ko)> +00) Where (.) is a permutation such that t(1y < #g) < --- < (). Finally, the
minimum of f is reached at tg # 0 with ¢ € {t1,...,tk,}, thus there is a feasible point ¥ = ~(tg) such that

7 # 7 and ||¥]|1 < ||¥]|1 which provides a contradiction. O

The stable nullspace property implies the identifiability condition

Let X be a n x p matrix, given p € (0,1) the vector b € RP satisfies the stable nullspace property if the following

inequality occurs

Vheker(X), > |hl<p Y |hil.
)

i€supp(b) i¢supp(b

One may notice that the stable nullspace property implies the following inequality

Vh e ker(X)\ {0}, > sign(b)hi< > |hil,
i€supp(b) igsupp(b)
which characterizes that b is identifiable with respect to the L; norm. Thus the stable nullspace property implies
the identifiability condition. This statement is not new in the compressed sensing community. Actually, it is
well known that the stable nullspace property implies L; recovery by BP (see e.g. [1, 2, 3]).
Now, let us point out an exemple in which the identifiability condition holds but the stable nullspace condition

does not hold. Let X and b be defined as follows

0
1 0 1

X = and b:= | 1
0 1 1

1

Because ker(X) is spanned by the vector (1,1, —1), one may deduce that

Vheker(X), > |hil=2 > |hi,
i€supp(b) igsupp(b)
thus the stable null space property does not hold. On the other hand,

Vh € ker(X), Z sign(b;)h; =0,

i€supp(b)



thus the identifiability condition holds.
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