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Abstract

We consider the regression model Y = Xβ∗ + ε, when the number of observations n is smaller than the

number of explicative variables p. It is well known that the popular Least Absolute Shrinkage and Selection

Operator (LASSO) can recover the sign of β∗ only if a very stringent irrepresentable condition is satisfied.

In this article, in a first step, we provide a new result about the irrepresentable condition: the probability

to recover the sign of β∗ with the LASSO is smaller than 1/2 once the irrepresentable condition does not

hold. On the other hand, LASSO can consistently estimate β∗ under much weaker assumptions than the

irrepresentable condition. This implies that appropriately thresholded LASSO can recover the sign of β∗

under such weaker assumptions (see e.g. [24] or [34]). In this article we revisit properties of thresholded

LASSO and provide new theoretical results in the asymptotic setup under which the design matrix is fixed

and the magnitudes of nonzero components of β∗ tends to infinity. Apart from LASSO, our results cover

also basis pursuit, which can be thought of as a limiting case of LASSO when the tuning parameter tends

to 0. Compared to the classical asymptotics with respect to n and p, our approach allows for reduction of

the technical burden. In the result our main theorem takes a simple form:

Appropriately thresholded LASSO (with any given value of the tuning parameter) or thresh-

olded basis pursuit can recover the sign of the sufficiently large signal if and only if β∗ is

identifiable with respect to the l1 norm, i.e.

If Xγ = Xβ∗ and γ 6= β∗ then ‖γ‖1 > ‖β∗‖1,

or in another words, when β∗ can be recovered by solving the basis pursuit problem in the

noiseless case.

For any given design matrix X, we define the irrepresentability and identifiability curves. For a given

integer r, these curves provide the proportion of β∗ having r nonzeros for which respectively the irrepre-

sentability and identifiability conditions hold. These curves illustrate that the irrepresentable condition is
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much stronger than the identifiability condition (thus highlight our theoretical results) since the gap between

the irrepresentability and identifiability curves is very large.

One notices that the identifiability curves drops very quickly from 1 to 0. These numerical observations

are not surprising when X has i.i.d N (0, 1) entries. Indeed, when n and p are both large there exists a value

ktr ∈ (0, 1) (given by the asymptotic transition curve [14]) such that the proportion of β∗ identifiable with

respect to the l1 norm is close to 1 (resp. close to 0) as soon as r/n < ktr (resp. r/n > ktr). Surprisingly,

contrarily to classical assumptions (such as the irrepresentability), the identifiability condition does not

become a very stringent condition when entries of X are extremely correlated. Indeed, the identifiability

curve is the same when entries of X are extremely correlated as when entries of X has i.i.d N (0, 1) entries.

In addition, when the entries of X are positively correlated and the components of β∗ have the same sign,

the identifiability curve is highly above the one associated to i.i.d N (0, 1) entries.

Finally, we illustrate how the knockoff methodology [2, 9] can be used to select the appropriate threshold

and that thresholded basis pursuit and LASSO can recover the sign of β∗ with a larger probability than

adaptive LASSO [38].

Keywords: Active set estimation, Basis pursuit, Identifiability condition, Irrepresentability condition,

LASSO, Sign estimation.

1 Introduction

Let us consider the high-dimensional linear Gaussian model

Y = Xβ∗ + ε, (1)

where X = (X1| . . . |Xp) is a n × p with n < p, ε is a centered Gaussian vector with var(ε) = σ2Idn and

β∗ ∈ Rp is an unknown parameter. The sign vector of β∗ is sign(β∗) = (sign(β∗1), . . . sign(β∗p)) ∈ {−1, 0, 1}p

where for x ∈ R, sign(x) = 1x>0 − 1x<0. Our main purpose is to recover sign(β∗). This objective is slightly

more general than the aim at recovering the active set A := {i ∈ {1, . . . , p} | β∗i 6= 0} (because when sign(β∗) is

given one obtains A but the reverse does not hold). The main difficulty to recover sign(β∗) is to discriminate

which components of β∗ are exactly null. Using a sparse estimator (an estimator for which some components

are equal to zero) is thus a natural way to recover sign(β∗). The LASSO estimator [11, 32] defined hereafter is

probably the most famous sparse estimator

β̂(λ) := argmin
β∈Rp

1

2
‖Y −Xβ‖22 + λ‖β‖1 (2)
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When rank(X) = n, an other equivalent writing of the LASSO is given hereafter

β̂R := argmin
β∈Rp

‖β‖1 subject to ‖Y −Xβ‖22 ≤ R (3)

with a one to one relation between the tuning parameter λ > 0 and the radius R > 0 under which these both

problems share the same solution (see e.g the chapter 5.3 of the book [4]). The basis pursuit estimator is

the solution of (3) when R = 0. This estimator is the limit of the LASSO as defined in (2) when the tuning

parameter λ tends to 0 [13, 17].

Asymptotic properties of the sign estimator sign(β̂(λ)) :=
(

sign(β̂1(λ)), . . . , sign(β̂p(λ))
)

(or active set

estimator A(β̂(λ)) := {i ∈ {1, . . . , p} | β̂i(λ) 6= 0}) have been intensively studied [23, 37, 38].

When n tends to +∞, p is fixed and the Gram matrix 1
nX
′X converges to an invertible matrix, asymptotic

properties are given by Yu et al. [37] for the sign estimator and by Zou [38] for the active set estimator. They

proved that the irrepresentable condition is a necessary and “almost” sufficient condition under which, with a

tuning parameter λn adequately chosen, the following convergence hold

lim
n→+∞

P
(

sign(β̂(λn)) = sign(β∗)
)

= 1 and lim
n→+∞

P
(
A(β̂(λn)) = A

)
= 1.

These works had the merit to illuminate the irrepresentable condition as a key condition to recover sign(β∗)

with the LASSO but asymptotic results on n are not really interesting. Indeed, when 1
nX
′X converges to an

invertible matrix it is easy to build a consistent sign estimator based on the maximum likelihood estimator

which does not require the irrepresentable condition to hold. In the noiseless case and in high dimension, when

n < p, in their book page 192-194 Bühlmann and van de Geer [6] showed that the irrepresentable condition is a

necessary and “almost” sufficient condition so that the non random set A(β(λ)) of the non random LASSO β(λ)

converges to A once λ goes to 0. This result illuminates how the irrepresentable condition plays an important

role for the active set in high dimension. Because the irrepresentable condition is a necessary and “almost”

sufficient condition to recover the active set with the LASSO, this assumption or stronger assumptions are often

met in applied and theoretical works [1, 19, 22, 25, 26, 35]. We arg that, one can recover sign(β∗) under a much

weaker assumption than the irrepresentable condition.

In this article we introduce a new condition called identifiability condition which is define hereafter.

Definition 1 (Identifiability) Let X be a n×p matrix and let β ∈ Rp, β is said to be identifiable with respect

to the l1 norm if the following implication hold

Xγ = Xβ and γ 6= β ⇒ ‖γ‖1 > ‖β‖1. (4)
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Under the identifiability assumption, β∗ is sparse. Indeed the lemma 3 given in Tardivel et al. [31] shows

that card{i ∈ {1, . . . , p} | β∗i 6= 0} ≤ n consequently, β∗ has at least p − n zeros. On the other hand some

assumptions on the sparsity on β∗ assures that β∗ is identifiable with respect to the l1 norm. For example when

‖X1‖2 = · · · = ‖Xp‖2 = 1 and the sparsity of β∗ satisfies the following inequality (called mutual coherence

condition)

card{i ∈ {1, . . . , p} | β∗i 6= 0} ≤ 1

2

(
1 +

1

M

)
, where M := max

i6=j
|〈Xi, Xj〉| (5)

then β∗ is identifiable with respect to the l1 norm [15, 18, 21]. In the particular case in which the entries

of X are i.i.d N (0, 1) and n, p are both very large, the phase transition curve [16] provides, with respect to

the ratio n/p, a range of sparsity under which β∗ is identifiable with respect to the l1 norm. To summarize,

roughly speaking, β∗ is identifiable with respect to the l1 norm when β∗ is sparse enough. Assuming that β∗ is

identifiable with respect to the l1 norm is actually weaker than the usual assumptions did on β∗ (see e.g [34]

or [6] page 177). To be sure that the identifiability condition on β∗ is very intuitive for a practitioner we have

introduced the identifiability curve. Given an arbitrary design X, given an integer r, this curve provides the

proportion of vectors β∗ having r nonzeros components for which the identifiability condition holds.

Finally, we show that the sign estimator derived from thresholded LASSO and thresholded basis pursuit

only need the very weak condition given in (4) to recover sign(β∗).

1.1 organization of the article

In section 2, the theorem 1 provides a new look on the irrepresentable condition as a non-asymptotic necessary

condition to recover sign(β∗). The theorem 2 shows that the irrepresentable condition is stronger than the

identifiability condition.

In section 3, we show that sign estimators derived from thresholded LASSO, and thresholded basis pursuit only

need identifiability condition to recover asymptotically sign(β∗).

The section 4 is devoted to numerical experiments. In this section, we introduce irrepresentability and identifia-

bility curves. These curves provides respectively the maximal number of nonzero for β∗ under which the LASSO

sign estimator and the thresholded LASSO (resp. basis pursuit) sign estimator recover their target sign(β∗) (as

soon as nonzero components of β∗ are large enough). When X is a Gaussian matrices with uncorrelated and

strongly correlated entries, simulations show that the sign estimators derived from the thresholded LASSO, and

thresholded basis pursuit are dramatically better than the LASSO sign estimator.

1.2 Notations and assumption

In this article we always assume that the design matrix X is in general condition (see e.g [33] for the definition).

This assumption assures that the minimizer of (2) is unique and thus that the LASSO estimator is well defined.

This assumption is very weak and generically holds. Indeed, when X is a random matrix such that the entries
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(X11, X12, . . . , Xnp) have a density on Rnp then, almost surely, X is in general position [33].

Hereafter the main notations used in this article:

• Let I be a subset of {1, . . . , p}, we denote I the complement in {1, . . . , p} of I, namely I := {1, . . . , p} \ I.

• The notation XI denotes for a matrix whose columns are (Xi)i∈I .

• Let β ∈ Rp, the notation βI denotes for the vector (βi)i∈I and when it is useful [β]i denotes the ith

component of β and supp(β) denotes for the set {i ∈ {1, . . . , p} | βi 6= 0}.

2 The identifiability condition is weaker than the irrepresentability

condition

We already said that the irrepresentable condition is a necessary and “almost” sufficient condition to recover

asymptotically sign(β∗). Hereafter, in the high-dimensional linear Gaussian model, we have a new look on this

well-known condition . The theorem 1 shows that when the irrepresentable condition does not hold namely

‖X ′AXA(X ′AXA)−1sign(β∗A)‖∞ > 1,

then the probability to recover the sign of β∗ cannot be close to 1. Let us point out that the theorem 1 is not

asymptotic and deals with the high-dimensional setting contrarily to the theorems given in [37, 38] and there

is a noise contrarily to the theorem given by Bühlmann and van de Geer [6].

Theorem 1 Let X be a n×p matrix with n < p in general position and let β∗ ∈ Rp and let A := {i ∈ {1, . . . , p} |

β∗i 6= 0}. If the family (Xi)i∈A is not linearly independent then whatever λ > 0, we have P(sign(β̂(λ)) =

sign(β∗)) = 0. If the family (Xi)i∈A is linearly independent and the following inequality holds

‖X ′AXA(X ′AXA)−1sign(β∗A)‖∞ > 1

then whatever λ > 0, we have P(sign(β̂(λ)) = sign(β∗)) ≤ 1/2.

As a consequence of the theorem 1, the inequality ‖X ′AXA(X ′AXA)−1sign(β∗A)‖∞ ≤ 1, called irrepresentable

condition, is a necessary condition to recover sign(β∗) with the LASSO (let us just remind that the Gram matrix

X ′AXA is invertible if and only if (Xi)i∈A is linearly independent). The theorem 2 shows that the irrepresentable

condition on β∗ is a stronger condition than the identifiability assumption on β∗ given in (4).
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Theorem 2 Let X be a n × p matrix with n < p in general position, let β∗ ∈ Rp, let A := {i ∈ {1, . . . , p} |

β∗i 6= 0} and let us assume that the family (Xi)i∈A is linearly independent. If the following inequality holds

‖X ′AXA(X ′AXA)−1sign(β∗A)‖∞ ≤ 1,

then the parameter β∗ is identifiable with respect to the l1 norm, namely Xβ = Xβ∗ and β 6= β∗ implies

‖β‖1 > ‖β∗‖1.

Let us notice that when the inequality in the irrepresentable condition is strict instead of large the theorem 2

remains true without assuming that X is in general position. The two theorems 1 and 2 evidenced that when

the irrepresentable condition does not hold the LASSO sign estimator does not recover sign(β∗) even if β∗ is

identifiable with respect to the l1 norm and the non null component of β∗ are very large. The proof of the

theorem 2 given in this article is the one reported in the PhD manuscript of Tardivel [30]. More recently, a result

close to the theorem 2 was given in the proposition 1 in Descloux and Sardy [13]. The proof of the proposition

1 given in [13] is simple but need more backgrounds than the one given in this article which only need basic

linear algebra computations.

Now, let us explain why the identifiability condition is weaker than the usual assumption given in the LASSO

literature. Among the conditions reported in the LASSO literature, the compatibility condition is the weakest

one [34]. The proposition 1 of Descloux and Sardy [13] shows that the compatibility condition implies the null

space property. Finally, it is well known (see e.g the lemma 1 in [21]) that the null space property implies that

β∗ is identifiable with respect to the l1 norm and that the reverse is not true.

2.1 Sign applications

One notices that the irrepresentable condition just depends from the sign of β∗ and not on how large are the

non null component of β∗. Given a particular design matrix X, the irrepresentability sign application is defined

hereafter.

Irrepresentabity sign application:

ΦXIC : s ∈ {−1, 0, 1}p 7→


1 if s = (0, . . . , 0)

1 if ker(XI) = 0 and ‖X ′
I
XI(X

′
IXI)

−1sI‖∞ ≤ 1 where I := supp(s)

0 otherwise

.

Given this sign application one determines exactly which are the parameters β∗ ∈ Rp satisfying the irrepre-

sentable condition. Such a sign application provides the limitation of the LASSO sign estimator to recover

sign(β∗). Indeed, if φXIC(sign(β∗)) = 0 then the sign of β∗ cannot be recovered with the LASSO even if the

non null components of β∗ are extremely large. We are going to construct such a sign application for the
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identifiability condition given in (4) and later we show that this sign application provides the limitation of

sign estimators derived from the thresholded LASSO and thresholded basis pursuit to recover sign(β∗). The

proposition 1 shows that the identifiability condition just depends from sign(β∗) and not on how large are the

non null components of β∗.

Proposition 1 Let X be a n× p matrix, let β∗ be a parameter identifiable with respect to the l1 norm and let

β̃ be a parameter such that sign(β∗) = sign(β̃) then β̃ is identifiable with respect to the l1 norm.

Given a particular design matrix X, the identifiability sign application is defined hereafter.

Identifiability sign application:

ΦXIdtf : s ∈ {−1, 0, 1}p 7→


0 if s 6= argmin

β∈Rp
‖β‖1 subject to Xβ = Xs

1 otherwise

.

The restriction of these both sign applications to the set E := {s ∈ {−1, 0, 1}p | card(supp(s)) ≤ n} is rele-

vant. Indeed, when card(supp(β∗)) > n the family (Xi)i∈A is not linearly independent thus φXIC(sign(β∗)) =

φXIdtf(sign(β∗)) = 0 (the proposition given supplementary material shows that (Xi)i∈A not linearly indepen-

dent implies that β∗ does not satisfy the identifiability condition). Let us provides some basic properties and

comments about these sign applications.

1. These two functions are even namely whatever s ∈ {−1, 0, 1}p the following equalities holds ΦXIC(s) =

ΦXIC(−s) and ΦXIdtf(s) = ΦXIdtf(−s).

2. Due to the theorem 2, whatever s ∈ {−1, 0, 1}p, ΦXIC(s) ≤ ΦXIdtf(s).

3. The computation of ΦXIC is a straightforward matricial computation; the computation of ΦXIdtf is no more

difficult and need to solve a basis pursuit problem.

The last remark shows that given a parameter β∗ ∈ Rp, it is easy to check weather or not β∗ is identifiable with

respect to the l1 norm.

Based on simulations, Su [28] already noticed that LASSO does not perform well to recover the active set A

(see eg the figure 1 in [28]). We also aim at illustrating that LASSO does not perform well to recover sign(β∗)

by providing a toy example in which computations are easy to handle.

2.2 Example

Let us set X = (X1|X2|X3) where X1 =

(
2 2

)′
, X2 =

(
4 2

)′
and X3 =

(
−1/3 1/3

)′
and let β∗ :=

(β∗1 , 0, 0) with β∗1 6= 0. In this toy example, mathematical arguments and the figure 1 illustrates that the

active set estimator given by the LASSO cannot recover A (thus the LASSO sign estimator cannot recover
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sign(β∗)). Let us set X̃ = (X1|X2) and β̃ols = (X̃ ′X̃)−1X̃ ′Y. We claim that whatever β∗1 ∈ R∗ whatever

λ > 0, if A(β̂(λ)) = {1} then β̃ols
1 β̃ols

2 < 0. It is straightforward that when |β∗1 | is very large P(β̃ols
1 β̃ols

2 < 0) ≈

P(sign(β∗1)β̃ols
2 < 0) = 1/2. Consequently, even in the ideal setting in which β∗1 is extremely large the LASSO

could not recover A = {1} with a probability close to 1. On the other hand, whatever λ > 0, the components

β̂1(λ), β̂2(λ) and β̂3(λ) satisfy the following equalities

β̂3(λ) = 0 and (β̂1(λ), β̂2(λ)) = argmin
β∈R2

‖X̃(β̃ols − β)‖22 + λ‖β‖1.

Schneider and Ewald [27] provide the map between the position of the ordinary least square estimator and the

active set estimator of the LASSO. This result is useful to provide, in the figure 1, the relation between β̃ols

and A(β̂(λ)) (let us notice that A(β̂1(λ), β̂2(λ)) = A(β̂(λ)) in this setting).

Figure 1: This figure provides A(β̂(λ)) with respect to the position of β̃ols = (β̃ols
1 , β̃ols

2 ) and in the particular
case in which λ = 2. As an illustration that the LASSO does not provide a good active set estimator, let
us notice that A(β̂(λ)) = {1, 2} when |β̃ols

1 | ≥ 1 and |β̃ols
2 | ≤ 0.5. Consequently, the LASSO cannot recover

A = {1} when β̃ols
1 is too much large and β̃ols

2 is too much small whereas, intuitively, this configuration seems
to be the ideal one to recover A.

In the following section we are going to show that sign estimators derived from thresholded LASSO and

thresholded basis pursuit do not need that the irrepresentable condition to recover sign(β∗) but only need the

weaker irrepresentability condition. Under this last assumption, we show that these sign estimators asymptoti-

cally recover exactly sign(β∗). We already said that asymptotic results when n goes to +∞ and p fixed are not

really interesting. In the following section we explore a new kind of asymptotic setting in which X and sign(β∗)

are fixed and in which the non null components of β∗ become arbitrary large.
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3 Converging sign estimators

Let us introduce the following family of models

Y k = X(kβ∗) + ε where k ∈ N∗. (6)

Obviously, in this family of models, sign(kβ∗) does not change with k ∈ N∗ and the non null components of

kβ∗ become large when k increases. The theorem 1 and the previous toy example show that as soon as β∗

does not satisfy the irrepresentable condition then, even if k goes to +∞ and whatever λ > 0, the LASSO sign

estimator sign(β̂(λ)) fails to recover sign(β∗). Fortunately, the irrepresentable condition is not an unsurpassable

limitation to recover sign(β∗) and the LASSO is not so bad for sign recovery; this last estimator just need to

be a little bit modified. Actually the theorem 3 shows that an appropriately thresholded LASSO (resp. basis

pursuit) recover asymptotically sign(β∗) under the identifiability condition on β∗ (which is, by the theorem 2,

weaker than the irrepresentability condition).

To provide a result in broad a generality we do not assume, in the theorem 3, that β∗ is identifiable with

respect to the l1 norm.

Let us denote by β̂kR(ε) the following estimator

β̂kR(ε) := argmin
β∈Rp

‖β‖1 subject to ‖Y k(ε)−Xβ‖22 ≤ R. (7)

We now define β̃ as the basis pursuit solution in the noiseless case as follows

β̃ := argmin
β∈Rp

‖β‖1 subject to Xβ = Xβ∗,

and denote B− = {i ∈ {1, . . . , p} | β̃i < 0}, B+ = {i ∈ {1, . . . , p} | β̃i > 0} and B = B− ∪ B+.

Theorem 3 Let X be a n× p matrix in general position such that rank(X) = n. Then, for any fixed ε ∈ Rn,

R ≥ 0 and sufficiently large k > k0(R, ε) it holds

Separation property:

max
i/∈B−

{
[β̂kR(ε)]i

}
< min

i/∈B

{
[β̂kR(ε)]i

}
≤ max

i/∈B

{
[β̂kR(ε)]i

}
< max
i/∈B+

{
[β̂kR(ε)]i

}
.

Sign recovery: The equality sign(β∗) = sign(β̃) occurs (thus B− = {i ∈ {1, . . . , p} | β∗i < 0} and B+ = {i ∈

{1, . . . , p} | β∗i > 0}) if and only if β∗ is identifiable with respect to the l1 norm.

Let us notice that the assumptions on X are very weak and generically hold when n ≤ p. The assumption

rank(X) = n assures that whatever R ≥ 0 the feasible set {β ∈ Rp | ‖Y k−Xβ‖22 ≤ R} is not empty. The general
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position condition assures the uniqueness of β̂kR (see e.g the proposition 1 given in supplementary material for

a proof).

The estimator is easy to compute because β̂kR is the solution of a convex problem. Actually, when R > 0

the estimator given in (7) is just an other writing of the standard LASSO estimator as given in (2) (see e.g the

chapter 5.3 of the book [4]). The expression given in (7) has several advantages. The first one, to our opinion,

the theorem 3 is more intuitive with this writing than with the standard LASSO writing as given in (2). The

second one, the initial estimator is not restricted to LASSO estimator indeed, when R = 0, β̂k0 is a basis pursuit

estimator.

The theorem 3 stress that one cannot recover sign(β∗) with a sign estimator derived from (7) when β∗ is not

identifiable with respect to the l1 norm since sign(β∗) 6= sign(β̃) (with β̃ as defined in the theorem 3). When β∗

is identifiable with respect to the l1 norm (then β̃ = β∗), the theorem 3 does not provide explicitly a converging

sign estimator for sign(β∗) but the good properties of the initial estimator suggest many ways to construct one.

Probably the most intuitive way to recover sign(β∗) is to derive sign estimator from the thresholded LASSO

estimator (R > 0) or thresholded basis pursuit estimator (R = 0). The expression of this thresholded estimator

is reported in the expression (8) given below. By the the separation property, one knows that it remains to

select a good threshold τ to construct a consistent sign estimator (with τ depending from k for the consistency).

An alternative way to recover the sign(β∗) is to use the adaptive LASSO. In this case, the keystone is to derive

the weights of the adaptive LASSO from the estimator given in (7). Theoretical justifications of the consistency

of the sign estimator derived from the adaptive LASSO are given in [38]. However, we point out that the

proof some arguments given in the theorem 2 in [38] (dealing with the consistency of the sign estimator derived

from adaptive LASSO) are not correct. Indeed, the pointwise convergence of a sequence of convex functions

fn : Rp → R to a function f : Rp → R ∪ {+∞} does not imply that the sequence (x∗n)n∈N (minimizers of fn)

converges to x∗ (minimizer of f)1. Thus, we do not know if whether or not the result claimed in this theorem

is correct.

The theorem 3 confirms recent results given by Bogdan et al. [5]. Indeed, if X has i.i.d N (0, 1) entries,

n/p→ δ ∈ (0, 1) and asymptotically the point (card(A)/n, n/p) is below the asymptotic phase transition curve

[14] (i.e. β∗ is asymptotically identifiable with respect to the l1 norm) then the thresholded LASSO almost

certainly recovers sign(β∗) (as soon as nonzero components of β∗ are large enough).

Obviously, the performance of the sign estimators derived from thresholded LASSO and thresholded basis

pursuit depends from the tuning parameter and the threshold. In the numerical experiments, we are going to

prescribe values for these parameters.

1For example fn(x1, x2) = | − x1 + nx2|+ |x2 − n| − n converges pointwise to f(x1, x2) =

{
|x1| if x2 = 0

+∞ if x2 6= 0
but x∗

n = (n2, n)

does not converge to x∗ = (0, 0).

10



4 Numerical experiments

We have seen in the theorem 2 that the the irrepresentable condition implies the identifiability condition. The

identifiability and irrepresentability curves given in the next section allow to quantify the gap between these

conditions. In addition, these two curves provide respectively the maximal number of nonzero for β∗ under

which sign estimators derived from thresholded LASSO (resp. basis pursuit) and LASSO recover sign(β∗) (as

soon as nonzero components of β∗ are large enough).

4.1 Identifiability and irrepresentability curves with random Gaussian matrices

We previously define the identifiability and irrepresentability sign functions denoted ΦXIdtf and ΦXIC. Given a

design matrix X these two sign functions gives a priori the limitation of the LASSO sign estimator or the

limitation of sign estimators derived from thresholded LASSO and thresholded basis pursuit to recover exactly

sign(β∗). Indeed, when ΦXIC(sign(β∗)) = 0 (resp. ΦXIdtf(sign(β∗)) = 0) the LASSO sign estimator (resp. sign

estimators derived from thresholded LASSO and thresholded basis pursuit) cannot recover sign(β∗) with a

probability close to 1 even if the non null components of β∗ are extremely large. The number of sign vectors

is very huge (3p), that is why we are not going to provide explicitly ΦXIdtf and ΦXIC for each sign vector.

Instead, for each r ∈ {1, . . . , n}, we are going to compute empirically pXIdtf(r) := EU (ΦXIdtf(U)) and pXIC(r) :=

EU (ΦXIC(U)) where U is a uniformly distributed on {u ∈ {−1, 0, 1}p | card(supp(u)) = r}. The identifiability

and irrepresentability curves represents respectively the curves of the functions r ∈ {1, . . . , n} 7→ pXIdtf(r) and

r ∈ {1, . . . , n} 7→ pXIC(r). In the numerical experiments given in the figure 2, X is a Gaussian matrix described

hereafter.

Setting 1: The matrix X is a n× p matrix with n = 100, p = 300 and (Xij)1≤i≤n,1≤j≤p are i.i.d N (0, 1).

Setting 2: The matrix X is a n × p matrix with n = 100, p = 300 and the vectors (Xij)1≤j≤p where i ∈

{1, . . . , n} is a family of i.i.d Gaussian vector N (0,Γ). In this setting Γ is a p × p matrix where Γii = 1

with i ∈ {1, . . . , p} and Γij = ρ when i 6= j.

In these simulations the curves are obtained from a particular observation of X.

Surprisingly the two identifiability curves given in the setting 1 and 2 are very similar. A priori, we expected

to recover a curve in the setting 2 much below than the one given in the setting 1. Indeed, classical conditions

implying the identifiability of β∗ with respect to the l1 norm are the mutual coherence condition (5) and

the restricted isometry property [7, 8]. These conditions are quite weak when the family (Xi)1≤i≤p is almost

orthogonal (as in the setting 1 since E(X ′X) = nIdn) but are very strong when (Xi)1≤i≤p is far from an

orthogonal family (as in the setting 2 since E(X ′X) = nΓ).

The asymptotic phase transition given in Donoho and Tanner [16] provides an approximation of the identi-

fiability curve in the setting 1. Such an approximation is useful when n and p are too much large so that the
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Figure 2: This figure gives the curves of the functions r 7→ pXIdtf(r) and r 7→ pXIC(r) when X is a Gaussian matrix
given in the setting 1 (left panel) and setting 2 (right panel). Due to the theorem 2, we already known that
whatever the sparsity r, pXIdtf(r) ≥ pXIC(r) thus this figure just emphasizes that the identifiability condition is a
much weaker assumption than the irrepresentability condition. The vertical lines in the left panel provides, in
the setting 1, an asymptotic approximation of the identifiability and irrepresentability curves. Indeed by the
theorem 1 in [16] and the theorem 1 in [35], when p is very large and n/p = 1/3 then the identifiability and
irrepresentability conditions hold respectively when r ≤ 0.31n and r ≤ 0.09n. To plot these these curves, for a
sparsity r the quantities pXIdtf(r) and pXIC(r) have been computed by simulating 1000 observations of the random
vector U .

identifiability curve is too much time expensive to obtain. Unfortunately, to our knowledge, there is not such

asymptotic phase transition for Gaussian matrices with correlated entries as in the setting 2.

One notices that in the setting 2, the irrepresentability curve is not monotonic in the neighbourhood of

0; it is not a numerical problem. Actually when r is very small, U has frequently components which are all

positive or all negative. Furthermore the figure 3 illustrates that, in the setting 2, when the sign vector s is

positive componentwise (resp. negative componentwise), the irrepresentable condition becomes a very strong

condition. These both remarks, aim at explaining why, in the setting 2, the irrepresentabilty curve is not

monotonic. Hereafter, without any loss of generality, we focus on the particular case in which sign vector is

positive componentwise. The figure 3 provides the positive irrepresentability and identifiability curves, which

are respectively the curves of the functions r 7→ pXIdtf+(r) := EU (ΦXIdtf(U)) and r 7→ pXIC+(r) := EU (ΦXIC(U))

where U has uniform distribution over the set {u ∈ {0, 1}p | card(supp(u)) = r}.
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Figure 3: This figure gives the curves of the functions r 7→ pXIdtf+(r) and r 7→ pXIC+(r) when X is a Gaussian
matrix given in setting 2. One notices that, with respect to the curves given in the previous figure, the gap
between the irrepresentable condition and the identifiability condition becomes larger. In the setting 2, when
r is small pXIC+(r) ≈ pXIC(r) (more precisely, pXIC+(r) = pXIC(r) when r = 1) and when r is large enough pXIC(r)
weakly depends from the correlation of the columns of X. This remark aim at explaining why, in the setting 2,
the function r 7→ pXIC(r) is not monotonic in the neighbourhood of 0. To plot these these curves, for a sparsity
r, the quantities pXIdtf+(r) and pXIC+(r) have been computed by simulating 1000 observations of U .
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4.2 Numerical comparisons of sign estimators

The theorem 3 suggests many ways to recover sign(β∗), for example, by deriving a sign estimator from adaptive

LASSO, thresholded basis pursuit, thresholded LASSO... The purpose of this section is to provide a numerical

comparison of these sign estimators under four different simulation scenarios in the high dimensional setup.

4.2.1 Selection of the threshold

We aim at constructing a sign estimator derived from the following thresholded estimator

∀i ∈ {1, . . . , p}, [β̂τR]i := [β̂R]i1{|[β̂R]i|>τ} with τ > 0. (8)

This estimator is a thresholded basis pursuit when R = 0 and a thresholded LASSO when R > 0. Given a

threshold τ > 0, the probability to recover exactly sign(β∗) with sign(β̂τR) is described hereafter

P(sign(β̂τR) = sign(β∗)) = P
(
∀i ∈ A, [β̂τR]i = 0 and ∀i ∈ A, sign([β̂τR]i) = sign(β∗i )

)
.

By choosing a threshold τ1−α as the 1−α quantile of max
{∣∣∣[β̂R]i

∣∣∣ , i ∈ A} then P(∀i ∈ A, [β̂τ1−αR ]i = 0) = 1−α.

Consequently when the non null component of β∗ are very large then P(sign(β̂
τ1−α
R ) = sign(β∗)) becomes

arbitrarily close to 1 − α. Obviously τ1−α cannot be obtained by a straightforward computation since β∗ and

thus A are not known.

Let τ > 0 and let us set FWER := P(∃i ∈ A, [β̂τR]i 6= 0) (the FWER can be seen as the Family Wise Error

Rate in multiple testing procedure). Since τ1−α cannot be evaluated, the usual way to proceed is to select a

threshold τ such that τ ≥ τ1−α with τ as close as possible to τ1−α assuring that both FWER ≤ α and that the

FWER stays close to α. In order to provide a threshold larger than τ1−α, it could seem appealing to look at

the distribution of the initial estimator in the full null model, when β∗ = 0, and to compute τ fn
1−α as the 1− α

quantile of max
{∣∣∣[β̂fn

R ]1

∣∣∣ , . . . , ∣∣∣[β̂fn
R ]p

∣∣∣} [20]; the random vector β̂fn
R is defined hereafter

β̂fn
R := argmin ‖β‖1 subject to ‖ε−Xβ‖22 ≤ R.

When R = 0, Descloux and Sardy [13] suggest this way of proceed to pick a threshold for the basis pursuit

estimator. Unfortunately, in the high-dimensional linear model, this intuitive method provides a threshold τ fn
1−α

which is smaller than τ1−α and thus does not assure that FWER ≤ α. Actually, as illustrated in supplementary

material when R = 0, the distribution of max
{∣∣∣[β̂0]i

∣∣∣ , i ∈ A} depends from β∗ and is stochastically larger than

the one of max
{∣∣∣[β̂fn

0 ]1

∣∣∣ , . . . , ∣∣∣[β̂fn
0 ]p

∣∣∣} especially when both card(A) and the non null components of β∗ are

large.

Indeed, as explained e.g. in [29], the variance of estimates of LASSO regression coefficients increases with

14



the number and the magnitude of nonzero regression coefficients and this effect is not appropriately taken into

account when calculating the threshold proposed in [13]. Instead, one can use recently developed knockoff

methodology [2, 9], which allows to predict the magnitude of estimates corresponding to false regressors by

creating fake copies of explanatory variables. The copy of a given explanatory variable has the same correlation

with the remaining explanatory variables as its original and at the same time is conditionally independent of the

response. The knockoff methodology allows to control the false discovery rate by setting the threshold on the

difference of the importance statistic (say LASSO regression estimate) between the true explanatory variable

and its fake copy. In many practical situations the standard implementation of knockoffs yields high power of

detection of true signals. However, the power of this standard implementation is limited when the true number

of nonzero regression coefficients is very small or when p is substantially larger than n. While it seems possible

to extend the formal knockoff methodology to deal with these situations, in this manuscript we use model free

knockoffs proposed in [9] to heuristically approximate the threshold to control the FWER at the assumed level.

Specifically, at the first step we use model free knockoffs to generate 30 = p/10 of fake variables. Then Lasso or

BP is run on the matrix supplemented with these additional columns and the maximum of the absolute values

of regression coefficients over 30 fake variables is saved. This step is repeated 10 times and the overall maximum

of the p = 300 absolute values of regression coefficients over fake variables is calculated. The whole procedure is

repeated many (here 1000) times and 0.95 quantile of the obtained maxima is used as the threshold to identify

important regressors for the LASSO run on the original design matrix X. Similar approach for generating small

knockoff matrices was proposed in [36], where a formal knockoff procedure for controlling FDR for gaussian

design matrices with independent entries was proposed.

To confirm with the set-up of simulations used to derive the irrepresentability and identifiability curves,

in all replicates of our simulation study we used the same fixed design matrix X. In each of the iterations

of our experiment we randomly sampled the location of the true signals and the error term. In this situation

the threshold proposed in [13] remains constant but the knockoff threshold in principle should differ between

different iterations. To reduce the computation burden of our simulations we calculated only one ”averaged”

knockoff threshold, where in each of 1000 replicates performed to calculate the 0.95 quantile of the maximum

of the fake statistics we randomly selected the location of true signals and the error term.

4.2.2 Selection of the tuning parameter

In the simulation study we compared the Basis Pursuit with thresholded LASSO. In case where X is the

gaussian matrix with independent entries the tuning parameter was selected with the help of the asymptotic

theory of Approximate Message Passing Algorithm (AMP) for LASSO, provided e.g. in [3, 29, 5]. In the setup

of this theory the elements of design matrix come from a normal distribution xij ∼ N(0, 1/
√
n), n/p → δ > 0

and regression coefficients are modeled as iid random variables from a mixture Π of a point mass at zero and
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some other distribution Π?: Π = (1 − γ)δ0 + γΠ?. The sparsity parameter γ defines the mixing proportion

of nonzero coefficients. AMP theory allows for evaluation of the asymptotic standard deviation of the noise

generated by the shrinkage τ = τ(λ, δ, γ,Π?) and selection of λAMP = λAMP (δ, γ,Π?) for which this noise

is minimal. As discussed in [5], this selection of λ allows to maximize the power for any fixed type I error.

When calculating the value of the tuning parameter λAMP corresponding to the minimal noise, we replaced the

asymptotic parameters of the AMP theory with their finite sample counterparts

• undersampling δ = n/p = 100/300

• sparsity γ = r/p = r/300

• signal distribution Π? = δt where δt is a one-point distribution concentrated at t.

The formulas to evaluate the standard deviation of the noise τ = τ(λ, δ, γ,Π?) are provided e.g. in [3, 29, 5].

In case of strongly correlated design we additionally use λs = 0.5λAMP .

4.2.3 LASSO and Adaptive LASSO

In our numerical experiments we selected the following values of the tuning parameters for LASSO and adaptive

LASSO:

• For LASSO we selected λL = 1.5λBon = 1.5
Φ−1(1− 0.05

2p )√
n

, which is slightly larger than λBon, needed to

control FWER at the level 0.05 when the design matrix is orthogonal.

• For the adaptive LASSO the weights are derived using initial estimates β̂(λAMP ), where the tuning

parameter is selected according to AMP theory, described above. The weight is defined as w(βi) =

1
β̂i(λAMP )+10−7

.

• The final decision for adaptive LASSO is based on LASSO with λ = λL.

In other words, the adaptive LASSO is given hereafter

β̂adapt := argmin
β∈Rp

1

2
‖Y −Xβ‖22 + λL

p∑
i=1

w(βi)|βi|. (9)

In all our simulations LASSO is calculated with glmnet, with the convergency diagnostic parameter thresh

equal to 10−12. Package default value thresh = 10−7 leads to large errors and misleading estimates of statistical

properties of LASSO in case where the design matrix is strongly correlated.

4.2.4 Numerical comparisons

The rows of the design matrix X are sampled as the independent vectors from the multivariate Gaussian

distribution, as in setting 1 and 2. All numerical experiments are performed with a particular observation of
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X (the same as the one used in the previous subsection). We set β∗ ∈ Rp such that r := card{i | β∗i 6= 0} with

r = {5, 20}, {i | β∗i 6= 0} is a r sample without replacement of {1, . . . , p}. The non null components of β∗ have

a symmetric two point distribution P (βi = −t) = P (βi = t) = 0.5 where we consider an increasing sequence of

signal magnitudes t ∈ {0.5, 1, . . . , 15}. Additionally, for strongly and positively correlated explanatory variables

we consider the setup where all nonzero coefficients are equal to t. In all simulations the error term is generated

as ε ∼ N (0, Idn).

Figures 4-6 provide the comparison between the following sign estimators.

• L is derived from LASSO with λ = λL

• adL is the adaptive LASSO estimator, described above

• BPS is the thresholded Basis Pursuit, with threshold selected as in [13]

• BPkn is the thresholded Basis Pursuit, with ”knockoff” threshold defined above

• Lkn is the thresholded LASSO with λ = λAMP and ”knockoff” threshold

• Lkns is the thresholded LASSO with λ = 0.5λAMP and ”knockoff” threshold

We report the curves illustrating the following statistical properties as the function of the signal strenght:

• Probability is the proportion of 1000 replicates for which the sign was appropriately discovered

• Power is the average number of True Positives over all 1000 replicates

• EFP is the average number of False Positives over all 1000 replicates

Figure 4-6 illustrate that indeed, LASSO can not deal well with the number of signals which exceed the

irrepresentability curve, while thresholded LASSO and Basis Pursuit can appropriately identify the sign if the

number of signals is below identifiability curve. Basis Pursuit performs pretty well under our simulated setup,

but its performance is worse than the performance of LASSO with appropriately selected λ. In case of the

design matrix with independent columns the optimal value of λ selected by AMP theory yields the thresholded

LASSO which is superior over all methods compared in our simulations. Maybe surprisingly, this choice of λ

performs well also under strongly correlated design and when all signals are of the same sign. In case of the

correlated design with the symmetric signal distribution it is better to use λ = 0.5λAMP . Our simulations

show also that the threshold selection provided in [13] does not allow for the sign recovery if the number of

true signals is relatively large. Instead, our heuristic application of the knockoff methodology allows for almost

perfect control of EFP at the level of 0.05.
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Figure 4: Design with independent columns
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Figure 5: Design with strongly correlated columns and symmetric sygnal distribution
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Figure 6: Design with strongly correlated columns and positive signals
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5 Conclusion

This article main focus on theoretical properties of sign estimators derived from thresholded LASSO and thresh-

olded basis pursuit. We have shown that the identifiability condition on β∗ is the minimal assumption assuring

the consistency of these both sign estimators. We have proved that the irrepresentable condition, well known for

the consistency of the LASSO sign estimator, is stronger than the identifiability condition. The identifiability

curve provides the maximal number of nonzero for β∗ under which β∗ is identifiable with respect to the l1 norm.

The performances of sign estimators derived from thresholded LASSO and thresholded basis depend obvi-

ously from the threshold. In the numerical experiments, we have prescribed a threshold for the basis pursuit and

the LASSO. Our simulations show that thresholded LASSO (resp. basis pursuit) sign estimators outperform

adaptive LASSO and LASSO sign estimators.
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7 appendix

In the following subsection, we roughly explain the main arguments of theorems 1, 2 and 3.

7.1 Main ideas for the proofs of theorems

Theorem 1: Let S be the set of non null components of the LASSO β̂(λ), then the following inequalities hold

X ′S(Y −Xβ̂(λ)) = λsign(β̂S(λ)),

‖X ′
S

(Y −Xβ̂(λ))‖∞ ≤ λ.

The proof of the theorem 1 is a consequence these above inequalities.

Theorem 2: The proof of theorem 2 shows that when the irrepresentable condition holds then the follow-

ing inequality occurs

∀h ∈ ker(X),

∣∣∣∣∣∑
i∈A

sign(β∗i )hi

∣∣∣∣∣ ≤∑
i/∈A

|hi|.

This inequality implies that the l1 norm of β∗ is minimal. In addition, since X is in general position, β∗ is the

unique vector having a minimal l1 norm which concludes the proof.
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Theorem 3: The lemma 1 which claims that β̂kR(ε)/k converges to β̃ is the keystone to prove the theorem 3.

This convergence is quite intuitive for the basis pursuit estimator. Indeed, when k is large then Y ≈ X(kβ∗).

Thus, intuitively, β̂k0 solution of the problem: minimize ‖β‖1 subject to Xβ = Y should be close to kβ̃ solution

of the problem: minimize ‖β‖1 subject to Xβ = X(kβ∗).

7.2 Proofs

In the proof given by Zou [38] for the small dimensional setting lot of cases are studied (case 1) λn/n → +∞,

case 2) λn/n → λ0 and case 3) λn/n → 0 and λn/
√
n → +∞). The proof given here is thus more straightfor-

ward than the one given by Zou and could be easily rewritten for the small dimensional setting.

Proof of the theorem 1: Let S be the set S := supp(β̂(λ)), according to the lemma 14 given in Tib-

shirani [33], whatever λ > 0 the family (Xi)i∈S is linearly independent. Consequently, when (Xi)i∈A is not

linearly independent then it is straightforward that S 6= A implying thus sign(β̂(λ)) 6= sign(β∗).

Now, let us assume that the family (Xi)i∈A is linearly independent. Let us give two expressions met by

the LASSO estimator as defined in (2). The LASSO estimator β̂(λ) satisfies simultaneously the following two

expressions

X ′S(Y −Xβ̂(λ)) = λsign(β̂S(λ)), (10)

‖X ′
S

(Y −Xβ̂(λ))‖∞ ≤ λ. (11)

These two expressions are given in Bühlmann and van de Geer [6] page 15 or in the proof of the theorem 1

of Zou [38]. In the first step, using the equality (10) and the inequality (11), we are going to show that if

sign(β̂(λ)) = sign(β∗) then the following event holds

∥∥∥∥X ′AXA(X ′AXA)−1sign(β∗A) +
1

λ
X ′A

(
Id−XA(X ′AXA)−1X ′A

)
ε

∥∥∥∥
∞
≤ 1

In a second step, to conclude the proof, we are going to show that the event given previously has a probability

smaller than 1/2.

Let us assume that sign(β̂(λ)) = sign(β∗) thus S = A. Since Y = Xβ∗ + ε = XAβ
∗
A + ε and Xβ̂(λ) =

XAβ̂A(λ) then the equality (10) and the inequality (11) lead to the following expressions

X ′A

(
ε+XA(β∗A − β̂A(λ))

)
= λsign(β∗A), (12)∥∥∥X ′A (ε+XA(β∗A − β̂A(λ))

)∥∥∥
∞
≤ λ. (13)
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The equality (12) assures that

β∗A − β̂A(λ) = (X ′AXA)−1 (λsign(β∗A)−X ′Aε) .

Let us notice that the assumption (Xi)i∈A is linearly independent assures that the Gram matrix X ′AXA is

invertible. Using the previous expression in the inequality (13) gives

∥∥X ′AXA(X ′AXA)−1(λsign(β∗A)−X ′Aε) +X ′Aε
∥∥
∞ ≤ λ∥∥∥∥X ′AXA(X ′AXA)−1sign(β∗A) +

1

λ
X ′A

(
Id−XA(X ′AXA)−1X ′A

)
ε

∥∥∥∥
∞
≤ 1

Let us denote ζ be the following Gaussian vector ζ ∼ N (u,Γ) where

u := X ′AXA(X ′AXA)−1sign(β∗A) and where Γ is the covariance matrix of
1

λ
X ′A

(
Id−XA(X ′AXA)−1X ′A

)
ε.

Because by assumption ‖u‖∞ > 1, there is an element i0 ∈ {1, . . . , p} for which |ui0 | > 1. To conlude the proof,

one notices that

P(‖ζ‖∞ ≤ 1) ≤ P(|ζi0 | ≤ 1) ≤ 1/2.

The last inequality occurs because ζi0 ∼ N (ui0 ,Γi0,i0) with |ui0 | > 1. �

Proof of the theorem 2: From Daubechies et al. [12], β∗ is a parameter having a minimal l1 norm, namely

Xβ∗ = Xγ ⇒ ‖γ‖1 ≥ ‖β∗‖1 holds, if and only if the following inequality occurs

∀h ∈ ker(X),

∣∣∣∣∣∑
i∈A

sign(β∗i )hi

∣∣∣∣∣ ≤∑
i/∈A

|hi|. (14)

We are going to show that when the irrepresentable condition holds for β∗ then the inequality (14) holds.

For all h ∈ ker(X), the following equality holds

∑
i∈A

sign(β∗i )hi = h′Asign(β∗A) = h′AX
′
AXA(X ′AXA)−1sign(β∗A).

Because 0 = Xh = XAhA +XAhA, one deduces the following inequalities

|h′Asign(β∗A)| =
∣∣h′AX ′AXA(X ′AXA)−1sign(β∗A)

∣∣ ,
≤ ‖hA‖1‖X

′
AXA(X ′AXA)−1sign(β∗A)‖∞. (15)

Consequently, when the irrepresentable condition holds for β∗ namely, when ‖X ′AXA(X ′AXA)−1sign(β∗A)‖∞ ≤ 1
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then, the inequality (15) gives |h′Asign(β∗A)| ≤ ‖hA‖1. Thus, by the equivalence given in (14), β∗ is a solution

of the following basis pursuit problem

minimize ‖γ‖1 subject to Xγ = Xβ∗

Because X is in general position the previous optimisation problem has a unique solution (see e.g. the propo-

sition 1 in appendix) thus Xβ∗ = Xγ and γ 6= β∗ implies that ‖γ‖1 > ‖β∗‖1 namely β∗ is identifiable with

respect to the l1 norm. �

Proof of the proposition 1: According to Daubechies et al. [12], β∗ is identifiable with respect to the

l1 norm if and only if the following inequality holds

∀h ∈ ker(X) \ {0},

∣∣∣∣∣∣
∑

i∈supp(β∗)

sign(β∗i )hi

∣∣∣∣∣∣ <
∑

i/∈supp(β∗)

|hi|.

Because sign(β̃) = sign(β∗), we have supp(β̃) = supp(β∗) thus the following inequality holds

∀h ∈ ker(X) \ {0},

∣∣∣∣∣∣
∑

i∈supp(β̃)

sign(β̃i)hi

∣∣∣∣∣∣ <
∑

i/∈supp(β̃)

|hi|.

Consequently, the parameter β̃ is identifiable with respect to the l1 norm. �

Proof of the theorem 3

The lemma 1 given hereafter is the keystone to prove the theorem 3. The proof of this lemma is partially

inspired by the one given in Candès et al. [10]

Lemma 1 Let X be a n × p matrix in general position such that rank(X) = n. Let β̃ ∈ Rp be the unique

solution of the problem: minimize ‖β‖1 subject to Xβ = Xβ∗ and let β̂kR(ε) be the following estimator

β̂kR(ε) := argmin
β∈Rp

‖β‖1 subject to ‖Y k(ε)−Xβ‖22 ≤ R. (16)

Then whatever R ≥ 0, whatever ε ∈ Rn, the sequence (β̂init,k
R (ε)/k)k≥1 converges to β̃.

Proof: Let us define u(ε) ∈ Rp as follows

u(ε) := argmin
β∈Rp

‖β‖1 subject to Xβ = ε.
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Because Y k(ε) = X(kβ̃ + u(ε)) and because β̂kR(ε) is an admissible point of (16) one deduces the following

inequality

∥∥∥∥1

k
Xβ̂kR(ε)−Xβ̃

∥∥∥∥
2

≤
∥∥∥∥1

k
Xβ̂kR(ε)− 1

k
Y k(ε)

∥∥∥∥
2

+

∥∥∥∥1

k
Y k(ε)−Xβ̃

∥∥∥∥
2

≤
√
R

k
+
‖Xu(ε)‖2

k
. (17)

Because kβ̃ + u(ε) is an admissible point of the problem (16) and because β̂kR(ε) is the minimizer of (16), one

deduces the following inequalities hold

1

k
‖β̂kR(ε)‖1 ≤

1

k
‖kβ̃ + u(ε)‖1 ≤ ‖β̃‖1 +

‖u(ε)‖1
k

. (18)

Let us notice that the sequence (β̂kR(ε)/k)k∈N∗ is bounded (by ‖β∗‖1 + ‖u(ε)‖1). Consequently, to prove

the convergence of (β̂kR(ε)/k)k∈N∗ it is sufficient to show that this sequence has a unique limit point. Let

(β̂
φ(k)
R (ε)/φ(k))k∈N∗ be a converging subsequence to l (φ : N∗ → N∗ increasing). By (17) and (18) one deduces

that

Xβ̃ = Xl and ‖l‖1 ≤ ‖β̃‖1.

By construction of β̃ (as a unique solution of a basis pursuit problem), one deduces that β̃ = l thus β̃ is the

unique limit point. Consequently, the following limit holds

∀ε ∈ ε, lim
k→+∞

β̂kR(ε)

k
= β̃.

�

Proof of the theorem 3:

Separation property: Let us set η0 > 0 such that η0 < min{|β̃i|, i ∈ B}/2. The convergence of (β̂kR(ε)/k)k∈N∗

to β̃ implies that there exists k0 ∈ N∗ such that

∀k ≥ k0, ‖β̂kR(ε)/k − β̃‖∞ ≤ η0,

∀k ≥ k0,∀i ∈ {1, . . . , p},
∣∣∣[β̂kR(ε)/k]i − β̃i

∣∣∣ ≤ η0.

Consequently, when k ≥ k0, whatever i /∈ B (thus when β̃i = 0) the following inequalities hold

∀i /∈ B,
∣∣∣[β̂kR(ε)/k]i

∣∣∣ ≤ η0,

⇒ −kη0 ≤ min
i/∈B

{
[β̂kR(ε)]i

}
≤ max

i/∈B

{
[β̂kR(ε)]i

}
≤ kη0.
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Whatever i ∈ B+ (thus when β̃i > 0) the following inequalities hold

∀i ∈ B+, [β̂kR(ε)/k]i ≥ −
∣∣∣[β̂kR(ε)/k]i − β̃i

∣∣∣+ β̃i

⇒ min
B+

{
[β̂kR(ε)]i/k

}
≥ −η0 + min{|β̃i|, i ∈ B} > η0,

⇒ −min
B+

{
[β̂kR(ε)]i

}
> kη0

Whatever i ∈ B− (thus when β̃i < 0) the following inequalities hold

∀i ∈ B−, [β̂kR(ε)/k]i ≤
∣∣∣[β̂kR(ε)/k]i − β̃i

∣∣∣+ β̃i

⇒ min
B−

{
[β̂kR(ε)]i/k

}
≤ η0 −min{|β̃i|, i ∈ B} < −η0,

⇒ −min
B−

{
[β̂kR(ε)]i

}
< −kη0

Finally, when k ≥ k0 then

max
i/∈B−

{
[β̂kR(ε)]i

}
< min

i/∈B

{
[β̂kR(ε)]i

}
≤ max

i/∈B

{
[β̂kR(ε)]i

}
< max
i/∈B+

{
[β̂kR(ε)]i

}
.

Sign recovery: If β∗ is identifiable with respect to the l1 norm then β∗ = β̃ and consequently, sign(β̃) =

sign(β∗). Reciprocally, let us assume that sign(β̃) = sign(β∗). Because, by construction, β̃ is identifiable with

respect to the l1 norm and because sign(β̃) = sign(β∗) then, according to the proposition 1, β∗ is identifiable

with respect to the l1 norm. �

Supplementary material

We already said that when X is in general position the minimizer of the problem (7) is unique, we also stressed

that the estimator derived by minimizing (7) when R > 0 is a LASSO. When the LASSO is written in usual

way as in (2), a sketch of proof given in Tibshirani [33] shows the uniqueness of the LASSO estimator when X

is in general position. In order to provide a self content article, we show that when X is in general position the

minimizer of the problem (7) is unique when R = 0 as well as when R > 0. We already stressed that when β∗

is identifiable with respect to the l1 norm then β∗ is sparse. We are going to show that when the identifiability

holds for β∗ then the family (Xi)i∈A is linearly independent and thus the number of components of β∗ equal to

0 is larger than p− n.
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