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CLOSED STRING AMPLITUDES FROM

SINGLE-VALUED CORRELATION FUNCTIONS

by

Pierre Vanhove & Federico Zerbini

Abstract. — We argue in two different ways that the low-energy expan-
sion of any tree-level closed string amplitudes only involves single-valued
multiple zeta values. First, we identify the building blocks of any closed
string amplitudes with the value at z = 1 of single-valued correlation
functions in two dimensional conformal field theory. We use the single-
valuedness condition to determine uniquely the correlation function and
determine the role of the momentum kernel in the single-valued projec-
tion. The second argument is more technical and leads to a mathemat-
ical proof of the statement. It is obtained through a direct analysis of
the α′-expansion of closed string integrals, whose coefficients are given
by multiple integrals of single-valued hyperlogarithms over the complex
plane. The main new tool is the extension to the single-valued case
of some technical results used for multiple integration of holomorphic
hyperlogarithms.
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1. Introduction and overview of the results

String theory amplitudes display remarkable properties that are still

being uncovered. It has been noticed that the low-energy (or small inverse

tension α′) expansion of closed string theory involves only single-valued

multiple zeta values [1] at tree-level (on a sphere) [2–5], at genus one (on

a torus) [6–11] and in some limit of the genus two amplitude [12, 13].

It is tempting to conjecture that this will be true at all orders of the

genus expansion. This is of particular importance, as from string the-

ory amplitudes one can extract the ultraviolet behaviour of supergravity

amplitudes in various dimensions [14–24]. The ultraviolet behaviour of

the four-graviton maximal supergravity amplitudes up to three-loop or-

der [25, 26] have been obtained from appropriate limits of string theory

amplitudes [14, 18, 19, 22, 24]. Another application is the mapping of

discontinuities of N = 4 super-Yang-Mills correlation functions to con-

tributions in the low-energy expansion of the flat-space limit of AdS5×S5

string theory amplitudes [27, 28] at tree-level or one-loop [29].

On the other hand, the low-energy expansion of open string ampli-

tudes, at least up to genus one, involves all kinds of multiple zeta val-

ues [30,31]. Extensive computations [2] have lead to the conjecture that

the low-energy expansion of tree-level closed string amplitudes [3–5] is

obtained by the application of the single-valued map of [1] applied on

open string amplitudes.

Open string amplitudes can be written in terms of ordered integrals

on the boundary of the disc [32], which are generalised Selberg integrals.

Tree-level closed string amplitudes involve integrals on the punctured

sphere, which can be seen as complex analogues of generalised Selberg

integrals. It has been shown in [33,34] that the disc integrals are mapped

to the sphere integrals by the single-valued map. The single-trace sector

of tree-level heterotic amplitudes can be obtained by the application of

the single-valued map on the single-trace open string amplitudes [4,5] and

the double-trace sector by expressing the double-trace partial tree-level
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amplitudes in terms of single-trace partial amplitudes [35]. The appli-

cability of the single-valued map to obtain multiple-trace contributions

from heterotic-string amplitudes is still an open question [36]. A gen-

eralization of the single-valued map to genus-one string amplitudes was

recently proposed in [10], and it was used to relate four-point one-loop

open string amplitudes to genus-one heterotic-string amplitudes in [11].

It is however still a conjecture that all the modular graph functions and

forms appearing in the low-energy expansion of genus-one closed string

amplitudes in [8,10,11] are in the image of the single-valued map defined

in [37, 38] on iterated integrals of modular forms.

In this work we take a totally different route: we directly analyse the

closed string integrals and we show that the coefficients of the low-energy

expansion are single-valued multiple zeta values without having to use

the single-valued map from disc amplitudes.

In part I we consider the decomposition of any tree-level closed string

amplitude as a finite linear combination of partial amplitudes (N ≥ 1)

MN+3(sss, ǫǫǫ) =
∑

r

cr(sss, ǫǫǫ)MN+3(sss,nnnr, n̄̄n̄nr) . (1.1)

The coefficients cr(sss, ǫǫǫ) are rational functions of the kinematic invariants

sss = (2α′ki · kj)1≤i<j≤N+3 (where ki are external momenta), the polari-

sation tensors ǫǫǫ = (ǫi)1≤i≤N+3 and the colour factors for the heterotic

string amplitudes (see §3 for conventions and notations). The kinematic

coefficients determine the specifics of the closed string theory (bosonic

string, superstring or heterotic string) or of the external states (polari-

sation tensors and colour factors).

The partial amplitudes MN(sss,nnn, n̄̄n̄n) are generic integrals given by

MN+3(sss,nnn, n̄̄n̄n) =

ˆ

CN

N+1∏

i=2

d2wi

∏

2≤i<j≤N+1

|wi−wj|2α′ki·kj (wi−wj)
nij (w̄i−w̄j)

n̄ij
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×
N+1∏

i=2

|wi|2α′k1·ki|1 − wi|2α′ki·kN+2wn1i

i w̄n̄1i

i (1 − wi)
ni (N+2)(1 − w̄i)

n̄i (N−1) .

(1.2)

(Using conformal invariance we have fixed the points w1 = 0, wN+2 =

1 and wN+3 = ∞.) We explain that these partial amplitudes are the

value at z = 1, MN+3(sss,nnn, n̄̄n̄n) = GN(1, 1), of correlation functions defined

in §3.1 as

GN(z, z̄) :=

ˆ

CN

N∏

i=1

wai

i (wi − 1)bi(wi − z)ciw̄āi

i (w̄i − 1)b̄i(w̄i − z̄)c̄i

×
∏

1≤i<j≤N

(wi − wj)
gij (w̄i − w̄j)

ḡij

N∏

i=1

d2wi . (1.3)

The correlation functions do not have to be associated to a physical string

theory process, only specific linear combinations of their z = 1-values

need to give a physical amplitudes. It is not necessary (and in general

not true) that the total amplitude arises as the z = 1-value of a single-

valued correlation function. It is enough that each partial amplitude is

associated to a correlation function of the type in (1.3). Some of these

integrals may be related by integration by parts, but for our arguments

it is better to not use a minimal set of integral functions. We only need

in our analysis that (1.3) arises as a correlation function in a conformal

field theory.

As a conformal-field-theory correlation function, GN(z, z̄) has to be a

single-valued function of the position z. Using the contour deformation

techniques of [39–42], GN (z, z̄) has the holomorphic factorisation

GN (z, z̄) =
(N+1)!∑

r,s=1

Gr,sIr(aaa,bbb, ccc;ggg; z)Is(ā̄āa, b̄̄b̄b, c̄̄c̄c; ḡ̄ḡg; z̄) (1.4)

where Ir(aaa,bbb, ccc;ggg; z) and Is(ā̄āa, b̄̄b̄b, c̄̄c̄c; ḡ̄ḡg; z̄) are Aomoto-Gel’fand hypergeo-

metric functions [43, 44] defined in §4.1.
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Using the techniques introduced by Dotsenko and Fateev in [39, 40]

we determine the matrix G = (Gab) such that the function does not

have monodromies around z = 0 and z = 1. The proof is constructive

and shows that the coefficients of the matrix G are rational functions of

sin(πα′x) where x are integer linear combinations of kinematic invariants.

It was shown in [39, 40] that the single-valuedness condition determines

the correlation function GN (z, z̄) up to an overall coefficient. In our con-

struction the overall coefficient is fixed by matching the string building

blocks, and there is no freedom in determining the coefficients of the

matrix G in the holomorphic factorisation (1.4) for each building blocks.

The z = 1-value gives a version of the Kawai, Lewellen and Tye (KLT)

relations [45] which is a symmetric sum over the N ! permutations of the

colour-ordered open string amplitudes

MN+3(sss,nnn, n̄̄n̄n) =
∑

σ,ρ∈SN

Gσ,ρ AN(σ(2, . . . , N + 1), 1, N + 2, N + 3;nnn)

× ĀN(ρ(2, . . . , N + 1), 1, N + 2, N + 3; n̄̄n̄n) , (1.5)

where AN(σ(1, . . . , N + 1), 1, N + 2, N + 3;nnn) are colour-ordered open

string amplitudes

AN(σ(2, . . . , N+1), 1, N+2, N+3;nnn) =

ˆ

δ(σ)

∏

2≤i<j≤N+1

|wi−wj |α
′ki·kj (wi−wj)

nij

×
N+1∏

i=2

|wi|α
′k1·ki|1 − wi|α

′ki·kN+2wn1i
i (1 − wi)

ni (N+2)

N+1∏

i=2

dwi , (1.6)

integrated over the simplex

δ(σ) := {wσ(2) ≤ · · · ≤ wσ(N+1) ≤ w1 ≤ wN+2 ≤ wN+3} . (1.7)

Such a form, which is equivalent to the standard KLT relations, was

derived for the four-point ampliutude with N = 1 and the five-point

amplitudes with N = 2 in [41, eq (15)-(16)]. The matching with the

holomorphic factorisation of the closed string integral gives a precise

relation, given in §6, between some coefficients of the matrix G and the
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momentum kernel Sα′(σ|ρ) (see Appendix C for a definition). The matrix

elements Gσ,ρ in (1.5) are non-local coefficients with denominators, but

they are related to the local momentum kernel Sα′(σ|ρ) using the linear

relations between the colour-ordered open string amplitudes [32, 41]. In

order to construct a single-valued correlation function in the complex

plane one needs to enlarge the momentum kernel to the full matrix G. It

would be interesting to relate the present construction with the derivation

of the inverse momentum kernel from intersection numbers of twisted

cycles [46].

We argue in §5, using results from part II, that the α′-expansions of

all Aomoto-Gel’fand hypergeometric functions are multiple zeta values-

linear combinations of multiple polylogarithms. Since GN (z, z̄) has no

monodromies, it follows from the Theorem 9.2 proved by Francis Brown

in [47] that its small α′-expansion involves only multiple zeta values-

linear combinations of single-valued multiple polylogarithms. The gen-

eral expectation is that actually the coefficients of these combinations

should be just single-valued multiple zeta values. Assuming that this

is true, we conclude that the coefficient of the kinematics factors in the

small α′-expansions of closed string amplitudes are rational combina-

tions of single-valued multiple zeta values. This is a natural expecta-

tion since each of the closed string partial amplitudes in eq. (1.1) is the

value at z = 1 of such a single-valued function in the complex plane

(MN+3(sss,nnnr, n̄̄n̄nr) = Gr
N (1, 1)), and since the kinematic coefficients cr(sss, ǫǫǫ)

are rational functions of α′ times the kinematics invariants (see [36,48–50]

for various amplitudes in bosonic and superstring theory). Notice that

due to the presence of the kinematic coefficients cr(sss, ǫǫǫ), a given order

in the α′-expansion of the total closed string amplitude can mix single-

valued multiple zeta values of different weight as can easily be seen from

the expansion of the heterotic-string amplitudes evaluated in [48, 49].

This physically motivated argument, supported by numerical checks,

does not constitute a proof of the single-valuedness of the expansion.
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For this reason, we dedicate part II of the paper to develop alternative

methods which lead to a full proof (under some technical assumptions on

the convergence of the integrals) of the single-valuedness of the multiple

zeta values in the small α′-expansions, confirming our expectations.

More precisely, in part II of this paper we recall and extend the theory

of integration of single-valued hyperlogarithms. These functions, intro-

duced by Brown in [47], generalise single-valued multiple polylogarithms

to the case of iterated integrals over the n-punctured complex plane, and

constitute the natural framework to describe the sphere integrals ap-

pearing in closed string amplitudes. We generalise at the same time re-

sults of Panzer for the integration of (multi-valued) hyperlogarithms [51]

and results of Schnetz for the integration of single-valued multiple poly-

logarithms [52]. This allows to obtain an alternative and elementary

mathematical proof that the α′-expansion of massless superstring theory

amplitudes only involves single-valued multiple zeta values. Our results

are quite general, and apply to a broad class of integrals. Here we con-

tent ourselves to show how to implement our methods for one family

of multiple complex integrals, namely we demonstrate the following (see

Theorem 7.1 for a more precise statement):

Theorem 1.1. — The coefficients of the low-energy expansion of the

integral
ˆ

(P1
C

)k

k∏

i=1

|zi|2αi−2|zi − 1|2βi−2
∏

1≤i<j≤k

|zj − zi|2γi,j d2z1 · · · d2zk (1.8)

are single-valued multiple zeta values.

We will argue that this family of integrals is a convenient prototye of

the integrals

Jρ,σ(a1, . . . , ak, b1, . . . , bk, c1,2, . . . , ck−1,k) =
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ˆ

(P1
C

)k

∏
1≤i<j≤k |zj − zi|2ci,j

∏k
i=1 |zi|2ai |zi − 1|2bi d2zi

zρ(1) zσ(1)(1 − zρ(k))(1 − zσ(k))
∏k

i=2(zρ(i) − zρ(i−1))(zσ(i) − zσ(i−1))

(1.9)

appearing in closed superstring theory (ρ and σ are permutations), and

hence explain that the analogue of Theorem 1.1 for the Jρ,σ’s can be

obtained by a straightforward adaptation of our methods. As anticipated

before, (a stronger version of) this result was partly demonstrated in [33],

assuming some transcendentality assumptions on multiple zeta values,

and was rigorously proven immediately afterwards in [34] with different

methods. However, since both proofs rely on abstract constructions in

algebraic geometry, we believe that our approach to demonstrate the

weaker statement, whose nature is much more elementary, may be of

particular interest for the physics community.

Let us now come back to the general picture of string amplitudes, and

discuss the possibility to generalise our methods to higher genera. The

decomposition in (1.4) is the generic expansion of a correlation function

in conformal field theory on conformal blocks which exists for any higher-

genus Riemann surface. At genus one, the low-energy expansion of closed

string amplitudes has been obtained from the special value of single-

valued modular functions and modular forms on the torus [8, 11, 13].

This suggest that one could extend the present arguments to higher-

genus Riemann surfaces. It would be interesting to use this construction

to connect with the flat space limit of AdS/CFT correlation functions

analysed in the works [27–29]. The methods explained in the second part

of the paper, on the other side, would generalise (at least) to the genus-

one (configuration-space) integrals, as long as one develops a theory of

single-valued elliptic (or higher-genus) multiple polylogarithms.

The paper is organised as follows. The first part gives a construction

of the single-valued correlation function GN(z, z̄) and its relation to the
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closed string partial amplitudes of any closed string integrals. In Sec-

tion 2 we review generic properties of conformal-field-theory correlation

functions and in Section 3 we detail the relation with the closed string

amplitudes. The single-valued conditions on the correlation function are

derived in Section 4 and we show in Section 5 how this implies that

the low-energy expansion of the closed string amplitudes are given in

by single-valued multiple zeta values. Section 6 details the relation be-

tween the monodromy matrix and the momentum kernel, and explains

how the symmetric form of the KLT relations matches the single-valued

expression for the closed string amplitudes.

The second part of the paper begins with Section 7, which contains

a precise version of the main result, the computation of the region of

convergence of the family of integrals (1.8) and the details about the

connection of these integrals to closed superstring amplitudes. The next

two sections, which constitute the technical heart of part II, are dedi-

cated to the theory of multi-valued and single-valued hyperlogarithms,

respectively. The new results that we obtain on single-valued hyperlog-

arithms play a crucial role in the last three sections of this part, which

are dedicated to the proof of the main result. In particular, in Section 10

and Section 11 we explain in great details how to prove the statement

for k = 1 and k = 2, respectively. This paves the way towards the

proof of the general case, given in Section 12, where we omit some com-

putations already discussed in the special cases. Finally, at the end of

Section 12 and in Appendix D we explain how to adapt our methods to

the superstring integrals (1.9).
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PART I

SINGLE-VALUED CORRELATION FUNCTIONS

2. Single-valuedness of CFT correlators

Conformal field theories are local two dimensional quantum field theo-

ries. Correlation functions are vacuum expectation values of the product

of dynamical composite fields (or vertex operators in string theory) Vi(xxx)

with xxx = (x, y) ∈ R2 (see [53, 54] for some review and introduction)

G(xxx1, . . . ,xxxn) = 〈
n∏

i=1

Vi(xxxi)〉 =
1

Z

ˆ ∏
DV

n∏

i=1

Vi(xxxi) e−S . (2.1)

The partition function is Z. The action S is a function of the elementary

fields and of the two-dimensional metric. This metric is determined by

the geometry of the Riemann surface Σ on which the theory is considered.

One axiom of conformal field theories is the requirement of single-

valuedness of the correlation functions as functions of the positions xxxi =

(xi, yi) of the vertex operators in the euclidean plane R2. That means

any physical correlators should not have monodromies when one varies

the positions of a given operator around the position other operators.

After complexification one can consider that the composite fields are

functions Vi(z, z̃) on C × C. The correlation function becomes a multi-

valued function of the doubled coordinates G(z1, . . . , zn, z̃1, . . . , z̃n) in

Cn × Cn. The euclidean real space is recovered when z̃ is identified with

the complex conjugate of z, so that Vi(z, z̄) = Vi(x, y) and z = x+ iy and

z̄ = x − iy with x, y ∈ R. It is only on the real slice that the correlation

functions are single-valued functions free of monodromies.

This is particularly clear on the case of the two-point correlation func-

tions determined by the SL(2,C) × SL(2,C) Ward identities

〈V1(z1, z̃1)V2(z2, z̃2)〉 =
δ∆1=∆2δ∆̃1=∆̃2

N12

(z1 − z2)2∆1(z̃1 − z̃2)2∆̃1
, (2.2)
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between two fields of conformal dimensions(1) ∆1 and ∆2 and N12 is a

constant determined by the normalisation of the fields. The correlation

function is non-vanishing only for ∆i = ∆̃i with i = 1, 2 as indicated by

the kronecker delta functions. The three-point correlation function is as

well determined by the Ward identity

〈
3∏

i=1

Vi(zi, z̃i)〉 =
C123

(z1 − z2)∆1+∆2−∆3(z1 − z3)∆1+∆3−∆2(z2 − z3)∆2+∆3−∆1

× 1

(z̃1 − z̃2)∆̃1+∆̃2−∆̃3(z̃1 − z̃3)∆̃1+∆̃3−∆̃2(z̃2 − z̃3)∆̃2+∆̃3−∆̃1
, (2.3)

where C123 is a constant.

The single-valuedness of the correlation functions (2.2) and (2.3) on

the real slice, z̃ = z̄, imposes the spins, given by the different of the

conformal weights, ∆i − ∆̃i to be integral. The single-valued condition

does not determine the value of the constants N12 nor C123.

The four points correlation function is a non-trivial function of the

unique independent cross-ratio in two dimensions

η =
(z1 − z2)(z3 − z4)

(z1 − z3)(z2 − z4)
(2.4)

and reads

G4(η, η̄) = 〈
4∏

i=1

Vi(zi, z̃i)〉 =
G12|34(η, η̃)

∏
1≤i<j≤4(zi − zj)∆i+∆j−∆(z̃i − z̃j)∆̃i+∆̃j−∆̃

(2.5)

with ∆ = 1
3

∑4
i=1 ∆i and ∆̃ = 1

3

∑4
i=1 ∆̃i.

By using the associativity of the operator product expansion one can

expand the four-point function on the conformal blocks F1234(k; η) and

F̃1234(k; η̃) as

G12|34(η, η̃) =
∑

k,k̃

Gk,k̃
12|34F12|34(k; η)F̃12|34(k̃; η̃) . (2.6)

(1)The conformal dimension is defined the exponents ∆ and ∆̃ under a coordinate

transformation V (z, z̃) →
(

∂f(z)
∂z

)∆ (
∂f̃(z̃)

∂z̃

)∆̃

V (f(z), f̃(z̃)).
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With the holomorphic factorisation of the composite fields V (z, z̃) =

V (z) × Ṽ (z̃), the four-point conformal block arises from the exchange of

the field Vk(z) between the pair of fields (V1, V2) and (V3, V4). For this

it necessary that the field Vk is in the operator product expansion of the

fields V1(z1) and V2(z2) and in the operator product expansion of the

fields V3(z3) and V4(z4). This can be graphically represented as

F1234(k; η) =
φk

V1(z1)

V2(z2) V3(z3)

V4(z4)

(2.7)

with an identical interpretation for the anti-holomorphic conformal block

F̃1234(k̃; η̃).

The four points conformal blocks F1234(k; η) and F̃1234(k̃; η̃) are not

monodromy invariant as their expression changes when one moves η or

η̃ in the complex plane around the points η = 0 and η = 1. The coeffi-

cients Gk,k̃
12|34 need to be such that the correlation function evaluated on

the real slice η̃ = η̄, G12|34(η, η̄) is free of monodromies. For the mini-

mal model described by a Coulomb-gas, Dotsenko and Fateev in [39, 40]

showed that the single-valuedness condition of the four-point correlation

function determines the correlation functions up to an overall constant.

The construction generalises to higher-point correlation functions.

We will apply the same logic to the correlations functions that eval-

uate to closed string partial amplitudes at a special value, but with the

important difference that we will determine the overall constant. The

multi-valued conformal blocks will be Aomoto-Gel’fand hypergeometric

functions which reduce to the colour-ordered open string amplitudes at

a special value.
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3. Closed string theory amplitudes

Generic closed string tree-level amplitudes are finite linear combina-

tions (with N ≥ 0)

MN+3(sss, ǫǫǫ) =
∑

r

cr(sss, ǫǫǫ) MN+3(sss,nnnr, n̄̄n̄nr) (3.1)

of the partial amplitudes [55–58]

MN+3(sss,nnn, n̄̄n̄n) =

ˆ

CN

N+2∏

i=2

d2wi

∏

2≤i<j≤N+1

|wi−wj|2α′ki·kj (wi−wj)
nij (w̄i−w̄j)

n̄ij

×
N+1∏

i=2

|wi|2α′k1·ki|1 − wi|2α′ki·kN+2wn1i
i w̄n̄1i

i (1 − wi)
ni (N+2)(1 − w̄i)

n̄i (N+2) .

(3.2)

With have fixed the conformal gauge by setting w1 = 0, wN+2 = 1 and

wN+3 = ∞. The exponents nnn := {nij}1≤i<j≤N+3 and n̄̄n̄n := {n̄ij}1≤i<j≤N+3

are integers. The set of kinematic invariants sss := {sij = 2α′ki·kj}1≤i≤j≤N+3

is given by the scalar product of the external momenta ki, which are

vectors of the D-dimensional Minkowsky space-time R1,D−1 with metric

(+ − · · · −). The external momenta satisfy the conservation condition

k1 + · · · + kN+3 = 0 (3.3)

and the on-shell conditions α′k2
i ∈ −2 + N.

The amplitudes are defined in any space-time dimension D ≤ 26 for

the bosonic string theory and D ≤ 10 for the superstring theory and

heterotic strings.

For instance, the simplest tree-level bosonic closed string theory am-

plitude is that between N -tachyon fields which is given by [55–58]

Mtachyon
N+3 (sss) =

ˆ ∏

1≤i<j≤N

|zi − zj|2α′ki·kj

N+1∏

i=2

d2zi (3.4)

with α′k2
i = −2 for 1 ≤ i ≤ N + 3.
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The coefficients cr(sss, ǫǫǫ) are rational functions in the kinematic invari-

ants sss = (2α′ki · kj)1≤i≤j≤N , the product of the external momenta and

the polarisation vectors (
√

α′ki · ǫj)1≤i<j≤N and the product of the po-

larisation vectors (ǫi · ǫj)1≤i<j≤N . For the heterotic string with external

gauge fields they would depend as well on the colour factors through a

product of traces. The precise form of the coefficients cr(sss, ǫǫǫ) depends

on the closed string theory one considers—i.e. the bosonic string, or the

type-II superstring or the heterotic string—and the spin of the external

particles and traces over the colour factors for the heterotic string. Ex-

pression for the four-point amplitude can be found in e.g [55, 56]. For

higher points open superstring amplitudes a pure spinor formalism based

derivation of the polarisation tensors has been given in [50]. For open

and closed bosonic string and heterotic string in [36].

3.1. Closed strings from single-valued correlation function. —

The closed string theory partial amplitudes (3.2) are only functions of

kinematic parameters, they do not depend on the position of the vertex

operators on the world-sheet. Therefore we consider the generalisation

by introducing a dependence on the complex variable z

GN(z, z̄) :=

ˆ

CN

N∏

i=1

wai

i (wi − 1)bi(wi − z)ciw̄āi

i (w̄i − 1)b̄i(w̄i − z̄)c̄i

×
∏

1≤i<j≤N

(wi − wj)
gij (w̄i − w̄j)

ḡij

N∏

i=1

d2wi . (3.5)

where the exponents are given by

aaa = (Ai + ni, 1 ≤ i ≤ N), ā̄āa = (Ai + n̄i, 1 ≤ i ≤ N), ni, n̄i ∈ Z,

bbb = (Bi + mi, 1 ≤ i ≤ N), b̄̄b̄b = (Bi + m̄i, 1 ≤ i ≤ N), mi, m̄i ∈ Z,

ccc = (Ci + pi, 1 ≤ i ≤ N), c̄̄c̄c = (Ci + p̄i, 1 ≤ i ≤ N), pi, p̄i ∈ Z,

ggg = (Gij + qij , 1 ≤ i < j ≤ N), ḡ̄ḡg = (Gij + q̄ij , 1 ≤ i < j ≤ N), qij , q̄ij ∈ Z.

(3.6)
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We assume that AAA := (A1, . . . , AN) ∈ RN , BBB := (B1, . . . , BN) ∈ RN ,

CCC := (C1, . . . , CN) ∈ RN and GGG := (Gij , 1 ≤ i < j ≤ N) ∈ R
N(N−1)

2 are

real numbers. It is important for the single-valuedness of the correlation

function and the string theory amplitudes that the difference of the expo-

nents between the holomorphic and anti-holomorphic factors are integers

(see Remark 4.5).

The correlation function GN(z, z̄) when evaluated at z = z̄ = 1 matches

with the partial amplitudes of any closed string tree-level amplitudes

in (3.2)

MN+3(sss,nnn, n̄̄n̄n) = GN(1, 1) , (3.7)

with the following identifications of the parameters

AAA := {α′k1 · ki, 2 ≤ i ≤ N + 1},

BBB + CCC := {α′kN−1 · ki, 2 ≤ i ≤ N + 1}, (3.8)

GGG := {α′ki · kj, 2 ≤ i < j ≤ N + 1},

and the momentum conversation condition (3.3). For the value at z = 1

only the combination (3.8) matters, and the freedom in choosing the

values for bi, ci, b̄i and c̄i disappears. These generalisations are needed in

order to get a single-valued function of z that reduces to the closed string

partial amplitudes.

As explained in the introduction it is important for the argument that

the functions in (3.5) and (3.9) are valid conformal field theory correlation

functions. We obtain (3.5) as the correlation function of N + 1 vertex

operators

GN (z, z̄) =

ˆ

CN

N+1∏

i=2

d2wi〈
N∏

i=1

Vi(wi, w̄i)V1(0)VN+2(1)VN+3(∞)U(z, z̄)〉
(3.9)
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between N integrated physical vertex operators Vi(wi, w̄i) and one auxil-

iary unintegrated vertex operator U(z, z̄). As usual for a correlation func-

tion on the sphere we fix three points w1 = 0, wN+2 = 1 and wN+3 = ∞,

but we keep z as a free complex variable.

We take for auxiliary vertex operator the simple plane-wave tachyonic

vector operator

U(z, z̄) =: eik∗·X(z,z̄) : . (3.10)

The generic form in (3.5) can be obtained by considering the operator

product expansion of U(z, z̄) with the vertex operator, gauged-fixed at

the position zN−1 = 1:

VN−1 =: hµ1···µrν1···νs

r∏

i=1

∂Xµi(1)
s∏

j=1

∂̄Xνj (1)eikN−1·X(1,1) : (3.11)

for a higher-spin field in bosonic string. We choose the tensors hµ1···µrν1···νs

so that contractions between the vertex operators singles out the contri-

bution in GN(z, z̄). The momentum k∗ enters only for z 6= 1 as it is

only needed to define BBB and CCC in (3.8), as BBB = {2α′kN−1 · (ki − k∗), i =

2, . . . , N − 2} and CCC = {2α′kN−1 · k∗, i = 2, . . . , N − 2} but disappear in

the final result.

4. Single-valued correlation functions

A correlation function in a conformal field theory (3.5) is a single-

valued function of z in the complex plane [54]. In this section we derive

the conditions for the single-valuedness on the function GN(z, z̄). We

assume that the integral converges. For considerations on the domain of

convergence we refer to §7.1.

4.1. Aomoto-Gel’fand hypergeometric functions. — if Xn is a

set of indices {1, . . . , n} of cardinality n, we consider for r + s = N all

inclusions σ : Xr →֒ XN and ρ : Xs →֒ XN such that XN = σ(Xr) ⊔
ρ(Xs). We denote by Sr the set of permutations of r elements. From now
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on, by abuse of notation, we will consider σ and ρ also as elements of Sr

and Ss, respectively. We introduce a special case of the Aomoto-Gel’fand

hypergeometric functions [43, 44] for (σ, ρ) ∈ Sr × Ss

I(σ,ρ)(aaa,bbb, ccc;ggg; z) =

ˆ

∆(σ,ρ)

r∏

m=1

s∏

n=1

(wσ(m) − wρ(n))
gσ(m)σ(n)

×
∏

1≤m<n≤r

(wσ(n) − wσ(m))
gσ(n)σ(m)

∏

1≤m<n≤s

(wρ(n) − wρ(m))
gρ(n)ρ(m)

×
r∏

m=1

w
aσ(m)

σ(m) (wσ(m) − 1)bσ(m)(wσ(m) − z)cσ(m)

×
s∏

n=1

w
aρ(n)

ρ(n) (1 − wρ(n))
bρ(n)(z − wρ(n))

cρ(n)

N∏

j=1

dwj , (4.1)

integrated over the simplex

∆(σ, ρ) := {0 ≤ wρ(1) ≤ · · · ≤ wρ(s) ≤ z ≤ 1 ≤ wσ(1) ≤ · · · ≤ wσ(r)} ,

(4.2)

and the integrals(2) J(σ,ρ)(aaa,bbb, ccc;ggg; z) := I(σ,ρ)(bbb,aaa,ccc;ggg; 1 − z)

J(σ,ρ)(aaa,bbb, ccc;ggg; z) =

ˆ

∆̃(σ,ρ)

r∏

m=1

s∏

n=1

(wσ(n) − wρ(m))
gσ(n)ρ(m)

×
∏

1≤m<n≤r

(wσ(m) − wσ(n))
gσ(m)σ(n)

∏

1≤m<n≤s

(wρ(n) − wρ(m))
gρ(n)ρ(m)

×
r∏

m=1

(−wσ(m))
aσ(m)(1 − wσ(m))

bσ(m)(z − wσ(m))
cσ(m)

×
s∏

n=1

(wρ(n))
aρ(n)(1 − wρ(n))

bρ(n)(wρ(n) − z)cρ(n)

N∏

j=1

dwj , (4.3)

integrated over the simplex

∆̃(σ, ρ) := {wσ(1) ≤ · · · ≤ wσ(r) ≤ 0 ≤ z ≤ wρ(1) ≤ · · · ≤ wρ(s) ≤ 1} .

(4.4)

(2)Since the notation is very similar, we warn the reader that these integrals should
not be confused with the closed superstring integrals Jρ,σ defined by eq. (1.9) and
considered in part II of the paper.
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See §5.1 for the integrals relevant for the four-point amplitudes and §5.2

for the integral relevant for the five-point amplitudes.

Remark 4.1. — There are (N + 1)! such integral functions: for given

r ≥ 0 and s = N − r ≥ 0 because there are r! permutations σ and s!

permutations ρ therefore there are r! × s! ×
(

N
r

)
= N ! ordered integrals.

The total number of integrals is N ! × (N + 1) = (N + 1)!. A quicker way

to obtain this counting is to realise that the set α = {ρ(1), . . . , ρ(s), N +

1, σ(1), . . . , σ(r)} runs over all permutations of {1, . . . , N + 1} as the

permutations ρ and σ vary. These integral functions can therefore be

labelled with permutations α ∈ SN+1 as Iα(aaa,bbb, ccc;ggg; z) = I(σ,ρ)(aaa,bbb, ccc;ggg; z)

and Jα(aaa,bbb, ccc;ggg; z) = J(σ,ρ)(aaa,bbb, ccc;ggg; z).

Remark 4.2. — These integrals functions are not all independent as

there exist linear combinations between them. The dimension of the linear

system is (N + 1)! as shown in [32,41]. However, in the construction of

the single valued correlation function it is preferable to use this larger set

of integral functions.

Remark 4.3. — Aomoto-Gel’fand hypergeometric functions include the

auxiliary function F (z0, s0k) used in [59]. The multi-valued conformal

blocks of §2 entering string theory amplitude and Coulomb-gas correlation

functions are special cases of Aomoto-Gel’fand hypergeometric functions.

4.2. Change of basis. — We derive the linear transformation between

the two set of integral functions

Iα(aaa,bbb, ccc;ggg; z) =
∑

β∈SN+1

S(AAA,BBB,CCC;GGG)α
βJβ(aaa,bbb, ccc;ggg; z), , (4.5)

where we made use of the notation introduced in Remark 4.1.

We will show that the elements of the matrix S(AAA,BBB,CCC;GGG) are rational

functions of sines of linear combinations of elements of the sets AAA, BBB, CCC
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and GGG.(3) The transformation is invertible with

S(AAA,BBB,CCC;GGG)−1 = S(BBB,AAA,CCC;GGG) , (4.6)

because Jα(aaa,bbb, ccc;ggg; z) = Iα(bbb,aaa,ccc;ggg; 1 − z) for all α ∈ SN+1.

This relation is obtained as an application of the contour deforma-

tion method used in [39–41]. We introduce the notation for the integral

functions

I(α; β; γ; δ) =

ˆ

∆(α;β;γ;δ)

f(α; β; γ; δ) (4.7)

where the set of indices are α := (i1, . . . , iα), β := (j1, . . . , jβ), γ :=

(k1, . . . , kγ) and δ := (l1, . . . , lδ) and

f(α; β; γ; δ) :=
∏

1≤r<s≤α

(wis − wir)
gisir

∏

1≤r<s≤β

(wjs − wjr)
gjsjr

×
∏

1≤r<s≤γ

(wks − wkr)
gkskr

∏

1≤r<s≤δ

(wls − wlr)glslr

×
α∏

r=1

β∏

s=1

γ∏

t=1

δ∏

u=1

(wlu −wir)
gluir (wlu −wjs)

glujs (wlu −wkt)
glukt (wkt −wir)

gktir

× (wkt − wjs)
gktjs (wjs − wir)

gjsir

×
α∏

r=1

(−wir)air

β∏

r=1

w
ajr

jr

γ∏

r=1

w
akr

kr

δ∏

r=1

w
alr

lr

×
α∏

r=1

(1 − wir)bir

β∏

r=1

(1 − wjr)
bjr

γ∏

r=1

(1 − wkr)
bkr

δ∏

r=1

(wlr − 1)blr

α∏

r=1

(z − wir)cir

β∏

r=1

(z − wjr)
cjr

γ∏

r=1

(wkr − z)ckr

δ∏

r=1

(wlr − z)clr (4.8)

for the ordered variables

∆(α; β; γ; δ) := {wi1 ≤ · · · ≤ wiα ≤ 0 ≤ wj1 ≤ · · · ≤ wjβ
≤ z ≤ wk1 ≤

· · · ≤ wkγ ≤ 1 ≤ wl1 ≤ · · · ≤ wlδ} . (4.9)

(3)The relation between this matrix and the string theory momentum kernel which
relates the different order open string amplitudes [42] is discussed in §6.
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We remark that this ordered integral is equivalent to integral over nested

contours of integrations. The notation C [a,b]
x ≻ C [a,b]

y means that the

contour Cx lies above the contour Cy and start at the point a and end at

the point b. Once projected on the real line, C [a,b]
x ≻ C [a,b]

y implies that

a ≤ x ≤ y ≤ b. The contours are all ordered in the upper half-plane

or the lower-half plane. The integral functions (4.1) correspond to the

case I(∅; α; ∅; β) and the integral functions (4.3) correspond to the case

I(α; ∅; β; ∅) respectively.

Starting with I(∅; α; ∅; β) with β = (j1, . . . , jβ). The contours of inte-

gration for this set are nested as follows Cj1 ≻ Cj2 ≻ · · · ≻ Cjβ
. If the

contours are ordered in the upper half-plane one can rotate Cj1 counter-

clockwise in the upper half-plane. If the contours are ordered in the lower

half-plane one can rotate Cj1 clockwise in the lower half-plane. For α ∈ C

and x a real number we fix the following determination of the logarithm:

(−|x|)α = |x|α ×





e+iπα ℑm(x) ≥ 0

e−iπα ℑm(x) < 0
. (4.10)

0 z 1 w2

w1

w1

Figure 4.1. Contours deformation for the integration over w1.
The rotation of the contour in the upper half-plane (blue con-
tour) leads to the relation (4.11) with the + sign in the phase
factors, and the rotation in the lower half-plane (red contour)
leads to the relation (4.11) with the − sign in the phase
factors.
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Setting β = (j1, β ′) we get from a rotation of the contour Ci1 in either

the upper half-plane or the lower half-plane

I(∅; α; ∅; β) + e±iπBj1 I(∅; α; j1; β ′) + e±iπ(Bj1
+Cj1

)I(∅; (j1, α); ∅; β ′)

+ e±iπ(Aj1
+Bj1

+Cj1
)I(j1; α; ∅; β ′) = 0 . (4.11)

Notice that the phase factors only depend on the complex numbers Ai,

Bi and Ci and do not depend on the integers nij which do not contribute

to the branch cuts of the integrand. This implies that

I(∅; α; ∅; β) =
sin(πCj1)

sin(π(Bj1 + Cj1))
I(∅; α; i1; β ′)

− sin(πAj1)

sin(π(Bj1 + Cj1))
I(i1; α; ∅; β ′) . (4.12)

By iterating the procedure we rotate all the contours in the β set, and

we find that

I(∅; α; ∅; β) =
∑

σ,ρ

cσ,ρI(σ; α; ρ; ∅) , (4.13)

where the coefficients cσ,ρ are real number given by rational functions of

sines, and the sum is over the partitions of the set β = σ ∪ ρ into two set

of indices σ = (ir, . . . , ii) and ρ = (iβ , . . . , ir+1).

Similarly setting α = (i1, α′) we have

I(σ; α′; ρ; i1) + e±iπBi1 I(σ; α′; (i1, ρ); ∅) + e±iπ(Bi1
+Ci1

)I(σ; α; ρ; ∅)

+ e±iπ(Ai1
+Bi1

+Ci1
)I((σ, i1); α′; ρ; ∅) = 0 , (4.14)

which implies that

I(σ; α; ρ; ∅) = − sin(πB1)

sin(π(B1 + C1))
I(σ; α′; (i1, ρ); ∅)

− sin(π(A1 + B1 + C1))

sin(π(B1 + C1))
I((i1, σ); α′; ρ; ∅) . (4.15)
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By recursively moving all the contour of integration from the set α we

get that

I(σ; α; ρ; ∅) =
∑

γ,η

c̃γ,ηI(γ; ∅; η; ∅) . (4.16)

Combining the relations (4.13) and (4.16) gives the relation between the

two set of integral functions in (4.5).

Remark 4.4. — The above discussion implies that the matrix S(AAA,BBB,CCC;GGG)

has for element rational functions of sin(πx) where x are linear combi-

nation of Ai, Bi, Ci and Gij with coefficients in {−1, 0, 1}.

We give some examples of such matrices in Appendix A for N = 1 and

Appendix B for N = 2.

4.3. Monodromy operators. — We consider the monodromy of the

Aomoto-Gel’fand hypergeometric functions around z = 0 and z = 1.

The analytic continuation of these integrals along paths around z = 0

and z = 1 lead to monodromies §8.2.

We consider the closed loop γ0 around the point z = 0 with based

point z∗. The circulation of the Aomoto-Gel’fand hypergeometric func-

tions Iα(aaa,bbb, ccc;ggg; z) around the loop lead to a monodromy matrix g0.

Using the notation of Remark 4.1,

Iα(aaa,bbb, ccc;ggg; z)
γ0→

∑

β∈SN+1

(g0)α
βIβ(aaa,bbb, ccc;ggg; z). (4.17)

Likewise for a closed loop γ1 around the point z = 1 with based

point z∗: the circulation of the Aomoto-Gel’fand hypergeometric func-

tions Iα(aaa,bbb, ccc;ggg; z) around this loop leads to a monodromy matrix g1.

Using the notation of Remark 4.1,

Iα(aaa,bbb, ccc;ggg; z)
γ1→

∑

β∈SN+1

(g1)α
βIβ(aaa,bbb, ccc;ggg; z). (4.18)

It is a classical theorem that the monodromy group does not depend

on the base point of z∗ of the loop.



SINGLE-VALUED CLOSED STRING AMPLITUDES 25

4.3.1. The monodromy around z = 0. — The monodromy matrix around

z = 0 of the integral functions in (4.1) is given by a diagonal matrix g0

of size (N + 1)! with diagonal elements

(g0)
(σ,ρ)
(σ,ρ) =

s∏

m=1

exp
(
Aρ(m) + Cρ(m)

)
×

∏

1≤m<n≤s

exp
(
Gρ(m)ρ(n)

)
, (4.19)

where the σ runs over the permutations of the r elements and ρ runs

over the permutations of the s elements such that {σ(1), . . . , σ(r)} ∪
{ρ(1), . . . , ρ(s)} = {1, . . . , N} and r + s = N with r, s ≥ 0.

This is easily seen by performing the change of variable wρ(m) = zŵρ(m)

for 1 ≤ m ≤ s: one gets

I(σ,ρ)(aaa,bbb, ccc;ggg; z) =
s∏

m=1

z1+aρ(m)+cρ(m)
∏

1≤m<n≤s

zgρ(m)ρ(n)

ˆ

δ(σ,ρ)

r∏

m=1

dwσ(m)

s∏

n=1

dŵρ(n)

×
r∏

m=1

w
aσ(m)

σ(m) (1 − wσ(m))
bσ(m)

∏

1≤m<n≤r

|wσ(m) − wσ(n)|gσ(m)σ(n)

×
s∏

m=1

ŵ
aρ(m)

ρ(m) (1 − ŵρ(m))
bρ(m)

∏

1≤m<n≤s

|ŵρ(m) − ŵρ(n)|gρ(m)ρ(n)

×
r∏

m=1

s∏

n=1

(wσ(m) − zŵρ(n))
gσ(m)ρ(n) , (4.20)

integrated over the simplex

δ(ρ, σ) := {0 ≤ wσ(1) ≤ · · · ≤ wσ(r) ≤ 1 ≤ wρ(1) ≤ · · · ≤ wρ(s) ≤ 1} .

(4.21)

Only the powers of z in front of the integral give monodromies when z

makes a loop around z = 0. Since aaa = AAA + Z, ccc = CCC + Z and ggg = GGG + Z

this proves the claim (4.19).

4.3.2. The monodromy around z = 1. — The monodromy matrix around

z = 1 is not diagonal for the integral functions (4.1) but it is diagonal

for the other set of integrals in (4.3).
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The monodromy matrix around z = 1 of the integral functions in (4.3)

is given by a diagonal matrix g1 of size (N + 1)! with diagonal elements

(g1)
(σ,ρ)
(σ,ρ) =

s∏

m=1

exp
(
Bρ(m) + Cρ(m)

)
×

∏

1≤m<n≤s

exp
(
Gρ(m)ρ(n)

)
, (4.22)

where σ runs over the permutations of the r elements and ρ runs over the

permutations of the s elements such that {σ(1), . . . , σ(r)}∪{ρ(1), . . . , ρ(s)} =

{1, . . . , N} and r + s = N .

Since J(σ,ρ)(aaa,bbb, ccc;ggg; z) = I(σ,ρ)(bbb,aaa,ccc;ggg; 1 − z) the derivation of the

monodromy operator is similar to the one given previously. Performing

the change of variable wρ(m) = (1 − z)ŵρ(m) for 1 ≤ m ≤ s one gets

J(σ,ρ)(aaa,bbb, ccc;ggg; 1 − z) =
s∏

m=1

(1 − z)1+bρ(m)+cρ(m)
∏

1≤m<n≤s

(1 − z)gρ(m)ρ(n)

ˆ

δ(σ,ρ)

r∏

m=1

dwσ(m)

s∏

n=1

dŵρ(n)

r∏

m=1

s∏

n=1

(wσ(m) − zŵρ(n))
gσ(m)ρ(n)

×
r∏

m=1

w
bσ(m)

σ(m) (1 − wσ(m))
aσ(m)

∏

1≤m<n≤r

|wσ(m) − wσ(n)|gσ(m)σ(n)

×
s∏

m=1

ŵ
bρ(m)

ρ(m) (1 − ŵρ(m))
aρ(m)

∏

1≤m<n≤s

|ŵρ(m) − ŵρ(n)|gρ(m)ρ(n) , (4.23)

integrated over the simplex (4.21). Only the powers of z in front of the

integral give monodromies when z makes a loop around z = 1. Since

aaa = AAA + Z, ccc = CCC + Z and ggg = GGG + Z this proves the claim (4.22).

Remark 4.5. — Because the differences between the parameters of the

integral functions are integers aaa − ā̄āa ∈ Z, bbb − b̄̄b̄b ∈ Z, ccc − c̄̄c̄c ∈ Z, ggg − ḡ̄ḡg ∈ Z,

the holomorphic integral functions I(σ,ρ)(aaa,bbb, ccc;ggg; z) and anti-holomorphic

integral functions I(σ,ρ)(ā̄āa, b̄̄b̄b, c̄̄c̄c; ḡ̄ḡg; z̄) have the same monodromies around

z = 0 and z = 1. This is be a important for constructing single-valued

correlation functions from bilinear in these integrals in the following sec-

tions.
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4.4. Holomorphic factorisation. — We show that the integral func-

tion GN (z, z̄) in (3.5) can be expressed as the sesquilinear combination

GN (z, z̄) =
∑

(α,β)∈SN+1×SN+1

Gα,βIα(aaa,bbb, ccc;ggg; z) Iβ(ā̄āa, b̄̄b̄b, c̄̄c̄c; ḡ̄ḡg; z̄) (4.24)

of the multi-valued Aomoto-Gel’fand hypergeometric functions in (4.1).

In this expression we are using the notation of Remark 4.1 with α =

{ρ(1), . . . , ρ(s), N + 1, σ(1), . . . , σ(r)} with r + s = N and r, s ≥ 0.

We have the equivalent expression, using the other set of Aomoto-

Gel’fand hypergeometric functions (4.3)

GN(z, z̄) =
∑

(α,β)∈SN+1×SN+1

Ĝα,βJα(aaa,bbb, ccc;ggg; z) Jβ(ā̄āa, b̄̄b̄b, c̄̄c̄c; ḡ̄ḡg; z̄) . (4.25)

We follow the constructive proof given in [42]. If wr = w(1)
r +iw(2)

r , with

w(1)
r and w(2)

r real numbers, we rotate the contour of integration for w(2)
r

contour-clockwise by performing the change of variable w(2)
r = ie−2iǫyr

with ǫ > 0 and we preserve the contour of integration on the real axis

for w(1)
r = xr. For ǫ ≪ 1 we have

wr = xr − e−2iǫyr = xr − yr + 2iǫyr + O(ǫ2) . (4.26)

Let us introduce the notation

v±
r := xr ± yr; δr := v+

r − v−
r (4.27)

so that

wr = v−
r + iǫδr; w̄r = v+

r − iǫδr . (4.28)

With these new variables the integral in (3.5) reads

Gǫ
N(z, z̄) =

ˆ

R2N

N∏

r=1

dv+
r dv−

r

N∏

r=1

(v−
r + iǫδr)

ar(v+
r − iǫδr)

ār

×
N∏

r=1

(v−
r − 1 + iǫδr)

br(v+
r − 1 − iǫδr)

b̄r(v−
r − z + iǫδr)

cr(v+
r − z̄ − iǫδr)

c̄r

×
∏

1≤r<s≤N

(v−
r − v−

s + iǫ(δr − δs))
grs(v+

r − v+
s − iǫ(δr − δs))

ḡrs . (4.29)
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The integral we want to evaluate is obtained as GN (z, z̄) = limǫ→0 Gǫ
N (z, z̄).

4.4.1. The main claim. — We formulate the main claim about the holo-

morphic factorisation. This will be illustrated on the N = 1 and N = 2

cases in the following section. We denote by α ∈ SN the permutation

of the variables v+
i so that 0 ≤ v+

α(1) ≤ v+
α(2) ≤ · · · ≤ v+

α(i) ≤ z ≤
v+

α(i+1) ≤ · · · ≤ v+
α(N) ≤ 1, and we sum over all such possible order-

ings. We decompose this set into two sets : σ := (α(1), . . . , α(i)) and

ρ = (α(i + 1), . . . , α(N)). The integrals over the v+
i variables are given

by

I(+)
α (z̄) :=

ˆ

∆
(+)

(σ,ρ)

N∏

i=1

|v+
i |āi |1 − v+

i |b̄i|z̄ − v+
i |c̄i

∏

1≤i<j≤N

|v+
i − v+

j |ḡij

N∏

i=1

dv+
i

(4.30)

where we have introduced the domain of integration with r + s = N

∆
(+)
(σ,ρ) := {0 ≤ v+

σ(1) ≤ · · · ≤ v+
σ(r) ≤ z ≤ v+

ρ(1) ≤ · · · ≤ v+
ρ(s) ≤ 1}. (4.31)

We now proceed with the integrals over the v−
i variables. The integration

is over all possible permutation of the v−
i variables in [0, 1] for each or-

dering of the v+
i variables. As before, we pull the contour of integration

to the left for v−
σ(i) as i = 1, . . . , r and the contour of integration to the

right for v−
η(i) as i = 1, . . . , s, and we get

GN (z, z̄) =
∑

α,β∈SN+1

G̃α,βI(+)
α (z̄)I

(−)
β (z) . (4.32)

The permutation α is the union of the permutations σ with 0 ≤ v+
σ(1) ≤

· · · ≤ v+
σ(r) ≤ z and the permutation ρ with z ≤ v+

ρ(1) ≤ · · · ≤ v+
ρ(s) ≤ 1

and r + s = N and r, s ≥ 0. The permutation β is the union of the

permutation σ̃ and ρ̃ with

I
(−)
β (z) :=

ˆ

∆
(−)

(σ̃,ρ̃)

N∏

i=1

|v−
i |āi|1 − v−

i |b̄i |z̄ − v−
i |c̄i

∏

1≤i<j≤N

|v−
i − v−

j |ḡij

N∏

i=1

dv−
i

(4.33)
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and

∆
(−)
(σ̃,ρ̃) := {v−

σ̃(r) ≤ · · · ≤ v−
σ̃(1) ≤ 0 ≤ 1 ≤ v−

ρ̃(1) ≤ · · · ≤ v−
ρ̃(s)}. (4.34)

We use the method of the previous section to express GN (z, z̄) as a

bilinear form in the elements of the set of integrals I(σ,ρ)(z) or J(σ,ρ)(z)

to get the holomorphic factorisations in (4.24) and (4.25). Since this

form is obtained using the linear relations between the integral functions

discussed in previous section, it is clear that the coefficients of GN and

ĜN only involve sine function sin(πx) where x is a linear combination

of the coefficients of the vectors AAA, BBB, CCC, and GGG with coefficients in

{−1, 0, 1}.

In all cases we have studied the matrices GN := (Gα,β)α,β∈SN
and

ĜN := (Ĝα,β)α,β∈SN
admit the block diagonal form

GN =




G
(1)
N 0 0

0 G
(2)
N 0

0 0 G
(3)
N


 , ĜN =




Ĝ
(1)
N 0 0

0 Ĝ
(2)
N 0

0 0 Ĝ
(3)
N


 , (4.35)

where G
(i)
N and Ĝ

(i)
N for i = 1, 3 are real square-matrices of size N ! and

G
(2)
N and Ĝ

(2)
N are diagonal matrices of size (N − 1)N !

We are not proving this claim, but a proof at a given order N is done by

explicitly constructing the matrices. This has to be true because the form

of these matrices is the one required for the correlation function GN (z, z̄)

to be free of monodromies around z = 0 and z = 1, as shown in §4.3.

The fact that the correlation function GN (z, z̄) is a single-valued function

of z in the complex plane was explained in §3.1 to be a consequence of

the fact that physical correlation functions are single valued functions by

construction in any physical conformal field theories in Euclidean space.

4.4.2. The N = 1 case. — To illustrate how the factorisation works we

consider the case N = 1. The integral is given by
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Gǫ
1(z, z̄) =

ˆ

R2

dv+
1 dv−

1 (v−
1 + iǫδ1)a1(v+

1 − iǫδ1)ā1(v−
1 − 1 + iǫδ1)b1

(v+
1 − 1 − iǫδ1)b̄1(v−

1 − z + iǫδ1)c1(v+
1 − z̄ − iǫδ1)c̄1 . (4.36)

Recall that δ1 > 0 for v+
1 > v−

1 and δ1 < 0 for v+
1 < v−

1 .

v+
1

0 z 1

C−
1

0 z 1

v+
1

(a) (b)

C−
1

0

v+
1

z 1

C−
1

0 z

v+
1

1

(c) (d)

C−
1

Figure 4.2. The contour of integration C−
1 for the variable

v−
1 depending on the position of v+

1 on the real axis.

We consider the four different cases

◮ If v+
1 ∈] − ∞, 0] then the contour integral for v−

1 is given in fig-

ure 4.2(a). By pulling the lower part of the contour of integration

for v−
1 in the lower half-plane to the left, and because there are no

poles, we obtain that the integral vanishes.

◮ If v+
1 ∈ [1, +∞[ then the contour integral for v−

1 is given in fig-

ure 4.2(b). By pulling the lower part of the contour of integration

for v−
1 in the lower half-plane to the right, and because the integral

has no poles, we obtain that the integral vanishes.

◮ If v+
1 ∈ [0, z] then the contour integral for v−

1 is given in figure 4.2(c).

By deforming the lower part of the contour of integration for v−
1 in

the lower half-plane to the left, one picks the contribution from
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v−
1 = 0 and the integral gives

lim
ǫ→0

ˆ

C−

1

dv−
1 (v−

1 + iǫδ1)a1(v−
1 − 1 + iǫδ1)b1(v−

1 − z + iǫδ1)c1

= sin(πA1)

ˆ 0

−∞

dv−
1 (−v−

1 )a1(1 − v−
1 )b1(z − v−

1 )c1, (4.37)

where we made use of the determination of the logarithm in (4.10)

and the fact that a1 − A1 ∈ Z, so it does not contribute to the

monodromy.

◮ If v+
1 ∈ [z, 1] then the contour integral for v−

1 is given in figure 4.2(d).

By deforming the the lower part of the contour of integration for v−
1

in the lower half-plane to the right, one picks the contribution from

v−
1 = 1 and the integral gives

lim
ǫ→0

ˆ

C−

1

dv−
1 (v−

1 + iǫδ1)a1(v−
1 − 1 + iǫδ1)b1(v−

1 − z + iǫδ1)c1

= sin(πB1)

ˆ 0

−∞

dv−
1 (−v−

1 )a1(1 − v−
1 )b1(z − v−

1 )c1 (4.38)

where we made use of the determination of the logarithm in (4.10)

and the fact that b1 − B1 ∈ Z, so it does not contribute to the

monodromy.

Since G1(z, z̄) = limǫ→0 Gǫ
1(z, z̄) we obtain that

G1(z, z̄) = sin(πA1)

ˆ z

0

(v+
1 )ā1(1−v+

1 )b̄1(z̄−v+
1 )c̄1dv+

1

ˆ 0

−∞

(−v−
1 )a1(1−v−

1 )b1(z−v−
1 )c1dv−

1

+sin(πB1)

ˆ 1

z

(v+
1 )ā1(1−v+

1 )b̄1(v+
1 −z̄)c̄1dv+

1

ˆ +∞

1

(v−
1 )a1(v−

1 −1)b1(v−
1 −z)c1dv−

1 .

(4.39)

Using the notation in (4.1) and (4.3) for the Aomoto-Gel’fand hyperge-

ometric functions

I((1),∅)(a1, b1, c1; ; z) =

ˆ +∞

1

wa1(w − 1)b1(w − z)c1dw,
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I(∅,(1))(a1, b1, c1; ; z) =

ˆ z

0

wa1(1 − w)b1(z − w)c1dw,

J((1),∅)(a1, b1, c1; ; z) =

ˆ 0

−∞

(−w)a1(1 − w)b1(z − w)c1dw,

J(∅,(1))(a1, b1, c1; ; z) =

ˆ 1

z

wa1(1 − w)b1(w − z)c1dw , (4.40)

and the vector notation

I(a1, b1, c1; z) =


I((1),∅)(a1, b1, c1; ; z)

I(∅,(1))(a1, b1, c1; ; z)


 ,

J (a1, b1, c1; z) =


J((1),∅)(a1, b1, c1; ; z)

J(∅,(1))(a1, b1, c1; ; z)


 (4.41)

we have

G1(z, z̄) = sin(πA1)J1(a1, b1, c1; z)I2(ā1, b̄1, c̄1; z̄)

+ sin(πB1)I1(a1, b1, c1; z)J̄2(ā1, b̄1, c̄1; z̄), . (4.42)

With the notation that Īr := Ir(ā, b̄, c̄; ; z̄) and J̄r := Jr(ā, b̄, c̄; ; z̄). The

relation between this expression and holomorphic factorisation of string

theory closed string amplitudes in [42, 45] is discussed in §6. The ar-

bitrariness in choosing to close the contour of integration to the left or

to the right is taken care by the linear relations derived earlier between

the various integrals appeared in §4.2. For the N = 1-case the relation

between the two sets of integral functions is given in Appendix A. Using

these relations we find that the correlation function is given by

G1(z, z̄) = I(ā1, b̄1, c̄1; z̄)T G1I(a1, b1, c1; z), (4.43)

with

G1 =
−1

sin(π(A1 + C1))


sin(π(A1 + B1 + C1)) sin(πB1) 0

0 sin(πC1) sin(πA1)




(4.44)
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and

G1(z, z̄) = J (ā1, b̄1, c̄1; z̄)T Ĝ1J (a1, b1, c1; z), (4.45)

with

Ĝ1 =
−1

sin(π(B1 + C1))


sin(π(A1 + B1 + C1)) sin(πA1) 0

0 sin(πC1) sin(πB1)


 .

(4.46)

4.4.3. The N = 2 case. — For the case of N = 2 the integral we need

to consider reads

Gǫ
2(z, z̄) =

ˆ

R4

2∏

r=1

dv+
i dv−

i (v−
r + iǫδr)

ar(v+
r − iǫδr)

ār (v−
r − 1 + iǫδr)

br

× (v+
r − 1 − iǫδr)

b̄r(v−
r − z + iǫδr)

cr(v+
r − z̄ − iǫδr)

c̄r

× (v−
1 − v−

2 + iǫ(δ1 − δ2))g12(v+
1 − v+

2 − iǫ(δ1 − δ2))ḡ12 . (4.47)

We introduce the vectors of integrals adapted to the monodromy around

z = 0 and z = 1 analysed in §4.3:

I(aaa,bbb, ccc; g12; z) :=




I((12),∅)(aaa,bbb, ccc; g12; z)

I((21),∅)(aaa,bbb, ccc; g12; z)

I((1),(2))(aaa,bbb, ccc; g12; z)

I((2),(1))(aaa,bbb, ccc; g12; z)

I(∅,(12))(aaa,bbb, ccc; g12; z)

I(∅,(21))(aaa,bbb, ccc; g12; z)




, (4.48)

and

J (aaa,bbb, ccc; g12; z) :=




J((12),∅)(aaa,bbb, ccc; g12; z)

J((21),∅)(aaa,bbb, ccc; g12; z)

J((1),(2))(aaa,bbb, ccc; g12; z)

J((2),(1))(aaa,bbb, ccc; g12; z)

J(∅,(12))(aaa,bbb, ccc; g12; z)

J(∅,(21))(aaa,bbb, ccc; g12; z)




. (4.49)

These two vectors are related by the linear relation J = S(AAA,BBB,CCC; G12)I
derived in §4.2. The matrix S(AAA,BBB,CCC; G12) is given in Appendix B. We



34 P. VANHOVE & F. ZERBINI

recall that the matrix does not depend on the integers in (3.6), and is

the same for the holomorphic and anti-holomorphic integrals.

The derivation of this holomorphic factorisation is an application of

the contour-deformation method of [42]. The explicit derivation is rather

long so we will refrain from doing it explicitly but we present a numerical

approach that shows that the holomorphic factorisation has the the form

claimed in (4.35).

The two variables v+
1 and v+

2 need to be ordered on the real axis. In

the following we assume that v+
1 < v+

2 , but one also needs to consider

the analogous case v+
2 < v+

1 . With the same reasoning as for the N = 1-

case, we get that only for 0 ≤ v+
1 ≤ v+

2 ≤ z, 0 ≤ v+
1 ≤ z ≤ v+

2 ≤ 1, or

1 ≤ v+
1 ≤ v+

2 the integrals are non vanishing.

The antiholomorphic integrals are given by Īδ+ = limǫ→0 Īǫ
δ+ with

Īǫ
δ+ :=

ˆ

δ+

2∏

r=1

dv+
i (v+

r − iǫδr)
ār(v+

r − 1 − iǫδr)
b̄r(v+

r z̄ − iǫδr)
c̄r

× (v+
1 − v+

2 − iǫ(δ1 − δ2))ḡ12 (4.50)

with the domain of integration δ+ is runing over the six domains of

integrations

∆+ = {0 ≤ v+
1 ≤ v+

2 ≤ z, 0 ≤ v+
1 ≤ z ≤ v+

2 ≤ 1, z ≤ v+
1 ≤ v+

2 ≤ 1

, 0 ≤ v+
2 ≤ v+

1 ≤ z, 0 ≤ v+
2 ≤ z ≤ v+

1 ≤ 1, z ≤ v+
2 ≤ v+

1 ≤ 1} . (4.51)

The holomorphic integrals are given by the contours of integrations

Iδ− = limǫ→0 Iǫ
δ− where

Iǫ
δ− =

ˆ

δ−

2∏

r=1

dv−
r (v−

r + iǫδr)
ar(v−

r − 1 + iǫδr)
br(v−

r − z + iǫδr)
cr

× (v−
1 − v−

2 + iǫ(δ1 − δ2))g12 (4.52)

and the integration is over each of the six contours for v−
1 and v−

2 in

figure 4.3 and 4.4. The holomorphic integral Iδ−

i
over the contour of
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integration δ−
i is multiplied by the antiholomorphic contribution Īδ+

i
in

the holomorphic factorisation

G2(z, z̄) = lim
ǫ→0

Gǫ
2(z, z̄) =

6∑

i,j=1

Gij Īδ+
i

Iδ−

j
. (4.53)

By applying the methods of §4.2 one gets that Iδ− is a linear combina-

tion of either the integral functions in I of (4.48) or in J of (4.49), and

each integral Īδ+ is a linear combination of the integrals in Ī or J̄ ob-

tained by replacing the parameters (aaa,bbb, ccc,ggg, z) by (ā̄āa, b̄̄b̄b, c̄̄c̄c, ḡ̄ḡg, z̄) in (4.48)-

(4.49).

The expression for the holomorphic factorisation is then given by

G2(z, z̄) = I(ā̄āa, b̄̄b̄b, c̄̄c̄c; ḡ12; z̄)T G2I(aaa,bbb, ccc; g12; z)

= J (ā̄āa, b̄̄b̄b, c̄̄c̄c; ḡ12; z̄)T Ĝ2J (aaa,bbb, ccc; g12; z) , (4.54)

with the relation Ĝ2 = S(AAA,BBB,CCC; G12)
T G2S(AAA,BBB,CCC; G12) obtained us-

ing the linear relations between the two vectors (4.48)-(4.49) derived

in §4.2. The explicit expression of the matrix S(AAA,BBB,CCC; g12) is given

in Appendix B. The relation between the matrices G2 and Ĝ2 and the

momentum kernel introduced in [42] is discussed in §6.

By construction is it clear that the elements in the matrices G2 and

Ĝ2 are rational functions of sin(πx) where x is a linear combination of

the components of AAA, BBB, CCC, G12 with coefficients in {−1, 0, 1}.

For the correlation function G2(z, z̄) these matrices should have the

block-diagonal form

G2 =




G
(1)
2 0 0

0 G
(2)
2 0

0 0 G
(3)
2


 , Ĝ2 =




Ĝ
(1)
2 0 0

0 Ĝ
(2)
2 0

0 0 Ĝ
(3)
2


 , (4.55)

where G
(i)
2 , Ĝ

(i)
2 with i = 1, 2 are two-by-two square matrices, and G

(2)
2

and Ĝ
(2)
2 are diagonal two-by-two matrices.

Assuming the block diagonal form for G2 as in (4.55), we have numeri-

cally solved the system by imposing that the matrix Ĝ2 = S(AAA,BBB,CCC; g12)T ×



36 P. VANHOVE & F. ZERBINI

0 v+
1

v+
2

z 1

C−
1

C−
2

0 v+
1

z

v+
2

1

C−
1

C−
2

(1) (2)

0 v+
1

v+
2

z 1

C−
1

C−
2

(3)

Figure 4.3. Contour of integration C−
1 for v−

1 and C−
2 and v−

2

for the ordering v+
1 < v+

2 .

0 v+
2

v+
1

z 1

C−
2

C−
1

0 v+
2

z

v+
1

1

C−
2

C−
1

(4) (5)

0 v+
2

v+
1

z 1

C−
2

C−
1

(6)

Figure 4.4. Contour of integration C−
1 for v−

1 and C−
2 and v−

2

for the ordering v+
2 < v+

1 .

×G2S(AAA,BBB,CCC; g12) has the block diagonal form as in (4.55). We have

used the expression for the matrix S(AAA,BBB,CCC; g12) given in Appendix B.

On various numerical values we have confirmed that the holomorphic

factorisation in (4.55) has a unique solution up to an overall factor. The

overall factor is uniquely fix by considering a special value of the corre-

lation function G2(z, z̄) and there is no arbitrariness in the holomorphic

factorisation.
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5. The single-valued α′-expansion of closed string amplitudes

We can now show that the α′-expansion of the partial closed string

amplitudes only involves single-valued multiple zeta values(4).

With the identification of the parameters in (3.6) the small α′-expansion

of the single-valued function GN(z, z̄) reads

GN(z, z̄) =
∑

r≥0

(α′)rσ
(r)
N G(r)

N (z, z̄) , (5.1)

where σ
(r)
N are polynomials of degree r (with rational coefficients) in the

kinematic invariants ki ·kj with 1 ≤ i < j ≤ N . The coefficients G(r)
N (z, z̄)

are single-valued functions of z because the expansion in α′ cannot bring

branch cuts. Similarly to the way the coefficients of the α′ expansion

of generalised Selberg integrals are proven in [60, 61] to be polynomials

in multiple zeta values and 2πi with rational coefficients, one can use

Proposition 8.7 to demonstrate that the coefficients of the α′ expansion

of Aomoto-Gel’fand hypergeometric functions are linear combinations of

multiple polylogarithms with coefficients given by polynomials in multi-

ple zeta values and 2πi with rational coefficients. Extra powers of π are

introduced by the small α′ expansion of the matrix G = (Gα,β) in (4.24)

and the matrix Ĝ = (Ĝα,β) (4.25). By Theorem 9.2 and Lemma 9.1

by Francis Brown and Proposition 9.5, we conclude that the coefficients

of G(r)
N (z, z̄) are linear combinations of single-valued multiple polyloga-

rithms with coefficients given by polynomials in multiple zeta values and

2πi with rational coefficients [47]. Based on analytic evaluation of four-

point amplitudes and various numerical checks on five-point amplitudes,

we expect that the coefficients of the single-valued multiple polyloga-

rithms should actually belong to the ring of single-valued multiple zeta

values Zsv defined in §9.1. This would imply that the coefficients of

the α′-expansion of tree-level closed string amplitudes are single-valued

(4)See §9 for a precise definition.



38 P. VANHOVE & F. ZERBINI

multiple zeta values. This will be confirmed by the proof of this fact(5)

contained in part II of the paper.

The integrals J(σ,ρ)(aaa,bbb, ccc;ggg; z) in (4.3) evaluated at z = 1 vanishes,

J(σ,ρ)(aaa,bbb, ccc;ggg; 1) = 0, when ρ is not the empty set. When ρ is not empty

one integrates over the variables wρ(m) ∈ [z, 1] with 1 ≤ m ≤ s in (4.4).

Setting z = 1 the range of integration of goes to zero and therefore the

integral vanishes. Therefore in (4.25) we have that the partial amplitude

of the closed string amplitude MN+3(sss,nnn, n̄̄n̄n) = GN (1, 1) is given by

MN+3(sss,nnn, n̄̄n̄n) =
∑

(σ,σ̃)∈SN ×SN

Ĝ(σ,∅),(σ̃,∅)J(σ,∅)(aaa,bbb, ccc;ggg; 1)J(σ̃,∅)(ā̄āa, b̄̄b̄b, c̄̄c̄c; ḡ̄ḡg; 1) ,

(5.2)

and has only single-valued multiple zeta values in its α′-expansion.

Remark 5.1. — Although the single-valued function GN (z, z̄) depends

explicitly on the values of bi and ci independently, the value at z = 1 only

involves the combination bi+ci, as it is obvious from the value z = 1 of the

integral functions in (4.1) and (4.3). There is a family of single-valued

correlation functions that leads to the same value at z = 1. This parallels

the construction of the single-valued version of multiple polylogarithms,

which is not unique, but for z = 1 they all lead to the same space of

single-valued multiple zeta values over the rational numbers Q [62].

5.1. The single-valued expansion of the four-point amplitude.

— The colour-ordered open string amplitudes are defined as

A4(1, 2, 3, 4;nnn) =

ˆ 1

0

w2α′k1·k2+n1(1 − w)2α′k1·k3+n2+n3 dw, (5.3)

A4(1, 3, 2, 4;nnn) =

ˆ ∞

1

w2α′k1·k2+n1(1 − w)2α′k2·k3+n2+n3 dw

(5)We do not provide a proof in full generality, but only for some special cases, which
include the integrals investigated in the recent superstring theory literature [33, 34].



SINGLE-VALUED CLOSED STRING AMPLITUDES 39

A4(2, 1, 3, 4;nnn) =

ˆ 1

−∞

(−w)2α′k1·k2+n1(1 − w)2α′k2·k3+n2+n3 dw,

where the labels refer to the ordering of the external states on the bound-

ary of the disc. The integrals (4.1) at z = 1 map to(6)

I(∅,(1))(a, b, c; 1) = A4(1, 2, 3, 4;nnn); I((1),∅)(a, b, c; 1) = A4(1, 3, 2, 4;nnn) ,

(5.4)

and the integrals (4.3) at z = 1 map to

J((1),∅)(a, b, c; 1) = A4(2, 1, 3, 4;nnn); J(∅,(1))a, b, c; 1) = 0 . (5.5)

Therefore the evaluation at z = 1 of the single-valued correlation func-

tion in (4.43) and (4.45) gives

G1(1, 1) = −sin(πA1) sin(π(A1 + B1 + C1))

sin(π(B1 + C1))
|A4(2, 1, 3, 4;nnn)|2 . (5.6)

By using [41, eq. (8)] one can bring the KLT expression in [45, eq. (3.11)]

for the closed string amplitude into the non-local symmetric form

M4(sss,nnn, n̄̄n̄n) =
sin(2πα′k1 · k2) sin(2πα′k2 · k4)

sin(2πα′k2 · k3)
|A4(2, 1, 3, 4;nnn)|2 . (5.7)

This form is equivalent to the one given in [41, eq. (15)] by using the

relations [41, eq. (8)].

The closed string four-point partial amplitude M4(sss,nnn, n̄̄n̄n) equals the

value at z = 1 of the single-valued correlation function G1(z, z̄)

M4(sss,nnn, n̄̄n̄n) = G1(1, 1) , (5.8)

using the identification of the parameters

A1 = 2α′k1·k2, B1+C1 = 2α′k2·k3, A1+B1+C1 = −2α′k1·k4 , (5.9)

together with the momentum conservation relation k1 + · · · + k4 = 0 and

the on-shell conditions k2
i = 0 for i = 1, . . . , 4.

(6)The relation between the parameters of the Selberg integral and the open string
amplitudes is given in (3.6) and (3.8) with N = 4. The integers n1, n2 and n3 are
arbitrary.
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Notice that it is not necessary that the total amplitude is given by

the special value at z = 1 of a single-valued correlation function. It is

enough that each partial amplitude arises this way, because the kinematic

coefficients cr(sss, ǫǫǫ) in the expansion of the amplitude in (3.1) are rational

functions of the kinematic invariants (see [50] for some expressions using

the pure spinor formalism, and [36] for bosonic open and closed string

and heterotic string amplitudes). This is the case, for instance, of the

single- and double-trace contributions to the heterotic-string amplitude

given in [48].

5.2. The single-valued expansion of the five-point amplitude.

— The advantage of the expression in (5.2) is that at z = 1 the only non

vanishing integrals are J1(bbb,aaa,ccc; g; 1) and J2(bbb,aaa,ccc; g; 1). These values

correspond to the ordered open string amplitudes

J1(aaa,bbb, ccc; g; 1) = A5(2, 3, 1, 4, 5;nnn), J2(aaa,bbb, ccc; g; 1) = A5(3, 2, 1, 4, 5;nnn),

(5.10)

where the colour-ordered open string amplitudes are

A5(2, 3, 1, 4, 5; n) =

ˆ 0

−∞

dw2

ˆ 0

w2

dw3(w3 − w2)
2α′k2·k3+n23

×
3∏

r=2

(−wr)
−2α′k1·kr+n1r(1 − wr)

2α′kr·k4+nr4

A5(3, 2, 1, 4, 5; n) =

ˆ 0

−∞

dw3

ˆ 0

w3

dw2(w2 − w3)
2α′k2·k3+n23

×
3∏

r=2

(−wr)
−2α′k1·kr+n1r(1 − wr)

2α′kr·k4+nr4 (5.11)

with the parameter identification

a1 = 2α′ k1 · k2 + n12, a2 = 2α′k1 · k3 + n13,

b1 + c1 = 2α′ k2 · k4 + n24, b2 + c2 = 2α′k3 · k4 + n34,

g = 2α′ k2 · k3 + n23 , (5.12)



SINGLE-VALUED CLOSED STRING AMPLITUDES 41

with k1 + · · · + k5 = 0 and k2
i = 0 for 1 ≤ i ≤ 5, and n23, n1r, n4r ∈ Z for

r = 2, 3.

Therefore the value z = 1 of the single-valued correlation function is

given by

G2(1, 1) =

(
A5(2, 3, 1, 4, 5;nnn) A5(3, 2, 1, 4, 5;nnn)

)

G̃11 G̃12

G̃12 G̃22




Ā5(2, 3, 1, 4, 5; n̄̄n̄n)

Ā5(3, 2, 1, 4, 5; n̄̄n̄n)


 .

(5.13)

It was shown in [41, eq. (16)] that the five-point closed xstring amplitude

takes the same form. Using the kinematic amplitude relations derived

in [32,41] one can change the basis to convert the result in [41, eq. (16)]

into

sin(2πα′k3 · k4) sin(2πα′k1 · k5)A5(1, 2, 3, 4, 5,nnn) =

− sin(2πα′k1 · k3) sin(2πα′k1 · k5)A5(2, 3, 1, 4, 5,nnn)

− sin(2πα′k3 · k5) sin(2πα′k1 · (k2 + k5))A5(3, 2, 1, 4, 5,nnn) (5.14)

and

sin(2πα′k2 · k4) sin(2πα′k1 · k5)A5(1, 3, 2, 4, 5,nnn) =

sin(2πα′k1 · k2) sin(2πα′k3 · k5)A5(3, 2, 1, 4, 5,nnn)

− sin(2πα′k2 · k5) sin(2πα′k1 · (k2 + k4))A5(2, 3, 1, 4, 5,nnn). (5.15)

Hence we find that the five-point closed string partial amplitudes are

given by the single-valued correlation functions evaluated at z = 1

M5(sss,nnn, n̄̄n̄n) = G2(1, 1) . (5.16)

This can be checked against the explicit evaluation of the five-point

heterotic-string amplitude in [49].
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6. Relation with the momentum kernel

The fundamental ingredient entering the cancellation of the monodromy

is the matrix S(AAA,BBB,CCC;GGG). This matrix realises the linear transforma-

tion between the set of integral functions I(σ,ρ)(aaa,bbb, ccc;ggg; z) in (4.1) to the

set of integral functions J(σ,ρ)(aaa,bbb, ccc;ggg; z) in (4.3).

When evaluated at z = 1 the ordered integrals in (4.1) evaluate to

N -point ordered open string amplitudes with the parameter dictionary

in (3.6)

I(σ,ρ)(aaa,bbb, ccc;ggg; 1) = AN(1, ρ(1), . . . , ρ(s), N − 1, σ(1), . . . , σ(r), N ;nnn),

(6.1)

with the permutations σ ∈ Sr and ρ ∈ Ss such that {σ(1), . . . , σ(r)} ⊔
{ρ(1), . . . , ρ(s)} = {2, . . . , N−2} with r, s ≥ 0. The integrals J(σ,ρ)(aaa,bbb, ccc;ggg; 1)

vanish unless ρ is the empty set because the integration over the range

[z, 1] vanishes when z = 1 in (4.3). The non-vanishing integrals are given

by the ordered open string amplitudes

J(σ,∅)(aaa,bbb, ccc;ggg; 1) = AN(σ(2), . . . , σ(N − 2), 1, N − 1, N ;nnn), (6.2)

where σ is a permutation of the N − 3 elements {2, . . . , N − 2}.

The ordered open string amplitudes satisfy the following kinematic

identities
∑

α∈SN−2

Sα′(α|β)AN(1, α(2), . . . , α(N − 1), N ;nnn) = 0 (6.3)

for all permutation β ∈ SN−2, where Sα′(α|β) is the momentum ker-

nel [42]. We have recalled its definitions and main properties in Ap-

pendix C.

The relation with the momentum kernel and the matrix Ĝ in the

holomorphic factorisation of §4.4 is obtained by comparing with equa-

tion (4.32) the generic formula for the holomorphic factorisation of the

colour-ordered open string amplitudes using the momentum kernel for-

malism
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MN (sss,nnnr, n̄̄n̄nr) = −
∑

σ,η∈SN−3

Sα′(σ|η)

× AN(1, σ(2, . . . , N − 2), N − 1, N)ÃN(1, η(2, . . . , N − 2), N, N − 1) ,

(6.4)

which is a combination of I(σ,ρ)(aaa,bbb, ccc;ggg; 1) and J(σ,ρ)(aaa,bbb, ccc;ggg; 1) integrals.

Since for z = 1 we have that I
(+)
(σ,ρ)(1) = J(σ,ρ)(aaa,bbb, ccc;ggg; 1) 6= 0 only when

ρ = ∅, we then deduce that

Sα′(σ|η) = G(σ|∅)(ρ|λ)S(AAA,BBB,CCC;GGG)(ρ|λ)
(η|∅),

= S(BBB,AAA,CCC;GGG)(σ|∅)
(ρ|λ)Ĝ(ρ|λ)(η|∅) . (6.5)

The non-localities in the matrices G and Ĝ are removed with the multipli-

cation by change of basis matrix S(AAA,BBB,CCC;GGG) or its inverse S(BBB,AAA,CCC;GGG).

The linear system in (6.3) on the colour-ordered open string amplitudes

captures all the kinematic relations between the open strings. It has rank

(N − 3)!, which implies that any ordered amplitudes can be expressed

in a basis of (N − 3)! ordered open string amplitudes [32, 41]. Choosing

the amplitudes {AN(η(2, . . . , N − 2), 1, N − 1, N ;nnn), η ∈ SN−3} as basis

elements we have, for all permutations η ∈ SN−3,

AN(1, ρ(1), . . . , ρ(s), N − 1, σ(1), . . . , σ(r), N ;nnn) =

M(σ,ρ)
ηAN (η(2), . . . , η(N − 2), 1, N − 1, N ;nnn) , (6.6)

with σ ∈ Sr, and ρ ∈ Ss such that {σ(1), . . . , σ(r)} ⊔ {ρ(1), . . . , ρ(s)} =

{2, . . . , N − 2} with r, s ≥ 0. The matrix M(σ,ρ)
η is the product of the

inverse momentum kernel in [63, eq. (5.1)].

The relation between the two sets of integral functions Iα(aaa,bbb, ccc;ggg; 1)

and Jα(aaa,bbb, ccc;ggg; 1) reads

I(σ,η)(aaa,bbb, ccc;ggg; 1) = S(AAA,BBB,CCC;GGG)
(η,∅)
(σ,η)J(η,∅)(aaa,bbb, ccc;ggg; 1), (6.7)

which means that

M(σ,ρ)
η = S(AAA,BBB,CCC;GGG)

(η,∅)
(σ,ρ) . (6.8)
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◮ At four points we have

A4(1, 2, 3, 4;nnn) =
sin(2πα′k1 · k3)

sin(2πα′k1 · k4)
A4(2, 1, 3, 4;nnn), (6.9)

A4(1, 3, 2, 4;nnn) =
sin(2πα′k1 · k2)

sin(2πα′k1 · k4)
A4(2, 1, 3, 4;nnn) , (6.10)

which matches the relation (A.4) with the parameter identification

in (5.9).

◮ At five points we can express all six ordered amplitudes A5(1, σ(2, 3, 4), 5;nnn)

on the basis of A5(2, 3, 1, 4, 5,nnn) and A5(3, 2, 1, 4, 5;nnn):



A5(1, 4, 2, 3, 5;nnn)

A5(1, 4, 3, 2, 5;nnn)

A5(1, 3, 4, 2, 5;nnn)

A5(1, 2, 4, 3, 5;nnn)

A5(1, 2, 3, 4, 5;nnn)

A5(1, 3, 2, 4, 5;nnn)




=

(
M1

5 M2
5

)

s(k1 · k5)s(k2 · k4)s(k3 · k4)


A5(2, 3, 1, 4, 5;nnn)

A5(3, 2, 1, 4, 5;nnn)


 ,

(6.11)

with the notation s(x) := sin(2πα′ x) and kij := ki + kj and with

the column vectors

M1
5 =




s(k1 · k3)s(k2 · k4)s(k1 · k2 − k3 · k4)

−s(k1 · k3)s(k2 · k5)s(k3 · k4)

s(k3 · k5)s(k2 · k13)s(k4 · k23) + s(k2 · k3)s(k2 · k4)s(k4 · k5)

s(k1 · k3)s(k2 · k5)s(k2 · k4 + k3 · k4)

−s(k1 · k3)s(k2 · k4)s(k2 · k5)

−s(k2 · k5)s(k3 · k4)s(k1 · k35)




(6.12)

and
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M2
5 =




−s(k1 · k2)s(k2 · k4)s(k3 · k5)

s(k1 · k2)s(k3 · k4)s(k1 · k3 − k2 · k4)

s(k1 · k2)s(k3 · k5)s(k4 · k23)

−s(k1 · k5)s(k3 · k12)s(k2 · k14) − s(k1 · k2)s(k2 · k3)s(k3 · k5)

−s(k2 · k4)s(k3 · k5)s(k1 · k25)

−s(k1 · k2)s(k3 · k4)s(k3 · k5)




.

(6.13)

This matches the expression given in Appendix B with the param-

eter identification in (5.12).

PART II

MULTIPLE COMPLEX INTEGRALS AND

SINGLE-VALUED MULTIPLE ZETA VALUES

7. A family of complex integrals

Let us consider the multiple complex integrals given for k ≥ 1 by

Rk(α1, . . . , αk, β1, . . . , βk, γ1,2, . . . γ1,k, γ2,3, . . . γ2,k, . . . , γk−1,k) =
ˆ

(P1
C

)k

k∏

i=1

|zi|2αi−2|zi − 1|2βi−2
∏

1≤i<j≤k

|zj − zi|2γi,j d2z1 · · · d2zk, (7.1)

where d2z := dxdy/π for z = x + iy. This a special case of the multiple

integral Gk(z, z) considered in part I (see eq. (3.5)), obtained by setting

z = 1, ai = ai = αi − 1, bi + ci = bi + ci = βi − 1 and gi,j = gi,j = γi,j. As

we will see in Proposition 7.2, the integrals (7.1) are not convergent at the

origin (0, . . . , 0) ∈ Ck(k+3)/2, but this point is situated right at the bound-

ary of the region of convergence Ck in which Rk defines a holomorphic

function. The aim of this part of the paper is to prove the following:
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Theorem 7.1. — For each k there exist a neighborhood Uk of the origin

of Ck(k+3)/2, a rational function Pk (the polar part) and a function Hk

holomorphic on Uk (the holomorphic part) such that:

– Rk = Pk + Hk on Uk ∩ Ck
(7).

– The poles of Pk are situated along hyperplanes which contain the

origin(8).

– The coefficients of the rational function Pk and of the power-series

expansion around the origin of Hk belong to the ring of single-valued

multiple zeta values.

It is in principle possible, following the steps of the proof, to algorith-

mically compute all the coefficients. Our main motivation to study this

expansion comes from the calculation of closed string amplitudes at tree

level. For instance, the integral (7.1) is a prototype of the integrals Jρ,σ

(see eq. (7.9)) appearing in superstring theory [4,33], as we will argue at

the end of this section. In Section 12 and Appendix D we will explain how

our proof of Theorem 7.1 can be easily adapted to demonstrate that the

coefficients of the low-energy expansion of all Jρ,σ’s are single-valued mul-

tiple zeta values. In order to obtain the same statement for the more gen-

eral closed string integrals (1.2) considered in part I, one must overcome

the problem that the low-energy expansion of such integrals is usually

defined by analytic continuation. Indeed, they are typically expanded

around a point which lies outside of the region of convergence (see the

next subsection). Studying such analytic continuations goes beyond the

scope of this paper, so we content ourselves to work with subfamilies of

integrals where this is not necessary, like the Jρ,σ’s. We believe, however,

that the standard approach in string theory (using integration-by-part

(7)This implies that Rk can be uniquely extended to a meromorphic function on
Uk ∪ Ck.
(8)This uniquely determines Pk (up to the addition of a polynomial). Since our focus
is rather on the coefficients of the holomorphic part Hk, we will not provide an explicit
formula for the polar part. Such a formula can be worked out from our (constructive)
proof, or can alternatively deduced from the results obtained in [34].
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identities) to analytically continue tree-level string integrals would allow

to prove with the techniques developed in the next sections that the coef-

ficients of the low-energy expansion of all integrals (1.2) are single-valued

multiple zeta values, as claimed in part I.

7.1. The region of convergence. — We will write down the region

of convergence of the integral for the more natural set of variables ai :=

αi + 1, bi := βi + 1, ci,j := γi,j.

Proposition 7.2. — Let P = (a1, . . . , ak, b1, . . . , bk, c1,2, . . . , ck−1,k) be-

long to Ck(k+3)/2. For each subset of indices I = {i1, . . . , ih} ⊂ {1, . . . k},

with i1 < i2 < · · · < ih, we define

UI,0 := {P = (a, b, c) ∈ Ck(k+3)/2 : Re
( h∑

s=1

ais +
∑

1≤s<r≤h

cis,ir

)
> −h},

(7.2)

UI,1 := {P = (a, b, c) ∈ Ck(k+3)/2 : Re
( h∑

s=1

bis +
∑

1≤s<r≤h

cis,ir

)
> −h}

(7.3)

Morever, if |I| = h ≥ 2 we define

DI := {P = (a, b, c) ∈ Ck(k+3)/2 : Re
( ∑

1≤s<r≤h

cis,ir

)
> 1 − h}. (7.4)

Finally, let

U∞ := {P = (a, b, c) ∈ Ck(k+3)/2 : Re
( k∑

i=1

(ai + bi)+
∑

1≤i<j≤k

ci,j

)
< −h}.

(7.5)

The region of absolute convergence Ck ⊂ Ck(k+3)/2 of the integral
ˆ

(P1
C

)k

∏

1≤i<j≤k

|zj − zi|2ci,j

k∏

i=1

|zi|2ai |zi − 1|2bi d2zi (7.6)

is given by the intersection of all the domains UI,0, UI,1, DI , U∞. In this

region, the integral (7.6) defines a holomorphic function.
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A proof of this result can be obtained by dividing the domain of in-

tegration into all possible regions 0 ≤ |zik
| ≤ · · · ≤ |zi1 | and operating

the change of variables uj = zij
/zij−1

(setting zi0 = 0). This is enough

to isolate the domains UI,0, DI and U∞, where the integral is convergent

near (0, . . . , 0), near the diagonals and at infinity, resepctively. The re-

gion UI,1 where the integral is convergent near (1, . . . , 1) is then obtained

by substituting ai ↔ bi. We leave the details to the reader.

One can immediately see that the point P = (a, b, c) with a =

(−1, . . . , −1), b = (−1, . . . , −1) and c = (0, . . . , 0) belongs to the bound-

ary of Ck, and that for Re(ε) > 0 small enough all the points P = (a, b, c)

with a = (−1+ε, . . . , −1+ε), b = (−1+ε, . . . , −1+ε) and c = (0, . . . , 0)

are contained in Ck (which in particular in always non-empty). This

means that our integral (7.1) is absolutely convergent for all γi,j = 0 and

for any α1, . . . , αk, β1, . . . , βk with positive small enough real part. For

example, for k = 1 and k = 2 the regions of convergence of (7.6) are

C1 = {(a1, b1) : Re(a1), Re(b1) > −1, Re(a1 + b1) < −1}, (7.7)

C2 ={(a1, a2, b1, b2, c1,2) : Re(a1), Re(a2), Re(b1), Re(b2), Re(c1,2) > −1

Re(a1 + b1 + c1,2), Re(a2 + b2 + c1,2) > −2,

Re(a1 + a2 + b1 + b2 + c1,2) < −2} (7.8)

7.2. Multiple complex integrals in superstring amplitudes. —

Let us now comment on the integrals which appear in the computation

of closed superstring amplitudes (see for instance [2]) and on their re-

lationship with our integrals Rk. Let ρ, σ be two permutations in the

symmetric group Sk, and let us consider the integrals Jρ,σ(a, b, c) given

for (a, b, c) ∈ Ck(k+3)/2 as above by
ˆ

(P1
C

)k

∏
1≤i<j≤k |zj − zi|2ci,j

∏k
i=1 |zi|2ai |zi − 1|2bi d2zi

zρ(1) zσ(1)(1 − zρ(k))(1 − zσ(k))
∏k

i=2(zρ(i) − zρ(i−1))(zσ(i) − zσ(i−1))
.

(7.9)
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Since the proof of Proposition 7.2 can be straightforwardly modified

to find the region of convergence of integrals with arbitrary powers of

(zi − zj) and (zi − zj) (possibly with zi, zj = 0, 1), one can check that

the origin is always either inside or at the boundary of the region of con-

vergence of Jρ,σ(a, b, c), which therefore do not need to be analytically

continued. After subtracting a suitable rational function which encodes

its divergence, each Jρ,σ can be expanded as a power series around the ori-

gin; this is called the low energy expansion(9). It was conjectured in [2,3]

that the coefficients of the low-energy expansion of Jρ,σ(a, b, c) should be

single-valued multiple zeta values(10). We claim that this can be proven

using the machinery developed in Section 9, along the same lines of the

proof of Theorem 7.1 and using the above-mentioned fact that the origin

lies (at worse) on the boundary of the region of convergence. Details will

be given at the end of Section 12, after the proof of Theorem 7.1, as well

as in Appendix D.

We now want to clarify the precise relationship between our integrals

Rk and the integrals Jρ,σ from superstring amplitudes. One can show by

induction the identity

∑

ρ∈Sk

1

zρ(1)(1 − zρ(k))
∏k

i=2(zρ(i) − zρ(i−1))
=

k∏

i=1

1

zi(1 − zi)
. (7.10)

This implies that

Rk(α1, . . . , αk, β1, . . . , βk, γ1,2, . . . γ1,k, γ2,3, . . . γ2,k, . . . , γk−1,k) =
∑

(ρ,σ)∈S2
k

Jρ,σ(α1, . . . , αk, β1, . . . , βk, γ1,2, . . . γ1,k, γ2,3, . . . γ2,k, . . . , γk−1,k),

(7.11)

which tells us that we are indeed considering an integral which comes

from genus-zero closed superstring theory.

(9)A rigorous proof of this fact, together with an explicit description of the rational
functions involved, can be found in [34].
(10)This is now a theorem, thanks to [33, 34].
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8. Hyperlogarithms

Hyperlogarithms are holomorphic multi-valued functions given by ho-

motopy invariant iterated integrals on the punctured complex plane. In

this section we will define them and recall some of their properties from

the literature. Our main references will be [47] and [51].

8.1. Definition and first properties. — Let M be a smooth mani-

fold, let ω1, . . . , ωr denote smooth complex-valued 1-forms on M and let

γ : [0, 1] → M be a parametrization of a piecewise smooth path. We can

write γ∗ωi = fi(t)dt for some piecewise smooth function fi : [0, 1] → C,

where 1 ≤ i ≤ r. The iterated integral of ω1, . . . , ωr along γ is
ˆ

γ

ω1 · · · ωr :=

ˆ

1≥t1≥···≥tr≥0

f1(t1) · · · fr(tr) dt1 · · · dtr. (8.1)

We will call r the length of the iterated integral.

Let σ0, σ1, σ2 . . . , σn be n + 1 distinct complex numbers. We will

think of them also as formal non-commutative letters of an alphabet

X = {σ̂0, . . . σ̂n}, denote X∗ the free non-commutative monoid given by

all possible words in this alphabet and the empty word e, and denote by

C〈X〉 the free C-algebra generated by X∗ and equipped with the (com-

mutative) shuffle product. A string of r consecutive repetition of the same

letter σ̂i will be denoted by σ̂r
i , and the length of a word w = σ̂i1 · · · σ̂ir is

|w| = r. From now on we will write σ both meaning the complex number

and the associated formal letter, except for those formulae where we need

to distinguish between the two meanings. Moreover, we set σ0 = 0 and

σ1 = 1. Let us fix a simply connected domain U obtained from C by

cutting out closed half lines l(σi) starting at the points σi and not inter-

secting among themselves, and let us choose a branch of the logarithms

on U . It is known that any iterated integral involving the differential

forms dx/(x − σi) is homotopy invariant in D := P1
C \ (X ∪ {∞}) [64].

Using the fact that U is simply connected, we define hyperlogarithms in
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the following way: if ir 6= 0 and w = σi1 · · · σir we set

Lw(z) =

ˆ

[0,z]

dx

x − σi1

· · · dx

x − σir

, (8.2)

where [0, z] is any path contained in U starting at 0 and ending at z.

Homotopy invariance allows us to extend these functions to holomorphic

multi-valued functions on D. In order to define hyperlogarithms for any

word w ∈ X∗, we require w → Lw(z) to be a homomorphism (i.e. it

respects the shuffle product), and we set L0r(z) = logr(z)/r!, Le(z) = 1.

Note that, for all i 6= 0,

Lσr
i
(z) =

1

r!
logr

(
1 − z

σi

)
. (8.3)

Moreover, for any w ∈ X∗ and for any σi ∈ X one locally has for some

non-negative integer Ki

Lw(z) =
Ki∑

k=0

∑

j≥0

c
(i)
k,j(w)(z − σi)

j logk(z − σi), (8.4)

as well as, for some non-negative integer K∞,

Lw(z) =
K∞∑

k=0

∑

j≥0

c
(∞)
k,j (w)z−j logk(z − σi), (8.5)

where the coefficients c
(•)
j,k(w) are complex numbers. For α ∈ X ∪ {∞}

we define the regularized value of Lw(z) at α to be Lw(α) := c
(α)
0,0 (w).

From now on, whenever we talk of special values of hyperlogarithms, we

implicitly mean regularized values. It will be useful later to introduce the

following notation: for an alphabet X = {σ̂j}0≤j≤n, a ring R ≤ C and

0 ≤ j ≤ n we define the free R-module SX,R,j = R〈Lw(σj) : w ∈ X∗〉.
Each of these modules is actually a subring of C, because hyperlogarithms

satisfy shuffle relations. Then we define SX,R to be the smallest subring

of C containing all SX,R,j . If X = {0, 1}, the special values ζw := Lw(1)

are called multiple zeta values. Multiple zeta values are real numbers,

they form a Q-algebra Z := S{0,1},Q,1 ≡ S{0,1},Q and are usually defined
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using the nested sum notation

ζ(k1, . . . , kr) =
∑

0<v1<···<vr

1

vk1
1 · · · vkr

r

, (8.6)

where ki ∈ N, kr ≥ 2. It is a simple exercise to verify that ζ(k1, . . . , kr) =

ζ0kr−11···0k1−11.

One can characterize hyperlogarithms on any simply-connected dense

open subset of the punctured complex plane D in the following way:

Theorem 8.1 (Brown, [47]). — Let D = P1
C\(X∪{∞}), and let U be

a simply-connected dense open subset of D. The hyperlogarithms {Lw(z) :

w ∈ X∗} are the unique family of holomorphic functions satisfying for

z ∈ U
∂

∂z
Lσiw(z) =

Lw(z)

z − σi
(8.7)

such that Le(z) = 1, L0r(z) = logr(z)/r! for all n ∈ N and Lw(z) → 0 as

z → 0 for every other word w. We say that w is the label and z is the

argument of Lw(z).

8.2. Generating series and monodromy. — It is often convenient

to consider the generating series of hyperlogarithms

LX(z) =
∑

w∈X∗

Lw(z) w. (8.8)

Eq. (8.7) is then equivalent to

∂

∂z
LX(z) =

n∑

i=0

σ̂i

z − σi
LX(z), (8.9)

and LX is the unique solution of (8.9) on U = C \ ⋃i l(σi) taking values

in C〈〈X〉〉 (non-commutative formal power series in X∗) such that

LX(z) = f0(z) exp(σ̂0 log(z)), (8.10)

where f0(z) is a holomorphic function on C \ ⋃i6=0 l(σi) which satisfies

f0(0) = 1 [65]. For the alphabet X = {0, 1}, the generating series of
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regularized special values at z = 1

Z(σ̂0, σ̂1) := L{0,1}(1) (8.11)

is known as the Drinfel’d associator, and equation (8.9) is known as the

Knizhnik-Zamolodchikov equation. More generally, we will later be inter-

ested in all (regularized) special values LX(σi). The following lemma is a

consequence of the path-concatenation property of iterated integrals(11).

Lemma 8.2. — For any 1 ≤ i ≤ n let Y (X, i) := {σ̂i − σ̂0, . . . , σ̂i − σ̂n}.

We have

LX(σi − z) = LY (X,i)(z)LX(σi) (8.12)

Let now C∞
m (D) denote the algebra of multi-valued real analytic func-

tions on the punctured plane D, and let us fix z0 ∈ D. The fundamental

group π1(D, z0) is the free group on generators γ0, . . . , γ1, where each γi

is a loop based at z0 and winding once around σi in the positive direction.

For each 0 ≤ i ≤ n we write Mσi
: C∞

m (D) → C∞
m (D) for the monodromy

operator given by analytic continuation of functions around γi. The

maps Mσi
are homomorphisms of algebras which commute with ∂/∂z

and ∂/∂z.

Proposition 8.3 (Brown, [47]). — For each 1 ≤ i ≤ n we have

Mσi
LX(z) = LX(z)(LX(σi))

−1e2πiσ̂iLX(σi). (8.13)

This implies that non-constant hyperlogarithms are not single-valued

on D.

8.3. Integration. — We conclude this section by stating two funda-

mental results about hyperlogarithms which imply that we can always

find primitives of hyperlogarithms, and that we can do it algorithmically.

First of all, we need to introduce some notation. For any subring R of C

(11)If γ1(1) = γ2(0) then
´

γ1γ2

ω1 · · · ωn =
∑n

i=0

´

γ2

ω1 · · · ωi

´

γ1

ωi+1 · · · ωn.
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and any alphabet X let us define HX,R to be the ring generated by R-

linear combinations of hyperlogarithms w.r.t. the alphabet X, graded(12)

by the length |w| := n of words w = σi1 · · · σin . Moreover, let

OX,R = R

[
z, σi,

1

z − σi

,
1

σj − σi

: σi, σj ∈ X, σi 6= σj

]
(8.14)

and let AX,R be the free OX,R-module generated by HX,R. Note that

AX,R is closed under differentiation (when R is a field, it is a differential

algebra).

Theorem 8.4 (Brown, [47]). — Hyperlogarithms Lw(z) form an OX,C-

basis for AX,C. The only algebraic relations with coefficients in OX,C be-

tween hyperlogarithms are given by the shuffle product. Every function

f(z) ∈ AX,C has a primitive in AX,C which is unique up to a constant.

In order to calculate integrals of hyperlogarithms algorithmically, it is

useful to consider Lw(z) as multivariable functions depending also on the

punctures σi ∈ C appearing in the label. First of all, one can compute

the total derivative explicitly from the definition, obtaining (see [51]):

Lemma 8.5. — If we denote σi0 := z, σir+1 := 0, d log(0) := 0, we have

for any Lσi1
···σir

(z)

dLw(z) =
n∑

k=1

Lσi1
···σik−1

σik+1
···σir

(z)d log

(
σik

− σik−1

σik+1
− σik

)
. (8.15)

Since some of the terms in the formula may tend to ∞ when z → σi,

it is important to mention that we implicitly consider regularized values.

For each 2 ≤ i ≤ n, let us define the alphabet Xi = X \{σi}. Comparing

the two sides of eq. (8.15) leads to the following:

Corollary 8.6. — For each w ∈ X∗

∂

∂σi
Lw(z) =

∑

τ∈Xi∪{z}
v∈X∗

λτ,v

σn − τ
Lv(z), (8.16)

(12)The fact that the length is a grading follows from Theorem 8.4.
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where λτ,v ∈ Z, |v| < |w| and the sum is finite.

The main consequence of this fact is that, if we consider hyperloga-

rithms as functions of a puncture σi, they can be rewritten as hyperlog-

arithms in σi
(13):

Proposition 8.7. — For any w ∈ X∗ and any 1 ≤ i, j ≤ n

Lw(σj) =
∑

u

cuLu(σi), (8.17)

where cu ∈ SXi,Q[2πi] and the sum is over a finite number of words u ∈ X∗
i .

Proof. This can be proven by induction on |w|. If |w| = 1 then

one needs to rewrite log(1 − σj/σi) in terms of L0(σi) and Lσj
(σi). This

introduces an integer multiple of πi which depends on the chosen branch

of the logarithm. In the general case, by the inductive hypothesis and

Corollary 8.6 we get

∂

∂σi
Lw(σj) =

∑

τ∈Xi∪{z}
u∈X∗

i

cu

σi − τ
Lu(σi), (8.18)

where cu ∈ SXi,Q[2πi]. Hence we have

Lw(σj) =
∑

τ∈Xi∪{z}
u∈X∗

i

cuLτu(σi) + c, (8.19)

and c = limσi→0 Lw(σj) ∈ SXi,Q[2πi]
(14).

�

We conclude this section by mentioning that, if we consider the com-

plex plane’s punctures as variables, hyperlogarithms can be written in

(13)This is the key ingredient of the Maple program HyperInt developed by Panzer [66]
which allows to compute multiple integrals of hyperlogarithms.
(14)We always consider regularized limits. In the case where |w| = 1, this regularized
limit introduces the extra πi.
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terms of multiple polylogarithms

Lik1,...,kr(z1, . . . , zr) :=
∑

0<v1<···<vr

zv1
1 · · · zvr

r

vk1
1 · · · vkr

r

, (8.20)

where k1, . . . , kr ∈ N, and vice versa. Multiple polylogarithms play a

fundamental role in the theory of iterated integrals on the moduli space

M0,n of punctured Riemann spheres(15). In particular, all statements pre-

sented in this subsection can also be seen as corollaries of the machinery

developed by Brown in [61] to study iterated integrals on M0,n.

9. Single-valued hyperlogarithms

Let us consider the map ∼: X∗ → X∗ which sends w = σi1 · · · σir to

w̃ = σir · · · σi1 . This map can be extended by linearity to C〈〈X〉〉. We

define the single-valued hyperlogarithm Lw(z) to be the coefficient of the

word w ∈ X∗ in the generating series

LX(z) := LX(z)L̃X′(z), (9.1)

where X ′ is the alphabet given by the letters σ̂′
i determined by the system

of equations

L̃X′(σi)σ̂
′
iL̃X′(σi)

−1 = LX(σi)
−1σ̂iLX(σi). (9.2)

This construction was first proposed by Brown in [47], where it was shown

that eq. (9.2) admits a unique solution in terms of elements of C〈〈X〉〉.
In particular, one has σ̂′

0 = σ̂0 and, for i 6= 0, σ̂′
i = σ̂i modulo words

w ∈ X∗ with |w| ≥ 4. Knowing that such a solution exists, we get by

Proposition 8.3 that for all 0 ≤ i ≤ n

Mσi
LX(z) = LX(z)LX(σi)

−1e2πiσ̂iLX(σi)L̃X′(σi)e
−2πiσ̂′

iL̃X′(σi)
−1L̃X′(z)

= LX(z)L̃X′(z) = LX(z), (9.3)

(15)They generate all periods of the pro-unipotent fundamental groupoid of M0,n [61].
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which implies that LX(z) is indeed single-valued. Simple examples of

single-valued hyperlogarithms are given by L0n(z) = logn |z|2/n! and (for

i 6= 0) by

Lσn
i
(z) =

1

n!
logn

∣∣∣∣∣1 − z

σi

∣∣∣∣∣

2

. (9.4)

These examples reflect the fact that log(z) is not single-valued on the

whole complex plane, but one can obtain a single valued function by

adding its complex conjugate log(z), which has the opposite monodromies.

For any subring R ≤ C, we denote by Hsv
X,R the ring generated over

R by single-valued hyperlogarithms. Moreover, we denote by Asv
X,R the

free OX,R ⊗R OX,R-module generated by Hsv
X,R, where OX,R is the ring of

functions generated over R by the complex conjugates of the generators

of OX,R. Notice that Hsv
X,C ⊂ HX,C ⊗ HX,C and Asv

X,C ⊂ AX,C ⊗ AX,C.

Lemma 9.1 (Brown, [47]). — The only algebraic relations in the space

AX,C ⊗ AX,C are given by the shuffle product.

Theorem 9.2 (Brown, [47]). — The series LX(z) is single-valued, and

is the unique solution to the differential equations

∂

∂z
LX(z) =

n∑

i=0

σ̂i

z − σi
LX(z) (9.5)

and
∂

∂z
LX(z) = LX(z)

n∑

i=0

σ̂′
i

z − σi

(9.6)

such that LX(z) ∼ exp(σ̂0 log |z|2) as z → 0. The functions Lw(z) are

linearly independent over OX,C ⊗ OX,C and satisfy the shuffle relations.

Every element in Asv
X,C has a primitive with respect to ∂/∂z and ∂/∂z,

and every single-valued function f(z) ∈ AX,C ⊗ AX,C can be written as a

unique OX,C ⊗ OX,C-linear combination of functions Lw(z).
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To recapitulate, we now know that all Lw(z) can be written in a unique

way as C-linear combinations of products Lw1(z)Lw2(z) which are single-

valued in z. Looking more carefully at the equations defining single-

valued hyperlogarithms and the alphabet X ′, one can see that the coeffi-

cients of these linear combinations must in fact belong to SX,Q ⊗Q SX,Q ⊂
C. It will be crucial for us to demonstrate that these coefficients belong

to an even smaller ring (see Proposition 9.5).

9.1. Special values. — As a consequence of the asymptotic expan-

sions (8.4) and (8.5) of hyperlogarithms one can deduce the following:

Lemma 9.3. — Let f(z) ∈ Asv
X,C, then for each σi ∈ X we have locally

f(z) =
Ki∑

k=0

∞∑

m=Mi

∞∑

n=Ni

c
(i)
k,m,n(log |z − σi|2)k(z − σi)

m(z − σi)
n, (9.7)

as well as

f(z) =
K∞∑

k=0

M∞∑

m=−∞

N∞∑

n=−∞

c
(∞)
k,m,n(log |z|2)kzmzn, (9.8)

where c
(•)
k,m,n ∈ C, M•, N• ∈ Z. Moreover, if f(z) = Lw(z) then M• = 0

and N• = 0.

Using this lemma one can define, just as we did in the holomorphic

case, regularized special values of single-valued hyperlogarithms at points

σi ∈ X. The special values

ζ sv
w := Lw(1) (9.9)

for the alphabet X = {0, 1} are called single-valued multiple zeta values.

These numbers form a Q-sub-algebra Zsv of the algebra Z of multiple zeta

values, which we can think of (assuming standard conjectures on multiple

zeta values) as the image of an endomorphism “sv” of Z. If we use the

notation ζ(k1, . . . , kr) associated with the nested sum representation of

multiple zeta values, one has for instance ζ sv(2k) = 0 and ζ sv(2k + 1) =

2ζ(2k + 1) for all k ≥ 1. The structure of this algebra was first studied
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in [1]. More generally, we define Ssv
X,R,j = R〈Lw(σj) : w ∈ X∗〉 and

Ssv
X,R to be the ring generated over R by all Ssv

X,R,j . In particular, Zsv =

Ssv
{0,1},Q,1 ≡ Ssv

{0,1},Q. We want to assign a weight to certain elements of

Ssv
X,R in the following way: if c ∈ R then W (c) = 0, if c = Lw(σj) then

W (c) = |w|, if c = a · b then W (c) = W (a) + W (b). Finally, if c ∈ Ssv
X,R

is an R-linear combination of monomials given by products of special

values of single-valued hyperlogarithms, such that each monomial has

the same weight α, we say that c has homogeneous weight W (c) = α.

It is important to remark that, a priori, the weight is well-defined on

elements of Ssv
X,R only if we think of them as abstract symbols, without

taking into account the relations among them. Indeed, while the length

is a grading for the algebra of single-valued hyperlogarithms (because of

Lemma 9.1), the weight just defined on their special values a priori is

not, and it may in principle happen that there are linear relations among

elements of different weight(16). In other words, the weight can only

be proven to be a filtration on Ssv
X,R, but for our purposes it is enough

to know that it is well defined on single-valued hyperlogarithms when

considered as abstract symbols.

Once again, we will need to consider the generating series of regularized

special values LX(σi) of hyperlogarithms.

Lemma 9.4. — For any 1 ≤ i ≤ n let Y (X, i) = {σ̂i − σ̂0, . . . , σ̂i − σ̂n}.

We have

LX(σi − z) = LY (X,i)(z)LX(σi) (9.10)

Proof. By Lemma 8.2 we know that

LX(σi − z) = LY (X,i)(z)LX(σi)L̃X′(σi)
˜L(Y (X,i))′(z) (9.11)

(16)A famous conjecture of Zagier predicts that this will never happen in the case of
multiple zeta values.
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The right-hand sides of (9.10) and (9.11) both satisfy the differential

equation
∂

∂z
F (z) =

n∑

j=0

τ̂j

z − τj

F (z), (9.12)

where τj := σi − σj . Since their asymptotic behaviour at z = 0 is the

same, they must coincide.

�

The following proposition is one of the main technical points of this

section. It is an easy generalization of the analogous result for the alpha-

bet {0, 1} demonstrated by Schnetz in [52], but because of its relevance

for our argument we prefer to repeat the proof here.

Proposition 9.5. — For all w ∈ X∗

Lw(z) =
∑

w1,w2∈X∗

cw1,w2Lw1(z)Lw2(z), (9.13)

where all cw1,w2 belong to Ssv
X,Q and have homogeneous weight W (cw1,w2) =

|w| − |w1| − |w2|.

Proof. First of all, by Theorem 9.2 we have for all 0 ≤ j ≤ n

lim
z→σj

(z − σj)
∂

∂z
LX(z) = lim

z→σj

(z − σj)LX(z)
(

σ̂′
0

z
+ · · · +

σ̂′
n

z − σn

)

= LX(σj)σ̂
′
j . (9.14)

In particular, since for j = 0 we know that σ̂′
0 = σ̂0 and that LX(0) = 1,

we get

lim
z→0

z
∂

∂z
LX(z) = σ̂0, (9.15)

which implies that

lim
z→0

z
∂

∂z
Lw(z) = δw,σ̂0 (9.16)

Since by Lemma 9.4 we know that LX(σj − z) = LY (X,j)(z)LX(σj) we

conclude (using also eq. (9.16)) that for any w ∈ X∗

lim
z→σj

(z − σj)
∂

∂z
Lw(z) = lim

z→0
z

∂

∂z
Lw(σj − z) (9.17)
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belongs to Ssv
X,Q,j. Let us now denote the coefficient of any word w in the

series σ̂′
j ∈ C by (σ̂′

j |w). By eq. (9.14) we can also write

lim
z→σj

(z − σj)
∂

∂z
Lw(z) = (σ̂′

j |w) +
∑

uv=w
|v|<|w|

Lu(σj)(σ̂
′
j |v). (9.18)

Comparing eqs. (9.17) and (9.18) and using induction on the length of

the words we conclude that the coefficients of σ̂′
j belong to Ssv

X,Q,j (re-

call that σ̂′
j = σ̂j+ higher-length terms). This immediately implies the

first statement of the proposition. To demonstrate the second statement

about the homogeneity of the weight, we observe that if we assign weight

−1 to each letter σ̂j of the alphabet X, we obviously have that LX(z) has

weight zero. Therefore, by the definition of LX(z), it is enough to show

that each σ̂′
j has homogeneous weight −1, i.e. that (σ̂′

j |w) has weight

|w|−1 for any word w. Once again, this follows by comparing eqs. (9.17)

and (9.18) and using induction.

�

Corollary 9.6. — Let F (z) be a single-valued function which is a Ssv
X,Q-

linear combination of products Lw1(z)Lw2(z). Then F (z) ∈ Hsv
X,Ssv

X,Q
.

Proof. Let

F (z) =
∑

w1,w2∈X∗

cw1,w2Lw1(z)Lw2(z) (9.19)

with cw1,w2 ∈ Ssv
X,Q. Since F (z) is single-valued we know by Theorem 9.2

that

F (z) =
∑

u∈X∗

kuLu(z), (9.20)

with ku ∈ C. By Proposition 9.5 we have that

F (z) =
∑

u∈X∗

ku

∑

u1,u2∈X∗

l(u)
u1,u2

Lu1(z)Lu2(z), (9.21)

with l(u)
u1,u2

∈ Ssv
X,Q. Comparing eq. (9.19) with eq. (9.21) and using

Lemma 9.1 we conclude that all ku must belong to the field of fractions

of Ssv
X,Q. However, since σ̂′

i = σ̂i modulo words w ∈ X∗ with |w| ≥ 4, for
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each u one always has the coefficient l(u)
u,e = 1, which implies that in fact

ku ∈ Ssv
X,Q.

�

9.2. Integration. — For f(z) ∈ Asv
X,C we define the holomorphic and

anti-holomorphic residues of f at a point σi ∈ X as Resz=σi
f(z) :=

c
(i)
0,−1,0, Resz=σi

f(z) := c
(i)
0,0,−1, respectively, where we are referring to the

coefficients c
(i)
k,m,n in the expansions given by Lemma 9.3. Similarly, we

can define the residues at ∞ by Resz=∞f(z) := c
(∞)
0,−1,0 and Resz=∞f(z) :=

c
(∞)
0,0,−1. The following theorem is an adaptation of a theorem of Schnetz

to our context.

Theorem 9.7. — (Schnetz, [52]) Suppose that f(z) ∈ Asv
X,C and that

´

P1
C

f(z)d2z < ∞, where d2z := dxdy/π for z = x + iy. Then

ˆ

P1
C

f(z)d2z = Resz=∞G(z) −
n∑

i=0

Resz=σi
G(z) (9.22)

= Resz=∞F (z) −
n∑

i=0

Resz=σi
F (z) (9.23)

for any F, G ∈ Asv
X,C such that ∂zF (z) = ∂zG(z) = f(z).

Proof. We will show only the first equality, as the second follows by

repeating exactly the same steps in the anti-holomorphic case. One has

f(z)d2z = −f(z)

2πi
dz ∧ dz = d

(
G(z)

2πi

)
dz,

therefore f(z)d2z is exact on P1
C \ (X ∪ {∞}). Let Ba(r) denote the

ball centered in a of radius r, S±
a (r) = ∂±Ba(r) and ε > 0 such that

Bη(ε) ∩ Bθ(ε) = ∅ for all finite η, θ ∈ X. Then f(z)d2z is exact on the

oriented manifold Vε := P1
C \ (

⋃
η∈X Bη(ε) ∪ B0(ε

−1)) with boundaries

S+
0 (ε−1), S−

η (ε), and so by Stokes’s theorem we have
ˆ

Vε

f(z)d2z = − 1

2πi

(
ˆ

S+
0 (ε−1)

+
∑

η∈X

ˆ

S−

η (ε)

)
G(z)dz.
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Parametrizing Sη(ε) = {z = η + εeiθ : 0 ≤ θ < 2π} and integrating term

by term the expansion of the integrand given in Lemma 9.3 we get our

claim.

�

This theorem gives us the first powerful instrument to deal with inte-

grals of single-valued hyperlogarithms over the complex plane. However,

in order to compute multiple integrals like (7.1) we need to treat the

letters in the label as variables and to have at disposal an analogue of

Theorem 8.7 for the single-valued case. To obtain such a result, we must

first get an analogue of Corollary 8.6.

Lemma 9.8. — For any w ∈ X∗, z ∈ C and 2 ≤ i ≤ n, we have

∂

∂σi

Lw(z) =
∑

τ∈Xi∪{z}
v∈X∗

λτ,v

σi − τ
Lv(z), (9.24)

where the sum is finite and λτ,v ∈ Ssv
X,Q have homogenous weight W (λτ,v) =

|w| − |v| − 1.

Proof. We will use induction on the length |w|. If |w| = 1 the

statement clearly holds. For |w| ≥ 2 let

Lw(z) =
∑

w1,w2

cw1,w2Lw1(z)Lw2(z). (9.25)

By Proposition 9.5 cw1,w2 ∈ Ssv
X,Q and W (cw1,w2) = |w|−|w1|−|w2|. Since

some cw1,w2 may depend on σi and ∂
∂σi

Lw(z) = 0 for all w, we have

∂

∂σi

Lw(z) =
∑

w1,w2

(
∂

∂σi

cw1,w2

)
Lw1(z)Lw2(z)

+
∑

w1,w2

cw1,w2

(
∂

∂σi
Lw1(z)

)
Lw2(z). (9.26)

It is trivial to see from the definition of single-valued hyperlogarithms

that |w1| + |w2| > 0. Therefore we can use the inductive hypothesis on

the single-valued hyperlogarithms evaluated at points of the alphabet X



64 P. VANHOVE & F. ZERBINI

appearing in cw1,w2, obtaining that

∂

∂σi
cw1,w2 =

∑

τ∈Xi

µτ,w1,w2

σi − τ
, (9.27)

where each µτ,w1,w2 ∈ Ssv
X,Q has homogeneous weight given by W (µτ,w1,w2) =

W (cw1,w2) − 1. On the other side, by Corollary 8.6 we have

∂

∂σi
Lw1(z) =

∑

τ∈Xi∪{z}
v∈X∗

λτ,v

σi − τ
Lv(z) (9.28)

with λτ,v ∈ Z and |v| = |w| − 1. Therefore we are left with

∂

∂σi
Lw(z) =

∑

τ∈Xi∪{z}

fτ (z)

σi − τ
, (9.29)

where each fτ (z) is a single-valued Ssv
X,Q-linear combination of products

Lv1(z)Lv2(z) of homogeneous weight |w|−1. By Corollary 9.6 we conclude

that each fτ (z) is a Ssv
X,Q-linear combination of single-valued hyperloga-

rithms
∑

v λτ,vLv(z) and W (λτ,v) + |v| = |w| + 1.

�

If we want to consider a point σi as a variable, it is also crucial to

notice the following important property(17).

Lemma 9.9. — For each w ∈ X∗, each 2 ≤ i ≤ n and each z ∈ C the

single-valued hyperlogarithm Lw(z) is single-valued as a function of σi.

Proof. We need to show that σi → Lw(z) is a well-defined function

for all w ∈ X∗ and all σi, z ∈ C. Recall that, by Theorem 9.2, Lw(z) is a

uniquely determined single-valued function of z ∈ C \ X for any σi ∈ C,

which we have extended to a function on C. This precisely means that

Lw(z) takes a unique value for any z and any w, so σi → Lw(z) is well-

defined.

�

(17)A (different) proof of this lemma was already given in [33].
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We are now ready to state the main result of this section, which is the

crucial ingredient to perform multiple integrals of single-variable hyper-

logarithms. We recall that we have denoted Xi = X \ {σi}.

Theorem 9.10. — For any w ∈ X∗ and any 2 ≤ i, j ≤ n

Lw(σj) =
∑

u

cuLu(σi), (9.30)

where cu ∈ Ssv
Xi,Q and the sum is finite.

Proof. If |w| = 1 we have Lσk
(σj) = log |1 − σj/σk|2. Therefore if

k 6= i then Lσk
(σj) ∈ Ssv

Xi,Q and if k = i then Lσi
(σj) = Lσj

(σi) − L0(σi).

Let us proceed by induction on |w|. By Lemma 9.8 we have

∂

∂σi
Lw(σj) =

∑

τ∈Xi
v∈X∗

λτ,v

σi − τ
Lv(σj), (9.31)

with λτ,v ∈ Ssv
X,Q of homogenous weight such that W (λτ,v)+ |v| = |w|−1.

We can therefore apply the inductive hypothesis both on the coefficients

λτ,v and on the hyperlogarithms Lv(σj), obtaining (after performing

enough shuffle products)

∂

∂σi
Lw(σj) =

∑

τ∈Xi
u∈X∗

i

µτ,u

σi − τ
Lu(σi) (9.32)

with µτ,u ∈ Ssv
Xi,Q, which implies by Theorem 9.2 that

Lw(σj) =
∑

τ∈Xi
u∈X∗

i

µτ,uLτu(σi) + f(σi) (9.33)

for some function f not depending on σi. Because of Proposition 8.7,

the function f(σi) must belong to HX,C. By Lemma 9.9 we know that

f is a single-valued function of σi, but then by Proposition 8.3 it has to

be constant in σi. Since |τu| ≥ 1 we have Lτu(0) = 0. Therefore we

conclude that

f = lim
σi→0

Lw(σj), (9.34)
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which belongs to Ssv
Xi,Q.

�

Once again, we conclude the section by recalling that, when we consider

the letters of the alphabet as variables, hyperlogarithms can be seen as

iterated integrals on M0,n. It is possible to construct single-valued real-

analytic versions of these iterated integrals [67]. They form an algebra

which is isomorphic to the algebra of their holomorphic counterparts. We

believe that also all our results about single-valued hyperlogarithms as

functions of the alphabet’s letters should be consequences of the structure

of the abstract algebra of iterated integrals on M0,n studied in [61]. A

very nice dictionary between the two possible approaches was presented

in [68].

10. The case k = 1

In this case the integral Rk coincides precisely with the Virasoro bosonic

string amplitude [69], i.e. the complex beta function defined for α, β ∈ C,

Re(α) > 0, Re(β) > 0 and Re(α + β) < 1 by the absolutely convergent

integral
ˆ

P1
C

|z|2α−2|1 − z|2β−2d2z. (10.1)

Until the very recent appearence of [33,34], this was the only case where

the low energy expansion (i.e. the asymptotic expansion for α, β →
0) of a genus-zero closed string amplitude was proven to only involve

single-valued multiple zeta values, and more precisely only odd Riemann

zeta values. The classical way to do this computation is known at least

since the 1960s and consists in writing the integral as a quotient of Γ-

functions(18):

R1(α, β) =
(α + β)

αβ

Γ(1 + α)Γ(1 + β)Γ(1 − α − β)

Γ(1 − α)Γ(1 − β)Γ(1 + α + β)

(18)See for instance [70] for the details of this computation.
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=
(α + β)

αβ
exp

(
− 2

∑

n≥1

ζ(2n + 1)

(2n + 1)
(α2n+1 + β2n+1 − (α + β)2n+1)

)
.

(10.2)

In order to warm up for the next unproven cases, we will now give an

alternative proof of the appearence of single-valued multiple zeta values

in the Laurent expansion of R1 at the origin.

In the region of convergence, we can rewrite (10.1) as

lim
ε→0

ˆ

Uε

|z|2α−2|1 − z|2β−2d2z, (10.3)

where Uε := P1
C \ (B0(ε) ∪ B1(ε) ∪ B0(ε−1)) and we denote by Bx(r) the

ball centered at x of radius r. If we expand the integrand as a power

series in α and β, we can interchange summation and integration and get

an infinite sum of absolutely convergent integrals

Icl
4 (α, β) = lim

ε→0

∑

p,q≥0

αpβq

ˆ

Uε

L0p(z)L1q (z)

|z|2|1 − z|2 d2z, (10.4)

where we recall that L0p(z) = (log |z|2)p/p! and L1q(z) = (log |1−z|2)q/q!.

For p ≥ 1 and q ≥ 1 we can write
ˆ

Uε

L0p(z)L1q (z)

|z|2|1 − z|2 d2z =
( ˆ

P1
C

−
ˆ

P1
C

\Uε

)L0p(z)L1q (z)

|z|2|1 − z|2 d2z, (10.5)

because both integrals are absolutely convergent. The second integral

vanishes as ε tends to zero, so we only need to care of the first one.

Since by Theorem 9.2 single-valued hyperlogarithms satisfy the shuffle

product, we have

L0p(z)L1q (z)

|z|2|1 − z|2 =
∑

w=0p
�1q

Lw(z)

|z|2|1 − z|2 =
∑

w=0p
�1q

1

z(1 − z)

(
Lw(z)

z
−Lw(z)

z − 1

)
,

(10.6)

hence again by Theorem 9.2 we have that

F (z) =
∑

w=0p
�1q

L0w(z) − L1w(z)

z(1 − z)
(10.7)
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satisfies

∂zF (z) =
L0p(z)L1q (z)

|z|2|1 − z|2 . (10.8)

Therefore by Theorem 9.7 we conclude that
ˆ

P1
C

L0p(z)L1q (z)

|z|2|1 − z|2 d2z = Resz=∞F (z) − Resz=0F (z) − Resz=1F (z)

=
∑

w=0p
�1q

L0w(1) − L1w(1),

which belongs to the algebra Zsv for any p, q ≥ 0.

We are left with the cases where q = 0 or p = 0. We will only show

the details of the first case, as the second goes along the same lines. We

have
ˆ

Uε

L0p(z)

|z|2|1 − z|2 d2z =

ˆ

Uε

1

z(1 − z)

(
L0p(z)

z
− L0p(z)

z − 1

)
d2z

=

ˆ

Uε

∂z(L0p+1(z) − L10p(z))

z(1 − z)

idzdz

2π
, (10.9)

and by the Stokes Theorem we can write (10.9) as
(ˆ

∂+B0(ε−1)

+

ˆ

∂−B0(ε)

+

ˆ

∂−B1(ε)

)L0p+1(z) − L10p(z)

z(1 − z)

idz

2π
. (10.10)

It is easy to see by a residue-like computation (see the proof of Theo-

rem 2.29 in [52]) that

lim
ε→0

ˆ

∂+B0(ε−1)

L0p+1(z) − L10p(z)

z(1 − z)

idz

2π
= 0 (10.11)

and that

lim
ε→0

ˆ

∂−B1(ε)

L0p+1(z) − L10p(z)

z(1 − z)

idz

2π
∈ Zsv. (10.12)

The last integral diverges as ε tends to zero:
ˆ

∂−B0(ε)

L0p+1(z) − L10p(z)

z(1 − z)

idz

2π
=

ˆ

∂−B0(ε)

L0p+1(z)

z(1 − z)

idz

2π

= L0p+1(ε)

ˆ

∂−B0(ε)

(
1

z
− 1

z − 1

)
idz

2π
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= −L0p+1(ε)

(
ˆ 2π

0

dθ

2π
−
ˆ 2π

0

εe−iθdθ

2π(εe−iθ − 1)

)

= −L0p+1(ε) = −(log ε2)p+1

(p + 1)!
, (10.13)

therefore in this case we cannot exchange the summation with the limit.

If we consider the limit of the summation over all p ≥ 0 we get

lim
ε→0

−
∑

p≥0

(log ε2)p+1

(p + 1)!
αp = lim

ε→0

1

α
(1 − ε2α) =

1

α
, (10.14)

so we recover the simple pole in α of (10.1). One can treat the case

p = 0 in the same way, recovering the behaviour 1/β as β goes to zero.

Therefore, if we choose P1(α, β) = α−1 + β−1 and H1 = R1 − P1, we have

a proof of Theorem 7.1 in the case k = 1.

11. The case k = 2

The k = 2-case presents difficulties which do not arise in the k = 1-

case; it constitutes the simplest non-trivial example on which we can see

at work, step by step, the method of the proof given in the next section

for the general case.

We want to study the behaviour of the function R2(α1, α2, β1, β2, γ),

given by the integral
ˆ

(P1
C

)2

|z|2α1−2|u|2α2−2|1 − z|2β1−2|1 − u|2β2−2|z − u|2γd2zd2u, (11.1)

near the origin, which is situated, as pointed out in Section 7.1, at the

boundary of the region of convergence given by Proposition 7.2. First of

all, wherever (11.1) is absolutely convergent we can rewrite it as

lim
ε→0

(
ˆ

Uε,1

+

ˆ

Uε,2

)
|z|2α1−2|u|2α2−2|1 − z|2β1−2|1 − u|2β2−2|z − u|2γd2zd2u,

(11.2)
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where

Uε,1 = {z, u ∈ P1
C : |z|, |1 − z|, |u|, |1 − u|, |z| − |u| > ε, |z|, |u| < ε−1},

(11.3)

Uε,2 = {z, u ∈ P1
C : |z|, |1 − z|, |u|, |1 − u|, |u| − |z| > ε, |z|, |u| < ε−1}.

(11.4)

Inside the region of convergence, sufficiently close to the origin, we can

expand the integrand as a power series and we can interchange sum-

mation and integration to get an infinite sum of absolutely convergent

integrals:

R2(α1, α2, β1, β2, γ) = lim
ε→0

∑

p1,p2,q1,q2,r≥0

αp1
1 αp2

2 βq1
1 βq2

2

γr

r!
×

×
(
ˆ

Uε,1

+

ˆ

Uε,2

)L0p1 (z)L0p2 (u)L1q1 (z)L1q2 (u)
(

log |z − u|2
)r

|z|2|1 − z|2|u|2|1 − u|2 d2zd2u.

(11.5)

Writing log |z−u|2 = Lz(u)−L0(z) on Uε,1 and log |z−u|2 = Lu(z)−L0(u)

on Uε,2 we can rewrite R2(α1, α2, β1, β2, γ) as

lim
ε→0

∑

p1,p2,q1,q2,r1,r2≥0

αp1
1 αp2

2 βq1
1 βq2

2 γr1+r2(−1)r2

(
r1 + r2

r2

)
× (11.6)

×
(
ˆ

Uε,1

L0p1+r2 (z)L0p2 (u)L1q1 (z)L1q2 (u)Lzr1 (u)

|z|2|1 − z|2|u|2|1 − u|2 d2zd2u

+

ˆ

Uε,2

L0p1 (z)L0p2+r2 (u)L1q1 (z)L1q2 (u)Lur1 (z)

|z|2|1 − z|2|u|2|1 − u|2 d2zd2u

)
.

We need now to distinguish between different cases.

The case p1, p2, q1, q2 ≥ 1. In this case, we have that

(
ˆ

(P1
C

)2

−
ˆ

Uε,1

−
ˆ

Uε,2

)L0p1 (z)L0p2 (u)L1q1 (z)L1q2 (u)
(

log |z − u|2
)r

|z|2|1 − z|2|u|2|1 − u|2 d2zd2u,

(11.7)
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tends to zero as ε → 0. Therefore, we just need to explain how to

compute the absolutely convergent integrals
ˆ

(P1
C

)2

L0p1+r2 (z)L0p2 (u)L1q1 (z)L1q2 (u)Lzr1 (u)

|z|2|1 − z|2|u|2|1 − u|2 d2zd2u (11.8)

=

ˆ

P1
C

Jp2,q2,r1(z)L0p1+r2 (z)L1q1 (z)

|z|2|1 − z|2 d2z, (11.9)

where

Jp2,q2,r1(z) =

ˆ

P1
C

L0p2 (u)L1q2 (u)Lzr1 (u)

|u|2|1 − u|2 d2u. (11.10)

We can assume that r1 ≥ 1, otherwise the integral factors into the prod-

uct of two integrals of the same kind as those treated in the k = 1-case.

By Theorem 9.7 we can write Jp2,q2,r1(z) as

Resu=∞F (z, u)−Resu=0F (z, u)−Resu=1F (z, u)−Resu=zF (z, u), (11.11)

where

F (z, u) =
∑

w=0p2
�1q2

�zr1

(
L1w(u) − L0w(u)

)( 1

u − 1
− 1

u

)
(11.12)

is such that ∂uF (z, u) is equal to the integrand of (11.10). It is easy to

see that the only non-vanishing residues in (11.11) are obtained at u = 1,

thus

Jp2,q2,r1(z) =
∑

w=0p2
�1q2

�zr1

(
L0w(1) − L1w(1)

)
. (11.13)

By Theorem 9.10 this is a Zsv-linear combination of single-valued mul-

tiple polylogarithms in the variable z. Moreover, since p2, q2 ≥ 1, both

limz→0 Jp2,q2,r1(z) and limz→1 Jp2,q2,r1(z) are finite(19), which means that

the integral
ˆ

P1
C

Jp2,q2,r1(z)L0p1+r2 (z)L1q1 (z)

|z|2|1 − z|2 d2z, (11.14)

is absolutely convergent and by the same argument used in the k = 1-case

we get single-valued multiple zeta values.

(19)It would have been sufficient to have at most logarithmic singularities.
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The case q1 = q2 = 0. First of all, this case is completely similar to the

case p1 = p2 = 0, which we omit. We want now to consider the integrals

over Uε,1 and Uε,2 separately. Since the situation is symmetric, we will

just focus on
´

Uε,1
, i.e. the integral where |u| < |z|. This integral (as

well as
´

Uε,2
) is not convergent because of the singularity of the integrand

at the origin. Let us consider the change of variables t = z, st = u,

which means that s = u/z and that d2z d2u = |t|2 d2t d2s. Moreover,

let us denote by Ũε,1 the image of Uε,1 under the change of coordinates.

By deforming the shape of Uε, we can suppose that Ũε,1 is obtained by

removing a neighborhood of the origin which is a sphere of radius ε.

What we need to compute is

∑

p1,p2,r

αp1
1 αp2

2 γr

p1! p2! r!

ˆ

Ũε,1

(log |t|2)p1(log |s|2 + log |t|2)p2(log |1 − s|2 + log |t|2)r

|t|2|s|2|1 − t|2|1 − ts|2

=
∑

p1,p2,r

αp1
1 αp2

2 γr

p1!

∑

i+j=p2
k+l=r

1

i! j! k! l!

ˆ

Ũε,1

(log |t|2)p1+i+k(log |s|2)j(log |1 − s|2)l

|t|2|s|2|1 − t|2|1 − ts|2

=
∑

n,j,l

(α1 + α2 + γ)nαj
2γ

l

ˆ

Ũε,1

L0n(t)L0j (s)L1l(s)

|t|2|s|2|1 − t|2|1 − ts|2 . (11.15)

In the last integral we can separate the variables and use the same method

seen in the k = 1-case to obtain the polar part in the limit ε → 0,

producing the quadratic-denominator term α−1
2 (α1 + α2 + γ)−1 as well

as other contributions to the polar part with linear denominator (note

that the coefficients of the linear-denominator contributions will belong

to Zsv, but they are not rational numbers anymore). It is at this point

an easy exercise to see that the remaining contributions around u = 1 or

z = 1 give rise to power series with coefficients in Zsv.

The case q1 = p2 = 0. This case is simpler than the one considered

above, because the singularities along the diagonal z = u do not matter

anymore, as the only problem occurs at (z, u) = (0, 1). One can therefore

simply consider the integral over the union of Uε,1 and Uε,2 and split

it locally into a product of integrals like those considered in the case
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k = 1, obtaining the quadratic-denominator contribution α−1
1 β−1

2 to the

polar part Pk as well as linear-denominator contributions and power series

contributions with coefficients in Zsv. We omit the case q2 = p1 = 0

because it is completely similar.

The other possible cases with just one pi or qi vanishing are analogous

but simpler; they give linear-denominator contributions to the polar part

as well as power series contributions, both with coefficients in Zsv. We

conclude that we can write R2 = P2 + H2, with Hk a power series with

coefficients in Zsv and

P2(α1, α2, β1, β2, γ) =
1

α1β2
+

1

α2β1
+

1

α1(α1 + α2 + γ)
+

1

α2(α1 + α2 + γ)

+
1

β1(β1 + β2 + γ)
+

1

β2(β1 + β2 + γ)
+ P lin

2 (α1, α2, β1, β2, γ), (11.16)

where P lin
2 is a rational function with at most linear denominators and

coefficients in Zsv. This proves Theorem 7.1 in the k = 2-case.

12. The general case

The aim of this section is to prove Theorem 7.1. In the previous

sections we have already demonstrated the statement for k ≤ 1, 2. In

particular, all the delicate points in the proof of the theorem were already

encountered and treated in details in the case k = 2, and one just needs

to repeat the same steps in the general case. For this reason, we will only

give a sketch of the proof, commenting very briefly on how to separate

the polar part Pk from the holomorphic part Hk and contenting ourselves

to show with a recursive method that the coefficients of the most general

terms in the expansion are single-valued multiple zeta values.

Proof of Theorem 7.1. Since the origin is situated at the boundary

of the region of convergence, we can place ourselves where the integral

converges absolutely and write

Rk(α1, . . . , αk, β1, . . . , βk, γ1,2, . . . γ1,k, γ2,3, . . . γ2,k, . . . , γk−1,k) =
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lim
ε→0

(
∑

τ∈Sk

ˆ

Uε,τ

)
k∏

i=1

|zi|2αi−2|zi − 1|2βi−2
∏

1≤i<j≤k

|zj − zi|2γi,j d2z1 · · · d2zk,

(12.1)

where Sk is the group of permutation of k letters and

Uε,τ = {z1, . . . , zk ∈ P1
C : |zi|, |1 − zi|, |zτ(i)| − |zτ(i+1)| > ε, |zi| < ε−1}.

(12.2)

Expanding the integrand as a power series and interchanging summation

and integration we get

Rk(α1, . . . , γk−1,k) = lim
ε→0

∑

pi,qi,ri,j≥0

k∏

i=1

αpi

i βqi

i

pi!qi!

∏

1≤i<j≤k

γ
ri,j

i,j

ri,j!

(
∑

τ∈Sk

ˆ

Uε,τ

)
×

×
k∏

i=1

(log |zi|2)pi(log |1 − zi|2)qi

|zi|2|1 − zi|2
∏

1≤i<j≤k

(log |zi − zj |2)ri,jd2z1 · · · d2zk.

(12.3)

Then one needs to distinguish the treatment of the cases where the in-

tegrals appearing in (12.3) do not have a finite limit as ǫ → 0, and

therefore we cannot interchange the limit with the summation, from the

other cases. In the first situation we get contributions to the polar part,

and we really need to use the decomposition of (P1
C)k into the cones Uε,τ ,

while in the second case we can simply compute the integrals appearing

in (12.3) over (P1
C)k:

ˆ

(P1
C

)k

k∏

i=1

(log |zi|2)pi(log |1 − zi|2)qi

|zi|2|1 − zi|2
∏

1≤i<j≤k

(log |zi − zj |2)ri,j d2z1 · · · d2zk.

(12.4)

The integrals (12.4) are absolutely convergent precisely when pi, qi ≥ 1

for all i. Let us also assume that the ri,j’s are greater than 1, because

the cases where some of them vanish are simpler and go along the same

lines. Let us actually consider for mi, ni, li,j ≥ 1 the class of integrals

ˆ

(P1
C

)k

k∏

i=1

L0mi (zi)L1ni (zi)

|zi|2|1 − zi|2
∏

1≤i<j≤k

L
z

li,j
i

(zj)d
2z1 · · · d2zk, (12.5)
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Since log |zi − zj|2 = Lzi
(zj) − L0(zi), the statement that these integrals

belong to Zsv is equivalent to the statement of the theorem. The main

ingredient of our proof is the following:

Lemma 12.1. — Let X be the alphabet {0, 1, σ2, . . . , σN }, and let XN =

{0, 1, σ2, . . . , σN−1}. Let f(z) =
∑

u∈X∗ cuLu(z) be a finite linear combi-

nation of single-valued hyperlogarithms with coefficients cu ∈ Ssv
X,Q. Then

there exists a finite linear combination g(σN) =
∑

v∈X∗

N
kvLv(σN ) with

kv ∈ Ssv
XN ,Q such that

ˆ

P1
C

L0m(z)L1n(z)

|z|2|1 − z|2
∏

2≤i≤N

L
σ

li
i

(z)f(z) d2z = g(σN) (12.6)

for all m, n, li ≥ 1.

Proof of the lemma. First of all, we remark that since m, n ≥ 1 this

integral is absolutely convergent. Using the shuffle product the integrand

is a finite linear combination

∑

w

cwLw(z)

|z|2|1 − z|2 (12.7)

with words w ∈ X∗. Because of our assumption on f(z), we know that

the coefficients cw belong to Ssv
X,Q. We have already seen in the previous

sections that
ˆ

P1
C

∑

w

cwLw(z)

|z|2|1 − z|2 d2z =
∑

w

cw(L0w(1) − L1w(1)). (12.8)

Theorem 9.10 concludes the proof.

�

We can now choose any order of integration of the k variables, and since

we can choose f(z) = 1 for the first integration, we conclude recursively

using the lemma that each of the integrals (12.5) belongs to Ssv
{0,1},Q,

which is nothing but Zsv.

The treatment of the integrals (12.4) which are not convergent (at least

one pi or qi is zero) is completely similar to that explained in the case
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k = 2: one needs to make the same change of variables and use the Stokes

Theorem. After this, as in the k = 2-case, one is left with a contribution

to the holomorphic part (coming from those ε-balls where the integral

is convergent) and a contribution to the polar part (coming from those

ε-balls where the integral is divergent), and all coefficients belong to Zsv

by the same kind of argument exploited above.

�

Finally, let us come back to the integrals Jρ,σ appearing in tree-level

closed superstring amplitudes. Because we have remarked that the origin

lies inside or at the boundary of the region of convergence, each Jρ,σ can

be treated as in eq. (12.1). This allows to isolate the singularities and

extract the polar part. In order to demonstrate the main statement, i.e.

that the coefficients of the holomorphic part are single-valued multiple

zeta values, one simply needs to use Theorem 9.10 to prove a version

of Lemma 12.1 with more general denominators. This is done in Ap-

pendix D. A closed formula for the polar part can be found in [34]. In

conclusion, using the methods developed in this part of the paper we

are able to demonstrate that the small α′-expansion of tree-level closed

superstring amplitudes only involves single-valued multiple zeta values.
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Appendix A

The N = 1 matrix S(A, B, C; G)

We introduce the vectors

I(a1, b1, c1; z) =


I((1),∅)(a1, b1, c1; ; z)

I(∅,(1))(a1, b1, c1; ; z)


 ,

J (a1, b1, c1; z) =


J((1),∅)(a1, b1, c1; ; z)

J(∅,(1))(a1, b1, c1; ; z)


 (A.1)

have for components the Aomoto-Gel’fand hypergeometric functions

I((1),∅)(a1, b1, c1; ; z) =

ˆ +∞

1

wa1(w − 1)b1(w − z)c1dw,

I(∅,(1))(a1, b1, c1; ; z) =

ˆ z

0

wa1(1 − w)b1(z − w)c1dw,

J((1),∅)(a1, b1, c1; ; z) =

ˆ 0

−∞

(−w)a1(1 − w)b1(z − w)c1dw,

J(∅,(1))(a1, b1, c1; ; z) =

ˆ 1

z

wa1(1 − w)b1(w − z)c1dw , (A.2)

The relations derived in §4.2 read in this case (with a := (a1, b1, c1))

e−iπ(B1+C1)I1(a; z) + eiπA1J1(a; z) + e−iπC1J2(a; z) + I2(a; z) = 0,

eiπ(B1+C1)I1(a; z) + e−iπA1J1(a; z) + eiπC1J2(a; z) + I2(a; z) = 0 ,

(A.3)
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where a1 −A1 = n1 ∈ Z, b1 −B1 = m1 ∈ Z, c1 −C1 = p1 ∈ Z. The above

linear relations can be rewritten in the matrix form as

I(a1, b1, c1; z) = S(A1, B1, C1)J (a1, b1, c1; z) , (A.4)

with the monodromy matrix

S(A1, B1, C1) :=
−1

sin(π(B1 + C1))


 − sin(πA1) sin(πC1)

sin(π(A1 + B1 + C1)) sin(πB1)




(A.5)

which does not depends on the integers n1, m1 and p1.

Appendix B

The N = 2 matrix S(AAA,BBB,CCC; G)

In this appendix we give details on the determination of the matrix

S(AAA,BBB,CCC; g) of §4.2 such that it holds the identity

I = S(AAA,BBB,CCC; G12)J ⇐⇒ J = S(BBB,AAA,CCC; G12)I (B.1)

between the vectors of integral functions (4.1) and (4.3)

I :=




I((12),∅)(aaa,bbb, ccc; g12; z)

I((21),∅)(aaa,bbb, ccc; g12; z)

I((1),(2))(aaa,bbb, ccc; g12; z)

I((2),(1))(aaa,bbb, ccc; g12; z)

I(∅,(12))(aaa,bbb, ccc; g12; z)

I(∅,(21))(aaa,bbb, ccc; g12; z)




; J :=




J((12),∅)(aaa,bbb, ccc; g12; z)

J((21),∅)(aaa,bbb, ccc; g12; z)

J((1),(2))(aaa,bbb, ccc; g12; z)

J((2),(1))(aaa,bbb, ccc; g12; z)

J(∅,(12))(aaa,bbb, ccc; g12; z)

J(∅,(21))(aaa,bbb, ccc; g12; z)




.

(B.2)

The method is based on the contour deformation method of [39–41].

We deform the contour of integration of w1 in I1 by rotating in the

upper half-plane (the blue contour in figure 4.1) and obtain

I1 +eiπGI2 +eiπ(B1+G)Î1 +eiπ(B1+C1+G)I4 +eiπ(A1+B1+C1+G)Î2 = 0, (B.3)
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where

Î1 =

ˆ 1

z

dw1

ˆ ∞

1

dw2|w1 − w2|g
2∏

i=1

|wi|ai|1 − wi|bi |z − wi|ci,

Î2 =

ˆ 0

−∞

dw1

ˆ ∞

1

dw2|w1 − w2|g
2∏

i=1

|wi|ai |1 − wi|bi |z − wi|ci . (B.4)

By convergence of the integral the contour at infinity does not contribute.

The deformation of the contour of integration for w1 in I1 in the lower

half-plane (the red contour in figure 4.1) gives the equation

I1 + e−iπGI2 + e−iπ(B1+G)Î1 + e−iπ(B1+C1+G)I4 + e−iπ(A1+B1+C1+G)Î2 = 0.

(B.5)

Deforming the contour of integration for w2 in the upper half-plane we

obtain

Î1 + eiπB2J6 + eiπ(B2+G)J5 + eiπ(B2+C2+G)Î3 + eiπ(A2+B2+C2+G)J4 = 0 .

(B.6)

The deformation of the contour in the lower half-plane gives

Î1 +e−iπB2J6 +e−iπ(B2+G)J5 +e−iπ(B2+C2+G)Î3 +e−iπ(A2+B2+C2+G)J4 = 0 ,

(B.7)

with

Î3 :=

ˆ 1

z

dw1

ˆ z

0

dw2|w1 − w2|g
2∏

i=1

|wi|ai |1 − wi|bi|z − wi|ci . (B.8)

The deformation of the contour of integration over w2 in the upper half-

plane in Î2 gives

Î2 + eiπB2J3 + eiπ(B2+C2)Î4 + eiπ(A2+B2+C2)J2 + eiπ(A2+B2+C2+G)J1 = 0,

(B.9)

and the deformation of the contour in the lower half-plane gives

Î2+e−iπB2J3+e−iπ(B2+C2)Î4+e−iπ(A2+B2+C2)J2+e−iπ(A2+B2+C2+G)J1 = 0,

(B.10)
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with

Î4 =

ˆ 1

−∞

dw1

ˆ z

0

dw2|w1 − w2|g
2∏

i=1

|wi|ai|1 − wi|bi |z − wi|ci. (B.11)

From these equations one can easily solve the Î1, Î2, Î3 and Î4 in terms

of the Ji integrals with the result (using s(x) := sin(πx))

s(B2 + C2 + G)Î1 = s(A2)J4 − s(C2)J5 − s(C2 + G)J6 (B.12)

s(B2 + C2)Î2 = s(A2 + G)J1 + s(A2)J2 − s(C2)J3

− s(B2 + C2 + G)Î3 = s(A2 + B2 + C2 + G)J4 + s(B2 + G)J5 + s(B2)J6

− s(B2 + C2)Î4 = −s(A2 + B2 + C2 + G)J1 + s(A2 + B2 + C2)J2 + s(B2)J3 .

Plugging these expressions back into (B.3) and (B.5) gives a system of

equations relating the integrals I1, I2, I3 and I4 and the integrals Ĩi

with i = 1, . . . , 6. We get a similar system by considering the contour

deformation of the other Ii integrals in (B.2). With similar equations,

obtained after deforming the w1 contour of integration in I3 and the

contour of w2 in I2 and I4, we get a linear system relating the integrals

Ii and the integrals Ji with i = 1, . . . , 6. The expression for the matrix

S(AAA,BBB,CCC;GGG) is given below and in the attached file S5-matrix.txt.

The first line of the matrix is given by using the notation s(x) :=

sin(πx)

S(AAA,BBB,CCC; G)1i =




s(A2)s(A1−B2−C2))
s(B2+C2))s(B1+B2+C1+C2+G))

s(A1)s(A2+B2+C2+G))
s(B2+C2))s(B1+B2+C1+C2+G))

− s(A1)s(C2)
s(B2+C2))s(B1+C1+G))

0

− s(B1)s(C2)
s(B1+C1+G))s(B1+B2+C1+C2+G))

s(C1)s(B1+C1+C2+G))
s(B1+C1+G))s(B1+B2+C1+C2+G))




. (B.13)
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The second line of the matrix is given by

S(AAA,BBB,CCC; G)2i =




s(A2)s(A1+B1+C1+G))
s(B1+C1))s(B1+B2+C1+C2+G))

s(A1)s(A2−B1−C1))
s(B1+C1))s(B1+B2+C1+C2+G))

0

− s(A2)s(C1)
s(B1+C1))s(B2+C2+G))

s(C2)s(B2+C1+C2+G))
s(B2+C2+G))s(B1+B2+C1+C2+G))

− s(B2)s(C1)
s(B2+C2+G))s(B1+B2+C1+C2+G))




. (B.14)

The third line of the matrix is given by

S(AAA,BBB,CCC; G)3i =



s(G)s((B1+C1)s((A1+A2+G)−s((A1+G)s((A2+B2+C2+G)s((B1+B2+C1+C2)
s((B1+C1)s((B2+C2)s((B1+B2+C1+C2+G)

− s(A1)s(B1+B2+C1+C2))s(A2+B2+C2+G))
s(B1+C1))s(B2+C2))s(B1+B2+C1+C2+G))

− s(A1)s(B2)
s(B2+C2))s(B1+C1+G))

s(C1)s(A2+B2+C2+G))
s(B1+C1))s(B2+C2+G))

s(G)s((B1+B2+C1+G)s((B2+C1+C2+G)+s(B2)s(C1)s((B1+B2+C1+C2+G)
s((B1+C1+G)s((B2+C2+G)s((B1+B2+C1+C2+G)

s(B2)s(C1)s(B1+B2+C1+C2+2G))
s(B1+C1+G))s(B2+C2+G))s(B1+B2+C1+C2+G))




.

(B.15)

The fourth line of the matrix is given by

S(AAA,BBB,CCC; G)4i =



− s(A2)s(B1+B2+C1+C2))s(A1+B1+C1+G))
s(B1+C1))s(B2+C2))s(B1+B2+C1+C2+G))

s(A1)s(g)s(A2+B2+C2+G))−s(A1+B1+C1))s(A2+G))s(B1+B2+C1+C2+G))
s(B1+C1))s(B2+C2))s(B1+B2+C1+C2+G))

s(C2)s(A1+B1+C1+G))
s(B2+C2))s(B1+C1+G))

− s(A2)s(B1)
s(B1+C1))s(B2+C2+G))

s(B1)s(C2)s(B1+B2+C1+C2+2G))
s(B1+C1+G))s(B2+C2+G))s(B1+B2+C1+C2+G))

s(C1)s(g)s(B2+C2+G))s(B1+C1+C2+G))+s(B1)s(B1+C1+G))s(C2+G))s(B1+B2+C1+C2+G))
s(B1+C1))s(B1+C1+G))s(B2+C2+G))s(B1+B2+C1+C2+G))




.

(B.16)
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The fifth line of the matrix is given by

S(AAA,BBB,CCC; G)5i =




s(A2)s(A1+B1+C1+G))
s(B2+C2))s(B1+B2+C1+C2+G))

s(A2+B2+C2+G))s(A1+B1+B2+C1+C2+G))
s(B2+C2))s(B1+B2+C1+C2+G))

s(B2)s(A1+B1+C1+G))
s(B2+C2))s(B1+C1+G))

0
s(B1)s(B1+B2+C1+G))

s(B1+C1+G))s(B1+B2+C1+C2+G))

− s(B2)s(C1)
s(B1+C1+G))s(B1+B2+C1+C2+G))




. (B.17)

The sixth line of the matrix is given by

S(AAA,BBB,CCC; G)6i =




s(A1+B1+C1+G))s(A2+B1+B2+C1+C2+G))
s(B1+C1))s(B1+B2+C1+C2+G))

s(A1)s(A2+B2+C2+G))
s(B1+C1))s(B1+B2+C1+C2+G))

0
s(B1)s(A2+B2+C2+G))
s(B1+C1))s(B2+C2+G))

− s(B1)s(C2)
s(B2+C2+G))s(B1+B2+C1+C2+G))

s(B2)s(B1+B2+C2+G))
s(B2+C2+G))s(B1+B2+C1+C2+G))




. (B.18)

Appendix C

The momentum kernel in string theory

The momentum kernel Sα′(α(i1, . . . , ir)|β(i1, . . . , ir))|p depends on two

permutations α and β, and p a reference momentum. The momen-

tum kernel encodes all kinematic relations between multi-particle ordered

open string amplitudes [42, 71–73]. We review briefly the basic proper-

ties of the momentum kernel listed in [42, §3] and refer to this work for

a proof.

1. Reflection symmetry:

Sα′ [σ(1, . . . , r)|β(1, . . . , r)]p = Sα′ [γ(r, . . . , 1)|β(r, . . . , 1)]p (C.1)

for any massless external momentum p and for σ and β arbitrary

permutations of the k labels {1, . . . , r}.
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2. Factorisation property: For any permutations of the external

legs α, β, γ and δ, the momentum kernel factorises as

Sα′ [γ(r + 1, . . . , p), σ(2, . . . , r)|β(2, . . . , r), δ(r + 1, . . . , p)]k1

= Sα′ [σ(2, . . . , r)|β(2, . . . , r)]k1 × Sα′ [γ(r + 1, . . . , p)|δ(r + 1, . . . , p)]P ,

(C.2)

for all on-shell massless, P 2 = 0 momentum P = k1 + k2 + · · · + kp.

This allows to determine recursively the momentum kernel to all

order, starting from the four-point momentum kernel

Sα′ [23|23]k1 = Sα′ [32|32]k1 = sin(παk1 · k2) sin(πα′k1 · k3) (C.3)

Sα′ [23|32]k1 = − sin(παk1 · k3)2, Sα′ [32|23]k1 = − sin(πα′k1 · k2)2 ,

where the external momenta are massless k2
i = 0, for 1 ≤ i ≤ 4 and

satisfy the momentum conservation condition k1 + · · · + k4 = 0.

3. Annihilation of amplitudes:
∑

σ

Sα′ [σ(2, . . . , N − 1)|β(2, . . . , N − 1)]k1AN(N, σ(2, . . . , N − 1), 1) = 0 ,

(C.4)

where β is any permutation of the legs {2, . . . , N − 1} and An are

colour-ordered tree-level string amplitudes. The annihilation prop-

erty provides all possible kinematic relations between ordered open

string amplitudes.

4. The shifting-formula: For any 2 ≤ j ≤ n − 2:

∑

γ,β

Sα′ [γ(i2, . . . , ij)|i2, . . . , ij]k1Sα′ [ij+1, . . . , in−2|β(ij+1, . . . , in−2)]kN−1

× An(γ(i2, . . . , ij), 1, N − 1, β(ij+1, . . . , in−2), N)

=
∑

γ′,β′

Sα′ [γ′(i2, . . . , ij−1)|i2, . . . , ij−1]k1Sα′ [ij , . . . , in−2|β ′(ij , . . . , in−2)]kN−1

× An(γ′(i2, . . . , ij−1), 1, N − 1, β ′(ij , . . . , in−2), N) .
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Appendix D

The closed superstring integrals Jρ,σ

In this appendix we prove that the absolutely convergent integrals

contributing to the non-polar part of the α′-expansion of the tree-level

closed superstring amplitudes Jρ,σ are single-valued multiple zeta values.

More precisely, we demonstrate that for mi, ni, li,j ≥ 1 and for arbitrary

ρ, σ ∈ Sk the (absolutely convergent) integrals

ˆ

(P1
C

)k

∏
1≤i<j≤k L

z
li,j
i

(zj)
∏k

i=1 Lmi
0 (zi)Lni

1 (zi) d2zi

zρ(1) zσ(1)(1 − zρ(k))(1 − zσ(k))
∏k

i=2(zρ(i) − zρ(i−1))(zσ(i) − zσ(i−1))
(D.1)

belong to Zsv. We will need the following:

Lemma D.1. — Let X = {0, 1, σ2, . . . , σN }, XN = {0, 1, σ2, . . . , σN−1},

m, n ≤ N and {σir}m
r=1, {σjs}n

s=1 ⊂ X (possibly with non-empty intersec-

tion). Let f(z) =
∑

u cuLu(z) be a finite linear combination of single-

valued hyperlogarithms with coefficients cu ∈ Ssv
X,Q such that the integral

I :=

ˆ

P1
C

f(z) d2z
∏m

r=1(z − σir)
∏n

s=1(z − σjs)
(D.2)

is absolutely convergent. Then there exists a finite linear combination

g(σN) =
∑

v∈X∗
n

kvLv(σN ) with kv ∈ Ssv
XN ,Q such that

I =
m∑

r=1

n∑

s=1

hrhsg(σN), (D.3)

where

hr :=
m∏

k=1
k 6=r

1

σir − σik

, hs :=
n∏

k=1
k 6=s

1

σjs − σjk

. (D.4)

Proof. First of all, we recall the partial-fraction identities

m∏

r=1

1

z − σir

=
m∑

r=1

hr

z − σir

, (D.5)
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n∏

s=1

1

z − σjs

=
n∑

s=1

hs

z − σjs

, (D.6)

with hr, hs as in eq.( D.4). A single-valued primitive with respect to ∂/∂z

of the integrand of (D.2) is therefore given by

m∑

r=1

n∑

s=1

hr
hs

z − σjs

∑

u

cuLσir u(z), (D.7)

and so by Theorem 9.7 we have

I = −
m∑

r=1

n∑

s=1

hrhs

∑

u

cuLσir u(σjs). (D.8)

Theorem 9.10 concludes the proof.

�

We can now integrate (D.1) one variable at a time, and we claim that

we can use Lemma D.1 at each step. This follows from the following two

remarks:

(i) The special cyclic structure of the denominator of (D.1) implies

that after each integration, even though hr and hs introduce new

factors, we always get a square-free denominator, as required by the

assumptions of the lemma.

(ii) The fact that mi, ni, li,j ≥ 1, together with the previous remark,

implies that at each step we get a numerator f(z) of the integrand

such that the integral converges absolutely, as required by the as-

sumptions of the lemma.

These two remarks also provide a double-check that the integrals (D.1)

are indeed absolutely convergent: suppose for instance that at some inte-

gration step we could get a factor (zi−zj)
2(zi−zj), then the next integral

in zi would be divergent. To conclude, after k integrations and k appli-

cations of the lemma we land on a number belonging to Zsv = Ssv
{0,1},Q,

as claimed.
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