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Abstract

In the high-dimensional regression model Y = Xβ + ε, we provide new theoretical results on the proba-

bility to recover the sign of β by the Least Absolute Selection and Shrinkage Operator (LASSO) and by the

thresholded LASSO.

It is well known that “irrepresentability” is a necessary condition for LASSO to recover the sign of β with

a large probability. In this article we extend this result by providing a tight upper bound for the probability of

LASSO sign recovery. This upper bound is smaller than 1/2 when the irrepresentable condition does not hold

and thus generalizes Theorem 2 of Wainwright [27]. The bound is attained when non-null components of β

tend to infinity and its value, which depends on the tuning parameter λ. The bound is reached and its value,

which depends on the tuning parameter λ, is the limit of the probability that every null component of β is

correctly estimated at 0 when the non-null components of β tend to infinity. The bound can be subsequently

used to select λ for LASSO, so as to control the probability that the set of non-null components of LASSO

estimator is contained in the set of non-null components of β.

While “irrepresentability” is a stringent condition to recover the sign of β by LASSO, it can be substan-

tially relaxed when LASSO estimates are additionally filtered out with an appropriately selected threshold.

Indeed, it is well known that LASSO estimates are consistent under much weaker assumptions than the

irrepresentability condition. In this article we provide new theoretical results on LASSO and thresholded

LASSO in the asymptotic setup under which X is fixed and non-null components of β tend to infinity. Apart

from LASSO, our results cover also Basis Pursuit DeNoising (BPDN). Compared to the classical asymp-

totics, where X is a n × p matrix and both n and p tend to +∞, our approach allows for reduction of the

technical burden. In the result our main Theorem takes a simple form:

When non-null components of β are sufficiently large, appropriately thresholded LASSO or

thresholded BPDN can recover the sign of β if and only if β is identifiable with respect to the
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L1 norm, i.e.

If Xγ = Xβ and γ 6= β then ‖γ‖1 > ‖β‖1.

To illustrate our results we present examples of irrepresentability and identifiability curves for some

selected design matrices X. These curves provide the proportion of k sparse vectors β for which the irrep-

resentability and identifiability conditions hold. Our examples illustrate that “irrepresentability” is a much

stronger condition than “identifiability”, especially when the entries in each row of X are strongly correlated.

Finally, we illustrate how the knockoff methodology [1, 8] allows to select an appropriate threshold and that

thresholded BPDN and LASSO can recover the sign of β with a larger probability than adaptive LASSO

[31].

Keywords: Multiple regression, Basis Pursuit, LASSO, Sparsity, Active set estimation, Sign estimation,

Identifiability condition, Irrepresentability condition

1 Introduction

Let us consider the high-dimensional linear model

Y = Xβ + ε, (1)

where X = (X1| . . . |Xp) is a n × p design matrix, with n ≤ p, ε is a random vector in Rn, and β ∈ Rp is an

unknown vector of regression coefficients. The sign vector of β is S(β) = (S(β1), . . . S(βp)) ∈ {−1, 0, 1}p, where

for x ∈ R, S(x) = 1x>0 − 1x<0. Our main purpose is to recover S(β). This objective is slightly more general

than the aim of recovering the active set, supp(β) := {i ∈ {1, . . . , p} | βi 6= 0}. The sign of β can be estimated

by the sign of the well known LASSO estimator [25]:

β̂L := argmin
b∈Rp

1

2
‖Y −Xb‖22 + λ‖b‖1. (2)

When rank(X) = n, an alternative formulation of LASSO is provided by the Basis Pursuit DeNoising (BPDN)

estimator [9]:

β̂BPDN := argmin
b∈Rp

‖b‖1 subject to ‖Y −Xb‖22 ≤ R. (3)

Given a particular vector Y ∈ Rn, there is a one to one correspondance between the tuning parameter λ > 0

and the regularization parameter R > 0, under which LASSO and BPDN estimates take the same value (see

e.g page 64 of [17] or the chapter 5.3 of [3]). For example, when λ = ‖X ′Y ‖∞ and when R = ‖Y ‖22 then both

LASSO and BPDN estimators are equal to 0. However, the relationship between λ and R depends on the

specific realization of Y and, in broad generality, given a fixed λ > 0 for LASSO, we cannot pick a fixed R > 0
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for BPDN under which these both estimators equal. Thus, BPDN and LASSO are not equivalent estimators.

The Basis Pursuit (BP) estimator, solution of (3) when R = 0, is a particular case of BPDN. As discussed e.g.

in [11, 15], BP can be thought of as the limit of LASSO when the tuning parameter λ tends to 0.

1.1 Sign recovery by LASSO

Properties of the LASSO sign estimator S(β̂L(λ)) :=
(
S(β̂L

1 (λ)), . . . , S(β̂L
p (λ))

)
(or properties of the active

set estimator supp(β̂L(λ)) := {i ∈ {1, . . . , p} | β̂i(λ) 6= 0}) have been intensively studied [16, 20, 27, 30, 31].

Specifically, Zhao and Yu [30] and Zou [31] consider the asymptotic setup under which n tends to +∞ and p

is fixed and observe that LASSO can recover S(β) only if the restrictive irrepresentable condition is fulfilled.

These results were further extended to the case of the fixed design matrix X, where the irrepresentable condition

is formulated as follows:

Definition 1 (Irrepresentability condition) Let b ∈ Rp, I := {i ∈ {1, . . . , p} | bi 6= 0}, and XI , XI be the

matrices whose columns are respectively (Xi)i∈I and (Xi)i/∈I . The vector b satisfies the irrepresentable condition

if ker(XI) = 0 and ‖X ′
I
XI(X

′
IXI)

−1S(bI)‖∞ ≤ 1.

According to the Theorem 2 of Wainwright [27], the irrepresentability condition is necessary to recover S(β)

with high probability. Indeed, when ker(XI) = 0, ‖X ′
I
XI(X

′
IXI)

−1S(βI)‖∞ > 1 and both ε and −ε have the

same distribution, then for any selection of the tuning parameter λ > 0, P(S(β̂L(λ)) = S(β)) ≤ 1/2. This result

holds also in the noiseless case when ε = 0, where the probability to recover S(β) is equal to zero. Moreover,

Bühlmann and van de Geer [5] (page 192-194) showed that, in the noiseless case, when the irrepresentability

strictly holds (i.e when ‖X ′
I
XI(X

′
IXI)

−1S(βI)‖∞ < 1) then the non-random set supp(βL(λ)) recovers supp(β)

as soon as non-null components of β are sufficiently large. The proof provided in [5] can be easily adapted for

the sign recovery.

In this article we provide a new theoretical result on the sign recovery by LASSO. Specifically, Theorem 1 in

Section 2 provides an upper bound for the probability to recover the sign of β which depends from X,S(β), λ

and the distribution of ε. The formula for the bound is not analytic but its value can be well approximated

by simple Monte Carlo simulations. We also show that the bound is attained when non-null components of β

tend to infinity and its value is the limit of the probability that supp(β̂L) ⊂ supp(β). Therefore, the bound can

be used to select λ in order to control the probability that at least one null component of β is not estimated

at 0 (the Family Wise Error Rate, FWER), when non-zero elements of β are sufficiently large. Moreover, as

shown in our simulation study, in many examples FWER increases with the magnitude of non-zero elements of

β. Consequently, in such cases our selected λ allows to control FWER independently of the magnitude of the

non-null components of β.
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1.2 Sign recovery by thresholded LASSO

It is clear that in the noiseless case, the following identifiability condition is necessary and sufficient to recover

S(β) by the non-random basis pursuit.

Definition 2 (Identifiability condition) The vector b ∈ Rp is identifiable with respect to the design matrix

X and the L1 norm (or just identifiable with respect to the L1 norm) if the following implication holds

Xγ = Xb and γ 6= b⇒ ‖γ‖1 > ‖b‖1. (4)

Under the identifiability assumption, β is sparse. Indeed, Lemma 3 in Tardivel et al. [24] shows that

k = card{i ∈ {1, . . . , p} | βi 6= 0} ≤ n, i.e. β has at least p− n zeros. On the other hand some assumptions on

the sparsity of β assure that β is identifiable with respect to the L1 norm. For example when ‖X1‖2 = · · · =

‖Xp‖2 = 1 and the number of nonzero elements of β satisfies the following inequality (called mutual coherence

condition)

k = card{i ∈ {1, . . . , p} | βi 6= 0} ≤ 1

2

(
1 +

1

M

)
, where M := max

i 6=j
|〈Xi, Xj〉| , (5)

then β is identifiable with respect to the L1 norm [13, 17, 19]. When entries of X are i.i.d N (0, 1) and n, p are

both very large, the phase transition curve of Donoho and Tanner [14] provides, with respect to the ratio n/p,

an upper bound on k/n so that β having a sparsity k is identifiable with respect to the L1 norm.

According to the Theorem 2, reported in Section 3, for any value of the tuning parameter λ or the regular-

ization parameter R, the identifiability condition is sufficient and necessary so that LASSO or BPDN estimator

allow to separate asymptotically negative, null, and positive components of β. This means that, when non null

components of β are sufficiently large, appropriately thresholded LASSO or BPDN can properly identify the

sign of β if and only if the identifiability condition holds for β.

1.3 Graphical illustrations of main results

By definition, the irrepresentability condition depends only on S(β) and not on how large are the non-null

components of β. Moreover, as claimed in the Proposition 2, the identifiability condition also depends only on

S(β). Thus, the comparison of these two conditions can be performed by considering vectors of parameters such

that β = S(β). In Figure 1, we provide the irrepresentability and the identifiability curves for a selected matrix

X of dimension 100 × 300, whose elements were independently drawn from the normal N (0, 1) distribution.

These curves provide the proportion of the sign vectors with k nonzero elements which satisfy the identifiability

condition or irrepresentability condition. Figure 1 illustrates that the identifiability curve is above the irrepre-

sentability curve. This observation is not surprising since, according to the Proposition 1, the irrepresentability

condition implies the identifiability condition. Based on these curves, when non null components of β are suffi-
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Figure 1: This figure provides the identifiability and irrepresentability curves for the design matrix X of dimen-
sion 100×300, whose entries were independently generated from N (0, 1) distribution. The x-axis represents the
sparsity k and the y-axis represents the proportion of sign vectors satisfying the identifiability condition (resp.
irrepresentability condition)

ciently large, one can expect that LASSO allows to recover the sign of β when the sparsity k is smaller than 5,

while thresholded LASSO allows to recover the sign of β when k ≤ 25.

Figure 2 illustrates Theorem 1, which provides an upper bound for the probability of LASSO sign recovery.

In this Figure we use the same design matrix X as in Figure 1 and the noise ε is a standard Gaussian vector.

According to the irrepresentability curve provided in Figure 1, the irrepresentability condition holds when k ≤ 5.

Thus, when k ≤ 5, one can select the tuning parameter λ in order to obtain any fixed value for this bound. In

our experiment the value of λ was selected so that the average value of the bound over 1000 randomly sampled

vectors β with k = 5 non-zero elements is equal to 0.95. The y axis in Figure 2 represents the probability

of recovering S(β) calculated based on 1000 randomly sampled vectors β having k = 5 non-null components,

which are all equal to t > 0. Figure 2 shows that indeed, the upper bound for LASSO sign recovery is reached

when non null components of β tend to +∞ and that the selected λ allows to control the FWER below 0.05

for the whole range of the magnitudes of β.
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Figure 2: When k = 5, the left figure provides the probability to recover S(β) with LASSO sign estimator and
the right figure provides the FWER: the probability that at least one null component of β is selected by LASSO
estimator. The x-axis represents t > 0 which measure how large are the non-null components of β (in both
figures), the y-axis represents the probability of the sign recovery (left figure) and the FWER (right figure).
The horizontal lines correspond to y = 0.95 (left figure) and y = 0.05 (right figure).
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Finally, Figure 3 illustrates Theorem 2 which states that when non null components of β are large enough,

“identifiability” is a sufficient condition under which appropriately thresholded BPDN and thresholded LASSO

can recover S(β).

In this figure we present results for k = 20, for which the irrepresentability condition does not hold (see

Figure 1). Consequently, the probability to recover S(β) is theoretically smaller than 1/2 and more precisely,

the empirical value of this probability is almost 0. On the other hand, due to a fact that for k = 20 the

identifiability condition holds, we expect that thresholded LASSO and thresholded BP can recover S(β) when

the magnitude of β is large enough. In Figure 3 the y axis represents the probability of recovering S(β) by

thresholded LASSO and thresholded BP, calculated based on 1000 randomly sampled vectors β having k = 20

non-null components, which are all equal to t > 0. The threshold was selected so as to control the FWER at

the level 0.05. For both of these procedures, in order to pick a threshold, we approximate the distribution of

LASSO (resp. BP) estimators associated to null components of β using control variables created according to

the knockoff methodology [1] (see Section 5 for details). In our case, a control variable is just a column added

to the design matrix and generated according to a standard Gaussian N (0, Idn) distribution. Figure 3 shows

that, indeed, both thresholded BP and thresholded LASSO can recover S(β) with probability converging to

0.95 when non null components of β increase in magnitude.
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Figure 3: When k = 20, this figure provides the probability to recover S(β) with thresholded LASSO and
thresholded BP. The x-axis represents t > 0 which measure how large are the non-null components of β and
the y-axis represents the sign recovery probability.

1.4 Organization of the article

In Section 2 we formulate and discuss Theorem 1, which provides a tight upper bound for LASSO sign estimator

to recover S(β). This sections contains also Proposition 1, which shows that the irrepresentability condition

is stronger than the identifiability condition. In Section 3, Theorem 2 shows that identifiability is a necessary

and suficient condition for LASSO to separate the non-null components of β from the noise and to recover

asymptotically S(β) with thresholded LASSO and thresholded BPDN. In Section 4, Proposition 2 shows that

identifiability condition depends only on S(β) and not on the magnitude of the non-null components of β. Here
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we also introduce the irrepresentability and identifiability curves which provide respectively the proportion of

sign vectors satisfying the irrepresentability condition and identifiability condition. Section 5 is devoted to

numerical experiments which illustrate that sign estimators derived from the thresholded LASSO and thresh-

olded BPDN can be better than sign estimators derived from LASSO and adaptive LASSO and that knockoff

methodology allows for the appropriate selection of the threshold for both of these methods.

1.5 Notations and assumptions

In this article we always assume that the design matrix X is in general condition (see e.g [26] or the supple-

mentary material for this manuscript). This assumption assures that the minimizer of (2) (resp. minimizer of

(3)) is unique and thus that the LASSO estimator (resp. BPDN estimator) is well defined. This assumption is

very weak and generically holds. Indeed, when X is a random matrix such that the entries (X11, X12, . . . , Xnp)

have a density on Rnp then, almost surely, X is in general position [26].

The main notation used in the subsequent sections is as follows:

• Let I be the subset of {1, . . . , p}. We denote by I the complement of I, namely I := {1, . . . , p} \ I.

• The notation XI represents a matrix whose columns are indexed by the elements of I: (Xi)i∈I .

• For b ∈ Rp, bI denotes the sub-vector containing elements of b with indices in I.

• Symbols supp(b), supp+(b) and supp−(b) denote respectively the sets {i ∈ {1, . . . , p} | bi 6= 0}, {i ∈

{1, . . . , p} | bi > 0} and {i ∈ {1, . . . , p} | bi < 0}.

• LASSO and BPDN estimators depend on X,β, r, ε and on the tuning parameter λ > 0 or the regularization

parameter R ≥ 0. When it is useful, we use the parentheses to recall these dependencies. The estimator

β̂ represents indistinctly the LASSO estimator or the BPDN estimator.

To formulate our asymptotic results we will often consider a sequence of regression parameters β
(r)
r∈N for

which non-null components tend to infinity in the following way.

Assumption 1

1) The sign of β
(r)
r∈N is invariant namely, there exists a sign vector s0 ∈ {−1, 0, 1}p such that whatever

r ∈ N, S(β(r)) = s0.

2) The following limit holds limr→+∞min{|β(r)
i |, i ∈ supp(s0)} = +∞

3) There exists q > 0 such that

∀r ∈ N,
min{|β(r)

i |, i ∈ supp(s0)}
‖β(r)‖∞

≥ q.
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According to the Proposition 2 the identifiability condition just depends from the sign, that is the reason why

in 1) the sign of β(r) is fixed. Consequently, whatever r ≥ 0, β(r) is identifiable with respect to the L1 norm if

and only if s0 is identifiable with respect to the L1 norm. The condition 2) means that non-null components of

β(r) tend to +∞. The condition 3) exclude sequences (β(r))r∈N for which the smallest non-null component of

β(r) is asymptotically infinitely smaller than the largest component of β(r).

2 Sign recovery with LASSO sign estimator

In this section we formulate Theorem 1, which provides an upper bound for the probability to recover S(β)

with LASSO estimator. When β is identifiable with respect to the L1 norm, this upper bound is reached

asymptotically when min{|βi|, i ∈ supp(β)} tends to +∞.

Theorem 1 Let I := supp(β) and let XI , XI be matrices whose columns are (Xi)i∈I and (Xi)i/∈I , respectively.

Additionally, let ζX,λ,S(β) be the random vector ζX,λ,S(β) = X ′
I
XI(X

′
IXI)

−1S(βI)+
1
λX
′
I

(
Id−XI(X

′
IXI)

−1X ′I
)
ε

and let us assume that ker(XI) = 0.

Upper bound: The following upper bound for the sign recovery holds.

P
(
S(β̂L(λ)) = S(β)

)
≤ P

(∥∥ζX,λ,S(β)

∥∥
∞ ≤ 1

)
= γ̄.

Now, let (β(r))r∈N be a sequence of Rp satisfying the assumption 1 and let us remind that the sign β(r) does not

depend from r and is equal to s0 and let I = supp(s0). If s0 is identifiable with respect to the L1 norm then the

following asymptotic results hold.

Sharpness of the upper bound: Asymptotically, the upper bound is reached.

lim sup
r→+∞

P
(
S(β̂L(λ, r)) = s0

)
≤ γ̄,

lim inf
r→+∞

P
(
S(β̂L(λ, r)) = s0

)
≥ P

(∥∥ζX,λ,S(β)

∥∥
∞ < 1

)
= γ.

Asymptotic Full power and asymptotic control of the FWER: Asymptotically, the power is equal to 1

and the FWER is controlled at the level 1− γ.

lim
r→+∞

P
(
∀i ∈ I, S(β̂L

i (λ, r)) = s0
i

)
= 1,

lim sup
r→+∞

P
(
∃i /∈ I, β̂L

i (λ, r) 6= 0
)
≤ 1− γ,

lim inf
r→+∞

P
(
∃i /∈ I, β̂L

i (λ, r) 6= 0
)
≥ 1− γ̄.
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Remark 1 Results given in Theorem 1 are quite straightforward when X is orthogonal (i.e. when X ′X = Idp).

Indeed, in this case the upper bound γ̄ is just the probability that null components of β are simultaneously

estimated at 0 namely γ̄ = P(∀i /∈ supp(β), β̂L
i (λ) = 0).

Remark 2 Theorem 1 immediately implies Theorem 2 of Wainwright [27] which claims that when ε and −ε

have the same distribution and when ‖X ′
I
XI(X

′
IXI)

−1S(βI)‖∞ > 1 then, for any λ > 0, the probability of the

sign recovery by LASSO is always smaller than 1/2.

The bound for the probability of recovering S(β) provided in Theorem 1 is not analytic but can be empirically

computed using Monte Carlo simulations (e.g. see Figure 1). When the irrepresentable condition strictly holds

for s0, namely when ‖X ′
I
XI(X

′
IXI)

−1s0
I‖∞ < 1, the tuning parameter λ can be selected to fix γ at an arbitrary

level in (0, 1) (e.g. see Figure 1). Because the irrepresentable condition implies the irrepresentable condition (as

claimed in Proposition 1) such a tuning parameter allows to control asymptotically the FWER at level 1 − γ

when non-null components tends to +∞. To our knowledge, Theorem 1 is the first theoretical result providing

a guide on how to select the tuning parameter in order to control a type I error at a specified level for a given

design matrix X.

Proposition 1 Let X be a n× p matrix with n ≤ p in general position, let β ∈ Rp, let I := supp(β) and let us

assume ker(XI) = 0. If ‖X ′
I
XI(X

′
IXI)

−1S(β0
I )‖∞ ≤ 1, then the parameter β is identifiable with respect to the

L1 norm.

Let us notice that when the inequality in the irrepresentable condition is strict instead of large, the Theorem

1 remains true without assuming that X is in general position. The proof of the proposition 1 given in this

article is the one reported in the PhD manuscript of Tardivel [23].

3 Identifiability is a necessary and sufficient condition for sign re-

covery

When β does not satisfy the irrepresentable condition then, whatever λ > 0 and even if non-null components of

β are infinitely large, the LASSO sign estimator S(β̂L(λ)) fails to recover S(β). However, the irrepresentable

condition is not an unsurpassable limitation to recover S(β). Actually the Theorem 2 shows that an appro-

priately thresholded LASSO (resp. thresholded BPDN) recover asymptotically S(β) under the identifiability

condition on β (which is, by the proposition 1, weaker than the irrepresentability condition). We remind that,

β̂ represents indistinctly the LASSO or BPDN estimator with a fixed tuning parameter λ > 0 or with a fixed

regularization parameter R ≥ 0.
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Theorem 2 Let X be a n × p matrix in general position such that rank(X) = n, let β(r) be a sequence of

parameter satisfying assumption 1. If s0 is identifiable with respect to the L1 norm then for any fixed ε ∈ Rn

and sufficiently large r > r0(ε) the following inequality holds

i)

supp−(s0) ⊂ supp−(β̂i(ε, r)) and supp+(s0) ⊂ supp+(β̂i(ε, r)).

ii)

max
i∈supp−(s0)

{
β̂i(ε, r)

}
< min
i/∈supp(s0)

{
β̂i(ε, r)

}
≤ max
i/∈supp(s0)

{
β̂i(ε, r)

}
< min
i∈supp+(s0)

{
β̂i(ε, r)

}
.

This inequalities mean that when s0 is identifiable with respect to the L1 norm and when r is large, the estimator

β̂(ε, r) separates negative components of s0 (i.e i ∈ supp−(s0)), null components of s0 (i.e i /∈ supp(s0)) and

positive components of s0 (i.e i ∈ supp+(s0)).

If s0 is not identifiable with respect to the L1 norm then whatever r ≥ 0 the property i) does not hold namely

∀r ∈ N, supp−(s0) 6⊂ supp−(β̂i(ε, r)) or supp+(s0) 6⊂ supp+(β̂i(ε, r).

Consequently, when s0 is not identifiable with respect to the L1 norm, then sign estimators derived from thresh-

olded LASSO or thresholded BPDN cannot recover s0.

Let us notice that the assumptions on X are very weak and generically hold when n ≤ p. The assumption

rank(X) = n assures that, whatever R ≥ 0, the BPDN estimator is well defined. The general position condition

assures the uniqueness of both LASSO and BPDN estimators (see e.g the proposition 1 given in supplementary

material for a proof).

Because the almost sure convergence (and thus the convergence for every fixed ε) implies the convergence

in probability when s0 is identifiable with respect to the L1 norm, according to the Theorem 2, the following

convergences in probability hold

1 = lim
r→+∞

P
(

supp−(s0) ⊂ supp−(β̂i(r)) and supp+(s0) ⊂ supp+(β̂i(r))
)
,

1 = lim
r→+∞

P
(

max
i∈supp−(s0)

{
β̂i(r)

}
< min
i/∈supp(s0)

{
β̂i(r)

}
≤ max
i/∈supp(s0)

{
β̂i(r)

}
< max
i∈supp+(s0)

{
β̂i(r)

})
.

The Theorem 2 stress that one cannot recover S(β) with a sign estimator derived from LASSO or BPDN when

β is not identifiable with respect to the L1 norm. When β is identifiable with respect to the L1 norm, the

Theorem 2 suggest to recover S(β) by deriving sign estimators from the thresholded LASSO or thresholded

BPDN. Expressions of these thresholded estimators are reported in (6) given below. By the the separation

property, one knows that it remains to select a good threshold τ to construct a consistent sign estimator (with

10



τ depending from r for the consistency).

The Theorem 2 confirms recent results given by Bogdan et al. [4]. Indeed, if X has i.i.d N (0, 1) entries,

n/p→ δ ∈ (0, 1) and if asymptotically the point (card(supp(β))/n, n/p) is below the asymptotic phase transition

curve [12] (i.e. if β is asymptotically identifiable with respect to the L1 norm) then the thresholded LASSO

almost surely recovers S(β) (as soon as non-null components of β are large enough).

In the following section, we are going to give some properties about identifiability condition. In particular,

we show that identifiability (as irrepresentability) just depends from S(β) and not on how large are the non

null components of β.

4 Identifiability and irrepresentability sign applications

By definition the irrepresentable condition just depends from the sign of β. Given a particular design matrix

X, the irrepresentability sign application is defined hereafter.

Irrepresentabity sign application:

ΦXIC : s ∈ {−1, 0, 1}p 7→


1 if s = (0, . . . , 0)

1 if ker(XI) = 0 and ‖X ′
I
XI(X

′
IXI)

−1sI‖∞ ≤ 1 where I := supp(s)

0 otherwise

.

Such a sign application provides the limitation of the LASSO sign estimator to recover S(β). Indeed, if

φXIC(S(β)) = 0 then S(β) cannot be recovered with the LASSO sign estimator even if non-null components

of β are extremely large. The proposition 2 shows that the identifiability condition just depends from S(β) and

not how large are the non-null components of β.

Proposition 2 Let b ∈ Rp be identifiable with respect to X and the L1 norm and let b̃ ∈ Rp such that S(b) =

S(b̃) then b̃ is identifiable with respect X and to the L1 norm.

Given a particular design matrix X, the identifiability sign application is defined hereafter.

Identifiability sign application:

ΦXIdtf : s ∈ {−1, 0, 1}p 7→


0 if s 6= argmin

b∈Rp
‖b‖1 subject to Xb = Xs

1 otherwise

.

Such a sign application for the identifiability condition provides the limitation of sign estimators derived from

thresholded LASSO and thresholded BPDN to recover S(β). Indeed, if φXIdtf(S(β)) = 0 then thresholded LASSO

(resp. thresholded BPDN) sign estimator cannot recovered S(β) even if non-null components of β are extremely

large.

11



According to the proposition 2 given supplementary material when (Xi)i∈supp(β) is not linearly independent

then β does not satisfy the identifiability condition. Consequently, when card(supp(β)) > n then φXIC(S(β)) =

φXIdtf(S(β)) = 0. Let us provides some basic properties and comments about these sign applications.

1. These two sign applications are even.

2. Due to the proposition 1, whatever s ∈ {−1, 0, 1}p, ΦXIC(s) ≤ ΦXIdtf(s).

3. The computation of ΦXIC is a straightforward matricial computation; the computation of ΦXIdtf is no more

difficult and need to solve a basis pursuit problem.

The last remark shows that given a parameter β ∈ Rp, it is easy to check weather or not β is identifiable with

respect to the L1 norm.

Given a sparsity k, the identifiability (resp. irrepresentability) curve provides the proportion of sign vectors

satisfying the identifiability condition (resp. irrepresentability condition). These curves illustrate that the

identifiability condition is much weaker than the irrepresentability condition and thus emphasize the theoretical

result given in the proposition 1.

4.1 Illustrations of identifiability and irrepresentability curves

The number of sign vectors is very huge (3p), that is why we are not going to provide explicitly ΦXIdtf and

ΦXIC for each sign vector. Instead, for each sparsity k ∈ {1, . . . , n}, we are going to compute empirically

pXIdtf(k) := EU (ΦXIdtf(U)) and pXIC(k) := EU (ΦXIC(U)) where U is a uniformly distributed on {u ∈ {−1, 0, 1}p |

card(supp(u)) = k}. The identifiability and irrepresentability curves represents respectively the curves of the

functions k ∈ {1, . . . , n} 7→ pXIdtf(k) and k ∈ {1, . . . , n} 7→ pXIC(k). In the numerical experiments given in the

figure 4, X is a Gaussian matrix described hereafter.

Setting 1: The matrix X is a n× p matrix with n = 100, p = 300 and (Xij)1≤i≤n,1≤j≤p are i.i.d N (0, 1).

Setting 2: The matrix X is a n × p matrix with n = 100, p = 300 and the vectors (Xij)1≤j≤p where i ∈

{1, . . . , n} is a family of i.i.d Gaussian vector N (0,Γ). In this setting Γ is a p × p matrix where Γii = 1

with i ∈ {1, . . . , p} and Γij = 0.9 when i 6= j.

From now on, X is a particular observation of Gaussian matrix as described in setting 1 and setting 2 (by using

the R command set.seed(123)).

Surprisingly the two identifiability curves given in the setting 1 and 2 are very similar. A priori, we expected

to recover a curve in the setting 2 much below than the one given in the setting 1. Indeed, classical conditions

implying the identifiability of β with respect to the L1 norm are the mutual coherence condition (5) and the

restricted isometry property [6, 7]. These conditions are quite weak when the family (Xi)1≤i≤p is almost

12
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Figure 4: This figure gives the curves of the functions k 7→ pXIdtf(k) and k 7→ pXIC(k) when X is a Gaussian
matrix given in the setting 1 (left panel) and setting 2 (right panel). Due to the proposition 1, whatever the
sparsity k, pXIdtf(k) ≥ pXIC(k) thus this figure just emphasizes that the identifiability condition is a much weaker
assumption than the irrepresentability condition. The vertical lines in the left panel provides, in the setting 1,
an asymptotic approximation of the identifiability and irrepresentability curves. Indeed by the Theorem 1 in
[14] and the Theorem 1 in [27], when p is very large and n/p = 1/3 then the identifiability and irrepresentability
conditions hold respectively when k ≤ 0.31n and k ≤ 0.09n. To plot these these curves, for a sparsity k the
quantities pXIdtf(k) and pXIC(k) have been computed by simulating 1000 observations of the random vector U .

orthogonal (as in the setting 1 since E(X ′X) = nIdn) but are very strong when (Xi)1≤i≤p is far from an

orthogonal family (as in the setting 2 since E(X ′X) = nΓ).

The asymptotic phase transition curve given in Donoho and Tanner [14] provides an approximation of the

identifiability curve in the setting 1. Such an approximation is useful when n and p are too much large so that

the identifiability curve is too much time expensive to obtain. Unfortunately, to our knowledge, there is not

such asymptotic phase transition curve for Gaussian matrices with correlated entries as in the setting 2 (see

e.g. [21] for more details about asymptotic phase transition curve).

One notices that in the setting 2, the irrepresentability curve is not monotonic in the neighbourhood of 0;

it is not a numerical problem. Actually when k is very small, components of U are all positive or all negative

with a quite large probability. Furthermore the figure 5 illustrates that, in the setting 2, when the sign vector s

is positive componentwise (resp. negative componentwise), the irrepresentable condition becomes a very strong

condition. These both remarks, aim at explaining why, in the setting 2, the irrepresentabilty curve is not

monotonic. Hereafter, without any loss of generality, we focus on the particular case in which sign vector is

positive componentwise. The figure 5 provides the positive irrepresentability and identifiability curves, which

are respectively the curves of the functions k 7→ pXIdtf+(k) := EU (ΦXIdtf(U)) and k 7→ pXIC+(k) := EU (ΦXIC(U))

where U has uniform distribution over the set {u ∈ {0, 1}p | card(supp(u)) = k}.

Performance of the sign estimators derived from LASSO, thresholded LASSO and thresholded BPDN de-

pends from the tuning parameter λ, regularization parameter R and threshold τ . In the following section, we

are going to prescribe values for these parameters.
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Figure 5: This figure gives the curves of the functions k 7→ pXIdtf+(k) and k 7→ pXIC+(k) when X is a Gaussian
matrix given in setting 2. One notices that, with respect to the curves given in the figure 4, the gap between the
irrepresentable condition and the identifiability condition becomes larger. When k is small pXIC+(k) ≈ pXIC(k)
(more precisely, pXIC+(k) = pXIC(k) when k = 1) and when k is large enough pXIC(k) weakly depends from the
correlation. This remark aim to explain why, in the setting 2, the function k 7→ pXIC(k) is not monotonic in the
neighbourhood of 0. To plot these these curves, for a sparsity k, the quantities pXIdtf+(k) and pXIC+(k) have been
computed by simulating 1000 observations of U .

5 Numerical comparisons of sign estimators

Theorem 2 states that the sign estimators provided by thresholded LASSO or thresholded BPDN allow to

recover sign(β) as long as the identifiability condition is satisfied. Another way to recover sign(β) is to use a

sign estimator derived from adaptive LASSO. Indeed, as claimed by Theorem 2 of Zou [31], by deriving weights

for adaptive LASSO from a consistent estimator of β and by selecting properly the tuning parameter λ, one

obtains a sign estimator derived from adaptive LASSO which is consistent for sign(β). Weights for adaptive

LASSO can be appropriately derived from LASSO. Indeed, according to Lemma 2, under the identifiability

assumption LASSO estimator converges to β. The purpose of this section is to provide a numerical comparison

of sign estimators derived from LASSO, thresholded LASSO, thresholded BPDN and adaptive LASSO.

As explained hereafter, there are some recommendations on how to select the tuning parameter λ > 0 for the

LASSO estimator whereas, to our knowledge, there are not recommendation on how to select R ≥ 0 for BPDN

estimator. That is the reason why, for BPDN estimator, we arbitrary set R = 0 and thus we only consider BP

estimator.

5.1 Selection of the tuning parameter

As explained in [4, 29], a value of the optimal tuning parameter for the sign recovery by thresholded LASSO is

substantially smaller than the optimal value of the tuning parameter for LASSO sign estimator. Specifically:

• For LASSO sign estimator, the tuning parameter has to be large enough so that it prevents including false

discoveries.

• For thresholded LASSO sign estimator the tuning parameter needs to be selected so as to minimize the
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mean square error of the estimation of β. This tuning parameter does not need to be large, since the

threshold will allow to correctly estimate at 0 null components of β.

5.1.1 Tuning parameter for LASSO sign estimator

When β has a known sign so that S(β) satisfies the irrepresentable condition, by Proposition 1, one may pick

a tuning parameter λL so that P(S(β̂(λL)) = S(β)) is smaller than a given value (say 0.95). According to

the irrepresentability curve associated to the matrix X described in the setting 1 of the subsection 4.1, the

irrepresentability condition is satisfied with probability close to 1 when β contains k = 5 nonzero elements.

Thus in this setting, we can chose λL such that the average value of the upper-bound given in Proposition 1

is equal to 0.95. In other words, λL is chosen so that ES(ζX,λL,S) = 0.95, where S is a random sign vector

having a uniform distribution over the set {s ∈ {−1, 0, 1}p | card(supp(s)) = 5}. The computation of this value

gives λL = 81.18. Since under the remaining scenarios of our simulation study the irrepresentability condition

is typically not satisfied and thus the FWER can not be controlled at a low level, we decided to use the same

value λL = 81.18 for all our simulations.

5.1.2 Tuning parameter for thresholded LASSO sign estimator

When X is the gaussian matrix with independent entries the tuning parameter was selected with the help of the

asymptotic theory of Approximate Message Passing (AMP) algorithm for LASSO, provided e.g. in [2, 4, 22].

In the set-up of this theory the design matrix is Gaussian with i.i.d N (0, 1/
√
n) and components of β are i.i.d

random variables having Π = (1 − γ)δ0 + γΠ? mixture distribution, where δ0 and Π? are point mass at 0

distribution and an arbitrary distribution. The number of observation n, the number of explanatory variables

p becomes infinity large and n/p → δ > 0. The tuning parameter λAMP , depending on δ, γ,Π?, is selected

so as to minimize the asymptotic mean square error according to the prescription provided in [2, 4, 29]. As

discussed in [4, 29], for any fixed type I error, such a tuning parameter allows to maximize the power. In

practice, to compute λAMP , we replaced the asymptotic parameters of the AMP theory with their finite sample

counterparts. Namely, δ = n/p = 100/300, γ = k/p = k/300 and Π? = 1/2δt + 1/2δ−t, where δt is a point mass

distribution at t. Given these parameters, the formula to evaluate λAMP is provided e.g. in [2, 4, 22]. In case

of strongly correlated design we additionally use λs = 0.5λAMP .

5.2 Selection of the threshold

We aim to construct a sign estimator derived from the thresholded LASSO estimator (resp. thresholded BP

estimator) as defined hereafter

∀i ∈ {1, . . . , p}, β̂τi := β̂i1{|β̂i|>τ} (6)
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By taking τ1−α as the 1−α quantile of max
{∣∣∣β̂i∣∣∣ , i /∈ supp(β)

}
then the probability to estimate simultaneously

every null components of β at zero is 1 − α. Consequently, using the threshold τ1−α and when non-null com-

ponents of β are very large then thresholded LASSO sign estimator (resp. thresholded BP estimator) recovers

S(β) with a probability arbitrarily close to 1 − α. Obviously τ1−α cannot be obtained by a straightforward

computation since β is not known.

Given a threshold τ > 0, let us set the FWER as follows

FWER := P
(
∃i /∈ supp(β),

∣∣∣β̂τi ∣∣∣ 6= 0
)
.

In order to provide a threshold larger than τ1−α (and thus to control the FWER at level α), it could seem

appealing to look at the distribution of supremum norm of the LASSO estimator (resp. BP estimator) in the

full null model when β = 0 [18]. For the BP estimator, Descloux and Sardy [11] suggest the threshold τ fn
1−α

defined as the 1− α quantile of max
{∣∣∣β̂fn

1

∣∣∣ , . . . , ∣∣∣β̂fn
p

∣∣∣} where β̂fn is the following estimator

β̂fn := argmin ‖β‖1 subject to Xβ = ε.

Unfortunately, in the high-dimensional linear model, this intuitive method provides a threshold τ fn
1−α which is

smaller than τ1−α and thus does not assure that FWER ≤ α (see also Su et al. [22] for additional explanations).

Recently developed knockoff methodology [1, 8], allows to approximate the distribution of β̂(λ) associated

to null-components of β by creating controlled variables. Consequently, the knockoff methodology is useful to

compute a threshold. For this numerical study, we use model free knockoffs proposed in [8] to recover a threshold

which heuristically control the FWER at a given level. The approach developed hereafter is available when X

is a Gaussian matrix having a distribution invariant by columns’ permutation. In this setting, the size of the

knockoff matrix can be as small as possible (see Weinstein et al. [28] for a similar approach). Because adding

some controlled variables can change some relevant properties (such as the identifiability condition for β), ideally

the knockoff matrix should have just one column. Specifically, at the first step we use model free knockoffs [8]

to generate 30 = p/10 of controlled variables. Then Lasso or BP is run on the matrix supplemented with

these additional columns and the maximum of the absolute values of regression coefficients over 30 controlled

variables is saved. This step is repeated 10 times and the overall maximum of the p = 300 absolute values of

regression coefficients over controlled variables is calculated. The whole procedure is repeated many times (here

1000) and 0.95 quantile of the obtained maxima is used as the threshold to identify null-components of β.

To confirm with the set-up of simulations used to derive the irrepresentability and identifiability curves, in

all replicates of our simulation study we used the same fixed design matrix X described in settings 1 and 2 of

the subsection 4.1 In our numerical experiments we randomly sampled the location of the true signals and we

randomly generated the error term.
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5.2.1 LASSO and Adaptive LASSO

In our numerical experiments we selected the following values of the tuning parameters for LASSO and adaptive

LASSO:

• For LASSO we selected λL = 81.18.

• For the adaptive LASSO the weights are derived using initial estimates β̂L(λAMP ), where the tuning

parameter is selected according to AMP theory, described above. For i ∈ {1, . . . , p}, weights w(βi) are

defined as w(βi) := 1/(β̂i
L

(λAMP ) + 10−7). Using these weights and the tuning parameter λL described

above, the adaptive LASSO has the following expression

β̂adapt := argmin
β∈Rp

1

2
‖Y −Xβ‖22 + λL

p∑
i=1

w(βi)|βi|. (7)

In all our simulations LASSO is calculated with glmnet.

5.3 Numerical comparisons

The rows of the design matrix X are sampled as the independent vectors from the multivariate Gaussian

distribution, as in setting 1 and 2. All numerical experiments are performed with a particular observation of

X (the same as the one used in the previous section). We set β ∈ Rp such that k := card(supp(β)) where

k = {5, 20} and supp(β) is a k sample without replacement of {1, . . . , p}. The non null components of β have

a uniform distribution {−t, t} where t > 0. Additionally, in the setting 2, we consider the set-up where all

non-zero coefficients are equal to t. In all simulations the error term is generated as ε ∼ N (0, Idn).

Figures 4-6 provide the comparison between the following sign estimators.

• The sign estimator L is derived from LASSO with λ = λL.

• The sign estimator aL is derived from the adaptive LASSO estimator, described in (7).

• The sign estimator BP is derived from the thresholded BP, with threshold selected as in [11].

• The sign estimator BPk is derived from the thresholded BP, with a threshold given by the “knockoff”

methodology described above.

• The sign estimator Lk is derived from the thresholded LASSO with λ = λAMP and with a threshold given

by the “knockoff” methodology described above.

• The sign estimator Lks is derived from the thresholded LASSO with λ = 0.5λAMP and with a threshold

given by the “knockoff” methodology described above.
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In order to recover the sign of β, null components of β have to be estimated simultaneously at zero. This naive

remark motivate us to report the curves illustrating the following statistical properties as the function of t > 0:

• FWER is the proportion of 1000 replicates that at least one null components of β is not estimated at

zero.

We report the curve illustrating the probability to recover the sign as the function of t > 0:

• Probability is the proportion of 1000 replicates for which the sign is recovered.
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Figure 6: This figure provides the FWER and the probability to recover S(β) for each sign estimators and when
X is the design matrix given in setting 1. Graphics on the left provide the probability to recover S(β) (on the
y-axis) as a function of t, where t measures how large are the non-null components of β. Graphics on the right
provide the FWER (on the y-axis) as a function of t (on the x-axis). Among these sign estimators, one notices
that the thresholded LASSO sign estimator is the one which recovers S(β) with the largest probability. These
sign estimators recover approximately S(β) with a probability close to 0.95 when t is large.

Figure 6-8 illustrate that the upper bound for the probability of sign recovery by LASSO is reached and the

FWER is controlled when non null component of β are large (i.e when t is large). On the other hand, thresholded

LASSO and thresholded BP can appropriately identify S(β) when the identifiability condition holds. Indeed,

when k ∈ {5, 20} as illustrated in figures 4 and 5, the identifiability condition occurs and thus sign estimators

derived from thresholded LASSO and thresholded BP recover S(β) as soon as the threshold is well calibrated

and the non null components are large enough. In our simulated setup, thresholded BP performs pretty well

but is never optimal. Indeed using an appropriate tuning parameter λ, the probability to recover S(β) is larger
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Figure 7: This figure provides the FWER and the probability to recover S(β) for each sign estimators and
when X is the design matrix given in setting 2. Graphics on the left provide the probability to recover S(β)
(on the y-axis) as a function of t (on the x-axis), where t measures how large are the non-null components of β.
Graphics on the right provide the FWER (on the y-axis) as a function of t. The horizontal lines y = 0.55 and
y = 0.45 represent respectively the average values of the upper bound for the probability of sign recovery and
FWER associated to LASSO (see the Theorem 1). One notices that the upper-bound is approximately reached
and the FWER is approximately controlled when t is very large as illustrated by graphics in the middle. Sign
estimators (except LASSO sign estimator) recover approximately S(β) with a probability close to 0.95 when t
is large.
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Figure 8: This figure provides the FWER and the probability to recover S(β) for each sign estimators when X
is the design matrix given in setting 2 and non-null components of β are positive. Graphics on the left provide
the probability to recover S(β) (on the y-axis) as a function of t (on the x-axis), where t measures how large
are the non-null components of β. Graphics on the right provide the FWER (on the y-axis) as a function of t.
These sign estimators recover approximately S(β) with a probability close to 0.95 when t is large.
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with thresholded LASSO than with thresholded BP. When entries of X are i.i.d N (0, 1), the optimal value of

λ selected by AMP theory provides a thresholded LASSO for which the derived sign estimator is the best one

to recover S(β). One notices that the threshold selection provided in Descloux and Sardy [11] does not allow

to recover S(β) with a large probability when β has lot of large components (intuitively when β is far from 0).

Instead, our heuristic application of the knockoff methodology allows for almost perfect control of FWER at

level 0.05. Consequently, when non null components of β are large enough and when the threshold is given by

knockoff methodology, sign estimator derived from thresholded LASSO (resp. thresholded BP) recovers S(β)

with a probability close to 0.95.

6 Conclusion

This article main focus on theoretical properties of sign estimators derived from LASSO, thresholded LASSO

and thresholded BPDN. We provided an upper bound for LASSO sign recovery which is reached when non-null

components of β are infinitely large and the identifiability condition holds. In addition, when the irrepresentable

condition occurs (implying that the identifiability condition occurs), we have shown that λ can be selected

appropriately in order to control asymptotically the FWER at an arbitrary level.

When S(β) is identifiable with respect to the L1 norm and when non-null components of β are infinitely

large, we have shown that sign estimators derived from thresholded LASSO and thresholded BPDN recover

S(β). On the other hand, if S(β) is not identifiable with respect to the L1 norm, sign estimators derived from

thresholded LASSO and thresholded cannot recover S(β).

We have introduced identifiability curve (resp. irrepresentability curve) which is useful to know for which

sparsity β is identifiable with respect to the L1 norm (resp. for which sparsity β the irrepresentable condition

holds).

The performances of sign estimators derived from LASSO, thresholded LASSO and thresholded BPDN

depend obviously from the tuning parameter, the regularization parameter and the threshold. We have illus-

trated that AMP theory and knockoff methodology are useful to select these parameters. Our simulations show

that thresholded LASSO and thresholded BPDN sign estimators outperform adaptive LASSO and LASSO sign

estimators.
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7 appendix

7.1 Proof of the Theorem 1

First, let us provide lemmas which are useful to prove both Theorems 1 and 2. Lemma 2 partially prove the

Theorem 1. Indeed, according to this Lemma, when (β(r))r∈N is a sequence of Rp satisfying assumptions 1 then

the following asymptotic result holds

lim
r→+∞

P
(
∀i ∈ supp(s0), S(β̂L

i (λ, r)) = s0
i

)
= 1.

Lemma 1 Let (β(r))r∈N be a sequence of Rp satisfying the conditions 1) and 2) of the assumption 1, let us

assume that s0 is identifiable with respect to the L1 norm and let us set ur = ‖β(r)‖1 then

lim
r→+∞

β̂L(ε, r)− β(r)

ur
= 0.

Proof: Because β̂L(ε, r) is the LASSO estimator as defined in (2) then the following inequality occurs

1

2
‖Y −Xβ̂L(ε, r)‖22 + λ‖β̂L(ε, r)‖1 ≤

1

2
‖Y −Xβ(r)‖22 + λ‖β(r)‖1.

Since Y −Xβ(r) = ε one may deduce the following inequalities

λ‖β̂L(ε, r)‖1 ≤
1

2
‖ε‖22 + λ‖β(r)‖1,

⇒ ‖β̂L(ε, r)/ur‖1 ≤
‖ε‖22
2λur

+ 1. (8)

In addition, Cauchy-Schwarz inequality gives the following implications

1

2
‖ε+Xβ(r) −Xβ̂L(ε, r)‖22 + λ‖β̂L(ε, r)‖1 ≤

1

2
‖ε‖22 + λ‖β(r)‖1,

⇒ −‖ε‖2‖Xβ(r) −Xβ̂L(ε, r)‖2 +
1

2
‖Xβ(r) −Xβ̂L(ε, r)‖22 + λ‖β̂L(ε, r)‖1 ≤ λ‖β(r)‖1,

⇒ −‖ε‖2
ur

∥∥∥∥∥X
(
β̂L(ε, r)− β(r)

ur

)∥∥∥∥∥
2

+
1

2

∥∥∥∥∥X
(
β̂L(ε, r)− β(r)

ur

)∥∥∥∥∥
2

2

+
λ

ur

∥∥∥∥∥ β̂L(ε, r)

ur

∥∥∥∥∥
1

≤ λ

ur
. (9)

Because ur tends to +∞ then, according to (8), the sequence ((β̂L(ε, r) − β(r))/ur)r∈N∗ is bounded since the

following superior limit is finite

lim sup
r→+∞

∥∥∥∥∥ β̂L(ε, r)− β(r)

ur

∥∥∥∥∥
1

≤ 2.

Consequently, to prove that limr→+∞(β̂L(ε, r) − β(r))/ur = 0 it is sufficient to show that 0 is the unique

limit point of this sequence. Let ((β̂L(ε, φ(r)) − β(φ(r)))/uφ(r))r∈N∗ be a converging subsequence to l (with
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φ : N∗ → N∗ strictly increasing) and without loss of generality, let us assume limr→+∞ β̂L(ε, φ(r))/uφ(r) = v

and limr→+∞ β(φ(r))/uφ(r) = v′ so that l = v − v′. By (8) and (9) one deduces that

Xv = Xv′ and ‖v‖1 ≤ 1.

Since, whatever r ≥ 0, we have S(β(φ(r))/uφ(r)) = s0 where s0 is identifiable with respect to the L1 norm then,

according to the Proposition 2, one may deduce that β(φ(r))/uφ(r) is an unitary vector satisfying the identifiability

condition. Consequently, ‖v′‖1 = 1 and v′ is identifiable with respect to the L1 norm. Consequently, v = v′

and thus l = 0 is the unique limit point, which implies that

lim
r→+∞

β̂L(ε, r)− β(r)

ur
= 0.

�

For the proof of the Lemma 1, we do not have used the third condition of the assumption 1. This condi-

tion, under which the smallest non-null component of β(r) is not asymptotically infinitely smaller than ‖β(r)‖∞,

is useful to prove the Lemma 2.

Lemma 2 Let (β(r))r∈N be a sequence of Rp satisfying the assumption 1 then

lim
r→+∞

P(∀i ∈ supp(s0), S(β̂L
i (λ, r)) = s0

i ) = 1.

Proof: Let ε be a fixed vector in Rp. According to the third condition of the assumption 1 we have min{|β(r)
i |, i ∈

supp(s0)}/‖β(r)‖∞ ≥ q > 0, consequently the following inequalities occur

∀i ∈ supp(s0), s0
i

β̂L
i (ε, λ, r)− β(r)

i

‖β(r)‖∞
=
s0
i β̂

L
i (ε, λ, r)

‖β(r)‖∞
− |β(r)

i |
‖β(r)‖∞

≤ s0
i β̂

L
i (ε, λ, r)

‖β(r)‖∞
− q.

According to the Lemma 1, the following inequality occurs

0 = lim inf
r→+∞

s0
i

β̂L
i (ε, λ, r)− β(r)

i

‖β(r)‖∞
≤ lim inf

r→+∞

s0
i β̂

L
i (ε, λ, r)

‖β(r)‖∞
− q.

Which implies that for r large enough s0
i β̂

L
i (ε, λ, r) > 0 and thus S(β̂L

i (ε, λ, r)) = s0
i . When ε is no longer fixed

then, for i ∈ supp(s0), almost surely S(β̂L
i (r)) converges to s0

i and consequently

lim
r→+∞

P
(
∀i ∈ supp(s0), S(β̂L

i (λ, r)) = s0
i

)
= 1.
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Proof of the Theorem 1: Let A be the set A := supp(β̂L(λ)).

Upper bound) Let us give two expressions met by the LASSO estimator as defined in (2). The vector β̂L(λ)

is the LASSO estimator if and only if the following two inequalities occur simultaneously.

X ′A(Y −Xβ̂L(λ)) = λS(β̂L
A(λ)), (10)

‖X ′
A

(Y −Xβ̂L(λ))‖∞ ≤ λ. (11)

These two expressions are given in Bühlmann and van de Geer [5] page 15 or in the proof of the Theorem 1 of

Zou [31]. Using the equality (10) and the inequality (11), we are going to show that if S(β̂L(λ)) = S(β) then

the following event holds

∥∥∥∥X ′IXI(X
′
IXI)

−1S(βI) +
1

λ
X ′
I

(
Id−XI(X

′
IXI)

−1X ′I
)
ε

∥∥∥∥
∞
≤ 1.

Let us assume that S(β̂L(λ)) = S(β) thus A = I (where I = supp(β)). Since Y = Xβ + ε = XIβI + ε and

Xβ̂L(λ) = XI β̂
L
I (λ) then the equality (10) and the inequality (11) lead to the following expressions

X ′I

(
ε+XI(βI − β̂L

I (λ))
)

= λS(βI), (12)∥∥∥X ′I (ε+XI(βI − β̂L
I (λ))

)∥∥∥
∞
≤ λ. (13)

The equality (12) assures that

βI − β̂L
I (λ) = (X ′IXI)

−1 (λS(βI)−X ′Iε) .

Let us notice that since ker(XI) = 0 then the Gram matrix X ′IXI is invertible. Using the previous expression

in the inequality (13) gives

∥∥X ′
I
XI(X

′
IXI)

−1(λS(βI)−X ′Iε) +X ′
I
ε
∥∥
∞ ≤ λ,∥∥∥∥X ′IXI(X

′
IXI)

−1S(βI) +
1

λ
X ′
I

(
Id−XI(X

′
IXI)

−1X ′I
)
ε

∥∥∥∥
∞
≤ 1.

Consequently, one deduces the folowing inequality

P
(
S(β̂L(λ)) = S(β)

)
≤ P

(∥∥∥∥X ′IXI(X
′
IXI)

−1S(βI) +
1

λ
X ′
I

(
Id−XI(X

′
IXI)

−1X ′I
)
ε

∥∥∥∥
∞
≤ 1

)
︸ ︷︷ ︸

=P(‖ζX,λ,S(β)‖∞≤1)=γ̄

.
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Sharpness of the upper bound) Since the upper bound just depends from s0 and not on how large are the

non-null components β(r) then

lim sup
r→+∞

P
(
S(β̂L(λ, r)) = s0

)
≤ γ̄.

So it remains to prove that lim infr→+∞ P
(
S(β̂L(λ, r)) = s0

)
≥ P

(∥∥ζX,λ,S(β)

∥∥
∞ < 1

)
= γ. Let us remind that

I = supp(s0) and let us assume that the following events hold simultaneously

X ′I(Y −Xβ̂L(λ)) = λs0
I and

∥∥X ′
I
XI(X

′
IXI)

−1λs0
I +X ′

I

(
Id−XI(X

′
IXI)

−1X ′I
)
ε
∥∥
∞ < λ︸ ︷︷ ︸

=‖ζX,λ,s0‖∞<1

. (14)

We aim to show that the inequalities given above imply that β̂L
I

(λ) = 0. For convenience, let us set H be the

projection matrix H := XI(X
′
IXI)

−1X ′I . When (14) occurs then the following inequalities holds

∥∥∥X ′IH(Y −Xβ̂L(λ)) +X ′
I

(Id−H) ε
∥∥∥
∞

< λ,∥∥∥X ′I (H(Y −Xβ̂L(λ)) + (Id−H)ε
)∥∥∥
∞

< λ,∥∥∥X ′I (Y −Xβ̂L(λ) +XI β̂
L
I

(λ)−HXI β̂
L
I

(λ)
)∥∥∥
∞

< λ. (15)

The inequality (15) comes from the following two identities

HY = H(Xβ(r)) +Hε = H(XIβ
(r)
I ) +Hε = XIβ

(r)
i +Hε = X(β(r)) +Hε and,

HXβ̂L(λ) = HXI β̂
L
I (λ) +HXI β̂

L
I

(λ) = XI β̂
L
I (λ) +HXI β̂

L
I

(λ) = Xβ̂L(λ)−XI β̂
L
I

(λ) +HXI β̂
L
I

(λ).

Let v be the vector v := X ′
I

(
Y −Xβ̂L(λ) +XI β̂

L
I

(λ) +HXI β̂
L
I

(λ)
)

, we are going to see that the inequality

(15) implies that β̂L
I

(λ) = 0. Let us assume that β̂L
I

(λ) 6= 0 then, on the first hand, the following inequality

occurs

β̂L
I

(λ)′v ≤ ‖β̂L
I

(λ)‖1‖v‖∞ < λ‖β̂L
I

(λ)‖1. (16)

According to (10) the identity β̂L
i (λ)X ′i(Y −Xβ̂L(λ)) = λ|β̂L

i (λ)| occurs. Consequently, on the other hand, the

following inequalities hold

β̂L
I

(λ)′v = β̂L
I

(λ)′X ′
I

(
Y −Xβ̂L(λ) +XI β̂

L
I

(λ)−HXI β̂
L
I

(λ)
)
,

= λ‖β̂L
I

(λ)‖1 + β̂L
I

(λ)′X ′
I
(Id−H)XI β̂

L
I

(λ),

≥ λ‖β̂L
I

(λ)‖1. (17)

The last inequality occurs because the projection matrix Id−H is positive semi-definite. Inequalities (16) and
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(17) provide a contradiction which implies that β̂L
I

(λ) = 0.

According to (10), the following implication holds

S(β̂L
I (λ, r)) = s0

I ⇒ X ′I(Y −Xβ̂L(λ, r)) = λs0
I .

Because s0 is identifiable with respect to the L1 norm then, according to the Lemma 2, the following convergence

in probability occurs

lim
r→+∞

P(S(β̂L
I (λ, r)) = s0

I) = lim
r→+∞

P(X ′I(Y −Xβ̂L(λ, r)) = λs0
I) = 1. (18)

Using this asymptotic result and since when (14) occurs then β̂L
I

(λ, r) = 0, one may deduce the following

inequalities

lim inf
r→+∞

P
(
S(β̂L(λ, r)) = s0

)
= lim inf

r→+∞
P
(
S(β̂L

I (λ, r)) = s0
I and β̂L

I
(λ, r) = 0

)
,

= lim inf
r→+∞

P(β̂L
I

(λ, r) = 0),

≥ lim inf
r→+∞

P
(
X ′I(Y −Xβ̂L(λ, r)) = s0

I and
∥∥ζX,λ,s0∥∥∞ < 1

)
,

≥ lim inf
r→+∞

P
(∥∥ζX,λ,s0∥∥∞ < 1

)
= γ.

Asymptotic full power and asymptotic control of the FWER) According to (18), asymptotically the

power is equal to 1, namely limr→+∞ P(∀i ∈ I, S(β̂L
i (λ, r)) = s0

i ) = 1. Now let us prove that the FWER is

controlled asymptotically. Using asymptotic results given above one may deduce the following inequalities.

γ̄ ≥ lim sup
r→+∞

P(S(β̂L(λ, r)) = s0),

≥ lim sup
r→+∞

P
(
∀i ∈ I, S(β̂Li (λ, r)) = s0

i and ∀i /∈ I, β̂Li (λ, r) = 0
)
,

≥ lim sup
r→+∞

P(∀i /∈ I, β̂Li (λ, r) = 0). (19)

The last inequality come from (18). Similarly, we have

γ ≤ lim inf
r→+∞

P(∀i /∈ I, β̂Li (λ, r) = 0). (20)

Consequently, by taking the complement to 1 of the inequalities given in (19) and (20), one may deduce that

lim inf
r→+∞

P(∃i /∈ I, β̂Li (λ, r) 6= 0) ≥ 1− γ̄ and lim sup
r→+∞

P(∃i /∈ I, β̂Li (λ, r) 6= 0) ≤ 1− γ.

�
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Proof of the Theorem 2

The Lemma 3 provides the same result for BPDN than the Lemma 1 for LASSO. These both lemmas are the

keystone to prove the Theorem 2.

Lemma 3 Let (β(r))r∈N be a sequence of Rp satisfying the conditions 1) and 2) of the assumption 1, let us

assume that s0 is identifiable with respect to the L1 norm and let set ur = ‖β(r)‖1 then

lim
r→+∞

β̂BPDN(ε, r)− β(r)

ur
= 0.

Proof: Let us define u(ε) ∈ Rp as follows

u(ε) := argmin
b∈Rp

‖b‖1 subject to Xb = ε.

Because X(u(ε)) = ε, we have Y (ε) = X(β(r) +u(ε)) and because β̂BPDN(ε, r) is an admissible point of (3) one

deduces the following inequality

∥∥∥∥ 1

ur
Xβ̂BPDN(ε, r)− 1

ur
Xβ(r)

∥∥∥∥
2

≤
∥∥∥∥ 1

ur
Xβ̂BPDN(ε, r)− 1

ur
Y

∥∥∥∥
2

+

∥∥∥∥ 1

ur
Y − 1

ur
Xβ(r)

∥∥∥∥
2

≤
√
R

ur
+
‖Xu(ε)‖2

ur
. (21)

Because β(r) + u(ε) is an admissible point of the problem (3) and because β̂BPDN(ε, r) is the minimizer of (3),

one deduces the following inequalities hold

1

ur
‖β̂BPDN(ε, r)‖1 ≤

1

ur
‖β(r) + u(ε)‖1 ≤ 1 +

‖u(ε)‖1
ur

. (22)

Because ur tends to +∞ then, according to (22), the sequence ((β̂L(ε, r)− β(r))/ur)r∈N∗ is bounded since the

following superior limit is finite

lim sup
r→+∞

∥∥∥∥∥ β̂BPDN(ε, r)− β(r)

ur

∥∥∥∥∥
1

≤ 2.

Consequently, to prove that limr→+∞(β̂BPDN(ε, r) − β(r))/ur = 0 it is sufficient to show that 0 is the unique

limit point of this sequence. Let ((β̂L(ε, φ(r)) − β(φ(r)))/uφ(r))r∈N∗ be a converging subsequence to l (with

φ : N∗ → N∗ strictly increasing) and without loss of generality, let us assume limr→+∞ β̂BPDN(ε, φ(r))/uφ(r) = v

and limr→+∞ b(φ(r))/uφ(r) = v′ so that l = v − v′. By (21) and (22) one deduces that

Xv = Xv′ and ‖v‖1 ≤ 1.

Since, whatever r ≥ 0, we have S(β(φ(r))/uφ(r)) = s0 where s0 is identifiable with respect to the L1 norm then,

according to the Proposition 2, one may deduce that β(φ(r))/uφ(r) is an unitary vector satisfying the identifiability

condition. Consequently, ‖v′‖1 = 1 and v′ is identifiable with respect to the L1 norm. Consequently, v = v′
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and thus l = 0 is the unique limit point, which implies that

lim
r→+∞

β̂BPDN(ε, r)− β(r)

ur
= 0.

�

Lemma 4 Let X be a matrix in general position then, the random vector β̂ is identifiable with respect to X

and the L1 norm.

Proof: Let us remind that when X is in general position then the minimizer β̂ is unique. Let us assume that

β̂ is not identifiable with respect to X and the L1 norm then there exists b ∈ Rp such that Xb = Xβ̂ and

‖b‖1 ≤ ‖β̂‖1. Consequently, for LASSO, one may deduce that

‖Y −Xb‖2 + λ‖b‖1 ≤ ‖Y −Xβ̂L‖2 + λ‖β̂L‖1.

This inequality contradicts that β̂L is the unique minimizer of (2). Similarly when β̂BPDN is not identifiable

with respect to the L1 norm then β̂BPDN is not the unique minimizer of (3) which provides a contradiction. �

For the proofs of the Theorem 2 and the proof of the Proposition 2, we need to introduce the following in-

equality which characterizes the identifiability condition [10]. A vector b ∈ Rp is identifiable with respect to X

and the L1 norm if and only if the following inequality holds

∀h ∈ ker(X) \ {0},

∣∣∣∣∣∣
∑

i∈supp(b)

S(b)hi

∣∣∣∣∣∣ <
∑

i/∈supp(b)

|hi|. (23)

Proof of the Theorem 2: Let us remind that according to the condition 3) of the assumption 1 the following

inequality holds

∀r ∈ N,
min{|β(r)

i |, i ∈ supp(s0)}
‖β(r)‖∞

≥ q > 0.

According to the lemmas 1 and 3, when s0 is identifiable with respect to the L1 norm then

lim
r→+∞

β̂(ε, r)− β(r)

‖β(r)‖∞
= 0.

Therefore, there exists r0(ε) ≥ 0 such that

∀r ≥ r0(ε),

∥∥∥∥∥ β̂(ε, r)− β(r)

‖β(r)‖∞

∥∥∥∥∥
∞

< q/2⇔ ∀i ∈ {1, . . . , p},∀r ≥ r0(ε),

∣∣∣∣∣ β̂i(ε, r)− β(r)
i

‖β(r)‖∞

∣∣∣∣∣ < q/2.
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Consequently, when r ≥ r0(ε), whatever i /∈ supp(s0) (thus when β
(r)
i = 0) the following inequalities hold

∀i /∈ supp(s0),

∣∣∣∣∣ β̂i(ε, r)‖β(r)‖∞

∣∣∣∣∣ < q/2,

⇒ −‖β(r)‖∞q/2 < min
i/∈supp(s0)

{
β̂i(ε, r)

}
≤ max
i/∈supp(s0)

{
β̂i(ε, r)

}
< ‖β(r)‖∞q/2.

Whatever i ∈ supp+(s0) (thus when β
(r)
i > 0) the following inequalities hold

∀i ∈ supp+(s0),
β̂i(ε, r)

‖β(r)‖∞
≥ −

∣∣∣∣∣ β̂i(ε, r)− β(r)
i

‖β(r)‖∞

∣∣∣∣∣+
β

(r)
i

‖β(r)‖∞
,

⇒ min
i∈supp+(s0)

{
β̂i(ε, r)

‖β(r)‖∞

}
> −q/2 + q = q/2,

⇒ min
i∈supp+(s0)

{
β̂i(ε, r)

}
> ‖β(r)‖∞q/2.

Whatever i ∈ supp−(s0) (thus when β
(r)
i < 0) the following inequalities hold

∀i ∈ supp+(s0),
β̂i(ε, r)

‖β(r)‖∞
≤

∣∣∣∣∣ β̂i(ε, r)− β(r)
i

‖β(r)‖∞

∣∣∣∣∣+
β

(r)
i

‖β(r)‖∞
,

⇒ max
i∈supp−(s0)

{
β̂i(ε, r)

‖β(r)‖∞

}
< q/2− q = −q/2,

⇒ max
i∈supp−(s0)

{
β̂i(ε, r)

}
< −‖β(r)‖∞q/2.

Finally, when r ≥ r0(ε) then

i)

supp−(s0) ⊂ supp−(β̂i(ε, r)) and supp+(s0) ⊂ supp+(β̂i(ε, r)).

ii)

max
i∈supp−(s0)

{
β̂i(ε, r)

}
< min
i/∈supp(s0)

{
β̂i(ε, r)

}
≤ max
i/∈supp(s0)

{
β̂i(ε, r)

}
< min
i∈supp+(s0)

{
β̂i(ε, r)

}
.

Which achieve the first part of the proof. Now, let us assume that s0 is not identifiable with respect to the L1

norm. Let us show that when the following events hold

supp−(s0) ⊂ supp−(β̂) and supp+(s0) ⊂ supp+(β̂), (24)

then the inequality (23) occurs which contradicts that s0 is not identifiable. Let h ∈ ker(X) \ {0} on the first

hand, when (24) occurs, we have

∣∣∣∣∣∣
∑

i∈supp(s0)

s0
ihi

∣∣∣∣∣∣ =

∣∣∣∣∣∣−
∑

supp−(s0)

hi +
∑

supp+(s0)

hi

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣−

∑
i∈supp−(β̂)

hi +
∑

i∈supp+(β̂)

hi

∣∣∣∣∣∣+
∑

i∈supp(β̂)\supp(s)

|hi|.
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On the other hand, according to the Lemma 4, β̂ is identifiable with respect to the L1 norm then (23) occurs

implying thus the following inequality

∣∣∣∣∣∣−
∑

i∈supp−(β̂)

hi +
∑

i∈supp+(β̂)

hi

∣∣∣∣∣∣+
∑

i∈supp(β̂)\supp(s)

|hi| <
∑

i/∈supp(β̂)

|hi|+
∑

i∈supp(β̂)\supp(s)

|hi| =
∑

i/∈supp(s)

|hi|.

Consequently the following inequality holds

∀h ∈ ker(X) \ {0},

∣∣∣∣∣∣
∑

i∈supp(s0)

s0
ihi

∣∣∣∣∣∣ <
∑

i/∈supp(s)

|hi|,

which, according to (23), contradicts that s0 is not identifiable with respect to the L1 norm. �

Proof of propositions

Proof of the Proposition 1: From Daubechies et al. [10], β is a parameter having a minimal L1 norm,

namely Xβ = Xγ ⇒ ‖γ‖1 ≥ ‖β‖1 holds, if and only if the following inequality occurs

∀h ∈ ker(X),

∣∣∣∣∣∑
i∈I

S(βi)hi

∣∣∣∣∣ ≤∑
i/∈I

|hi|. (25)

We are going to show that when the irrepresentable condition holds for β then the inequality (23) holds.

Let h ∈ ker(X) and let us remind that hI and hI denote respectively vectors (hi)i∈I and (hi)i/∈I then, the

following equality holds ∑
i∈I

S(βi)hi = h′IS(βI) = h′IX
′
IXI(X

′
IXI)

−1S(βI).

Because 0 = Xh = XIhI +XIhI , one deduces the following inequalities

|h′IS(βI)| =
∣∣h′
I
X ′
I
XI(X

′
IXI)

−1S(βI)
∣∣ ,

≤ ‖hI‖1‖X
′
I
XI(X

′
IXI)

−1S(βI)‖∞. (26)

Consequently, when the irrepresentable condition holds for β namely, when ‖X ′
I
XI(X

′
IXI)

−1S(b∗I)‖∞ ≤ 1 then,

the inequality (26) gives |h′IS(βI)| ≤ ‖hI‖1. Thus, by the equivalence given in (25), β is a solution of the

following basis pursuit problem

minimize ‖γ‖1 subject to Xγ = Xβ

Because X is in general position the previous optimisation problem has a unique solution (see e.g. the propo-

sition 1 in appendix) thus Xβ = Xγ and γ 6= β implies that ‖γ‖1 > ‖β‖1 namely β is identifiable with respect

to the L1 norm. �
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Proof of the Proposition 2: Because b is identifiable with respect to the L1 norm and because S(b̃) = S(b)

implies supp(b̃) = supp(b), then the following inequality holds

∀h ∈ ker(X) \ {0},

∣∣∣∣∣∣
∑

i∈supp(b̃)

S(b̃i)hi

∣∣∣∣∣∣ <
∑

i/∈supp(b̃)

|hi|.

Consequently, according to (23), the parameter b̃ is identifiable with respect to the L1 norm. �

Supplementary material

We already said that when X is in general position the minimizer of problem (2) (resp. problem (3)) is unique.

Concerning LASSO, a sketch of proof given in Tibshirani [26] shows the uniqueness of the LASSO estimator

when X is in general position. In order to provide a self content article, we show that when X is in general

position the minimizer of the problem (3) is unique when R = 0 as well as when R > 0. We already stressed

that when β is identifiable with respect to the L1 norm then β is sparse. We are going to show that when

the identifiability holds for β then the family (Xi)i∈supp(β) is linearly independent and thus the number of

components of β equal to 0 is larger than p− n.
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