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General position condition

Let M1, . . . ,Mk ∈ Rp and let Aff{Mi}1≤i≤k denotes for the following affine subspace

Aff{Mi}1≤i≤k := {M ∈ Rp |M = α1M1 + · · ·+ αkMk where α1, . . . , αp ∈ R and α1 + · · ·+ αp = 1}.

The definition of general position given in Tibshirani [4] is as follows.

Definition 1 (General position) The n × p matrix A = (A1| . . . |Ap) is in general position if whatever s ∈

{−1, 1}p, whatever I ⊂ {1, . . . , p} such that card(I) ≤ min{n, p}, the affine space Aff{siAi}i∈I satisfies the

following property

∀j /∈ I, sjAj /∈ Aff{siAi}i∈I .

Example: Let A = (A1|A2|A3) and B = (B1|B2|B3) be the following 2× 3 matrices

A =

1 0 −1/2

0 1 −1/2

 and B =

1 0 1

0 1 1

 .

Matrix A is not in general position since points A1, A2 and −A3 are aligned. Matrix B is in general position

because, up to a sign, B1, B2 and B3 are not aligned.

Proposition 1 shows that when X is in general position then the BPDN problem has a unique minimizer.

Proposition 1 Let X be a n× p matrix in general position, let y be an arbitrary element of Rn and let R ≥ 0.

Let SR1 be the solutions of the following optimization problem

SR1 := argmin
γ∈Rp

‖γ‖1 subject to ‖y −Xγ‖22 ≤ R.
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If SR1 is not empty then SR1 is a singleton.

When 0 is an element of SR1 , then SR1 = {0} and thus proposition 1 holds. For this reason, hereafter, it is

assumed that 0 /∈ SR1 . Proposition 1 is a straightforward implication of Lemmas 1 and 2.

Lemma 1 Let X = (X1| . . . |Xp) be a n× p matrix in general position and let SR1 as defined in Proposition 1.

If SR1 is not empty then whatever γ̄ ∈ SR1 , the family (Xi)i∈supp(γ̄) is linearly independent.

Proof: To simplify the notation, without any loss of generality let us assume that supp(γ̄) = {1, . . . , k0}. Let

us assume that the family (Xi)1≤i≤k0 is not linearly independent. What is follows is a contradiction for X in

general position.

Let b = Xγ̄ and let s̄ = (sign(γ̄i))1≤i≤k0 . Because γ̄ ∈ SR1 , the vector (γ̄1, . . . , γ̄k0) is a solution of the

following problem

argmin
γ∈Rk0

k0∑
i=1

|γi|︸ ︷︷ ︸
φ0(γ1,...,γk0

)

subject to the constraint ∀i ∈ {1, . . . , n},
k0∑
j=1

γiXij︸ ︷︷ ︸
φi(γ1,...,γk0

)

= bi.

Because φ0 is differentiable at (γ̄1, . . . , γ̄k0) (since γ̄1 6= 0, . . . , γ̄k0 6= 0), by the Lagrange multipliers theorem

the following implications hold (where ∇ denotes for the gradient).

∇φ0(γ̄1, . . . , γ̄k0) ∈ span {∇φ1(γ̄1, . . . , γ̄k0), . . . ,∇φn(γ̄1, . . . , γ̄k0)} ,

⇒ ∃λ = (λ1, . . . , λn) such that (s̄1, . . . , s̄k0) = λ1(X11, . . . , X1k0) + · · ·+ λn(Xn1, . . . , Xnk0),

⇒ ∀i ∈ {1, . . . , k0}, s̄i = λ1X1i + · · ·+ λnXni = X ′iλ (1)

Let (Xi)i∈I be a basis of the vectorial space span {X1, . . . , Xk0} (since (Xi)i∈I is a basis of a subspace of

Rn, then card(I) ≤ n, furthermore card(I) ≤ k0 ≤ p). Because the family (Xi)1≤i≤k0 is not then linearly

independent, there exists j ∈ {1, . . . , k0} \ I and (αi)i∈I such that Xj =
∑
i∈I αiXi. The following implication

is a straightforward consequence of (1)

s̄j = X ′jλ =
∑
i∈I

αiX
′
iλ =

∑
i∈I

αis̄i ⇒ 1 = (s̄j)
2 =

∑
i∈I

αis̄is̄j .

Finally, the following equality

Xj =
∑
i∈I

αiXi =
∑
i∈I

αi(s̄j s̄i)
2Xi =

∑
i∈I

αis̄j s̄i(s̄is̄jXi) (2)

shows that Xj is the barycentre of the family (s̄is̄jXi)i∈I since 1 =
∑
i∈I αis̄is̄j . Consequently, equality (2)

contradicts that X is in general position. �
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Lemma 2 Let SR1 as defined in Proposition 1 and let us assume that whatever γ̄ ∈ SR1 the family (Xi)i∈supp(γ̄)

is linearly independent then SR1 is a singleton.

Proof: Let γ̄1 and γ̄2 be two elements of SR1 . In the first step, let us show that Xγ̄1 = Xγ̄2. Since function

t ∈ Rp 7→ ‖y − t‖22 is strictly convex, if Xγ̄1 6= Xγ̄2 then whatever α ∈ (0, 1) the following inequality holds

‖y − αXγ̄1 − (1− α)Xγ̄2‖22 < α‖y −Xγ̄1‖22 + (1− α)‖y −Xγ̄2‖22 ≤ R.

Let us define γ̄α := αγ̄1 + (1 − α)γ̄2 where α ∈ (0, 1). Let us set, for example, α = 1/2 from the previous

inequality. One may deduce that 1) ‖y − Xγ̄1/2‖22 < R. Furthermore, since the l1 norm is convex, one may

deduce that 2) γ̄1/2 ∈ SR1 . Let us show that 1) and 2) provide a contradiction. Since ‖y −Xγ̄1/2‖22 < R then

there exists t ∈ [0, 1) such that tγ̄1/2 is still a feasible point, namely ‖y − Xtγ̄1/2‖22 ≤ R. Because γ̄1/2 6= 0

(since 0 /∈ SR1 ), we have ‖tγ̄1/2‖1 < ‖γ̄1/2‖1 which is contradictory with γ̄1/2 ∈ SR1 .

To conclude this proof it is sufficient to show that the family (Xi)i∈I where I = supp(γ̄1) ∪ supp(γ̄2) is

linearly independent. It is straightforward that there exists α ∈ (0, 1) such that I = supp(γ̄α). Because

Xγ̄1 =
∑
i∈I γ̄

1
iXi =

∑
i∈I γ̄

2
iXi = Xγ̄2 and because the family (Xi)i∈I is linearly independent (since γ̄α ∈ SR1 )

then γ̄1 = γ̄2. �

Proposition 2 shows that once the BPDN (resp. BP) problem has a unique minimizer γ̄, then the family

(Xi)i∈supp(γ̄) is linearly independent.

Proposition 2 Let X be a n× p matrix, let y be an arbitrary element of Rn and let R ≥ 0. Let us denote SR1

be the solutions of the following optimization problem

SR1 := argmin
γ∈Rp

‖γ‖1 subject to ‖y −Xγ‖22 ≤ R. (3)

If SR1 has a unique element γ̄ 6= 0, then the family (Xi)i∈supp(γ̄) is linearly independent.

Let us assume that the family (Xi)i∈supp(γ̄) is not linearly independent. We are going to provide a contradic-

tion for the uniqueness of γ̄ by constructing a feasible point γ̃ for which γ̃ 6= γ̄ and ‖γ̃‖1 ≤ ‖γ̄‖1. Because

(Xi)i∈supp(γ̄) is not linearly independent, there exists coefficients (ci)i∈supp(γ̄) not simultaneously null such that∑
i∈supp(γ̄) ciXi = 0. This equality provides an element h ∈ ker(X) \ 0 which is defined hereafter by

∀i ∈ supp(γ̄), hi = ci and ∀i /∈ supp(γ̄), hi = 0.

From this element h, one defines feasible points for problem (3) by setting for all t ∈ R, γ(t) = γ̄ + th (namely,

whatever t ∈ R, ‖y −Xγ(t)‖22 ≤ R). Let f be the function ∀t ∈ R, f(t) := ‖γ(t)‖1.
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Now, without loss of generality and to simplify the notation, let us assume that supp(h) = {1, . . . , k0} thus,

f(t) =
∑k0
i=1 |γ̄i + thi| +

∑p
i=k0+1 |γ̄i|. Whatever i ∈ {1, . . . , k0}, let us denote ti = −γ̄i/hi (thus ti 6= 0),

the function t ∈ R 7→ |γ̄i + thi| is coercive (i.e limt→+∞ |γ̄i + thi| = limt→−∞ |γ̄i + thi| = +∞) and affine

on the intervals (−∞, ti] and [ti,∞). Consequently, the function f is coercive and affine on the intervals

(−∞, t(1)], [t(1), t(2)], . . . , [t(k0),+∞) where (.) is a permutation such that t(1) ≤ t(2) ≤ · · · ≤ t(k0). Finally, the

minimum of f is reached at t0 6= 0 with t0 ∈ {t1, . . . , tk0}, thus there is a feasible point γ̃ = γ(t0) such that

γ̃ 6= γ̄ and ‖γ̃‖1 ≤ ‖γ̄‖1 which provides a contradiction. �

The stable nullspace property implies the identifiability condition

Let X be a n×p matrix, given ρ ∈ (0, 1) the vector b ∈ Rp satisfies the stable nullspace property if the following

inequality occurs

∀h ∈ ker(X),
∑

i∈supp(b)

|hi| ≤ ρ
∑

i/∈supp(b)

|hi|.

One may notice that the stable nullspace property implies the following inequality

∀h ∈ ker(X) \ {0},
∑

i∈supp(b)

sign(bi)hi <
∑

i/∈supp(b)

|hi|,

which characterizes that b is identifiable with respect to the L1 norm. Thus the stable nullspace property implies

the identifiability condition. This statement is not new in the compressed sensing community. Actually, it is

well known that the stable nullspace property implies L1 recovery by BP (see e.g. [1, 2, 3]).

Now, let us point out an exemple in which the identifiability condition holds but the stable nullspace condition

does not hold. Let X and b be defined as follows

X :=

1 0 1

0 1 1

 and b :=


0

1

1

 .

Because ker(X) is spanned by the vector (1, 1,−1), one may deduce that

∀h ∈ ker(X),
∑

i∈supp(b)

|hi| = 2
∑

i/∈supp(b)

|hi|,

thus the stable null space property does not hold. On the other hand,

∀h ∈ ker(X),
∑

i∈supp(b)

sign(bi)hi = 0,
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thus the identifiability condition holds.
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