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Abstract

In the high-dimensional regression model Y = Xβ0 + ε, we provide new theoretical results on the

probability to recover the sign of β0 by the Least Absolute Selection and Shrinkage Operator (LASSO) and

by the thresholded LASSO.

It is well known that the irrepresentability is a necessary condition LASSO to recover the sign of β0 with

a large probability. In this article we extend this result by providing a tight upper bound for the probability

of LASSO sign recovery. This upper bound is smaller than 1/2 when the irrepresentable condition does not

hold and thus generalizes Theorem 2 of Wainwright [28]. The bound is attained when non-null components

of β0 tend to infinity and its value, which depends on the tuning parameter λ, is the probability that every

null components of β0 is correctly estimated at 0. Thus, this bound can be used to select λ for LASSO, so

as to control asymptotically at a given level the family wise error rate: the probability that at least one null

component of β0 is not estimate by LASSO at 0.

Irrepresentability is a stringent condition to recover the sign of β0 by LASSO, this condition can be

relaxed by filtering out LASSO estimates with an appropriately selected threshold. Indeed, it is well known

that LASSO estimates are consistent under weaker conditions than the irrepresentability. In this article we

provide new theoretical results in the asymptotic setup under which X is fixed and non-null components of

β0 tend to infinity. Apart from LASSO, our results cover also Basis Pursuit DeNoising (BPDN). Compared

to the classical asymptotics, where X is a n× p matrix and both n and p tend to +∞, our approach allows

for reduction of the technical burden. In the result our main theorem takes a simple form:

When non-null components of β0 are sufficiently large, appropriately thresholded LASSO or

thresholded BPDN can recover the sign of β∗ if and only if β0 is identifiable with respect to the

l1 norm, i.e.

If Xγ = Xβ0 and γ 6= β0 then ‖γ‖1 > ‖β0‖1.

∗Corresponding author: tardivel@math.uni.wroc.pl
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We introduce irrepresentability and identifiability curves which provide the proportion of k sparse vec-

tors β0 for which the irrepresentability and identifiability conditions hold. These curves illustrate that the

irrepresentability is a much stronger condition than identifiability especially when the entries in each row of

X are strongly correlated.

Finally, we illustrate how the knockoff methodology [1, 8] allow to select an appropriate threshold and

that thresholded BPDN and LASSO can recover the sign of β0 with a larger probability than adaptive

LASSO [32].

Keywords: Active set estimation, basis pursuit, Identifiability condition, Irrepresentability condition,

LASSO, Sign estimation.

1 Introduction

Let us consider the high-dimensional linear model

Y = Xβ0 + ε, (1)

where X = (X1| . . . |Xp) is a n × p design matrix, with n ≤ p, ε is a random vector in Rn, and β0 ∈ Rp is

an unknown vector of regression coefficients. The sign vector of β0 is S(β0) = (S(β0
1), . . . S(β0

p)) ∈ {−1, 0, 1}p,

where for x ∈ R, S(x) = 1x>0 − 1x<0. Our main purpose is to recover S(β0). This objective is slightly more

general than the aim of recovering the active set supp(β0) := {i ∈ {1, . . . , p} | β0
i 6= 0}. A natural way to

estimate S(β0) is to take sign of a sparse estimator. The LASSO estimator [26] defined hereafter

β̂L := argmin
β∈Rp

1

2
‖Y −Xβ‖22 + λ‖β‖1 (2)

is probably the most famous sparse estimator of β0.

When rank(X) = n, an alternative formulation of LASSO is provided by the Basis Pursuit DeNoising

(BPDN) estimator [10], defined as follows

β̂BPDN := argmin
β∈Rp

‖β‖1 subject to ‖Y −Xβ‖22 ≤ R. (3)

Given a particular vector Y ∈ Rn, there is a one to one correspondance between the tuning parameter λ > 0 and

the regularization parameter R > 0, under which LASSO and BPDN yield the same estimation (see e.g page

64 of [18] or the chapter 5.3 of [3]). For example, when λ = ‖X ′Y ‖∞ and when R = ‖Y ‖22 then both LASSO

and BPDN estimators are equal to 0. However, the relationship between λ and R depends on Y and, in broad

generality, given a fixed λ > 0 for LASSO, we cannot pick a fixed R > 0 for BPDN under which these both

estimators equal. Thus, BPDN and LASSO are not equivalent estimators. The Basis Pursuit (BP) estimator,
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solution of (3) when R = 0, is a particular case of BPDN. As discussed e.g. in [12, 16], BP can be thought of

as the limit of LASSO when the tuning parameter λ tends to 0.

1.1 Sign recovery by LASSO

Properties of the sign estimator S(β̂L(λ)) :=
(
S(β̂L

1 (λ)), . . . , S(β̂L
p (λ))

)
(or active set estimator supp(β̂L(λ)) :=

{i ∈ {1, . . . , p} | β̂i(λ) 6= 0}) have been intensively studied [17, 21, 28, 31, 32]. Specifically, Zhao and Yu [31] and

Zou [32] consider the asymptotic setup under which n tends to +∞ and p is fixed and observe that LASSO can

recover S(β0) only if the restrictive ”irrepresentable” condition is fulfilled. These results were further extended

to the case of the fixed design matrix X, where the irrepresentable condition is formulated as follows;

Definition 1 (Irrepresentability condition) Let X be a n×p matrix, β ∈ Rp, I := {i ∈ {1, . . . , p} | βi 6= 0},

and XI , XI be the matrices whose columns are respectively (Xi)i∈I and (Xi)i/∈I . The vector β satisfies the

irrepresentable condition if ker(XI) = 0 and ‖X ′
I
XI(X

′
IXI)

−1S(βI)‖∞ ≤ 1.

According to the Theorem 2 of Wainwright [28], the irrepresentability condition is necessary to recover S(β0)

with high probability. Indeed, when ker(XI) = 0, ‖X ′
I
XI(X

′
IXI)

−1S(β0
I )‖∞ > 1 and both ε and −ε have the

same distribution, then for any selection of the tuning parameter λ > 0, P(S(β̂L(λ)) = S(β0)) ≤ 1/2. This result

holds also in the noiseless case when ε = 0, where the probability to recover S(β0) is equal to zero. Moreover,

Bühlmann and van de Geer [5] (page 192-194) showed that, in the noiseless case, when the irrepresentability

strictly holds (i.e when ‖X ′
I
XI(X

′
IXI)

−1S(β0
I )‖∞ < 1) then the non-random set supp(βL(λ)) recovers supp(β0)

as soon as non-null components of β0 are sufficiently large. The proof provided in [5] can be easily adapted for

the sign recovery.

In this article we provide a new theoretical result on the sign recovery by LASSO. Specifically, Theorem 1 in

Section 2 provides an upper bound for the probability of the sign recovery of β0 which depends from X,S(β0), λ

and on the distribution of ε. This upper bound is attained when non-null components of β0 tend to infinity, in

which case it is equal to the limiting probability of an event that supp(β̂L) ⊂ supp(β0). Thus, when non-null

components of β0 are sufficiently large and the sparsity is known, this bound can be used to select λ in order

to control the Family Wise Error Rate (FWER): the probability that at least one null component of β0 is not

estimated at 0.

1.2 Sign recovery by thresholded LASSO

It is clear that in the noiseless case, the following identifiability condition is necessary and sufficient to recover

S(β0) by the non-random basis pursuit.

Definition 2 (Identifiability condition) The vector β ∈ Rp is identifiable with respect to the design matrix
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X and the L1 norm (or just identifiable with respect to the L1 norm) if the following implication holds

Xγ = Xβ and γ 6= β ⇒ ‖γ‖1 > ‖β‖1. (4)

Under the identifiability assumption, β0 is sparse. Indeed, Lemma 3 in Tardivel et al. [25] shows that

k = card{i ∈ {1, . . . , p} | β0
i 6= 0} ≤ n, i.e. β0 has at least p− n zeros. On the other hand some assumptions on

the sparsity of β0 assure that β0 is identifiable with respect to the L1 norm. For example when ‖X1‖2 = · · · =

‖Xp‖2 = 1 and the number of nonzero elements of β0 satisfies the following inequality (called mutual coherence

condition)

k = card{i ∈ {1, . . . , p} | β0
i 6= 0} ≤ 1

2

(
1 +

1

M

)
, where M := max

i 6=j
|〈Xi, Xj〉| , (5)

then β0 is identifiable with respect to the L1 norm [14, 18, 20]. In the particular case in which the entries of X

are i.i.d N (0, 1) and n, p are both very large, the phase transition curve of Donoho and Tanner [15] provides, with

respect to the undersampling ratio n/pin(0, 1), a bound η ∈ (0, 1) so that β0 having a sparsity k is identifiable

with respect to the L1 norm if k/n < η.

According to the Theorem 2, reported in Section 3, for any value of the tuning parameter λ or the regular-

ization parameter R, the identifiability condition is sufficient and necessary so that LASSO or BPDN estimator

allow to separate asymptotically negative, null, and positive components of β0. This means that, when non

null components of β0 is sufficiently large, appropriately thresholded LASSO or BPDN can properly identify

the sign of β0 if and only if the identifiability condition holds for β0.

1.3 Graphical illustrations of main results

By definition, the irrepresentable condition depends only on S(β0) and not on how large are the non null

components of β0. Actually, as claimed in the Proposition 2, the identifiability condition also depends only

on S(β0). Thus, the comparison of these two conditions can be performed by considering sign vectors in

{−1, 0, 1}p. In Figure 1, the identifiability curve (resp. irrepresentability curve) provides the proportion of sign

vectors with k nonzero elements which satisfy the identifiability condition (resp. irrepresentability condition).

Figure 1 illustrates that the identifiability curve is highly above the irrepresentability curve. This observation

is not surprising since, according to the proposition 1, the irrepresentable condition implies the identifiability

condition. Based on these curves, when non null components of β0 are sufficiently large, one can expect that

LASSO allows to recover the sign of β0 when the sparsity k is smaller than 5, while thresholded LASSO allows

to recover the sign of β0 when k ≤ 20 .

Figure 2 illustrates Theorem 1, which provides an upper bound for LASSO sign recovery. The bound is

reached when non null components of β0 tends to +∞ and, when the irrepresentable condition holds, the

tuning parameter λ can be selected in order to fix this upper bound at an arbitrary level. In this figure, the
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Figure 1: This figure provides the identifiability and irrepresentability curves for the design matrix X of dimen-
sion 100×300, whose entries were independently generated from N (0, 1) distribution. The x-axis represents the
sparsity k and the y-axis represents the proportion of sign vectors satisfying the identifiability condition (resp.
irrepresentability condition)

design matrix X is the used in Figure 1 and the noise ε is a standard Gaussian vector. According to the

irrepresentability curve provided in Figure 1, the irrepresentable condition holds when k = 5. The value of λ

was selected so that the average value of the bound over 1000 randomly sampled vectors β0 with k = 5 non-zero

elements is equal to 0.95. The y axis in Figure 2 represents the probability of recovering S(β0) calculated based

on 1000 randomly sampled vectors β0 having k = 5 non-null components which are equals. Figure 2, shows

that the upper bound for LASSO sign recovery is reached when non null components of β0 tend to +∞ and

that the selected λ allows to control the FWER at level 0.05.
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Figure 2: When k = 5, the left figure provides the probability to recover S(β0) with LASSO sign estimator
and the right figure provides the FWER: the probability that at least one null component of β0 is selected by
LASSO estimator. The x-axis represents ‖β0‖1 (in both figures), the y-axis represents the probability of the
sign recovery (left figure) and the FWER (right figure). The horizontal lines correspond to y = 0.95 (left figure)
and y = 0.05 (right figure).

Figure 3 illustrates Theorem 2 which shows when hen non null components of β0 are large enough, identi-

fiability is a necessary and sufficient condition under which appropriately thresholded BPDN and thresholded

LASSO recover S(β0). According to the identifiability curve given in the figure 1, when k = 20 the identifiability

condition holds. In this figure, the design X is the same as the one used in Figures 1 and 2 and the y axis
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represents the probability of recovering S(β0) calculated based on 1000 randomly sampled vectors β0 having

k = 20 non-null components which are equals. As illustrated in Figure 3, both thresholded BP and thresholded

LASSO sign estimators recover S(β0) when non null components of β0 are large.
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Figure 3: When k = 20, this figure provides the probability to recover S(β∗) with thresholded LASSO and
thresholded BP sign estimators. The x-axis represents ‖β0‖1 and the y-axis represents the sign recovery prob-
ability.

Again curves given in figures 2 and 3 are explained with more details in the subsection...

1.4 Organization of the article

In section 2, the theorem 1 provides a tight upper bound for LASSO sign estimator to recover S(β0) and the

proposition 1 shows that the irrepresentable condition is stronger than the identifiability condition.

In section 3, the theorem 2 shows that identifiability is a necessary and sufficient condition to recover asymp-

totically S(β0) with sign estimators derived from thresholded LASSO and thresholded BPDN.

In section 4, the proposition 2 shows that identifiability condition as irrepresentability condition just depends

from S(β0) and not or on how large are the non-null components of β0. We introduce the irrepresentability and

identifiability curves which provides respectively the proportion of sign vectors satisfying the irrepresentability

condition and identifiability condition

The section 5, is devoted to numerical experiments. When X is a Gaussian matrices with uncorrelated and

strongly correlated entries, numerical experiments show that sign estimators derived from the thresholded

LASSO and thresholded BPDN are better than both sign estimators derived from LASSO and adaptive LASSO.

1.5 Notations and assumptions

In this article we always assume that the design matrix X is in general condition (see e.g [27]; the definition is

also reminded in supplementary material). This assumption assures that the minimizer of (2) (resp. minimizer

of (3)) is unique and thus that the LASSO estimator (resp. BPDN estimator) is well defined. This assumption is

very weak and generically holds. Indeed, when X is a random matrix such that the entries (X11, X12, . . . , Xnp)
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have a density on Rnp then, almost surely, X is in general position [27].

Hereafter the main notations used in this article:

• Let I be a subset of {1, . . . , p}, we denote I the complement in {1, . . . , p} of I, namely I := {1, . . . , p} \ I.

• The notation XI denotes for a matrix whose columns are (Xi)i∈I .

• Let β ∈ Rp, the notation βI denotes for the vector and supp(β) denotes for the set {i ∈ {1, . . . , p} | βi 6= 0}.

• When β0 is different from 0 we set β0 = Nβ∗ where β∗ = β0/‖β0‖ and N = ‖β0‖. In the following β∗ is

always a fixed unitary vector (for the L1 norm) and N is allowed to tends to +∞ making that non-null

components of β0 becomes infinity large.

• LASSO and BPDN estimators depends from X,β∗, N, ε and from the tuning parameter λ > 0 or the

regularization parameter R ≥ 0. When it is useful, we add into parentheses these dependencies. The

estimator β̂ represents indistinctly the LASSO estimator or the BPDN estimator.

2 Sign recovery with LASSO sign estimator

The theorem 1 provides an upper bound for the probability to recover S(β∗) with LASSO estimator. When β∗

is identifiable with respect to the l1 norm, this upper bound is reached asymptotically when N tends to +∞.

Theorem 1 Let I := supp(β∗), let XI , XI be respectively matrices whose columns are (Xi)i∈I and (Xi)i/∈I , let

ζX,λ,S(β∗) be the random vector ζX,λ,S(β∗) = X ′
I
XI(X

′
IXI)

−1S(β∗I ) + 1
λX
′
I

(
Id−XI(X

′
IXI)

−1X ′I
)
ε and let us

assume that ker(XI) = 0.

Upper bound: The following upper bound, denoted γ̄, for the sign recovery holds.

P
(
S(β̂lasso(λ)) = S(β∗)

)
≤ P

(∥∥ζX,λ,S(β∗)

∥∥
∞ ≤ 1

)
= γ̄.

Now, when β∗ is identifiable with respect to the l1 norm then the following asymptotic results hold.

Sharpness of the upper bound: Asymptotically, the upper bound is reached.

lim sup
N→+∞

P
(
S(β̂lasso(λ,N)) = S(β∗)

)
≤ γ̄,

lim inf
N→+∞

P
(
S(β̂lasso(λ,N)) = S(β∗)

)
≥ P

(∥∥ζX,λ,S(β∗)

∥∥
∞ < 1

)
= γ.
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Asymptotic Full power and asymptotic control of the FWER: Asymptotically, the power is equal to 1

and the FWER is controlled.

lim
N→+∞

P
(
∀i ∈ I, S(β̂lasso

i (λ,N)) = S(β∗i )
)

= 1,

lim sup
N→+∞

P
(
∃i /∈ I, β̂lasso

i (λ,N) 6= 0
)
≤ 1− γ,

lim inf
N→+∞

P
(
∃i /∈ I, β̂lasso

i (λ,N) 6= 0
)
≥ 1− γ̄.

Results given in theorem 1 are quite straightforward when X is orthogonal (i.e. when X ′X = Idp). Indeed the

upper bound γ̄ given in 1) is just the probability that null components of β∗ are simultaneously estimated at 0

namely γ̄ = P(∀i /∈ supp(β∗), β̂lasso
i (λ) = 0). Consequently, 1− γ̄ is the Family Wise Error Rate (FWER): the

probability that at least one null component of β∗ is not estimated at zero.

The famous theorem 2 given in Wainwright [28] is actually a corollary of the upper bound given in 1). Indeed,

according to the theorem 1, when ε and −ε have the same distribution and when ‖X ′
I
XI(X

′
IXI)

−1S(β∗I )‖∞ > 1

then, whatever λ > 0, the upper bound γ̄ is smaller than 1/2.

When γ = γ̄ (i.e. when P(‖ζX,λ,S(β∗)‖∞ < 1) = P(‖ζX,λ,S(β∗)‖∞ ≤ 1)) then limits superior and limits

inferior given in 2) and 3) imply that

lim
N→+∞

P
(
S(β̂lasso(λ,N)) = S(β∗)

)
= γ̄ and lim

N→+∞
P
(
∃i /∈ I, β̂lasso

i (λ,N) 6= 0
)

= 1− γ̄.

When the distribution of ε and S(β∗) are both known and when the irrepresentable condition strictly holds

for S(β∗) then a tuning parameter λ1−α can be chosen such that the upper bound be fixed at γ̄ = 1−α. Since

the irrepresentable condition implies the identifiable condition (as proved in the proposition 1), when N is large,

the tuning parameter λ1−α allows to control the FWER at level α. To our knowledge, the theorem 1, is the

first theoretical result providing a guide to select the tuning parameter in order to control a type I error at a

specified level.

As claimed above, the proposition 1 shows that the irrepresentable condition on β∗ implies the identifiability

condition on β∗.

Proposition 1 Let X be a n× p matrix with n ≤ p in general position, let β∗ ∈ Rp, let I := supp(β∗) and let

us assume ker(XI) = 0. If ‖X ′
I
XI(X

′
IXI)

−1S(β∗I )‖∞ ≤ 1, then the parameter β∗ is identifiable with respect to

the l1 norm.

Let us notice that when the inequality in the irrepresentable condition is strict instead of large, the theorem 1

remains true without assuming that X is in general position. The proof of the proposition 1 given in this article

is the one reported in the PhD manuscript of Tardivel [24].
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3 Identifiability is a necessary and sufficient condition for sign re-

covery

When β∗ does not satisfy the irrepresentable condition then, even if N goes to +∞ and whatever λ > 0,

the LASSO sign estimator S(β̂lasso(λ)) fails to recover S(β∗). However, the irrepresentable condition is not

an unsurpassable limitation to recover S(β∗). Actually the theorem 2 shows that an appropriately thresholded

LASSO (resp. thresholded BPDN) recover asymptotically S(β∗) under the identifiability condition on β∗ (which

is, by the proposition 1, weaker than the irrepresentability condition). To provide a result in a broad generality

we do not assume, in the theorem 2, that β∗ is identifiable with respect to the l1 norm. For this theorem, let

us introduce the following notations.

• Let β̃ ∈ Rp be the solution, in the noiseless case, of the following basis pursuit problem

β̃ := argmin
β∈Rp

‖β‖1 subject to Xβ = Xβ∗.

• Let B− = {i ∈ {1, . . . , p} | β̃i < 0}, B+ = {i ∈ {1, . . . , p} | β̃i > 0} and B = B− ∪ B+.

We remind that, β̂ represents indistinctly the LASSO or BPDN estimator with a fixed tuning parameter λ > 0

or with a fixed regularization parameter R ≥ 0.

Theorem 2 Let X be a n× p matrix in general position such that rank(X) = n.

Separation property: For any fixed ε ∈ Rn and sufficiently large N > N0(ε) the following inequality holds

max
i/∈B−

{
β̂i(ε,N)

}
< min

i/∈B

{
β̂i(ε,N)

}
≤ max

i/∈B

{
β̂i(ε,N)

}
< max
i/∈B+

{
β̂i(ε,N)

}
.

This inequality means that when N is large, the estimator β̂(ε,N) separates negative components of β̃ (i.e

i ∈ B−), null components of β̃ (i.e i /∈ B) and positive components of β̃ (i.e i ∈ B+)

Sign recovery: The equality S(β∗) = S(β̃) occurs (thus B− = {i ∈ {1, . . . , p} | β∗i < 0} and B+ = {i ∈

{1, . . . , p} | β∗i > 0}) if and only if β∗ is identifiable with respect to the l1 norm.

Let us notice that the assumptions on X are very weak and generically hold when n ≤ p. The assumption

rank(X) = n assures that, whatever R ≥ 0, the BPDN estimator is well defined. The general position condition

assures the uniqueness of both LASSO and BPDN estimators (see e.g the proposition 1 given in supplementary

material for a proof).

Because the almost sure convergence (and thus the convergence for every fixed ε) implies the convergence
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in probability then, according to the theorem 2, the following convergence in probability holds

lim
N→+∞

P
(

max
i/∈B−

{
β̂i(N)

}
< min

i/∈B

{
β̂i(N)

}
≤ max

i/∈B

{
β̂i(N)

}
< max
i/∈B+

{
β̂i(N)

})
= 1.

The theorem 2 stress that one cannot recover S(β∗) with a sign estimator derived from LASSO or BPDN when

β∗ is not identifiable with respect to the l1 norm since S(β∗) 6= S(β̃) (with β̃ as defined in the theorem 2).

When β∗ is identifiable with respect to the l1 norm (then β̃ = β∗), the theorem 2 suggest to recover S(β∗) by

deriving sign estimators from the thresholded LASSO or thresholded BPDN. Expressions of these thresholded

estimators are reported in (6) given below. By the the separation property, one knows that it remains to select

a good threshold τ to construct a consistent sign estimator (with τ depending from N for the consistency).

The theorem 2 confirms recent results given by Bogdan et al. [4]. Indeed, if X has i.i.dN (0, 1) entries, n/p→

δ ∈ (0, 1) and if asymptotically the point (card(supp(β∗))/n, n/p) is below the asymptotic phase transition curve

[13] (i.e. β∗ is asymptotically identifiable with respect to the l1 norm) then the thresholded LASSO almost

surely recovers S(β∗) (as soon as N is large enough).

In the following section, we are going to give some properties about identifiability condition. In particular,

we show that identifiability (as irrepresentability) just depends from S(β∗) and not on N or on how large are

the non null components of β∗.

4 Identifiability and irrepresentability sign applications

By definition the irrepresentable condition just depends from the sign of β∗. Given a particular design matrix

X, the irrepresentability sign application is defined hereafter.

Irrepresentabity sign application:

ΦXIC : s ∈ {−1, 0, 1}p 7→


1 if s = (0, . . . , 0)

1 if ker(XI) = 0 and ‖X ′
I
XI(X

′
IXI)

−1sI‖∞ ≤ 1 where I := supp(s)

0 otherwise

.

Such a sign application provides the limitation of the LASSO sign estimator to recover S(β∗). Indeed, if

φXIC(S(β∗)) = 0 then S(β∗) cannot be recovered with the LASSO sign estimator even if N is extremely large.

The proposition 2 shows that the identifiability condition just depends from S(β∗) and not on N or on how

large are the non null components of β∗.

Proposition 2 Let X be a n× p matrix, let β ∈ Rp be identifiable with respect to the l1 norm and let β̃ ∈ Rp

such that S(β) = S(β̃) then β̃ is identifiable with respect to the l1 norm.
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Given a particular design matrix X, the identifiability sign application is defined hereafter.

Identifiability sign application:

ΦXIdtf : s ∈ {−1, 0, 1}p 7→


0 if s 6= argmin

β∈Rp
‖β‖1 subject to Xβ = Xs

1 otherwise

.

Such a sign application for the identifiability condition provides the limitation of sign estimators derived from

thresholded LASSO and thresholded BPDN to recover S(β∗)). Indeed, if φXIdtf(S(β∗)) = 0 then thresholded

LASSO (resp. thresholded BPDN) sign estimator cannot recovered S(β∗) even if N is extremely large.

According to the proposition ... given supplementary material when (Xi)i∈supp(β∗) is not linearly independent

then β∗ does not satisfy the identifiability condition. Consequently, when card(supp(β∗)) > n then φXIC(S(β∗)) =

φXIdtf(S(β∗)) = 0. Let us provides some basic properties and comments about these sign applications.

1. These two sign applications are even.

2. Due to the proposition 1, whatever s ∈ {−1, 0, 1}p, ΦXIC(s) ≤ ΦXIdtf(s).

3. The computation of ΦXIC is a straightforward matricial computation; the computation of ΦXIdtf is no more

difficult and need to solve a basis pursuit problem.

The last remark shows that given a parameter β∗ ∈ Rp, it is easy to check weather or not β∗ is identifiable with

respect to the l1 norm.

Given a sparsity k, the identifiability (resp. irrepresentability) curve provides the proportion of sign vectors

satisfying the identifiability condition (resp. irrepresentability condition). These curves illustrate that the

identifiability condition is much weaker than the irrepresentability condition and thus emphasize the theoretical

result given in the proposition 1.

4.1 Illustrations of identifiability and irrepresentability curves

The number of sign vectors is very huge (3p), that is why we are not going to provide explicitly ΦXIdtf and

ΦXIC for each sign vector. Instead, for each sparsity k ∈ {1, . . . , n}, we are going to compute empirically

pXIdtf(k) := EU (ΦXIdtf(U)) and pXIC(k) := EU (ΦXIC(U)) where U is a uniformly distributed on {u ∈ {−1, 0, 1}p |

card(supp(u)) = k}. The identifiability and irrepresentability curves represents respectively the curves of the

functions k ∈ {1, . . . , n} 7→ pXIdtf(k) and k ∈ {1, . . . , n} 7→ pXIC(k). In the numerical experiments given in the

figure 4, X is a Gaussian matrix described hereafter.

Setting 1: The matrix X is a n× p matrix with n = 100, p = 300 and (Xij)1≤i≤n,1≤j≤p are i.i.d N (0, 1).

Setting 2: The matrix X is a n × p matrix with n = 100, p = 300 and the vectors (Xij)1≤j≤p where i ∈

11



{1, . . . , n} is a family of i.i.d Gaussian vector N (0,Γ). In this setting Γ is a p × p matrix where Γii = 1

with i ∈ {1, . . . , p} and Γij = 0.9 when i 6= j.

From now on, X is a particular observation of Gaussian matrix as described in setting 1 and setting 2 (by using

the R command set.seed(123)).
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Figure 4: This figure gives the curves of the functions k 7→ pXIdtf(k) and k 7→ pXIC(k) when X is a Gaussian
matrix given in the setting 1 (left panel) and setting 2 (right panel). Due to the proposition 1, whatever the
sparsity k, pXIdtf(k) ≥ pXIC(k) thus this figure just emphasizes that the identifiability condition is a much weaker
assumption than the irrepresentability condition. The vertical lines in the left panel provides, in the setting 1,
an asymptotic approximation of the identifiability and irrepresentability curves. Indeed by the theorem 1 in
[15] and the theorem 1 in [28], when p is very large and n/p = 1/3 then the identifiability and irrepresentability
conditions hold respectively when k ≤ 0.31n and k ≤ 0.09n. To plot these these curves, for a sparsity k the
quantities pXIdtf(k) and pXIC(k) have been computed by simulating 1000 observations of the random vector U .

Surprisingly the two identifiability curves given in the setting 1 and 2 are very similar. A priori, we expected

to recover a curve in the setting 2 much below than the one given in the setting 1. Indeed, classical conditions

implying the identifiability of β∗ with respect to the l1 norm are the mutual coherence condition (5) and

the restricted isometry property [6, 7]. These conditions are quite weak when the family (Xi)1≤i≤p is almost

orthogonal (as in the setting 1 since E(X ′X) = nIdn) but are very strong when (Xi)1≤i≤p is far from an

orthogonal family (as in the setting 2 since E(X ′X) = nΓ).

The asymptotic phase transition given in Donoho and Tanner [15] provides an approximation of the identi-

fiability curve in the setting 1. Such an approximation is useful when n and p are too much large so that the

identifiability curve is too much time expensive to obtain. Unfortunately, to our knowledge, there is not such

asymptotic phase transition curve for Gaussian matrices with correlated entries as in the setting 2 (see e.g. [22]

for more details about asymptotic phase transition curve).

One notices that in the setting 2, the irrepresentability curve is not monotonic in the neighbourhood of 0;

it is not a numerical problem. Actually when k is very small, components of U are all positive or all negative

with a quite large probability. Furthermore the figure 5 illustrates that, in the setting 2, when the sign vector s

is positive componentwise (resp. negative componentwise), the irrepresentable condition becomes a very strong

condition. These both remarks, aim at explaining why, in the setting 2, the irrepresentabilty curve is not

12



monotonic. Hereafter, without any loss of generality, we focus on the particular case in which sign vector is

positive componentwise. The figure 5 provides the positive irrepresentability and identifiability curves, which

are respectively the curves of the functions k 7→ pXIdtf+(k) := EU (ΦXIdtf(U)) and k 7→ pXIC+(k) := EU (ΦXIC(U))

where U has uniform distribution over the set {u ∈ {0, 1}p | card(supp(u)) = k}.
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Figure 5: This figure gives the curves of the functions k 7→ pXIdtf+(k) and k 7→ pXIC+(k) when X is a Gaussian
matrix given in setting 2. One notices that, with respect to the curves given in the figure 4, the gap between the
irrepresentable condition and the identifiability condition becomes larger. When k is small pXIC+(k) ≈ pXIC(k)
(more precisely, pXIC+(k) = pXIC(k) when k = 1) and when k is large enough pXIC(k) weakly depends from the
correlation. This remark aim to explain why, in the setting 2, the function k 7→ pXIC(k) is not monotonic in the
neighbourhood of 0. To plot these these curves, for a sparsity k, the quantities pXIdtf+(k) and pXIC+(k) have been
computed by simulating 1000 observations of U .

Performance of the sign estimators derived from LASSO, thresholded LASSO and thresholded BPDN de-

pends from the tuning parameter λ, regularization parameter R and threshold τ . In the following section, we

are going to prescribe values for these parameters.
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5 Numerical comparisons of sign estimators

Theorem 2 states that the sign estimators provided by thresholded LASSO or thresholded basis pursuit allow to

recover sign(β0) as long as the identifiability condition is satisfied. Another way to recover sign(β0) is to use a

sign estimator derived from adaptive LASSO. Indeed, as claimed by theorem 2 of Zou [32], by deriving weights for

adaptive LASSO from a consistent estimator of β0 and by selecting properly the tuning parameter λ, one obtains

a sign estimator derived from adaptive LASSO which is consistent for sign(β0). Weights for adaptive LASSO

can be appropriately derived from LASSO. Indeed, according to lemma 1, under the identifiability assumption

LASSO estimator converges to β0. The purpose of this section is to provide a numerical comparison of sign

estimators derived from LASSO, thresholded LASSO, thresholded BP and adaptive LASSO.

As explained hereafter, there are some recommendations on how to select the tuning parameter λ > 0 for

the LASSO estimator as described in (2) whereas, to our knowledge, there are not clear recommendations on

how to select R ≥ 0 for BPDN estimator described in (3). That is the reason why, we arbitrary set R = 0 and

thus we only consider BP estimator.

5.1 Selection of the tuning parameter

As explained in [30, 4], a value of the optimal tuning parameter for the sign recovery by thresholded LASSO is

substantially smaller than the optimal value of the tuning parameter for vanilla LASSO. Specifically:

• For LASSO sign estimator, the tuning parameter has to be large enough so that it prevents including false

discoveries.

• For thresholded LASSO sign estimator the tuning parameter needs to be selected so as to minimize the

mean square error of the estimation of β0. This tuning parameter does not need to be large, since the

threshold will allow to eliminate false discoveries.

5.1.1 Tuning parameter for LASSO sign estimator

When β0 has a known sign so that S(β0) satisfies the irrepresentable condition, by proposition 1, one may pick

a tuning parameter λL so that P(S(β̂(λL)) = S(β0)) is smaller than a given value (say 0.95). Now, according

to the irrepresentability curve for our matrix X with independent columns, the irrepresentability condition is

satisfied with probability close to 1 if β0 contains k = 5 nonzero elements. Thus in this setting, we can chose

λL such that the average value of the upper-bound given in proposition 1 is equal to 0.95. In other words, λL

is chosen so that ES(ζX,λL,S) = 0.95, where S is a random sign vector having a uniform distribution over the

set {s ∈ {−1, 0, 1}p | card(supp(s)) = 5}. The computation of this value gives λL = 8.118. Since under the

remaining scenarios of our simulation study the irrepresentability condition is typically not satisfied and FWER

can not be controlled at the low level, we decided to use the same value λL = 8.118 for all our simulations.
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5.1.2 Tuning parameter for thresholded LASSO sign estimator

When X is the gaussian matrix with independent entries the tuning parameter was selected with the help of the

asymptotic theory of Approximate Message Passing (AMP) algorithm for LASSO, provided e.g. in [2, 4, 23].

In the set-up of this theory the design matrix is Gaussian with i.i.d N (0, 1/
√
n) and components of β0 are i.i.d

random variables having Π?: Π = (1 − γ)δ0 + γΠ? mixture distibution, where δ0 and Π are point mass at 0

distribution and an arbitrary distribution. The number of observation n, the number of explanatory variables

p becomes infinity large and n/p → δ > 0. The tuning parameter λAMP , depending on δ, γ,Π?, is selected

so as to minimize the asymptotic mean square error according to the prescription provided in [2, 30, 4]. As

discussed in [30, 4], for any fixed type I error, such a tuning parameter allows to maximize the power. In

practice, to compute λAMP , we replaced the asymptotic parameters of the AMP theory with their finite sample

counterparts. Namely, δ = n/p = 100/300, γ = k/p = k/300 and Π? = Π? = 1/2δt+ 1/2δ−t, where δt is a point

mass distribution at t. Given these parameters, the formula to evaluate λAMP is provided e.g. in [2, 4, 23]. In

case of strongly correlated design we additionally use λs = 0.5λAMP .

5.2 Selection of the threshold

We aim to construct a sign estimator derived from the thresholded LASSO estimator (resp. thresholded BP

estimator) as defined hereafter

∀i ∈ {1, . . . , p}, β̂τi := β̂i1{|β̂i|>τ} (6)

By taking τ1−α as the 1 − α quantile of max
{∣∣∣β̂i∣∣∣ , i /∈ supp(β0)

} (
resp. max

{∣∣∣β̂i∣∣∣ , i /∈ supp(β0)
})

then the

probability to estimate simultaneously every null components of β0 at zero is 1 − α. Consequently, using the

threshold τ1−α and when non-null components of β0 are very large then thresholded LASSO sign estimator

(resp. thresholded BP estimator) recovers S(β0) with a probability arbitrarily close to 1 − α. Obviously τ1−α

cannot be obtained by a straightforward computation since β0 is not known.

Given a threshold τ > 0, let us set the FWER as follows (the FWER can be seen as the Family Wise Error

Rate for multiple testing procedure)

FWER := P
(
∃i /∈ supp(β0),

∣∣∣β̂τi ∣∣∣ 6= 0
)
.

In order to provide a threshold larger than τ1−α (and thus to control the FWER at level α), it could seem

appealing to look at the distribution of supremum norm of the LASSO (resp. BP estimator) in the full null

model when β0 = 0 [19]. For the BP estimator, Descloux and Sardy [12] suggest the threshold τ fn
1−α defined as

the 1− α quantile of max
{∣∣∣β̂fn

1

∣∣∣ , . . . , ∣∣∣β̂fn
p

∣∣∣} where β̂fn is the following estimator

β̂fn := argmin ‖β‖1 subject to Xβ = ε.
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Unfortunately, in the high-dimensional linear model, this intuitive method provides a threshold τ fn
1−α which is

smaller than τ1−α and thus does not assure that FWER ≤ α (see also Su et al. [23] for additional explanations).

Recently developed knockoff methodology [1, 8], allows to approximate the distribution of β̂(λ) associated to

null-components of β0 by creating fake copies of explanatory variables. Consequently, the knockoff methodology

is useful to compute a threshold. For this numerical study, we use model free knockoffs proposed in [8] to recover

a threshold which heuristically control the FWER at a given level. The approach developed hereafter is available

when X is a Gaussian matrix having a distribution invariant by columns’ permutation. In this setting, the size

of the knockoff matrix can be as small as possible (see Weinstein et al. [29] for a similar approach). Because

adding some fake copies of explanatory variables can change some relevant properties (such as the identifiability

condition for β0), ideally the knockoff matrix should have just one column. Specifically, at the first step we

use model free knockoffs [8] to generate 30 = p/10 of fake variables. Then Lasso or BP is run on the matrix

supplemented with these additional columns and the maximum of the absolute values of regression coefficients

over 30 fake variables is saved. This step is repeated 10 times and the overall maximum of the p = 300 absolute

values of regression coefficients over fake variables is calculated. The whole procedure is repeated many times

(here 1000) and 0.95 quantile of the obtained maxima is used as the threshold to identify null-components of

β0.

To confirm with the set-up of simulations used to derive the irrepresentability and identifiability curves, in

all replicates of our simulation study we used the same fixed design matrix X described in settings 1 and 2 of

the subsection .... In our numerical experiments we randomly sampled the location of the true signals and we

randomly generated the error term.

5.2.1 LASSO and Adaptive LASSO

In our numerical experiments we selected the following values of the tuning parameters for LASSO and adaptive

LASSO:

• For LASSO we selected λL = 8.118.

• For the adaptive LASSO the weights are derived using initial estimates β̂L(λAMP ), where the tuning

parameter is selected according to AMP theory, described above. For i ∈ {1, . . . , p}, weights w(βi) are

defined as w(βi) := 1/(β̂i
L

(λAMP ) + 10−7). Using these weights and the tuning parameter λL described

above, the adaptive LASSO has the following expression

β̂adapt := argmin
β∈Rp

1

2
‖Y −Xβ‖22 + λL

p∑
i=1

w(βi)|βi|. (7)

In all our simulations LASSO is calculated with glmnet.
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5.3 Numerical comparisons

The rows of the design matrix X are sampled as the independent vectors from the multivariate Gaussian

distribution, as in setting 1 and 2. All numerical experiments are performed with a particular observation of X

(the same as the one used in the previous subsection). We set β0 ∈ Rp such that k := card{i | β0
i 6= 0} with

k = {5, 20}, {i | β0
i 6= 0} is a k sample without replacement of {1, . . . , p}. The non null components of β0 have

a uniform distribution {−t, t} where t > 0. Additionally, for strongly and positively correlated explanatory

variables we consider the set-up where all non-zero coefficients are equal to t. In all simulations the error term

is generated as ε ∼ N (0, Idn).

Figures 4-6 provide the comparison between the following sign estimators.

• The sign estimator L is derived from LASSO with λ = λL.

• The sign estimator adL is derived from the adaptive LASSO estimator, described in (7).

• The sign estimator BPS is derived from the thresholded BP, with threshold selected as in [12].

• The sign estimator BPkn is derived from the thresholded BP, with a threshold given by the ”knockoff”

methodology described above.

• The sign estimator Lkn is derived from the thresholded LASSO with λ = λAMP and with a threshold

given by the ”knockoff” methodology described above.

• The sign estimator Lkns is derived from the thresholded LASSO with λ = 0.5λAMP and with a threshold

given by the ”knockoff” methodology described above.

In order to recover the sign of β0, null components of β0 have to be estimated simultaneously at zero. This

naive remark motivate us to report the curves illustrating the following statistical properties as the function of

the signal strength:

• FWER is the proportion of 1000 replicates that at least one null components of β0 be not estimated at

zero.

We report the curve illustrating the probability to recover the sign as the function of the signal strenght:

• Probability is the proportion of 1000 replicates for which the sign is recovered.

Figure 6-8 illustrate that the upper bound for the probability of LASSO sign estimator is reached and

the FWER is controlled when non null component of β0 are large (i.e when t is large). On the other hand,

thresholded LASSO and thresholded BP can appropriately identify S(β0) when the identifiability condition

holds. Indeed, when k ∈ {5, 20} as illustrated in figures 4 and 5, the identifiability condition occurs and thus

sign estimators derived from thresholded LASSO and thresholded BP recover S(β0) as soon as the threshold is
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Figure 6: This figure provides the FWER and the probability to recover S(β0) for each sign estimators and
when X is the design matrix given in setting 1. Figures on the left provide the probability to recover S(β0) (on
the y-axis) as a function of t, where t measures how large are the non-null components of β0. Figures on the
right provide the FWER (on the y-axis) as a function of t (on the x-axis). Among these sign estimators, one
notices that the thresholded LASSO sign estimator is the one which recovers S(β0) with the largest probability.
These sign estimators recover approximately S(β0) with a probability close to 0.95 when t is large.
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Figure 7: This figure provides the FWER and the probability to recover S(β0) for each sign estimators and
when X is the design matrix given in setting 2. Figures on the left provide the probability to recover S(β0) (on
the y-axis) as a function of t, where t measures how large are the non-null components of β0. Figures on the
right provide the FWER (on the y-axis) as a function of t (on the x-axis). The horizontal lines y = 0.55 and
y = 0.45 are the average value upper bound for the probability LASSO sign recovery and average value for the
FWER associated to LASSO given by the proposition 1. One notices that the upper-bound is approximately
reached and the FWER is approximately controlled when t is very large as illustrated by figures in the middle.
Sign estimators (except LASSO sign estimator) recover approximately S(β0) with a probability close to 0.95
when t is large.
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Figure 8: This figure provides the FWER and the probability to recover S(β0) for each sign estimators and
when X is the design matrix given in setting 2 and non-null components of β0 are positive. Figures on the left
provide the probability to recover S(β0) (on the y-axis) as a function of t, where t measures how large are the
non-null components of β0. Figures on the right provide the FWER (on the y-axis) as a function of t (on the
x-axis). These sign estimators recover approximately S(β0) with a probability close to 0.95 when t is large.
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well calibrated and the non null components are large enough. In our simulated setup, thresholded BP performs

pretty well but is never optimal. Indeed using an appropriate tuning parameter λ, the probability to recover

S(β0) is larger with thresholded LASSO than with thresholded BP. When entries of X are i.i.d N (0, 1), the

optimal value of λ selected by AMP theory provides a thresholded LASSO for which the derived sign estimator

is the best one to recover S(β0). One notices that the threshold selection provided in Descloux and Sardy

[12] does not allow to recover S(β0) with a large probability when β0 has lot of large components (intuitively

when β0 is far from 0). Instead, our heuristic application of the knockoff methodology allows for almost perfect

control of FWER at level 0.05. Consequently, when non null components of β0 are large enough and when the

threshold is given by knockoff methodology, sign estimator derived from thresholded LASSO (resp. thresholded

BP) recovers S(β0) with a probability close to 0.95.
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6 Conclusion

This article main focus on theoretical properties of sign estimators derived from LASSO, thresholded LASSO

and thresholded BPDN. We provided an upper bound for LASSO sign recovery; this upper bound is reached

when N tends to +∞ and the identifiability condition holds. In addition, when the irrepresentable condition

occurs (implying that the identifiability condition occurs) and when N is large, we have shown that λ can be

selected appropriately in order to control the FWER at an arbitrary level.

When S(β∗) is identifiable with respect to the l1 norm and N is large enough, we have shown that sign

estimators derived from thresholded LASSO and thresholded BPDN recover S(β∗). On the other hand, if S(β∗)

is not identifiable with respect to the l1 norm, sign estimators derived from thresholded LASSO and thresholded

cannot recover S(β∗) even if N is extremely large.

We have introduced identifiability curve (resp. irrepresentability curve) which is useful to know for which

sparsity β∗ is identifiable with respect to the l1 norm (resp. for which sparsity β∗ the irrepresentable condition

holds).

The performances of sign estimators derived from LASSO, thresholded LASSO and thresholded BPDN de-

pend obviously from the tuning parameter, the regularization parameter and the threshold. We have illustrated

that AMP theory and knockoff methodology are useful to select these two parameters. Our simulations show

that thresholded LASSO and thresholded BPDN sign estimators outperform adaptive LASSO and LASSO sign

estimators.
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7 appendix

7.1 Proof of the theorem 1

First, let us provide a lemma which is useful to prove both theorems 1 and 2. This lemma partially proved the

theorem 1. Indeed, according to the lemma 1, when β∗ satisfies the identifiability condition then the following

asymptotic result holds

lim
N→+∞

P(∀i ∈ I, S(β̂lasso
i (λ,N)) = S(β∗i )) = 1.

Lemma 1 Let us remind that β̃ ∈ Rp is the unique solution of the problem: minimize ‖β‖1 subject to Xβ =
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Xβ∗ and let ε ∈ Rn be a fixed vector. Then, the following asymptotic result holds

lim
N→+∞

β̂lasso(ε,N)/N = β̃.

Proof: Because β̂lasso(ε,N) is the LASSO estimator as defined in (2) then the following inequality occurs

1

2
‖Y −Xβ̂lasso(ε,N)‖22 + λ‖β̂lasso(ε,N)‖1 ≤

1

2
‖Y −X(Nβ̃)‖22 + λ‖Nβ̃‖1.

Since Y −X(Nβ̃) = ε one may deduce the following inequalities

λ‖β̂lasso(ε,N)‖1 ≤
1

2
‖ε‖22 + λ‖Nβ̃‖1,

⇒ ‖β̂lasso(ε,N)/N‖1 ≤
‖ε‖22
2λN

+ ‖β̃‖1. (8)

In addition, Cauchy-Schwarz inequality gives the following implications

1

2
‖ε+X(Nβ̃)−Xβ̂lasso(ε,N)‖22 + λ‖β̂lasso(ε,N)‖1 ≤

1

2
‖ε‖22 + λ‖Nβ̃‖1,

⇒ −‖ε‖2‖X(Nβ̃)−Xβ̂lasso(ε,N)‖2 +
1

2
‖X(Nβ̃)−Xβ̂lasso(ε,N)‖22 + λ‖β̂lasso(ε,N)‖1 ≤ λ‖Nβ̃‖1,

⇒ −‖ε‖2
N

∥∥∥∥∥X
(
β̃ − β̂lasso(ε,N)

N

)∥∥∥∥∥
2

+
1

2

∥∥∥∥∥X
(
β̃ − β̂lasso(ε,N)

N

)∥∥∥∥∥
2

2

+
λ

N

∥∥∥∥∥ β̂lasso(ε,N)

N

∥∥∥∥∥
1

≤ λ

N
‖β̃‖1 (9)

To prove that limN→+∞ β̂lasso(ε,N)/N = β̃ is enough to prove that for an arbitrary increasing sequence

(Nr)r∈N∗ such that limr→+∞Nr = +∞ then limr→+∞ β̂lasso(ε,Nr)/Nr = β̃. Let us notice that, according

to (8), the sequence (β̂lasso(ε,Nr)/Nr)r∈N∗ is bounded (by 1 + ‖ε‖22/(λN0)). Consequently, to prove that

limr→+∞(β̂lassoε,Nr)/Nr = β̃ it is sufficient to show that β̃ is the unique limit point of this sequence. Let

(β̂lasso(ε,Nφ(r))/Nφ(r))r∈N∗ be a converging subsequence to l (with φ : N∗ → N∗ strictly increasing). By (8) and

(9) one deduces that

Xβ̃ = Xl and ‖l‖1 ≤ ‖β̃‖1.

By construction, β̃ is identifiable up to its l1 norm (as the unique solution of a basis pursuit problem). Therefore,

one may deduce that β̃ = l thus β̃ is the unique limit point. Consequently, limr→+∞ β̂lasso(ε,Nr)/Nr = β̃, which

implies that

lim
N→+∞

β̂lasso(ε,N)/N = β̃.

�

Proof of the theorem 1: Let A be the set A := supp(β̂lasso(λ)).
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Upper bound) Let us give two expressions met by the LASSO estimator as defined in (2). The vector β̂lasso(λ)

is the LASSO estimator if and only if the following two inequalities occur simultaneously.

X ′A(Y −Xβ̂lasso(λ)) = λS(β̂lasso
A (λ)), (10)

‖X ′
A

(Y −Xβ̂lasso(λ))‖∞ ≤ λ. (11)

These two expressions are given in Bühlmann and van de Geer [5] page 15 or in the proof of the theorem 1 of

Zou [32]. Using the equality (10) and the inequality (11), we are going to show that if S(β̂lasso(λ)) = S(β∗)

then the following event holds

∥∥∥∥X ′IXI(X
′
IXI)

−1S(β∗I ) +
1

λ
X ′
I

(
Id−XI(X

′
IXI)

−1X ′I
)
ε

∥∥∥∥
∞
≤ 1.

Let us assume that S(β̂lasso(λ)) = S(β∗) thus A = I (where I = supp(β∗)). Since Y = Xβ∗ + ε = XIβ
∗
I + ε

and Xβ̂lasso(λ) = XI β̂
lasso
I (λ) then the equality (10) and the inequality (11) lead to the following expressions

X ′I

(
ε+XI(β

∗
I − β̂lasso

I (λ))
)

= λS(β∗I ), (12)∥∥∥X ′I (ε+XI(β
∗
I − β̂lasso

I (λ))
)∥∥∥
∞
≤ λ. (13)

The equality (12) assures that

β∗I − β̂lasso
I (λ) = (X ′IXI)

−1 (λS(β∗I )−X ′Iε) .

Let us notice that since ker(XI) = 0 then the Gram matrix X ′IXI is invertible. Using the previous expression

in the inequality (13) gives

∥∥X ′
I
XI(X

′
IXI)

−1(λS(β∗I )−X ′Iε) +X ′
I
ε
∥∥
∞ ≤ λ,∥∥∥∥X ′IXI(X

′
IXI)

−1S(β∗I ) +
1

λ
X ′
I

(
Id−XI(X

′
IXI)

−1X ′I
)
ε

∥∥∥∥
∞
≤ 1.

Consequently, one deduces the folowing inequality

P
(
S(β̂lasso(λ)) = S(β∗)

)
≤ P

(∥∥∥∥X ′IXI(X
′
IXI)

−1S(β∗I ) +
1

λ
X ′
I

(
Id−XI(X

′
IXI)

−1X ′I
)
ε

∥∥∥∥
∞
≤ 1

)
︸ ︷︷ ︸

=P(‖ζX,λ,S(β∗)‖∞≤1)=γ̄

.

Sharpness of the upper bound) Since the upper bound does not depend from N > 0 then

lim sup
N→+∞

P
(
S(β̂lasso(λ,N)) = S(β∗)

)
≤ γ̄.
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So it remains to prove that lim infN→+∞ P
(
S(β̂lasso(λ,N)) = S(β∗)

)
≥ P

(∥∥ζX,λ,S(β∗)

∥∥
∞ < 1

)
= γ.

Let us assume that the following events hold simultaneously

X ′I(Y −Xβ̂lasso(λ)) = λS(β∗I ) and
∥∥X ′

I
XI(X

′
IXI)

−1λS(β∗I ) +X ′
I

(
Id−XI(X

′
IXI)

−1X ′I
)
ε
∥∥
∞ < λ︸ ︷︷ ︸

=‖ζX,λ,S(β∗)‖∞<1

. (14)

We aim to show that the inequalities given above imply that β̂lasso
I

(λ) = 0. For convenience, let us set H be

the projection matrix H := XI(X
′
IXI)

−1X ′I . When (14) occurs then the following inequalities holds

∥∥∥X ′IH(Y −Xβ̂lasso(λ)) +X ′
I

(Id−H) ε
∥∥∥
∞

< λ,∥∥∥X ′I (H(Y −Xβ̂lasso(λ)) + (Id−H)ε
)∥∥∥
∞

< λ,∥∥∥X ′I (Y −Xβ̂lasso(λ) +XI β̂
lasso
I

(λ) +HXI β̂
lasso
I

(λ)
)∥∥∥
∞

< λ. (15)

The inequality (15) comes from the following two identities

HY = H(X(Nβ∗)) +Hε = H(XI(Nβ
∗
I )) +Hε = XI(Nβ

∗
I ) +Hε = X(Nβ∗) +Hε and,

HXβ̂lasso(λ) = HXI β̂
lasso
I (λ) +HXI β̂

lasso
I

(λ) = Xβ̂lasso(λ)−XI β̂
lasso
I

(λ) +HXI β̂
lasso
I

(λ).

Let v be the vector v := X ′
I

(
Y −Xβ̂lasso(λ) +XI β̂

lasso
I

(λ) +HXI β̂
lasso
I

(λ)
)

, we are going to see that the

inequality (15) implies that β̂lasso
I

(λ) = 0. Let us assume that β̂lasso
I

(λ) 6= 0 then, on the first hand, the

following inequality occurs

β̂lasso
I

(λ)′v ≤ ‖β̂lasso
I

(λ)‖1‖v‖∞ < λ‖β̂lasso
I

(λ)‖1. (16)

According to (10) the identity β̂lasso
i (λ)X ′i(Y − Xβ̂lasso

i (λ)) = λ|β̂lasso
i (λ)| occurs. Consequently, on the other

hand, the following inequalities hold

β̂lasso
I

(λ)′v = β̂lasso
I

(λ)′X ′
I

(
Y −Xβ̂lasso(λ) +XI β̂

lasso
I

(λ)−HXI β̂
lasso
I

(λ)
)
,

= λ‖β̂lasso
I

(λ)‖1 + β̂lasso
I

(λ)′X ′
I
(Id−H)XI β̂

lasso
I

(λ),

≥ λ‖β̂I(λ)‖1. (17)

The last inequality occurs because the projection matrix Id−H is positive semi-definite. Inequalities (16) and

(17) provide a contradiction which implies that β̂lasso
I

(λ) = 0.

According to (10), the following implication holds

S(β̂lasso
I (λ,N)) = S(β∗I )⇒ X ′I(Y −Xβ̂lasso(λ,N)) = λS(β∗I ).
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Because β∗ is identifiable with respect to the l1 norm then, according to the lemma 1, the following convergence

in probability occurs

lim
N→+∞

P(S(β̂lasso
I (λ,N)) = S(β∗I )) = lim

N→+∞
P(X ′I(Y −Xβ̂lasso(λ,N)) = λS(β∗I )) = 1. (18)

Using this asymptotic result and since when (14) occurs then β̂lasso
I

(λ,N) = 0, one may deduce the following

inequalities

lim inf
N→+∞

P
(
S(β̂lasso(λ,N)) = S(β∗)

)
= lim inf

N→+∞
P
(
S(β̂lasso

I (λ,N)) = S(β∗I ) and β̂lasso
I

(λ,N) = 0
)
,

= lim inf
N→+∞

P(β̂lasso
I

(λ,N) = 0),

≥ lim inf
N→+∞

P
(
X ′I(Y −Xβ̂lasso(λ,N)) = S(β∗I ) and

∥∥ζX,λ,S(β∗)

∥∥
∞ < 1

)
,

≥ lim inf
N→+∞

P
(∥∥ζX,λ,S(β∗)

∥∥
∞ < 1

)
= γ.

Asymptotic full power and asymptotic control of the FWER) According to (18), asymptotically the

power is equal to 1, namely limN→+∞ P(∀i ∈ I, S(β̂lasso
i (λ,N)) = S(β∗i )) = 1. Now let us prove that the FWER

is controlled asymptotically. Using asymptotic results given above one may deduce the following inequalities.

γ̄ ≥ lim sup
N→+∞

P(S(β̂(λ,N)) = S(β∗)),

≥ lim sup
N→+∞

P(∀i ∈ I, S(β̂i(λ,N)) = S(β∗i ) and ∀i /∈ I, β̂i(λ,N) = 0),

≥ lim sup
N→+∞

P(∀i /∈ I, β̂i(λ,N) = 0). (19)

The last inequality come from (18). Similarly, we have

γ ≤ lim inf
N→+∞

P(∀i /∈ I, β̂i(λ,N) = 0). (20)

Consequently, by taking the complement to 1 of the inequalities given in (19) and (20), one may deduce that

lim inf
N→+∞

P(∃i /∈ I, β̂i(λ,N) 6= 0) ≥ 1− γ̄ and lim sup
N→+∞

P(∃i /∈ I, β̂i(λ,N) 6= 0) ≤ 1− γ.

�

Proof of the theorem 2

The lemma 2 provides the same result for BPDN than the lemma 1 for LASSO. These both lemmas are the

keystone to prove the theorem 2. The proof of lemma 2 is partially inspired from the one given in Candès et

al. [9].
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Lemma 2 Let us remind that β̃ ∈ Rp is the unique solution of the problem: minimize ‖β‖1 subject to Xβ =

Xβ∗ and let ε ∈ Rn be a fixed vector. Then, the following asymptotic result holds

lim
N→+∞

β̂bpdnn(ε,N)/N = β̃.

Proof: Let us define u(ε) ∈ Rp as follows

u(ε) := argmin
β∈Rp

‖β‖1 subject to Xβ = ε.

Because X(Nβ∗) = X(Nβ̃) and X(u(ε)) = ε, we have Y (ε) = X(Nβ̃ + u(ε)) and because β̂bpdn(ε,N) is an

admissible point of (3) one deduces the following inequality

∥∥∥∥ 1

N
Xβ̂bpdn(ε,N)−Xβ̃

∥∥∥∥
2

≤
∥∥∥∥ 1

N
Xβ̂bpdn(ε,N)− 1

N
Y

∥∥∥∥
2

+

∥∥∥∥ 1

N
Y −Xβ̃

∥∥∥∥
2

≤
√
R

N
+
‖Xu(ε)‖2

N
. (21)

Because Nβ̃ + u(ε) is an admissible point of the problem (3) and because β̂bpdn(ε,N) is the minimizer of (3),

one deduces the following inequalities hold

1

N
‖β̂bpdn(ε,N)‖1 ≤

1

N
‖Nβ̃ + u(ε)‖1 ≤ ‖β̃‖1 +

‖u(ε)‖1
N

. (22)

To prove that limN→+∞ β̂bpdn(ε,N)/N = β̃ is enough to prove that for an arbitrary increasing sequence

(Nr)r∈N∗ such that limr→+∞Nr = +∞ then limr→+∞ β̂bpdn(ε,Nr)/Nr = β̃. Let us notice that the sequence

(β̂bpdn(ε,Nr)/Nr)r∈N∗ is bounded (by 1+‖u(ε)‖1/N0). Consequently, to prove that limr→+∞(β̂bpdnε,Nr)/Nr =

β̃ it is sufficient to show that β̃ is the unique limit point of this sequence. Let (β̂bpdn(ε,Nφ(r))/Nφ(r))r∈N∗ be a

converging subsequence to l (with φ : N∗ → N∗ strictly increasing). By (21) and (22) one deduces that

Xβ̃ = Xl and ‖l‖1 ≤ ‖β̃‖1.

By construction of β̃ (as a unique solution of a basis pursuit problem), one deduces that β̃ = l thus β̃ is the

unique limit point. Consequently, limr→+∞ β̂bpdn(ε,Nr)/Nr = β̃, which implies that

lim
N→+∞

β̂bpdn(ε,N)/N = β̃.

�

Proof of the theorem 2:

Separation property: Let us set η0 > 0 such that η0 < min{|β̃i|, i ∈ B}/2. The lemmas 1 and 2 prove the
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convergence of β̂(ε,N)/N to β̃ when N tends to +∞. Consequently, there exists N0(ε) ∈ (0,+∞) such that

∀N ≥ N0(ε), ‖β̂(ε,N)/N − β̃‖∞ ≤ η0 ⇔ ∀N ≥ N0(ε),∀i ∈ {1, . . . , p},
∣∣∣β̂i(ε,N)/N − β̃i

∣∣∣ ≤ η0.

Consequently, when N ≥ N0(ε), whatever i /∈ B (thus when β̃i = 0) the following inequalities hold

∀i /∈ B,
∣∣∣β̂i(ε,N)/N

∣∣∣ ≤ η0,

⇒ −Nη0 ≤ min
i/∈B

{
β̂i(ε,N)

}
≤ max

i/∈B

{
β̂i(ε,N)

}
≤ Nη0.

Whatever i ∈ B+ (thus when β̃i > 0) the following inequalities hold

∀i ∈ B+, β̂i(ε,N)/N ≥ −
∣∣∣β̂i(ε,N)/N − β̃i

∣∣∣+ β̃i,

⇒ min
i∈B+

{
β̂i(ε,N)/N

}
≥ −η0 + min{|β̃i|, i ∈ B} > η0,

⇒ min
i∈B+

{
β̂i(ε,N)

}
> Nη0.

Whatever i ∈ B− (thus when β̃i < 0) the following inequalities hold

∀i ∈ B−, β̂i(ε,N)/N ≤
∣∣∣β̂i(ε,N)/N − β̃i

∣∣∣+ β̃i,

⇒ max
i∈B−

{
β̂i(ε,N)/N

}
≤ η0 −min{|β̃i|, i ∈ B} < −η0,

⇒ max
i∈B−

{
β̂i(ε,N)

}
< −Nη0.

Finally, when N ≥ N0(ε) then

max
i∈B−

{
β̂i(ε,N)

}
< min

i/∈B

{
β̂i(ε,N)

}
≤ max

i/∈B

{
β̂i(ε,N)

}
< min
i∈B+

{
β̂i(ε,N)

}
.

Sign recovery: If β∗ is identifiable with respect to the l1 norm then β∗ = β̃ and consequently, S(β̃) = S(β∗).

Reciprocally, let us assume that S(β̃) = S(β∗). Because, by construction, β̃ is identifiable with respect to the

l1 norm and because S(β̃) = S(β∗) then, according to the proposition 2, β∗ is identifiable with respect to the

l1 norm. �

Proof of propositions

Proof of the proposition 2: According to Daubechies et al. [11], β∗ is identifiable with respect to the l1
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norm if and only if the following inequality holds

∀h ∈ ker(X) \ {0},

∣∣∣∣∣∣
∑

i∈supp(β∗)

S(β∗i )hi

∣∣∣∣∣∣ <
∑

i/∈supp(β∗)

|hi|.

Because S(β̃) = S(β∗) implies supp(β̃) = supp(β∗), the following inequality holds

∀h ∈ ker(X) \ {0},

∣∣∣∣∣∣
∑

i∈supp(β̃)

S(β̃i)hi

∣∣∣∣∣∣ <
∑

i/∈supp(β̃)

|hi|.

Consequently, the parameter β̃ is identifiable with respect to the l1 norm. �

Proof of the proposition 1: From Daubechies et al. [11], β∗ is a parameter having a minimal l1 norm,

namely Xβ∗ = Xγ ⇒ ‖γ‖1 ≥ ‖β∗‖1 holds, if and only if the following inequality occurs

∀h ∈ ker(X),

∣∣∣∣∣∑
i∈A

S(β∗i )hi

∣∣∣∣∣ ≤∑
i/∈A

|hi|. (23)

We are going to show that when the irrepresentable condition holds for β∗ then the inequality (23) holds.

Let h ∈ ker(X) and let us remind that hA and hA denote respectively vectors (hi)i∈A and (hi)i/∈A then, the

following equality holds

∑
i∈A

S(β∗i )hi = h′AS(β∗A) = h′AX
′
AXA(X ′AXA)−1S(β∗A).

Because 0 = Xh = XAhA +XAhA, one deduces the following inequalities

|h′AS(β∗A)| =
∣∣h′AX ′AXA(X ′AXA)−1S(β∗A)

∣∣ ,
≤ ‖hA‖1‖X

′
AXA(X ′AXA)−1S(β∗A)‖∞. (24)

Consequently, when the irrepresentable condition holds for β∗ namely, when ‖X ′AXA(X ′AXA)−1S(β∗A)‖∞ ≤ 1

then, the inequality (24) gives |h′AS(β∗A)| ≤ ‖hA‖1. Thus, by the equivalence given in (23), β∗ is a solution of

the following basis pursuit problem

minimize ‖γ‖1 subject to Xγ = Xβ∗

BecauseX is in general position the previous optimisation problem has a unique solution (see e.g. the proposition

1 in appendix) thus Xβ∗ = Xγ and γ 6= β∗ implies that ‖γ‖1 > ‖β∗‖1 namely β∗ is identifiable with respect to

the l1 norm. �
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Supplementary material

We already said that when X is in general position the minimizer of the problem (??) is unique, we also stressed

that the estimator derived by minimizing (??) when R > 0 is a LASSO. When the LASSO is written in usual

way as in (2), a sketch of proof given in Tibshirani [27] shows the uniqueness of the LASSO estimator when X

is in general position. In order to provide a self content article, we show that when X is in general position the

minimizer of the problem (??) is unique when R = 0 as well as when R > 0. We already stressed that when β∗

is identifiable with respect to the l1 norm then β∗ is sparse. We are going to show that when the identifiability

holds for β∗ then the family (Xi)i∈supp(β∗) is linearly independent and thus the number of components of β∗

equal to 0 is larger than p− n.
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[21] Nicolai Meinshausen and Peter Bühlmann. High-dimensional graphs and variable selection with the lasso.

The Annals of Statistics, 34(3):1436–1462, 2006.

[22] Hatef Monajemi, Sina Jafarpour, Matan Gavish, David L Donoho, Sivaram Ambikasaran, Sergio Bacallado,

Dinesh Bharadia, Yuxin Chen, Young Choi, Mainak Chowdhury, et al. Deterministic matrices matching the

compressed sensing phase transitions of gaussian random matrices. Proceedings of the National Academy

of Sciences, 110(4):1181–1186, 2013.

31



[23] Weijie J Su, Ma lgorzata Bogdan, and Emmanuel J. Candès. False discoveries occur early on the lasso path.

The Annals of Statistics, 45(5):2133–2150, 2017.

[24] Patrick Tardivel. Représentation parcimonieuse et procédures de tests multiples: application à la
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