Supplementary material

Patrick J.C. Tardivel^{a*} and Małgorzata Bogdan^{a,b},

^a Institute of Mathematics, University of Wrocław, Wrocław, Poland

^b Department of Statistics, Lund University, Lund, Sweden

General position condition

Let $M_1, \ldots, M_k \in \mathbb{R}^p$ and let $Aff\{M_i\}_{1 \le i \le k}$ denotes for the following affine subspace

 $\operatorname{Aff}\{M_i\}_{1 \le i \le k} := \{M \in \mathbb{R}^p \mid M = \alpha_1 M_1 + \dots + \alpha_k M_k \text{ where } \alpha_1, \dots, \alpha_p \in \mathbb{R} \text{ and } \alpha_1 + \dots + \alpha_p = 1\}.$

The definition of general position given in Tibshirani [4] is as follows.

Definition 1 (General position) The $n \times p$ matrix $A = (A_1 | ... | A_p)$ is in general position if whatever $s \in \{-1, 1\}^p$, whatever $I \subset \{1, ..., p\}$ such that $card(I) \leq min\{n, p\}$, the affine space $Aff\{s_i A_i\}_{i \in I}$ satisfies the following property

$$\forall j \notin I, s_j A_j \notin \operatorname{Aff}\{s_i A_i\}_{i \in I}$$

Example: Let $A = (A_1|A_2|A_3)$ and $B = (B_1|B_2|B_3)$ be the following 2×3 matrices

$$A = \begin{pmatrix} 1 & 0 & -1/2 \\ 0 & 1 & -1/2 \end{pmatrix} \text{ and } B = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}.$$

Matrix A is not in general position since points A_1, A_2 and $-A_3$ are aligned. Matrix B is in general position because, up to a sign, B_1, B_2 and B_3 are not aligned.

Proposition 1 shows that when X is in general position then the BPDN problem has a unique minimizer.

Proposition 1 Let X be a $n \times p$ matrix in general position, let y be an arbitrary element of \mathbb{R}^n and let $R \ge 0$. Let S_1^R be the solutions of the following optimization problem

$$S_1^R := \underset{\gamma \in \mathbb{R}^p}{\operatorname{argmin}} \|\gamma\|_1 \text{ subject to } \|y - X\gamma\|_2^2 \le R.$$

^{*}Corresponding author: tardivel@math.uni.wroc.pl

When **0** is an element of S_1^R , then $S_1^R = \{\mathbf{0}\}$ and thus proposition 1 holds. For this reason, hereafter, it is assumed that $\mathbf{0} \notin S_1^R$. Proposition 1 is a straightforward implication of Lemmas 1 and 2.

Lemma 1 Let $X = (X_1 | \dots | X_p)$ be a $n \times p$ matrix in general position and let S_1^R as defined in Proposition 1. If S_1^R is not empty then whatever $\bar{\gamma} \in S_1^R$, the family $(X_i)_{i \in \text{supp}(\bar{\gamma})}$ is linearly independent.

Proof: To simplify the notation, without any loss of generality let us assume that $\operatorname{supp}(\bar{\gamma}) = \{1, \ldots, k_0\}$. Let us assume that the family $(X_i)_{1 \le i \le k_0}$ is not linearly independent. What is follows is a contradiction for X in general position.

Let $b = X\bar{\gamma}$ and let $\bar{s} = (\operatorname{sign}(\bar{\gamma}_i))_{1 \leq i \leq k_0}$. Because $\bar{\gamma} \in S_1^R$, the vector $(\bar{\gamma}_1, \ldots, \bar{\gamma}_{k_0})$ is a solution of the following problem

$$\underset{\gamma \in \mathbb{R}^{k_0}}{\operatorname{argmin}} \sum_{\substack{i=1\\\phi_0(\gamma_1,\dots,\gamma_{k_0})}}^{k_0} |\gamma_i| \quad \text{subject to the constraint } \forall i \in \{1,\dots,n\}, \sum_{\substack{j=1\\\phi_i(\gamma_1,\dots,\gamma_{k_0})}}^{k_0} \gamma_i X_{ij} = b_i$$

Because ϕ_0 is differentiable at $(\bar{\gamma}_1, \ldots, \bar{\gamma}_{k_0})$ (since $\bar{\gamma}_1 \neq 0, \ldots, \bar{\gamma}_{k_0} \neq 0$), by the Lagrange multipliers theorem the following implications hold (where ∇ denotes for the gradient).

$$\nabla \phi_0(\bar{\gamma}_1, \dots, \bar{\gamma}_{k_0}) \in \text{span} \left\{ \nabla \phi_1(\bar{\gamma}_1, \dots, \bar{\gamma}_{k_0}), \dots, \nabla \phi_n(\bar{\gamma}_1, \dots, \bar{\gamma}_{k_0}) \right\},$$

$$\Rightarrow \quad \exists \lambda = (\lambda_1, \dots, \lambda_n) \text{ such that } (\bar{s}_1, \dots, \bar{s}_{k_0}) = \lambda_1(X_{11}, \dots, X_{1k_0}) + \dots + \lambda_n(X_{n1}, \dots, X_{nk_0}),$$

$$\Rightarrow \quad \forall i \in \{1, \dots, k_0\}, \ \bar{s}_i = \lambda_1 X_{1i} + \dots + \lambda_n X_{ni} = X'_i \lambda$$
(1)

Let $(X_i)_{i \in I}$ be a basis of the vectorial space span $\{X_1, \ldots, X_{k_0}\}$ (since $(X_i)_{i \in I}$ is a basis of a subspace of \mathbb{R}^n , then $\operatorname{card}(I) \leq n$, furthermore $\operatorname{card}(I) \leq k_0 \leq p$). Because the family $(X_i)_{1 \leq i \leq k_0}$ is not then linearly independent, there exists $j \in \{1, \ldots, k_0\} \setminus I$ and $(\alpha_i)_{i \in I}$ such that $X_j = \sum_{i \in I} \alpha_i X_i$. The following implication is a straightforward consequence of (1)

$$\bar{s}_j = X'_j \lambda = \sum_{i \in I} \alpha_i X'_i \lambda = \sum_{i \in I} \alpha_i \bar{s}_i \Rightarrow 1 = (\bar{s}_j)^2 = \sum_{i \in I} \alpha_i \bar{s}_i \bar{s}_j.$$

Finally, the following equality

$$X_j = \sum_{i \in I} \alpha_i X_i = \sum_{i \in I} \alpha_i (\bar{s}_j \bar{s}_i)^2 X_i = \sum_{i \in I} \alpha_i \bar{s}_j \bar{s}_i (\bar{s}_i \bar{s}_j X_i)$$
(2)

shows that X_j is the barycentre of the family $(\bar{s}_i \bar{s}_j X_i)_{i \in I}$ since $1 = \sum_{i \in I} \alpha_i \bar{s}_i \bar{s}_j$. Consequently, equality (2) contradicts that X is in general position.

Lemma 2 Let S_1^R as defined in Proposition 1 and let us assume that whatever $\bar{\gamma} \in S_1^R$ the family $(X_i)_{i \in \text{supp}(\bar{\gamma})}$ is linearly independent then S_1^R is a singleton.

Proof: Let $\bar{\gamma}^1$ and $\bar{\gamma}^2$ be two elements of S_1^R . In the first step, let us show that $X\bar{\gamma}^1 = X\bar{\gamma}^2$. Since function $t \in \mathbb{R}^p \mapsto \|y - t\|_2^2$ is strictly convex, if $X\bar{\gamma}^1 \neq X\bar{\gamma}^2$ then whatever $\alpha \in (0, 1)$ the following inequality holds

$$\|y - \alpha X \bar{\gamma}^1 - (1 - \alpha) X \bar{\gamma}^2\|_2^2 < \alpha \|y - X \bar{\gamma}^1\|_2^2 + (1 - \alpha) \|y - X \bar{\gamma}^2\|_2^2 \le R.$$

Let us define $\bar{\gamma}_{\alpha} := \alpha \bar{\gamma}^1 + (1 - \alpha) \bar{\gamma}^2$ where $\alpha \in (0, 1)$. Let us set, for example, $\alpha = 1/2$ from the previous inequality. One may deduce that 1) $\|y - X\bar{\gamma}_{1/2}\|_2^2 < R$. Furthermore, since the l^1 norm is convex, one may deduce that 2) $\bar{\gamma}_{1/2} \in S_1^R$. Let us show that 1) and 2) provide a contradiction. Since $\|y - X\bar{\gamma}_{1/2}\|_2^2 < R$ then there exists $t \in [0, 1)$ such that $t\bar{\gamma}_{1/2}$ is still a feasible point, namely $\|y - Xt\bar{\gamma}_{1/2}\|_2^2 \leq R$. Because $\bar{\gamma}_{1/2} \neq \mathbf{0}$ (since $\mathbf{0} \notin S_1^R$), we have $\|t\bar{\gamma}_{1/2}\|_1 < \|\bar{\gamma}_{1/2}\|_1$ which is contradictory with $\bar{\gamma}_{1/2} \in S_1^R$.

To conclude this proof it is sufficient to show that the family $(X_i)_{i\in I}$ where $I = \operatorname{supp}(\bar{\gamma}_1) \cup \operatorname{supp}(\bar{\gamma}_2)$ is linearly independent. It is straightforward that there exists $\alpha \in (0,1)$ such that $I = \operatorname{supp}(\bar{\gamma}_\alpha)$. Because $X\bar{\gamma}^1 = \sum_{i\in I} \bar{\gamma}_i^1 X_i = \sum_{i\in I} \bar{\gamma}_i^2 X_i = X\bar{\gamma}_2$ and because the family $(X_i)_{i\in I}$ is linearly independent (since $\bar{\gamma}_\alpha \in S_1^R$) then $\bar{\gamma}_1 = \bar{\gamma}_2$.

Proposition 2 shows that once the BPDN (resp. BP) problem has a unique minimizer $\bar{\gamma}$, then the family $(X_i)_{i \in \text{supp}(\bar{\gamma})}$ is linearly independent.

Proposition 2 Let X be a $n \times p$ matrix, let y be an arbitrary element of \mathbb{R}^n and let $R \ge 0$. Let us denote S_1^R be the solutions of the following optimization problem

$$S_1^R := \underset{\gamma \in \mathbb{R}^p}{\operatorname{argmin}} \|\gamma\|_1 \text{ subject to } \|y - X\gamma\|_2^2 \le R.$$
(3)

If S_1^R has a unique element $\bar{\gamma} \neq \mathbf{0}$, then the family $(X_i)_{i \in \text{supp}(\bar{\gamma})}$ is linearly independent.

Let us assume that the family $(X_i)_{i \in \text{supp}(\bar{\gamma})}$ is not linearly independent. We are going to provide a contradiction for the uniqueness of $\bar{\gamma}$ by constructing a feasible point $\tilde{\gamma}$ for which $\tilde{\gamma} \neq \bar{\gamma}$ and $\|\tilde{\gamma}\|_1 \leq \|\bar{\gamma}\|_1$. Because $(X_i)_{i \in \text{supp}(\bar{\gamma})}$ is not linearly independent, there exists coefficients $(c_i)_{i \in \text{supp}(\bar{\gamma})}$ not simultaneously null such that $\sum_{i \in \text{supp}(\bar{\gamma})} c_i X_i = \mathbf{0}$. This equality provides an element $h \in \text{ker}(X) \setminus \mathbf{0}$ which is defined hereafter by

$$\forall i \in \operatorname{supp}(\bar{\gamma}), h_i = c_i \text{ and } \forall i \notin \operatorname{supp}(\bar{\gamma}), h_i = 0.$$

From this element h, one defines feasible points for problem (3) by setting for all $t \in \mathbb{R}$, $\gamma(t) = \bar{\gamma} + th$ (namely, whatever $t \in \mathbb{R}$, $\|y - X\gamma(t)\|_2^2 \leq R$). Let f be the function $\forall t \in \mathbb{R}$, $f(t) := \|\gamma(t)\|_1$.

Now, without loss of generality and to simplify the notation, let us assume that $\operatorname{supp}(h) = \{1, \ldots, k_0\}$ thus, $f(t) = \sum_{i=1}^{k_0} |\bar{\gamma}_i + th_i| + \sum_{i=k_0+1}^p |\bar{\gamma}_i|$. Whatever $i \in \{1, \ldots, k_0\}$, let us denote $t_i = -\bar{\gamma}_i/h_i$ (thus $t_i \neq 0$), the function $t \in \mathbb{R} \mapsto |\bar{\gamma}_i + th_i|$ is coercive (*i.e* $\lim_{t \to +\infty} |\bar{\gamma}_i + th_i| = \lim_{t \to -\infty} |\bar{\gamma}_i + th_i| = +\infty$) and affine on the intervals $(-\infty, t_i]$ and $[t_i, \infty)$. Consequently, the function f is coercive and affine on the intervals $(-\infty, t_{(1)}], [t_{(1)}, t_{(2)}], \ldots, [t_{(k_0)}, +\infty)$ where (.) is a permutation such that $t_{(1)} \leq t_{(2)} \leq \cdots \leq t_{(k_0)}$. Finally, the minimum of f is reached at $t_0 \neq 0$ with $t_0 \in \{t_1, \ldots, t_{k_0}\}$, thus there is a feasible point $\tilde{\gamma} = \gamma(t_0)$ such that $\tilde{\gamma} \neq \bar{\gamma}$ and $\|\tilde{\gamma}\|_1 \leq \|\bar{\gamma}\|_1$ which provides a contradiction.

The stable nullspace property implies the identifiability condition

Let X be a $n \times p$ matrix, given $\rho \in (0, 1)$ the vector $b \in \mathbb{R}^p$ satisfies the stable nullspace property if the following inequality occurs

$$\forall h \in \ker(X), \sum_{i \in \operatorname{supp}(b)} |h_i| \le \rho \sum_{i \notin \operatorname{supp}(b)} |h_i|.$$

One may notice that the stable nullspace property implies the following inequality

$$\forall h \in \ker(X) \setminus \{0\}, \sum_{i \in \operatorname{supp}(b)} \operatorname{sign}(b_i) h_i < \sum_{i \notin \operatorname{supp}(b)} |h_i|,$$

which characterizes that b is identifiable with respect to the L_1 norm. Thus the stable nullspace property implies the identifiability condition. This statement is not new in the compressed sensing community. Actually, it is well known that the stable nullspace property implies L_1 recovery by BP (see *e.g.* [1, 2, 3]).

Now, let us point out an exemple in which the identifiability condition holds but the stable nullspace condition does not hold. Let X and b be defined as follows

$$X := \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \text{ and } b := \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}.$$

Because ker(X) is spanned by the vector (1, 1, -1), one may deduce that

$$\forall h \in \ker(X), \sum_{i \in \operatorname{supp}(b)} |h_i| = 2 \sum_{i \notin \operatorname{supp}(b)} |h_i|,$$

thus the stable null space property does not hold. On the other hand,

$$\forall h \in \ker(X), \sum_{i \in \operatorname{supp}(b)} \operatorname{sign}(b_i) h_i = 0,$$

thus the identifiability condition holds.

References

- David L Donoho and Michael Elad. Optimally sparse representation in general (nonorthogonal) dictionaries via 1 minimization. Proceedings of the National Academy of Sciences, 100(5):2197–2202, 2003.
- [2] Simon Foucart and Holger Rauhut. A mathematical introduction to compressive sensing, volume 1. Springer, 2013.
- [3] Rémi Gribonval and Morten Nielsen. Sparse representations in unions of bases. *IEEE Transactions on Information Theory*, 49(12):3320–3325, 2003.
- [4] Ryan J Tibshirani et al. The lasso problem and uniqueness. *Electronic Journal of Statistics*, 7:1456–1490, 2013.