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Concept This paper is a review on automatic program repair. It covers all research
from the inception of the field up to Spring 2023. Fifteen versions of the review have been
published between December 2018 and September 2023. It uses a concise bullet-list style
meant to be easily accessible by the greatest number of readers, in particular students and
practitioners. Within a section, all papers are ordered in a reverse chronological order, so
as to easily get the research timeline.

Inclusion criteria The inclusion criteria are that the considered papers 1) must be
about automatic repair with some kind of patch generation (runtime repair without patch
generation is excluded1); 2) must be a full-length research paper (typically >10 double-
column pages); 3) are stored on an durable site (notable publisher, arXiv, Zenodo). There
is no restriction about whether the paper has been formally peer-reviewed or not.

Stopping criteria The last update of the living review was made once it reached the
500th reference in 2023.
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1the scope of my previous survey [134] was larger, it also discussed runtime repair
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1 Program Repair of Dynamic Errors
1.1 Using Tests

• Rete: Learning Namespace Representation for Program Repair (2023) Para-
saram et al. [480] combine template-based repair and variable prioritization with ML
for repairing C and Python bugs.

• PropR: Property-Based Automatic Program Repair (2022) Gissurarson et al.
[406] devise a repair tool for Haskell based on property-based tests (QuickCheck) and
synthesis-driven repair with GHCs hole-fit synthesis.

• Improving Fault Localization and Program Repair with Deep Semantic
Features and Transferred Knowledge Meng et al. [425] combine fault localization
with learning-to-rank and fix template selection among 15 templates.

• TransplantFix: Graph Differencing-based Code Transplantation for Au-
tomated Program Repair (2022) Yang et al. [449] perform graph differencing of
control-flow graph to identify and automatically adapt repair ingredients in redundancy-
based program repair; the approach is implemented for Java (tool) and evaluated on
Defects4J.

• Trident: Controlling Side Effects in Automated Program Repair (2021)
Parasaram et al. [366] extends synthesis-based repair to also support insertion of
assignments and method calls in synthesized expressions. Implementation for C.

• ReFixar: Multi-version Reasoning for Automated Repair of Regression
Errors (2021) Le et al. [354] design 12 repair templates tailored to fixing regressions,
evaluated on 51 regression bugs.

• A Novel Approach For Search-Based Program Repair (2021) Trujillo et al.
[377] create a variant of GenProg integrating Lehman and Stanley’s ‘novelty search’
to promote exploration and diversity of patches.

• VarFix: Balancing Edit Expressiveness and Search Effectiveness in Auto-
mated Program Repair (2021) Wong et al. [379] combine GenProg single edits into
a metaprogram to identify those combinations that pass all tests.

• FlexiRepair: Transparent Program Repair with Generic Patches (2020),
Koyuncu et al. [304] present a repair pipeline built on top of the Coccinelle engine for
semantic patches.

• Astor: Exploring the Design Space of Generate-and-Validate Program Re-
pair beyond GenProg (2019) Martinez et al. [255] identify 12 dimensions in the
design space of generate-and-validate program repair and implement them as extension
points in the Astor framework.

• Impact Analysis of Syntactic and Semantic Similarities on Patch Priori-
tization in Automated Program Repair (2019) Asad et al. [220] propose an
alternative patch ranking technique for CapGen.

• SOSRepair: Expressive Semantic Search for Real-World Program Repair
(2019) Afzal et al. [219] proposes a better encoding than [86] to repair C programs
with SMT-based snippet search.

• LoopFix: An Approach to Automatic Repair of Buggy Loops (2019) Wang
et al. [271] describe a system that changes either the loop condition or an assignment
in the loop body, using symbolic execution and component-based synthesis.
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• Automatic patch generation with context-based change application (2019)
Kim and Kim [240] present ConFix, that first searches for past patches with surround-
ing code similar to the suspicious code locations (based on a hash of the AST) and
when a context matches, the past change is ported to the suspicious location.

• Harnessing evolution for multi-hunk program repair (2019) Saha et al. [263]
mine repair locations that evolve together in order to search for patches consisting on
the same systematic edit done at different locations.

• TBar: Revisiting Template-based Automated Program Repair (2019) Liu et
al. [246] consolidate 35 fix patterns in 15 categories and measure their effectiveness
over Defects4J.

• Ultra-Large Repair Search Space with Automatically Mined Templates: the
Cardumen Mode of Astor (2018) [189] shows that parametrized repair ingredients
yields an explosion of the repair search space and finds 8935 Patches for Defects4J.
An extension of Cardumen by Fonseca and Oliveira is Figra [401].

• Mining Stackoverflow for Program Repair (2018) Liu and Zhong [184] clusters
AST diffs from code pairs in Stackoverflow to extract 12 repair patterns.

• Towards practical program repair with on-demand candidate generation
(2018) [175] does repair with metaprograming as [125] in order to explore the search
space of variable and literal replacement.

• CFAAR: Control Flow Alteration to Assist Repair (2018) [204] uses specific
patterns to determine angelic values à la Nopol [149] (eg switch only the first execution
of the condition).

• Context-Aware Patch Generation for Better Automated Program Repair
(2018) [212] considers an ingredient-based, generate-and-validate repair loop à la Gen-
prog, and selects the ingredients that have the most similar context according to three
similarity metrics (context of the suspicious statement similar to context of the ingre-
dient). (code)

• Practical Program Repair via Bytecode Mutation (2018) [167] revisits Schulte’s
work [27] for Java bytecode and Defects4J.

• Program Repair via Direct State Manipulation (2018) [173] proposes a variation
of the repair problem: find a patch such that some variables at a specific location have
certain values.

• Connecting Program Synthesis and Reachability: Automatic Program Re-
pair Using Test-Input Generation (2017) [136] creates a meta-program parametrized
with parameters, encoding the search space: the symbolic solution to satisfy all test
constraints is the patch. The tool is called CETI.

• Contract-based Program Repair Without the Contracts (2017) Chen et al.
[122] uses 5 repair templates, called schemas, with a focus on modifying the state by
adding an assignment. (code, journal version: [289])

• Precise Condition Synthesis for Program Repair (2017) Xiong et al. [148] inte-
grate different heuristics (Github) and code analysis techniques (dependency analysis
between variables) to create good conditions à la Nopol. (code)

• Leveraging syntax-related code for automated program repair (2017) Xin and
Reiss [147] use Tf-Idf similariy to select ingredients in a GenProg-like loop, together
with variable renaming to adapt repair ingredients. The authors have proposed an
improvement of ssFix called sharpFix [273, 272].
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• ARJA: Automated Repair of Java Programs via Multi-Objective Genetic
Programming (2017) [155] combines 3 different techniques (patch representation,
multi-objective search, method scope) to improve a GenProg-based repair loop. ARJA-
e [279, 324] is an improvement over Arja integrating templates and repair anti-patterns.

• ELIXIR: Effective Object Oriented Program Repair (2017) [137] proposes 8
repair patterns à la PAR [51] to be used together with simple enumeration-based
synthesis.

• ASTOR: A Program Repair Library for Java (2016) [116] presents the Java
framework in which jGenProg [133], jKali [133], DeepRepair [146], Cardumen [189]
are implemented.

• Automated Program Repair by Using Similar Codfe Containing Fix Ingre-
dients (2016) [108] modifies RSRepair [73] in order to select the most similar repair
ingredients first.

• DynaMoth: Dynamic Code Synthesis for Automatic Program Repair (2016)
[103] uses dynamic synthesis based on the debug interface of the JVM for repairing
conditions.

• Angelix: Scalable Multiline Program Patch Synthesis via Symbolic Anal-
ysis (2016) [117] optimizes symbolic execution in order to obtain more than one an-
gelic value, being called together calledangelic forest, in order to synthesize multipoint
patches.

• Qlose: Program Repair with Quantitative Objectives (2016) [102] tries to
minimize the semantic impact of the repair, by minimizing the number of inputs for
which there is a behavioral change using the Sketch synthesis system.

• Nopol: Automatic Repair of Conditional Statement Bugs in Java Pro-
grams (2016) [149] addresses two classes of bugs: buggy if conditions and missing
preconditions. Initial paper: “Automatic Repair of Buggy If Conditions and Missing
Preconditions with SMT” [63].

• Automatic Repair of Infinite Loops (2015) [88] describes a patch generation sys-
tem for infinite loops.

• Relifix: Automated Repair of Software Regressions (2015) [99] defines 8 repair
templates that are specific to regression bugs.

• Repairing Programs with Semantic Code Search (2015) [86] repairs programs
with snippets that can be semantically indexed and queried in SMT.

• Staged Program Repair with Condition Synthesis (2015) [91] combines condi-
tion repair à la Nopol and repair templates à la PAR.

• DirectFix: Looking for Simple Program Repairs (2015) [93] demonstrates that,
under strong assumptions, we can state the repair problem as a Maximum Satisfiability
(MaxSAT), where the smallest patch is the one that satisfies the most constraints.

• Minthint: Automated Synthesis of Repair Hints (2014) [66] hints to change the
RHS of a single assignment statement based on data collected with concolic execution.

• Diagnosis and Emergency Patch Generation for Integer Overflow Exploits
(2014) [77] does automatic repair of integer overflow with three repair operators: taking
an error branch before the overflow happens, taking an error branch after the overflow
has happened, and forced program stop.

• Automatic Patch Generation Learned From Human-Written Patches (2013)
[51] defines 10 repair templates for fixing bugs such as (add null pointer check, etc).
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• SemFix: Program Repair via Semantic Analysis (2013) [58] combines symbolic
execution and component-based synthesis to fix boolean and integer expressions in C
programs.

• Evolving Patches for Software Repair (2011) [31] describes pyEdb, a mutation
based repair approach with two mutation operators (relational operator change and
name switch) in Python.

• On the Automation of Fixing Software Bugs (2008) [11] defines 7 mutation
operators based on abstract syntax tree modification in a prototype implementation
called Jaff, that handles a subset of Java. Journal version is “Evolutionary Repair
of Faulty Software” [32]. Another version is “A Novel Co-evolutionary Approach to
Automatic Software Bug Fixing” [12].

• Automatically Finding Patches Using Genetic Programming (2009) [21] is
the seminal paper of the field, introducing GenProg, with its sister papers A Genetic
Programming Approach to Automated Software Repair [18], GenProg: a
Generic Method for Automatic Software Repair [42], Automatic Program
Repair with Evolutionary Computation [30].

• BugFix: a Learning-based Tool to Assist Developers in Fixing Bugs (2009)
[19] suggests a bug fix action using association rules based on features on the suspicious
statement.

1.2 Using Crashes
• CorCA: An Automatic Program Repair Tool for Checking and Removing

Effectively C Flaws (2023) Inácio and Medeiros [471] implement an end-to-end
approach for detecting and repairing buffer overflows in C code by replacing method
calls with safe versions or changing allocation size parameters.

• Providing Real-time Assistance for Repairing Runtime Exceptions using
Stack Overflow Posts (2022) Mahajan et al. [422] suggest a patch for handling
runtime exceptions based on a database compiled from Stackoverflow (in the line of
[184, 83]).

• Exception-Driven Fault Localization for Automated Program Repair (2022)
Ginelli et al. [405] describe a template based repair technique where templates are
associated to specific Java exceptions.

• Beyond Tests: Program Vulnerability Repair via Crash Constraint Ex-
traction Gao (2021) Gao et al. [344] use sanitizers to obtain clean crashes and fix
conditional expressions (if, loops) to avoid the crash. The prototype tool is called
ExtractFix, and is available on gaoxiang9430/extractfix.

• Crash-avoiding program repair (2019) Gao et al. [230] repair crashes in C code
with three operators (assigments, if-condition, precondition) using implicit oracles and
fuzzing to discard incorrect patches.

• Repairing crashes in Android apps (2018) [202] defines 8 repair operators tailored
for Android crashes.

• Production-Driven Patch Generation (2016) [126] proposes to use shadow appli-
cations and shadow traffic to make regression testing in production.

• Fixing Recurring Crash Bugs via Analyzing Q&A Sites (2016) [83] repairs
exception bugs based on potential solutions found on Stackoverflow.

• Automatic Repair of Infinite Loops (2015) [88] repairs infinite loops with the
same repair concept as Nopol.
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• CLOTHO: Saving Programs from Malformed Strings and Incorrect String
Handling (2016) [80] is a system that generates simple catch blocks to handle certain
runtime exceptions related to string manipulation in Java.

• Automatic Error Elimination by Horizontal Code Transfer Across Multiple
Applications (2015) [114] transfers check-exit pairs between two applications to avoid
crashes due to out of bounds access, integer overflow, and divide by zero errors.

For null dereferences (null pointer exceptions):

• NPEX: Repairing Java Null Pointer Exceptions without Tests (2022) Lee
et al. [417] devise a bespoke symbolic execution technique to avoid incorrect patches
when repairing null pointer exceptions in Java without tests. The system is evaluated
on 119 NPEs and available on Github.

• VFix: Value-Flow-Guided Precise Program Repair for Null Pointer Deref-
erences (2019): VFix [275] ranks patches for null pointers based on congested places:
those places in the data-flow graph that maximize the likelihood of fixing many NPEs
at once.

• Automatic Inference of Code Transforms for Patch Generation (2017): Long
et al. [131] infers repair schemas from past commits for Java’s NullPointerException
and OutOfBoundsException.

• Dynamic Patch Generation for Null Pointer Exceptions Using Metapro-
gramming (2017) [125] introduces the idea of exploring the repair search space with
a meta-program and realizes it for crashing null pointer exceptions.

1.3 Using a Reference Implementation / Feedback Generation
In this section, many papers are in the context of automated feedback generation for stu-
dents, where a reference solution to a programming exercise exists.

• FAPR: Fast and Accurate Program Repair for Introductory Programming
Courses (2021) Lu et al.’s technique [358] consists of generating a meaningful high
level feedback based on a low-level token edit script.

• Re-factoring based Program Repair applied to Programming Assignments
(2019) [235] is a feedback generation technique based on the idea of generating equiv-
alent refactored programs so as to find a correct program which has the same control
flow structure as the buggy student Python program under consideration.

• Dynamic Neural Program Embedding for Program Repair (2018): Wang et
al. [144] compute an embedding on program traces in order to predict the kind of bug
in student’s programs from a MOOC.

• Automated Clustering and Program Repair for Introductory Programming
Assignments (2016): Gulwani et al.’s technique [106] modifies, inserts, and deletes
statements in student’s programs while preserving the control-flow.

• Semantic program repair using a reference implementation (2018): Mechtaev
et al. [192] use a reference implementation and a parameterized test to generate a
patch that changes an expression with primitive values.

• Neuro-symbolic program corrector for introductory programming assign-
ments (2018): Bhatia et al. [161] combinetoken sequence learning and Sketch to
repair MOOC student submissions in Python. Extension of [101].

• Automatic Diagnosis and Correction of Logical Errors for Functional Pro-
gramming Assignments (2018): Lee et al. [181] present a system for automati-
cally generating feedback on logical errors in functional programming assignments in
OCaml.
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• Automated Feedback Generation for Introductory Programming Assign-
ments (2013): Singh et al. [60] generate feedback for student programs based on
a reference implementation, using Sketch as an intermediate languages to search for
patches.

• Automated Error Localization and Correction for Imperative Programs
(2011): Könighofer and Bleam’s algorithm [36] fixes the the right-hand side (RHS)
of assignments by using the reference implementation as specification and driving the
synthesis with a meta-program and SMT solving. "Repair with On-the-fly Program
Analysis" is an extension of this work.

1.4 Using Contracts
The contracts can be invariants or runtime assertions, they can be manually written or
mined.

• Input Test Suites for Program Repair: A Novel Construction Method
Based on Metamorphic Relations (2020) Jiang et al. [302] define metamorphic
relations for the Siemens benchmark and execute Angelix, CETI, and GenProg to fix
the Siemens faults accordingly.

• Program Repair at Arbitrary Fault Depth (2019) Khaireddine et al. [238] mod-
ifies the patch validation step of Astor/jGenProg [256] to use an absolute correctness
formula and a strict relative correctness relation.

• A Metamorphic Testing Approach for Supporting Program Repair with-
out the Need for a Test Oracle (2016) Jiang et al. [109] have proposed to use
metamorphic relations as repair oracle.

• Generating Fixes From Object Behavior Anomalies (2009) [16] Dallmeier et
al. infer an object usage model from executions, and then generates a fix with two
repair operators (addition and removal of method calls) so that failing runs match the
inferred correct behavior.

• Automated Fixing of Programs with Contracts (2010, journal version in 2014
[78]) [29], uses four repair templates that consist of a snippet and an empty con-
ditional expression to be synthesized, and relies on Eiffel contacts (pre-conditions,
post-conditions, invariants) to detect and provide the fix ingredients. “Code-Based
Automated Program Fixing” [39] is an extension of this work where patches don’t
have to only use argumentless boolean methods in the patch.

• Constraint-Based Program Debugging Using Data Structure Repair (2011)
[38] translates runtime data structure repair à la Demsky as source code fix suggestion.

• Specification-based Program Repair Using SAT (2011) [33] uses Alloy to repairs
assignments and conditionals bugs.

1.5 Data-driven repair approaches
1.5.1 Data-driven Patch Generation

• Neural Program Repair with Program Dependence Analysis and Effective
Filter Mechanism (2023) Zhang et al. [497] extract the program dependence graph
of the buggy line and put it in the input representation of neural networks in a system
called RepeatNPR.

• Template-based Neural Program Repair (2023) Meng et al.[476] train a net-
work to output template-based changes, which reduces the output length, with special
handling of out-of-vocabulary tokens.
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• TraceFixer: Execution Trace-Driven Program Repair (2023) Bouzenia et al.
[463] propose an input representation that concatenates fault localization, traces with
variable names and values, desired state (variable value) and code of the buggy pro-
gram, with an implementation in Python for single-line errors.

• ITER: Iterative Neural Repair for Multi-Location Patches (2023) Ye et al.
[494] train a self-supervised system to repair multiple, stacked errors at different lines
in order to produce final multi-location patches.

• MUFIN: Improving Neural Repair Models with Back-Translation (2023)
Silva et al. [484] devise and evaluate a fine-tuning loop that can improve the perfor-
mance of any input neural model, using a fixer/breaker back-translation loop.

• Revisiting the Plastic Surgery Hypothesis via Large Language Models (2023)
[488] does 2 kinds of self-supervised masking-based fine-tuning for CodeT5, and add
relevant identifiers in the context of the input representation.

• InferFix: End-to-End Program Repair with LLMs (2023) [475] repair Infer
static analysis warnings with retrieval-based few-shots and a rich prompt.

• Tare: Type-Aware Neural Program Repair (2023) Zhu et al. [499] devise a
graph-based input representation focusing on static typing and encode it using relation-
aware attention layer.

• Impact of Code Language Models on Automated Program Repair (2023)
Jiang et al. [473] show that fine-tuning language models is better than training from
scratch for program repair in Java, and that InCoder is the best among the considered
models.

• Detect-Localize-Repair: A Unified Framework for Learning to Debug with
CodeT5 (2023) combine three losses over three tasks (bug detection, fault localization
and patch generation).

• KNOD: Domain Knowledge Distilled Tree Decoder for Automated Pro-
gram Repair (2023) Jiang et al. [474] craft a specific decoder and its associated
training procedure to produce more grammatically correct and type-checkable patches.

• Keep the Conversation Going: Fixing 162 out of 337 bugs for $0.42 each
using ChatGPT (2023) Xia and Zhang [490] create iterative prompts for ChatGPT
based on interactive prompting containing failing test names and failing assertions.

• Conversational automated program repair (2023) Xia and Zhang [491] create
iterative prompts for LLMs based on previously generated patches, evaluated on
Quixbugs Python and Quixbugs Java.

• Improving Automated Program Repair with Domain Adaptation (2022) Zi-
rak et al. [460] fine-tune a pre-trained model with domain specific bug-fix pairs to
improve performance.

• Repairing Bugs in Python Assignments Using Large Language Models
(2022) Zhang et al. [454] construct two kinds of advanced prompts for Codex to
respectively repair syntactic and semantic errors in student Python programs, with an
evaluation on 286 buggy programs.

• An Analysis of the Automatic Bug Fixing Performance of ChatGPT (2023)
Sobania et al. [485] give all programs of Quixbugs to ChatGPT with a simple prompt
and report that 19/40 Python programs can be fixed.

• Towards JavaScript program repair with generative pre-trained transformer
(GPT-2) (2023) Lajko et al. [415] train a GPT-2 model only for Javascript with data
from benchmark BugJS, reporting up to 269/1559 patches identical to the expected
one (with beam 10).
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• Fine-Tuning GPT-2 to Patch Programs, Is It Worth It? (2022) Lajkó et al.
[416] finetune a public HuggingFace GPT-2 model with 18736 Javscript bug-fixing
commits, and apply the resulting model to BugJS with 9% exact-match success.

• Less Training, More Repairing Please: Revisiting Automated Program Re-
pair via Zero-shot Learning (2022) Xia et al. [446] state program repair as a
masked input problem, allowing for fully self-supervised training and piggy-backing
on CodeBERT, evaluated on Defects4 2.0.

• SelfAPR: Self-supervised Program Repair with Test Execution Diagnostics
(2022) Ye et al. [450] devise a fully self-supervised training loop for repair with NMT,
as opposed to usual supervised NMT training with diffs, achieving state-of-the-art
performance.

• Automated Repair of Programs from Large Language Models (2023) Fan et
al. [467] study the error modes of Codex, with experimental results showing that 47%
of Codex outputs contain syntax errors, and suggesting that one can postprocess LLM
patches with APR.

• CIRCLE: Continual Repair across Programming Languages (2022) Yuan et al.
[452] train a T5 model on different programming languages sequentially to maximize
transfer learning for repair.

• Practical Program Repair in the Era of Large Pre-trained Language Models
(2022) Xia et al . [445] devise a prompt structure and evaluate it by querying GPT-
like models, Incoder, CodeT5 and Codex with Defects4J, Quixbugs and Manybugs,
showing the superiority of Codex.

• An empirical study of deep transfer learning-based program repair for
Kotlin projects Kim et al. [414] fine-tune TFix to repair SonarQube static anal-
ysis violations in Kotlin code, reaching 19.5% repair effectiveness with exact match.

• DEAR: A Novel Deep Learning-based Approach for Automated Program
Repair (2022) Li et al. [419] propose a mechanism to qualify the fixing scope (sequence
of lines, hunks), based on a combination of SBFL and ML to learn the "fixing-together"
relationship.

• Automated Program Repair in the Era of Large Pre-trained Language
Models (2022) Xia et al. [489] use large language models (GPT, CodeT5, InCoder,
Codex) on Defects4J, Quixbugs and Manybugs and report state-of-the-art results.

• Katana: Dual Slicing-Based Context for Learning Bug Fixes (2022) In an
NMT repair architecture, Sintaha et al. [438] define the context in the input as the
statements that have a control or data dependency on the buggy statement. Imple-
mented for Javascript, using tool ‘Understand’ for slicing, and evaluated on 11397 bugs
from an ad hoc dataset of 91181 samples. A similar follow-up is [479].

• Framing Program Repair as Code Completion (2022) Ribeiro et al. [435] per-
form an experiment to use CodeGPT for repairing 6415 bugs from ManySStuBs4J,
reporting a success rate of 27%.

• Repair Is Nearly Generation: Multilingual Program Repair with LLMs
(2022) Joshi et al. [411] show that a single large language model trained on code
(LLMC) works on six different downstream tasks (repair compilation errors, repair
linting erros, etc) in six languages (with 200 testing data points per task).

• Defect Identification, Categorization, and Repair: Better Together (2022)
Ni et al. [427] train the a single system 1) to classify lines among one of 16 defect
patterns and 2) to generate the fix with a decoder, experimenting on ManySStuBs4J.
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• GLAD: Neural Predicate Synthesis to Repair Omission Faults (2022) Kang
and Yoo [412] train a GRU-based system to generate if conditions at certain locations
in order to early-return, guard existing code or add clauses to existing conditions.

• Fix Bugs with Transformer through a Neural-Symbolic Edit Grammar
(2022) Hu et al.’s experiments on CodeXBlue [408] indicate that predicting the edit
sequence according to an edit grammar is more effective than predicting the whole
fixed code, confirming [337].

• M3V: Multi-modal Multi-view Context Embedding for Repair Operator
Prediction (2022) Xu et al. [447] devise a graph-based neural approach to predict
one repair operator among 4 standard ones for NullPointerException and 3 for Out-
OfBoundsException.

• Can We Automatically Fix Bugs by Learning Edit Operations (2022) Connor
et al. [397] present a series of negative experimental results on using edit operations
as output to neural program repair.

• Fix-Filter-Fix: Intuitively Connect Any Models for Effective Bug Fixing
(2021) Hong et al. [347] systematically check that an NMT model transforms the code
under repair and if not, chains different NMT models together.

• GrasP: Graph-to-Sequence Learning for Automated Program Repair (2021)
Tang et al. [375] design a graph based representation for generating Java patches with
a graph-to-sequence neural architecture from IBM (IBM/Graph2Seq).

• A Controlled Experiment of Different Code Representations for Learning-
Based Bug Repair (2021) Namavar et al. [426] compare the ability of different
representations for repairing swapped arguments and wrong binary operator, showing
a relative advantage for token-based pre-order pretty-print of original code (AST4).

• A Syntax-Guided Edit Decoder for Neural Program Repair (2021) Zhu et al.
[387] propose a decoder architecture for neural program repair that 1) generates edits
(and not full sequences) 2) generates placeholders for handling rare identifiers (instead
of subtokenization or copy [224]).

• Grammar-Based Patches Generation for Automated Program Repair (2021)
Tang et al. [376] proposes a neural architecture combining a token encoder and a
grammar encoder, and experiment with the code changes of Tufano’s BFP dataset
[205].

• CURE: Code-Aware Neural Machine Translation for Automatic Program
Repair (2021) Jiang et al. [348] propose a subword tokenization technique and a
specific beam search to improve the compilation rate of patches from NMT-based
repair.

• A Software-Repair Robot Based on Continual Learning (2021) Baudry et al
[330] uses continual learning on top of the stream of continuous integration builds,
refining the patch generation ML model when new builds arrive.

• Synthesize, Execute and Debug: Learning to Repair for Neural Program
(2020) Gupta et al. [298] embed execution traces in order for a so-called neural de-
bugger to predict an edit sequence to repair Karel programs.

• DLFix: Context-based Code Transformation Learning for Automated Pro-
gram Repair (2020) Li et al. [306] use tree-based recurrent neural networks to
generate patches.

• CoCoNuT: Combining Context-Aware Neural Translation Models using
Ensemble for Program Repair (2020) Lutellier et al. [251, 309] propose a num-
ber of design changes to SequenceR [224] (fully convolutional layers, multi-attention,
multi-model prediction).
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• Hoppity: Learning Graph Transformations to Detect and Fix Bugs in Pro-
grams (2020) Dinella et ak. [292] predict the changes to be made to the AST of
Javascript bug-fix commits with a graph-based neural network.

• A Study of Pyramid Structure for Code Correction (2020) Huang et al. .[301]
propose a better encoder for seq2seq and apply it to two benchmarks of programs with
static warnings: Juliet and Java SARD.

• Learning the Relation between Code Features and Code Transforms with
Structured Prediction (2019) Yu et al. [278] predict the code transformations that
must be applied to fix a bug using structured prediction with conditional random
fields.

• SequenceR: Sequence-to-Sequence Learning for End-to-End Program Re-
pair (2018) Chen et al. [224] deploy sequence-to-sequence learning over 35578 diffs
from the CodRep dataset [162] and show that the system, called Sequencer, is able to
perfectly predict the fixed line for 950/4711 testing cases and 14 bugs in Defects4J.

• Learning to Generate Corrective Patches using Neural Machine Translation
(2019) [172] trains a neural sequence-to-sequence model over 35,137 single statement
diffs from 5 open-source Java projects and applies it to 233 testing tasks.

• Search, Align, and Repair: Data-Driven Feedback Generation for Intro-
ductory Programming Exercises (2018): Wang et al. [210] use advanced AST
matching and differencing to provide a small diff to MOOC students based on a pool
of correct solutions.

• Semantic Code Repair using Neuro-Symbolic Transformation Networks
(2017) Delvin et al. [124] synthesize errors in Python programs according to 4 mutation
operators and show that an LSTM-based architecture can fix the synthetic errors.

• History Driven Program Repair (2016) [110]uses the commit history to select the
most likely patch from classical mutation-based repair (incl. Genprog and Par): the
mutations that appear the most frequently in the history are ranked first.

• Prophet: Automatic Patch Generation via Learning From Successful Patches
(2016) [114] selects the SPR generated patch that resembles the most to past human
patches.

• sk_p: a neural program corrector for MOOCs (2016) Pu et al. [119] use a
recurrent neural network to predict corrections in small student programs written in
Pyton.

1.5.2 Inference of Fix Patterns / Templates

• Expanding Fix Patterns to Enable Automatic Program Repair (2021) Nowack
et al. [365] cluster Defects4J patches to group them by fix pattern.

• DevReplay: Automatic Repair with Editable Fix Pattern (2020) Ueda et aL;
[317, 441] abstracts over commits by extracting matching and replacement regular
expressions, in order to be able to apply the same code change again later.

• FixMiner: Mining Relevant Fix Patterns for Automated Program Repair
(2020) Koyuncu et al. [305] define a novel data structure for representing and clustering
edit scripts, finding 14 full patterns automatically in a dataset of 11,416 patches.

• Phoenix: Automated Data-driven Synthesis of Repairs for Static Analysis
Violations (2019) Bavishi et al. [221] represent warning-fixing changes in a DSL
representing the AST edit script, then cluster those changes into patterns.
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• Getafix: Learning to Fix Bugs Automatically (2019) [264] infers repair templates
for null pointer bugs detected with the static analysis tool Infer.

• Shaping Program Repair Space with Existing Patches and Similar Code
(2018) [176] selects the most similar repair ingredients that are also instances of bug
fix patterns mined over past commits.

2 Program Repair of Static Errors
2.1 Static Warnings

• StaticFixer: From Static Analysis to Static Repair (2023) Jain et al. [472]
repair two types of information flow vulnerabilities in Javascript (unvalidated dynamic
calls and cross-site scripting) using a CodeT5 neural model, trained in a self-superviser
manner with perturbations.

• A New Era in Software Security: Towards Self-Healing Software via Large
Language Models and Formal Verification (2023) Charalambous et al. [464] use
ChatGPT to fix errors in C programs found by the ESBMC model checker (testing
with 1000 cynthetic C code samples, each consisting of 20 to 50 lines of code).

• Leveraging Static Analysis for Bug Repair (2023) Mutasim et al [478] train
a system to automatically fix resource leak bugs flagged by Infer in Java using a
transformer.

• Static Analysis Warnings and Automatic Fixing: A Replication for C#
Projects (2022) Odermatt et al. [429] implement and evaluate a template-based repair
tool for C# to fix 20 ReSharper and SonarQube static analysis rules (EagleRepair on
Github).

• Towards More Reliable Automated Program Repair by Integrating Static
Analysis Techniques (2021) Al-Bataineh et al. [329] fix termination bugs by mu-
tating statements in the backward slice of the loop condition.

• TFix: Learning to Fix Coding Errors with a Text-to-Text Transformer
(2021) Berabi et al. [332] train and evaluate a T5 transformer to repair ESLint errors
in Javascript.

• Sorald: Automatic Patch Suggestions for SonarQube Static Analysis Viola-
tions (2021) Etemadi et al. [341] present a system to repair SonarJava static analysis
warnings based on AST level metaprogramming with Spoon [96].

• Automatic Integer Error Repair by Proper-Type Inference (2021) Cheng et
al. [225] write a static analysis for C integer errors based on type inference, and use
four fix patterns to repair the violations.

• Automated Code Repair to Ensure Spatial Memory Safety (2021) Klieber et
al. [352] add checks to repair warning by the verification tool Symbiotic, using an ad
hoc intermediate representation that can be transformed from and back to the AST.

• C-3PR: A Bot for Fixing Static Analysis Violations via Pull Requests (2020)
C-3PR [287] integrates ESLint, TSLint and Sonar-WalkMod into a bot that makes
pull-requests on Github for style issues and static analysis warnings.

• SAVER: Scalable, Precise, and Safe Memory-Error Repair (2020) Hong et al.
[300] propose a novel technique to patch statically found memory leak, double-free,
and use-after-free errors in C programs based on so-called object flow graphs.

• Automated Repair of Resource Leaks in Android Applications (2020) Bhatt
et al. [284] repair Android-specific static analysis warnings with a fix template.
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• IntRepair: Informed Repairing of Integer Overflows (2019) Muntean et al.
[262] use 4 repair patterns to statically repair integer overflows found with static anal-
ysis.

• Automatically Generating Fix Suggestions in Response to Static Code
Analysis Warnings (2019) Marcilio et al. [253] fix 11 Sonarqube warnings with
fixing rules implemented in the Rascal metaprogramming system.

• Avatar: Fixing Semantic Bugs with Fix Patterns of Static Analysis Vio-
lations (2019) Liu et al. [247] fixe 7 FindBugs warnings with carefully selected fix
patterns.

• Neural Program Repair by Jointly Learning to Localize and Repair (2019)
Vasic et al.’s [208] does joint detection and repair of variable-misuse bugs instead of
Allamanis et al’s technique of detection followed by enumeration.

• Static Automated Program Repair for Heap Properties (2018) [203] repairs
static warnings for potential null dereferences found by the static analysis tool Infer.

• MemFix: static analysis-based repair of memory deallocation errors for C
(2018) [180] quantitatively improves over [82] and is able to handle real open-source
programs.

• Automatically Diagnosing and Repairing Error Handling Bugs in C (2017)
Tian et al. [141] repair three static warnings related to error handling with the corre-
sponding template ("Incorrect/Missing Error Propagation", "Incorrect/Missing Error
Checks", "Incorrect/Missing Resource Release")

• IntPTI: Automatic Integer Error Repair With Proper-Type Inference (2017)
[123] statically detect integer overflows, applies 3 transformations (sanity check, ex-
plicit type casting and declared type change) before proposing the change to the de-
veloper.

• Sound and complete mutation-based program repair (2016) [120] Rothenberg
and Grumberg apply standard mutation operators not to the program under repair
but to a constraint-based, SSA representation of C programs in order to fix statically
detected errors. repo

• Enhancing automated program repair with deductive verification (2016) Le
at al. [112] repair static warnings found with HIP/SLEEK with Genprog-like muta-
tions.

• Safe Memory-leak Fixing for C Programs (2015) [82] proposes an approach that
consists of statically detecting and fixing memory leaks by inserting a deallocation
statement.

• Automated Generation of Buffer Overflows Quick Fixes Using Symbolic
Execution and SMT (2015) [94] uses parametrized templates to fix buffer overflow,
where the actual parameter is found with symbolic execution and SMT.

• Sound Input Filter Generation for Integer Overflow Errors (2014) [68] uses a
static analysis specific to integer arithmetic that detects integer overflows, and repair
them by inferring a filter that simply deny the input.

• Automatic Repair of Overflowing Expressions with Abstract Interpretation
(2013) [56] statically detects arithmetic overflow and suggest fixes as re-ordering of the
arithmetic operations

• Modular and Verified Automatic Program Repair (2012) [44] proposes a repair
approach for a set of fault class identified statically (e.g. off-by-one errors),with a
specific repair operators per fault class (for example adding a precondition).
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• Fix-it: An Extensible Code Auto-Fix Component in Review Bot [48] (2013)
is an approach to automatically fix static warnings with AST transformation based on
XQuery (US Patent by the same author US9146712B2).

• Combining dynamic slicing and mutation operators for ESL correction
(2012) Repinski et al. [46] revisit the work of [23] with different mutation operators.

• A Formal Approach to Fixing Bugs (2011) [35] fixes Findbugs-like bugs with
Coccinelle-like templates using a transformation language called Tran. Similar work
by the same authors “Towards the Automated Correction of Bugs”.

• Automatic Error Correction of Java Programs (2010) [25] generates a meta-
program that integrates all possible mutations according to a mutation operator, and
the successful mutations are identified using symbolic execution.

• Using Mutation to Automatically Suggest Fixes for Faulty Programs (2010)
Debroy and Wong [23] propose to use standard mutations from the mutation testing
literature to fix programs: replacement of an arithmetic, relational, logical, incre-
ment/decrement, or assignment operator by another operator from the same class;
decision negation in an if or while statement.

• Proof-directed Debugging and Repair (2006) [5] uses an Isabel proof-based oracle
on on ML programs: when the proof fails, the counter-example of the proof drives a
repair approach based on repair templates (replacing one method call by another,
adding code).

• Patches As Better Bug Reports (2006) Weimer [8] uses a safety policy of the form
of a typestate property to detect and repair the control-flow graph of a method with
a patch.

2.2 Bug reports
• iFixR: bug report driven program repair (2019) Koyuncu et al. [241] show that

bug reports can be used for fault localization using information retrieval techniques
and combine this with template based repair.

• R2Fix: Automatically Generating Bug Fixes From Bug Reports (2013) [55]
takes as oracle a manually written bug report, which is used to extract the actual value
of a template parameter.

2.3 Compiler Errors - Syntax Errors
• Domain Knowledge Matters: Improving Prompts with Fix Templates for

Repairing Python Type Errors (2023) Peng et al. [482] combine fix pattern mining
and CodeT5 to fix Python type errors from benchmarks TypeBugs (109 bugs) and
BugsInPy (54 bugs).

• TransRepair: Context-aware Program Repair for Compilation Errors (2022)
Li et al. [418] devise a transformer-based approch to repair compilation errors in C,
with state-of-the-art performance on the TRACER and DeepFix datasets.

• SynShine: Improved Fixing of Syntax Errors (2022) Ahmed et al. [390] combine
three different Roberta-based models in a three-stage pipeline to repair Java syntax
errors, achieving 75% effectiveness on the single-line errors of the Blackbox dataset.

• Seq2Parse: Neurosymbolic Parse Error Repair (2022) Sakkas et al. [436] com-
bine a symbolic EC-Parser and a transformer classifier to predict error production
rules. Prototype available at https://github.com/gsakkas/seq2parse.
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• Break-It-Fix-It: Unsupervised Learning for Program Repair (2021) Yasunaga
and Liang [382] present a self-supervised training loop based on exercising and improv-
ing a ‘breaker’ and a ‘fixer’ simultaneously, inspired by backtranslation, in order to fix
syntax errors in Python and C.

• Self-Supervised Bug Detection and Repair (2021) Allamanis et al. [327] devise
a self-supervised loop to detect and repair four kinds of bugs ("Variable Misuse", "Ar-
gument Swapping", "Wrong operator", "Wrong literal"), with experiments in Python.

• SYNFIX: Automatically Fixing Syntax Errors using Compiler Diagnostics
(2021) Ahmed et al.’s system [326], Synfix, uses a Roberta-based model to fix syntax
errors in Java.

• GGF: A Graph-based Method for Programming Language Syntax Error
Correction (2020) Wu et al. [319] uses the AST information in a neural architecture
to improve the state-of-the-art on the DeepFix dataset.

• Graph-based Self-Supervised Program Repair from Diagnostic Feedback
(2020) Yasunaga and Liang [322] generate training data for compiler error repair,
with a self-supervised procedure based on corrupting programs, claim to improve the
state-the-art on the Deepfix dataset.

• Automatic Repair and Type Binding of Undeclared Variables using Neural
Networks (2019) Mohan et al. [259] train a system based on LSTM to repair 1059
student C programs with undeclared variable errors.

• DeepDelta Learning to Repair Compilation Errors (2019) Mesbah et al. [257]
fix Java compilation errors by training a NMT model to predict the AST diff expressed
in a textual manner.

• SampleFix: Learning to Correct Programs by Sampling Diverse Fixes (2019)
Hajipour et al. [233] repair syntax errors with a conditional variational autoencoder
with a technique to sample diverse solutions.

• Deep Reinforcement Learning for Syntactic Error Repair in Student Pro-
grams (2018) [169] uses reinforcement learning to improve the performance of DeepFix
[128] on the same dataset.

• Reducing Cascading Parsing Errors Through Fast Error Recovery (2018)
[164] Diekmann and Tratt finds repair sequences for syntax errors, with minimum cost
and acceptable time, by extending [1].

• Syntax and sensibility: Using language models to detect and correct syn-
tax errors (2018): Santos’ approach [196] repairs syntax errors (one character edits)
with n-gram and LSTM, with an evaluation on 1,715,312 before-and-after pairs of the
BlackBox dataset.

• Compilation error repair: for the student programs, from the student pro-
grams (2018): Ahmed et al. [156] improve over DeepFix [128] on a dataset containing
a total of 16985 (source, target) line pairs.

• DeepFix: Fixing Common C Language Errors by Deep Learning (2017):
Gupta et al. [128] use a language model for repairing syntactic compilation errors

• Automated correction for syntax errors in programming assignments using
recurrent neural networks (2016): Bhatia [101] set up recurrent neural networks
to fix Python syntax errors in 14000 student submissions from a MOOC.
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3 Empirical Studies for Program Repair
• RobustNPR: Evaluating the robustness of neural program repair models

(2023) Ge et al. [500] produce semnatically equivalent buggy programs with mutation
to test whether neural models can still fix them. Most models cannot fix anymore
mutated input programs by a large proportion (80% of bugs).

• Where to Look When Repairing Code Comparing the Attention of Neural
Models and Developers (2023) Huber [470] find that humans and neural nets “look ”
at similar places and that different neural models have very different attention matrices.

• Digging into Semantics: Where do search-based software repair methods
search? (2022) Ahmad et al. [388] devise a method to compute a behavioral em-
bedding based on invariants, and proceed with dimensionality reduction with PCA,
plotting patches for six repair tools.

• Automatically Generated Patches are More Likely to be Correct than Oth-
ers: An Analysis of Defects4J Patch Features (2022) Bennett et al. [393] study
syntactic features of 395 Defects4J patches to identify correlations, such as single-line
patches being more correct on average.

• A Comparative Study of Automatic Program Repair Techniques for Se-
curity Vulnerabilities (2022) Pinconschi et al. [367] compare 10 program repair
tools for C on the DARPA Cyber Grand Challenge benchmark of 250 vulnerabilities
in C/C++ showing that AE and GenProg clearly yield more patches.

• Estimating the Potential of Program Repair Search Spaces with Commit
Analysis (2022) Etemadi et al. [399] estimate the applicability of program repair by
measuring the proportion of real-world commits that lie in known repair search spaces.

• Where were the repair ingredients for Defects4j bugs? (2021) Yang et al.
[381] study the origin of repair ingredients for redundancy-based repair and suggest
that some repair ingredients may be found in test case code.

• Evaluating Automatic Program Repair Capabilities to Repair API Misuses
(2020) Kechagia et al. [350] compare 14 Java test-suite-based repair tools on 101 API
misusage bugs. The repair tools generate patches for 28% of API misuses, 25% of the
generated patches are semantically correct, TBAR has the highest number of plausible
and correct patches.

• A Comprehensive Study of Code-removal Patches in Automated Program
Repair (2020) Ginelli et al. [297] studies code-removal patches by Astor/jKali and
finds that their presence clearly indicates test weaknesses.

• On the Impact of Flaky Tests in Automated Program Repair (2021) Qin et al.
[369] identify environment-dependent tests in Defects4J and show that their presence
impact repair results.

• Understanding the Non-Repairability Factors of Automated Program Re-
pair Techniques (2020) Lin et al. [307] study the experimental logs shared in open
science replication packages from program repair research, and find that the research
prototypes suffer from important limitations.

• Longitudinal Analysis of the Applicability of Program Repair on Past Com-
mits (2020) Etemadi et al. [295] use AST analysis to identify past commits that could
potentially have been generated by program repair tools, because the corresponding
code changes lie in the search space of known repair approaches.

• Patching as Translation: the Data and the Metaphor (2020) Ding et al. [293]
discuss to what extent the usage of neural machine translation is appropriate for
program repair.
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• Quality of Automated Program Repair on Real-World Defects (2020) Mot-
wani et al. [310] implement the algorithms of GenProg, Par and TrpAutoRepair for
Java in a tool called JarFly, and study its effectiveness on Defects4J.

• Empirical Analysis of 1-edit Degree Patches in Syntax-Based Automatic
Program Repair (2020) Dziurzanski et al. [294] exhaustively explore the search
space on 1-edit patches (i.e. one-liners) of Arja for Defects4J, and show that much
fewer tests can be executed for one-liners.

• How Effective is Automated Program Repair for Industrial Software (2020)
Noda et al. [312] discusses the repair results (8 patches) of proprietary repair tool
Elixir on 20 single-statements bugs from Fujitsu products.

• On the Efficiency of Test Suite based Program Repair (2020) Liu et al. [308]
show that incorrect fault-localization significantly increases the chances of producing
overfitting patches.

• A manual inspection of Defects4J bugs and its implications for automatic
program repair (2019) Jiang et al. [237] classify 50 Defects4J bugs with respect to
the fault localization and repair stragegy used.

• Repairnator patches programs automatically (2019) Monperrus et al. [261]
report that program repair can be human-competitive: 5 generated patches have been
synthesized faster than the human developer, and accepted and merged in the code
base.

• The effectiveness of context-based change application on automatic pro-
gram repair (2019) Kim et al. [239] show that it is valuable to select ingredients
with similar AST context in generate-and-validate program repair. Idea related to
[212].

• How Different Is It Between Machine-Generated and Developer-Provided
Patches (2019) [270] Wang et al. asked 27 undergraduate students whether APR
patches for Defects4J are correct, are located at the same position and consist of the
same modification kind (132/177 patches are at the same location, with the same
modification).

• Empirical Review of Java Program Repair Tools: A Large-Scale Experi-
ment on 2,141 Bugs and 23,551 Repair Attempts (2019) Durieux et al. [229]
run the same set of repair tools over different benchmarks and show that research is
likely overfitting to Defects4J.

• Human-competitive Patches in Automatic Program Repair with Repair-
nator (2018) [193] shows that the state of the art techniques in 2018 can produce a
valuable patch faster than human developers.

• Attention Please: Consider Mockito when Evaluating Newly Released Au-
tomated Program Repair Techniques (2018) [211] discusses the characteristics of
the Mockito bugs in Defects4J and the performance of SimFix, CapGen and Nopol on
repairing them.

• The Remarkable Role of Similarity in Redundancy-based Program Repair
(2018) [163] describes an original experiment showing that the use of similarity can
reduce the search space of program repair by 99.35%, under certain assumptions.

• LSRepair: Live Search of Fix Ingredients for Automated Program Repair
(2018) [183] compares three kinds of similarity (similar method signature, method
embedding similarity using CNN, semantic similarity based on code-search) in the
context of generate-and-validate program repair.

19



• A Novel Fitness Function for Automated Program Repair Based on Source
Code Checkpoints (2018) [199] uses instrumentation in order to have a fitness func-
tion that has less plateaus than with only test case outcomes.

• A Comprehensive Study of Automatic Program Repair on the QuixBugs
Benchmark (2018) [215] is the first report on doing automatic repair on the Quixbugs
benchmark, using the Astor and Nopol tools [130].

• Comparing Line and AST Granularity Level for Program Repair using
PyGGI (2018) [158] claims that AST analysis in a GenProg-like approach is overall
faster than line-based analysis.

• Comparing Developer-Provided to User-Provided Tests for Fault Localiza-
tion and Automated Program Repair (2018) [177] studies whether the results of
fault localization change if one removes the failing test case provided in the commit
(experiments on Defects4J).

• The Impacts of Techniques, Programs and Tests on Automated Program
Repair: An Empirical Study (2017) Kong et al. [129] compare GenProg, RSRepair,
AE and Kali on the Siemens benchmark.

• Better test cases for better automated program repair (2017) Yang et al.
[151] use fuzz testing to generate new test cases, and employ implicit oracles (absence
of crash and memory-safety) to enhance validity checking of automatically-generated
patches in C.

• An empirical analysis of the influence of fault space on search-based auto-
mated program repair (2017) [145] shows that GenProg finds more patches (incl.
correct ones) if one assumes better fault localization.

• A correlation study between automated program repair and test-suite met-
rics (2017) [153] sets up a protocol based on held-out tests to show that the better
the coverage, the better the repair.

• Do automated program repair techniques repair hard and important bugs?
(2017) [135] suggests that the considered state-of-the-art repair techniques only repair
simple bugs according to collected bug metadata.

• An Empirical Investigation into Learning Bug-Fixing Patches in the Wild
via Neural Machine Translation (2018) Tufano et al. [205] use machine translation
on Java methods that are smaller than 50 tokens with abstracted token sequences (the
corresponding journal paper is [206]).

• Towards reusing hints from past fixes - An exploratory study on thousands
of real samples (2018) [218] confirms the results of [70] regarding redundancy-based
repair based on the novel usage delta dependency graphs.

• Mining Repair Model for Exception-Related Bug (2018) [217] studies the most
common repair actions per exception type.

• Common Statement Kind Changes to Inform Automatic Program Repair
(2018) Soto et al. [198] replicates the study of [92] on the MSR Challenge dataset.

• A feasibility study of using automated program repair for introductory
programming assignments (2017) [152] studies the application of GenProg, AE,
Angelix, and Prophet to 661 programs written by the students taking an introductory
programming course.

• Empirical Study on Synthesis Engines for Semantics-Based Program Repair
(2016) [111] compares 5 synthesis engines implemented on top of Angelix showing that
they do not have the same performance, and that Angelixs Partial MaxSMT-based
synthesis engine is the best on the considered benchmark, IntroClass.
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• Sorting and Transforming Program Repair Ingredients via Deep Learning
Code Similarities (2016) [146] uses deep learning to match donor methods that are
similar to the buggy method under repair.

• Automatic Repair of Real Bugs in Java: A Large-Scale Experiment on the
Defects4J Dataset (2016) [133] is the first experiment ever on evaluating automatic
repair on the Defects4J dataset (with Nopol, jGenProg and jKali) showing the great
problem of overfitting.

• Improved Crossover Operators for Genetic Programming for Program Re-
pair (2016) [118] proposes new crossover operators for Genprog, that decouple fix
location, repair type, and repair ingredient. The corresponding journal paper is [194].

• An Analysis of Patch Plausibility and Correctness for Generate-And-Validate
Patch Generation Systems (2015) [97] shows that most Genprog patches simply
remove code and consequently that the overfitting problem is huge.

• The Strength of Random Search on Automated Program Repair (2014) [73]
shows that there the search in Genprog is actually not guided by the fitness function,
it’s random search.

• Do the Fix Ingredients Already Exist? An Empirical Inquiry into the Re-
dundancy Assumptions of Program Repair Approaches (2014) [70] shows that
a significant proportion of commits in open-source projects (3%-22%) are composed of
existing code.

• Mining Software Repair Models for Reasoning on the Search Space of Au-
tomated Program Fixing (2013) [92] computes the prevalence of each repair actiona
dn explores the imbalance between possible repair actions at the AST level, showing
its significant impact on the search.

• A Systematic Study of Automated Program Repair: Fixing 55 Out of 105
Bugs for $8 Each (2012) [41] has famously claimed that 52% of bugs (55/105) of
bugs can be fixed by Genprog, a ratio being undermined by the benchmark selection
biases and by overfitting.

• Automated Program Repair Through the Evolution of Assembly Code
(2010) [27] shows the feasibilty of Genprog-like repair on binary x86 code and Java
bytecode.

• Designing Better Fitness Functions for Automated Program Repair (2010)
[24] explores the design space of fitness functions of Genprog.

3.1 Human Study on APR
• Let’s Talk With Developers, Not About Developers: A Review of Auto-

matic Program Repair Research (2022) Winter et al. [443] analyze published
APR papers wrt to human factors and advocate for more APR research involving
developers.

• Trust Enhancement Issues in Program Repair (2022) Noller et al. [428] col-
lect qualitative feedback about APR from 103 developers, suggesting that developers
are willing to provide additional inputs in order to increase trust in automatically
generated patches.

• Program Repair: Automated vs. Manual (2022) Zhang et al. [455] ask 20
graduate students to repair 8 Defects4J bugs and discuss the results, suggesting that
incorrect patches may be misleading for humans.
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• How to trust auto-generated code patches? A developer survey and em-
pirical assessment of existing program repair tools (2021) Noller et al. [364]
ask 35 questions to 100 developers about APR and suggest that trust in APR patches
would increase by presenting additional artifacts (in particular generated test cases).

• Would You Fix This Code for Me? Effects of Repair Source and Comment-
ing on Trust in Code Repair (2020) Alarcon et al. [280] asked 51 programmers
about their opinion on 5 GenProg patches on ManyBugs where the controlled variable
is the identity of the patch author (Bill vs GenProg): the subbjects trust human-being
Bill more than bot GenProg.

• Trust in Automated Software Repair (2019) Tyler et al. [268] ask 24 students
and 24 professionals to assess 5 GenProg patches and show novice programmers are
more accepting generating.

• Characterizing Developer Use of Automatically Generated Patches (2019)
Cambronero et al. [222] performs a user study consisting of giving 5 patches on 2 bugs
to 12 developers, incl. one being correct to see how developers leverage generated
patches.

• Automatically Generated Patches As Debugging Aids: a Human Study
(2014) [76] asks to 95 participants to fix bugs with either fault localization or machine-
generated patches from PAR.

• A Human Study of Patch Maintainability (2012) [40] conducted a study of
Genprog patches based on 150 participants and 32 real-world defects, showing that
machine-generated patches are slightly less maintainable than human-written ones.

4 Domain-Specific Repair
4.1 Test Repair

• TRaf: Time-based Repair for Asynchronous Wait Flaky Tests in Web Test-
ing (2023) Pei et al. [481] suggest waiting times for each asynchronous call in a web
application.

• GUI-Guided Test Script Repair for Mobile Apps (2020) Pan et al. [313] repair
Android GUI test scripts by changing test UI locators or UI events, based on image
and OCR analysis of GUI screenshots.

• iFixFlakies: A Framework for Automatically Fixing Order-Dependent Flaky
Tests (2019) Shi et al. [265] analyze and repair the test bugs related to test execution
ordering.

• Intent-Preserving Test Repair (2019) Li et al. [244] repair Java tests that do
not compile after evolution by ranking the candidate solutions according to an intent
similarity score computed from path conditions.

• Visual web test repair (2018) [200] repairs broken Selenium tests by changing the
incorrect locator, the locator being inferred by comparing visual renderings (ie images).

• Waterfall: An incremental approach for repairing record-replay tests of
web applications (2016) [107] repairs DOM locators in Selenium tests.

• Repairing Selenium Test Cases: an Industrial Case Study about Web Page
Element Localization (2013) [54] do test repair in the context of Selenium tests,
which are tests for web applications with HTML output.

• ReAssert: Suggesting Repairs for Broken Unit Tests (2009) [17] addresses
the dual problem of test-suite based repair: changing the tests instead of fixing the
application.
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• Automatically Repairing Event Sequence-based GUI Test Suites for Re-
gression Testing (2008) [13] does test repair on GUI test models. “SITAR: GUI
Test Script Repair” [84] extends this work by considering manually scripted test cases.

4.2 Automated Repair of Concurrency errors
• Automatic Detection, Validation and Repair of Race Conditions in Interrupt-

Driven Embedded Software (2022) Yu et al. [323] suggest strategies ‘Add locks’
(AL) or ‘Interrupt disable and enable (IDE)’ after a combination of static analysis
and symbolic execution in order to repair race condition problems related to hardware
interrupts.

• HIPPODROME: Data Race Repair using Static Analysis Summaries (2021)
Hippodrome [339] repairs data races identified by RacerD, Facebook’s static concur-
rency analyser for Java, by changing mutexes of Java synchronized blocks.

• HangFix: automatically fixing software hang bugs for production cloud
systems (2020) He et al. [299] propose four automatic patching strategies that are
specific to software hang bugs in cloud systems such as Hadoop.

• DFix: automatically fixing timing bugs in distributed systems (2019) Li et al.
[243] fix atomicity violations, order violations, and fault-timing bugs with rollbacking
side-effect operations.

• Understanding and Generating High Quality Patches for Concurrency bugs
(2016) Liu et al. [113] have proposed a tool called HFix whose repair operator is to
add thread-join instructions.

• Automatic Repair for Multi-threaded Programs with Deadlock/Livelock
Using Maximum Satisfiability (2014) Lin et al. [67] insert locks by encoding the
problem as a satisfiability one.

• Axis: Automatically Fixing Atomicity Violations Through Solving Control
Constraints (2012) [43] addresses the problem of violation fixing as a constraint
solving problem using the Petri net model.

• Automated Atomicity-violation Fixing (2011) [34] is about AFix, whose repair
model consists of putting instructions into critical regions.

4.3 Automated Repair of Build Scripts
• Parfum: Detection and Automatic Repair of Dockerfile Smells (2023) Durieux

[466] design and implement AST-level querying and transformation for Dockerfiles in
order to repair Docker script smells.

• Automated Patching for Unreproducible Builds (2022) Ren et al. [434] produce
patches (changes to shell scripts) for unreproducible builds based on mined templates
(typically one-liner changes).

• Shipwright: A Human-in-the-Loop System for Dockerfile Repair (2021)
Henkel et al.[346] designs 13 rules for making automated repairs to Dockerfiles which
cannot successfully build, in a data-driven manner.

• Styler: Learning Formatting Conventions to Repair Checkstyle Violations
(2019) Madeiral et al. [421] propose to automatically repair Checkstyle formatting
errors that break the build.

• History-driven build failure fixing: how far are we? (2019) You et al. [249]
show that a simple approach works better than HireBuild [171] on a new dataset of
102 reproducible Gradle build failures.
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• HireBuild: an automatic approach to history-driven repair of build scripts
(2018) [171] mines and apply build-fix patterns in Gradle, and apply them based on
log similarity.

4.4 Automated Repair for Numerical Errors
• Oracle-free repair synthesis for floating-point programs (2022) Zou et al. [461]

generate a polynomial patch for local intervals found to be erroneous by a detection
tool called Atomu.

• Efficient Automated Repair of High Floating-Point Errors in Numerical Li-
braries (2019) Yi et al. [276] for numerical functions (eg from GNU Scientific Library),
identify small parts of the input domain that have high floating point instability, and
replace the original implementation by a better approximation.

4.5 Automated Repair for the Web
• Usability and Aesthetics: Better Together for Automated Repair of Web

Pages (2021) Le-Cong et al. [338] design a meta-heuristic algorithm that evolves
buggy web pages to optimize both usability and aesthetics.

• Automated Repair of Cross-Site Scripting Vulnerabilities through Unit
Testing (2020) Mohammadi et al. [258] automatically add calls to sanitizers to fix
statically found XSS vulerabilities.

• Fully Automated HTML and Javascript Rewriting for Constructing a Self-
healing Web Proxy (2018) [166] uses a proxy to intercept browser errors and repair
them with HTML and Javascript rewriting strategies.

• Automated repair of mobile friendly problems in web pages (2018) [187]
explores the search space of CSS modifications to fix mobile problems such as font
sizing and extraneous spacing.

• Automated Repair of Internationalization Presentation Failures in Web
Pages Using Style Similarity Clustering and Search-Based Techniques (2018)
[188] fixes web rendering by changing the value of CSS properties

• Vejovis: Suggesting fixes for JavaScript faults (2014) [72] suggests fixes for
DOM errors based on fix patterns

• Fix Me Up: Repairing Access-Control Bugs in Web Applications. (2013)
[61] repairs access-control policies in web applications, using a static analysis and
transformations tailored to this domain.

• Automated Repair of HTML Generation Errors in PHP Applications Using
String Constraint Solving (2012) [47] fixes incorrect opening/closing HTML tags
in PHP application by encoding the problem as string constraints.

4.6 Automated Repair of Software Abstractions
Alloy:

• ICEBAR: Feedback-Driven Iterative Repair of Alloy Specifications (2022)
Gutiérrez-Brida [407] use property-based oracles in Alloy and any Alloy model repair
technique as underlying repair operator.

• ARepair: a repair framework for Alloy (2019) Wang et al. [269] describe a
generate-and-validate repair technique for Alloy models, with a test-based specification
based on AUnit.
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• Automated model repair for Alloy (2018) [209] does repair for the Alloy language
with 11 mutation operators,

Others:

• Automated Patch Generation for Fixing Semantic Errors in ATL Transfor-
mation Rules (2022) VaraminyBahnemiry et al [378] design, implement and evaluate
a repair approach for the ATL model transformation language.

• Transforming abstract to concrete repairs with a generative approach of
repair values (2021) Kretschmer et al. [353] repair inconsistencies in UML models.

• Range Fixes: Interactive Error Resolution for Software Configuration [100]
(2015) focuses on automatically repairing configuration errors in software product lines

• Towards Automated Inconsistency Handling in Design Models (2010) Silva
et al. [28] use Prolog to propose a repair plan that fixes inconsistencies in UML models

• Supporting Automatic Model Inconsistency Fixing [22] (2009) detects and fixes
inconsistencies in MOF and UML models

• Repairing Unsatisfiable Concepts in OWL Ontologies [7] (2006) states an au-
tomatic repair problem in the context of OWL ontologies.

• Consistency Management with Repair Actions [2] (2003) detects inconsistencies
in XML documents and proposes repair actions accordingly.

4.7 Automated Repair of Security Vulnerabilities
• How Effective Are Neural Networks for Fixing Security Vulnerabilities?

(2023) Wu et al. [487] assess 9 LLMs and 4 neural program repair systems on the
Vul4J and VJBench benchmarks (resp. 79 and 42 bugs). Codex and a fine-tuned
Incoder best-perform with 10, resp 9 fixed vulnerabilities.

• SPVF: security property assisted vulnerability fixing via attention-based
models (2022) Zhou et al. [459] use a transformer model using as input a combination
of code and natural language extracted from CVEs, reporting successful repair of 153
C/C++ vulnerabilities and 276 Python vulnerabilities.

• VulRepair: A T5-Based Automated Software Vulnerability Repair (2022)
Fu et al. [402] train a T5 model based on subword BPE tokenization and embeddings
from CodeT5, then reports experimental improvements over VRepair [337].

• Example-Based Vulnerability Detection and Repair in Java Code (2022)
Zhang et al. [456] devise an approach where security experts first define a dataset of
pairs of insecure/secure Java code (28 pairs in the experiment), and then an algorithm
extracts the matching and fixing transformation.

• Automatically Mitigating Vulnerabilities in x86 Binary Programs via Par-
tially Recompilable Decompilation (2022) Under the assumption that no source
code is available, Reiter et al. [433] prove the feasibility of decompiling small chunks
of code (using Hex-Rays), running GenProg on them, recompiling and reinjecting the
fixed code in the binary to be executed.

• Neural Transfer Learning for Repairing Security Vulnerabilities in C Code
(2021) Chen et al. [337] train a transformer on bug-fixing commits and fine-tune it on
real CVE vulnearbilities, proving that transfer learning happens between bug fixing
and vulnerability fixing (the previous iteration was [223]).

• Using Safety Properties to Generate Vulnerability Patches (2019) Huang et
al. [236] generate check-and-error patches for buffer overflows, bad casts and integer
overflows triggered by exploits and fuzzing inputs.
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• Learning to Repair Software Vulnerabilities with Generative Adversarial
Networks (2018) [170] generates noisy data by removing source code tokens, this
data being used to train a sequence to sequence model.

• VuRLE - Automatic Vulnerability Detection and Repair by Learning from
Examples (2017) Ma et al. [132] learns systematic edits from examples and apply
them to fix vulnerabilities in Android applications.

• Cdrep: Automatic repair of cryptographic misuses in android applications
(2016) Ma et al. [115] define 7 binary transformations for Dalvik bytecode to repair 7
cryptographic API misuses in Android.

• AutoPaG: Towards Automated Software Patch Generation with Source
Code Root Cause Identification and Repair (2007) [9] generates a source code
patch from an input that triggers an array overflow in C code, with failure-oblivious
repair operators (adding a modulo in the read expression and truncating data to be
written).

• Countering Network Worms Through Automatic Patch Generation (2005 [4]
detect buffer overflow vulnerabilities at runtime in production, then produce a source
code patch that skip the execution of the overflowing statement.

4.8 Automated Repair of Smart Contracts
• Property-Based Automated Repair of DeFi Protocols (2022) Tolmach et al.

[440] reuses the mutation operators of SCRepair (add require, add initialization, move
statements) and a home-grown source level symbolic execution engine to repair nine
smart contracts in a new tool called Definery.

• Elysium: Automagically Healing Vulnerable Smart Contracts Using Context-
Aware Patching (2022) Torres et al. [400] improve over Smartshield and SGuard by
means of better code analysis and more automation.

• Aroc: An Automatic Repair Framework for On-chain Smart Contracts
(2021) Jin et al. [349] propose to modify the Ethereum virtual machine such as to be
able 1) to deploy special patch contracts and 2) to override the execution of a contract
by the patch one if a vulnerability is triggered.

• SGuard: Towards Fixing Vulnerable Smart Contracts Automatically (2021)
Nguyen et al. [360] repair reentrancy and arithmetic bugs in smart contracts, at the
source code level, with guarantees based on an operational semantics of Ethereum
opcodes.

• EVMPatch: Timely and automated patching of ethereum smart contracts
(2021) Rodler et al. [372] design an end-to-end technique to binary patch, backtest and
deploy via delegation Ethereum smart contracts. The evaluation focuses on integer
overflow attacks.

• Smartshield: Automatic smart contract protection made easy (2021) Zhang
et al. [325] propose a smart contract binary transformation for 3 pattern based prob-
lems (state change after external calls, missing checks for out-of-bound arithmetic
operations, and missing checks for failing external calls).

• Smart Contract Repair (2019) Yu et al. [277] repair smart contracts in Ethereum
to minimize gas consumption with a tool called SCRepair.
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4.9 Automated Repair of Typing Errors
• PyTER: Effective Program Repair for Python Type Errors (2022) Oh and

Oh [430] combine static and dynamic analysis to repair type errors in Python, based
on 9 repair templates, with an evaluation on 93 type errors collected from open-source.

• Type error feedback via analytic program repair (2020) Sakkas et al. [315] infer
fix templates in OCaml for repairing type system errors in programs from students in
an introductory programming course.

4.10 Misc Repair Types
• RepCoder: an automated program repair framework for probability-based

program synthesis (2022) Ji et al. [410] combine neural synthesis and input-output
based validation to perform repair for the DeepCode DSL.

• Neurosymbolic Repair for Low-Code Formula Languages (2022) Bavishi et al.
[392] combine symbalic and neural techniques to repair Excel and PowerFx formulas.

• Automatically repairing tensor shape faults in deep learning programs
(2022) Wu et al. [444] devise an end-to-end technique to fix Python code that crashes
due to tensor shape errors.

• PGPATCH: Policy-Guided Logic Bug Patching for Robotic Vehicles (2022)
Kim et al. [413] devise an end-to-end repair approach for robotic vehicle control
programs (ArduPilot and PX4) based on 5 repair templates.

• Automatic Repair for Network Programs (2022) Shi et al [437] perform repair
of programs in Floodlight, an open-source SDN controller based on Java annotations,
using a domain-specific symbolic fault localization algorithm and enumerative synthe-
sis.

• CirFix: Automatically Repairing Defects in Hardware Design Code (2022)
Ahmad et al. [389] present a framework for automatically repairing defects in Ver-
ilog, based on a novel dataflow-based fault localization approach tailored for hardware
description languages.

• Automatic Repair of Java Code with Timing Side-Channel Vulnerabilities
(2021) Lima et al. [355] repair timing side-channel issues by either removing return
statements, modifying stopping conditions of loops, or replicating if/then/else blocks.

• APIfix: Output-Oriented Program Synthesis for Combating Breaking Changes
in Libraries (2021) Gao et al. [343] synthesize adaptation rules from human made
changes in order to fix breaking changes.

• Automated Repair of Size-Based Inaccessibility Issues in Mobile Applica-
tions (2021) Alotaibi et al. [328] develop an approach that automatically increases the
size of Android UI elements, chosen based on a multi-objective minimization function.

• Automatic repair of timestamp comparisons (2021) Liva et al. [248] statically
identify time comparison problems in programs and rewrite time comparison expres-
sions in a safe normal form.

• CRNRepair: Automated Program Repair of Chemical Reaction Networks
(2021) Mesecan et al. [359] bridge the GI framework PyGGI and the Matlab environ-
ment SimBiology to do original experiments on automated repair of chemical reaction
networks.

• Repairing serializability bugs in distributed database programs via auto-
mated schema refactoring (2021) Rahmani et al. [370] target the problem of
repairing transaction serializability bugs in databases.
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• TFix+: Self-configuring Hybrid Timeout Bug Fixing for Cloud Systems
(2021) He et al. [345] propose a technique to automatically repair timeout bugs in
distributed systems such as Hadoop.

• Automatic Software Merging using Automated Program Repair (2019) [274]
fixes merge conflicts with a search-based approach based on kGenProg.

• Towards Specification-Directed Program Repair (2018) [197] does program re-
pair for the educational programming language Karel, by training a neural net to
predict the edit (keep, delete, insert or replace token).

• Caramel: Detecting and fixing performance problems that have non-intrusive
fixes (2015) Nistor et al. [95] presents a technique to suggest addition of ‘break’ state-
ment guarded by a synthesized condition.

• Automated Repair of High Inaccuracies in Numerical Programs (2017) Yi
et al. [154] use mathematically equivalent floating-point expressions that reduce inac-
curacies found with random testing.

• Data-guided Repair of Selection Statements (2014) [64] repairs database selec-
tion statements in a specific data-oriented language (Abap fro SAP).

• A Framework for the Automatic Correction of Constraint Programs (2011)
[37] repairs constraint programs the repair consisting of declaratively removing or
adding new constraints.

4.11 SQL Repair
• SQLRepair: Identifying and Repairing Mistakes in Student-Authored SQL

Queries (2021) Presler et al.’s SQLRepair [368] combine heuristics and a SMT-based
repair approach to fix SQL queries (tool at https://github.com/kpresler/sqlrepair).

• Using Automated Fix Generation to Secure SQL Statements (2007) Thomas
et al. [10] describe an automatic transformation in Java for going from plain java SQL
to prepared statements.

5 Optimization & Integration
5.1 Driving the Search

• Improving source-code representations to enhance search-based software
repair (2022) Reiter et al. [432] show that a source-to-source transformation which
is behaviorally equivalent, as preprocessing step, improves the performance of three
program repair tools: f1x, GenProg, and Prophet.

• Multiplicative Weights Algorithms for Parallel Automated Software Repair
(2021) Renzullo et al. [371] propose to use online learning based on multiplicative
weights update to efficiently find those combinations of mutations which repair a bug.

• Concolic Program Repair (2021) Shariffdeen et al.’s technique [373] consists of al-
ternating patch enumeration, input synthesis and concolic execution on the synthesized
input to generate a small amount of patches.

• How Does Regression Test Selection Affect Program Repair? An Extensive
Study on 2 Million Patches (2021) Lou et al. [357] claim that regression test
selection is useful for program repair, based on experiments on Defects4J.

• Towards Boosting Patch Execution On-the-Fly (2022) Benton et al. [394] do
on the fly patch prioritization based on syntactic similarity with previously executed
partially correct patches. Arxiv version is [331].
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• Leveraging Program Invariants to Promote Population Diversity in Search-
Based Automatic Program Repair (2019) [226] explores the usege of learned
invariants to improve the fitness function of generate-and-validate program repair,
experimenting with genprog4java.

• A new word embedding approach to evaluate potential fixes for automated
program repair (2018) [157] computes source code line embeddings from word2vec
embeddings in order to calculate distances between patches.

5.2 Addressing the patch overfitting problem
• PatchZero: Zero-Shot Automatic Patch Correctness Assessment (2023) Zhou

et al. [498] construct patch assessment on top of pre-trained model (Bloom and Code-
Parrot) with a few-shot prompt.

• Boosting Automated Patch Correctness Prediction via Pre-trained Lan-
guage Model (2023) Zhang et al. [496] do deep-learning based patch assessment
with Bert, CodeBERT and GraphCodeBERT, reporting an improvement over Cache.

• Context-aware code change embedding for better patch correctness assess-
ment (2022) Lin et al. [420] perform patch assessment using code2seq bag of paths
and contextual code, in a system called Cache (code).

• Crex: Predicting patch correctness in automated repair of C programs
through transfer learning of execution semantics (2023) Yan et al. [448] use
similarity distances on micro-traces obtained with micro-execution to capture breaking
behavior.

• Attention: Not Just Another Dataset for Patch-Correctness Checking (2022)
Wang et al. [442] reimplement certain overfitting detection techniques and apply them
to PraPA binary patches decompiled with JD, with little success.

• Patch correctness assessment in automated program repair based on the
impact of patches on production and test code (2022) Ghanbari and Marcus
[404] rank APR patches based on a combination of textual similarity and code coverage
differencing.

• Test-based Patch Clustering for Automatically-Generated Patches Assess-
ment (2022) Martinez et al. [423] cluster patches according to boolean vectors of test
results (incl. from automatically generated tests) in order to show reviewers patches
from different clusters.

• Invalidator: Automated Patch Correctness Assessment via Semantic and
Syntactic Reasoning (2023) Le-Cong et al. [465] combine Daikon invariant analysis
and a CodeBERT based neural embedding to filter out incorrect patches.

• Is this Change the Answer to that Problem Correlating Descriptions of
Bug and Code Changes for Evaluating Patch Correctness (2022) Tian et al.
[439] rank patches according to a similarity distance in an embedding space between
patches and bug descriptions.

• Identifying Incorrect Patches in Program Repair Based on Meaning of
Source Code (2022) Phung et al. [431] order APR patches by their distance to the
method intention, where the method intention is inferred from the patched method
name and the distance is computed in an embedding space based on Code2Vec.

• Exploring Plausible Patches Using Source Code Embeddings in JavaScript
(2021) Csuvik et al. [340] present experiments suggesting that the Doc2Vec embedding
of code is not useful for discarding overfitting patches.
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• Exploring True Test Overfitting in Dynamic Automated Program Repair
using Formal Methods (2021) Nilizadeh et al. [363] assess overfitting in APR
patches using ground truth reference programs equipped with formal specifications in
OpenJML, with an experiment on 30 small programs. Follow-up paper is [362].

• Neural Program Repair with Execution-based Backpropagation (2021) Ye et
al. [385] design and optimize a loss function that embeds the results of test execution
in order to avoid overfitting.

• Adversarial Patch Generation for Automatic Program Repair (2020) Alhefdhi
et al. [282]ăpresent preliminary results on using a patch discriminator to encourage a
data-driven system to generate patches that look like human patches.

• Automated Patch Correctness Assessment: How Far are We? (2020) Wang
et al. [318] compare different overfitting detection techniques from the literature and
find that dynamic techniques do not perform better than static techniques.

• Evaluating representation learning of code changes for predicting patch
correctness in program repair (2020) Tien et al. [316] show that a purely syntactic
approach based on BERT-based embeddings associated with logistic regression does
not improve overfitting detection.

• Exploring the Differences between Plausible and Correct Patches at Fine-
Grained Level (2020) Yang et al. [321] present a preliminary experiment on using
Daikon invariants to detect overfitting patches.

• Utilizing Source Code Embeddings to Identify Correct Patches (2020) Csuvik
et al. [291] propose to order likely patches by their distance to the buggy program in
an embedding space, and compare three such spaces.

• Automated Classification of Overfitting Patches with Statically Extracted
Code Features (2019) Ye et al. [383] define features on code and train a machine
learning model to detect overfitting patches.

• Validation of Automatically Generated Patches: An Appetizer (2019) Ghan-
bari [231] proposes to use Daikon invariants to generate property-based tests that can
rank generated patches by likelihood.

• Automated Patch Assessment for Program Repair at Scale (2019) Ye et al.
[384] studies the usage of test generation based on a ground truth patch to better
evaluate program repair research.

• Alleviating Patch Overfitting with Automatic Test Generation: A Study of
Feasibility and Effectiveness for the Nopol Repair System (2018) [216] shows
that using tests that are generated against the buggy version of the program under
repair poses a serious oracle problem.

• Identifying Patch Correctness in Test-Based Program Repair (2018) Xiong
et al. [214] analyze test execution traces to filter out incorrect overfitting patches.

• Overfitting in semantics-based automated program repair (2018) [179] com-
pares Angelix and variants of it on the IntroClass and CodeFlaws benchmarks showing
that 50-75% of patches are overfitting.

• Is the Cure Worse Than the Disease? Overfitting in Automated Program
Repair (2015) [98] is the first paper to name the overfitting problem.
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5.3 General Non-functional Improvements, incl. Fault Localization
• Better Automatic Program Repair by Using Bug Reports and Tests To-

gether (2023) Motwani and Brun [477] perform faul-localization based on the simi-
larity between bug reports and source code files using the BLUiR method.

• FLACOCO: Fault Localization for Java based on Industry-grade Coverage
(2021) Silva et al. [374] propose an implementation of SBFL that supports all major
Java bytecode versions.

• Energy Consumption of Automated Program Repair (2022) Martinez et al.
[424] measures the energy consumption per patch for 10 Java repair tools and observe
major differences, the smallest consumption being 8kJ per first patch.

• Revisiting Test Cases to Boost Generate-and-Validate Program Repair
Zhang et al. [386] study how stacktraces can be be used to improve fault localiza-
tion in APR.

• On the effectiveness of unified debugging: An extensive study on 16 pro-
gram repair systems (2020) Benton et al. [283] study the performance of a new
fault localization technique called UniDebug++, on 16 repair tools. On Defects4J,
UniDebug++ can localize over 20% more bugs at the Top-1 position.

• Automatically Repairing Programs Using Both Tests and Bug Reports
(2020), Motwani and Brun [311] improve on the fault localization component of Sim-
Fix with a new technique that combines spectrum-based and bug-report based fault
localization.

• Can Automated Program Repair Refine Fault Localization (2019) Lou et
al. [250] proposes a variant of mutation-based fault localization based on the PraPR
program repair tool.

• Restore: Retrospective fault localization enhancing automated program
repair (2020), Xu et al. [320] design a two-phase fault-localization process for repair
and apply it to Jaid and SimFix.

• You Cannot Fix What You Cannot Find! An Investigation of Fault Local-
ization Bias in Benchmarking Automated Program Repair Systems (2019)
[245] shows that one third of bugs in the Defects4J benchmark cannot be localized,
hence cannot be repair with approach based on spectrum-based fault localization.

• An Empirical Study on the Effect of Dynamic Slicing on Automated Pro-
gram Repair Efficiency (2018) [168] replaces Ochiai in Nopol [149] by a dynamic
slicing approach based on Javasclicer.

• An Empirical Study on the Usage of Fault Localization in Automated Pro-
gram Repair[150] (2017) compares two variations of spectrum based fault localization
in Nopol [149].

5.4 Interactive Program Repair
“Interactive Program Repair” means asking questions to the developer about the expected
output of some expressions, in order to drive the search towards correct oatches.

• Automatic Program Repair as Semantic Suggestions - An Empirical Study
(2021) Campos et al. [334] implement and evaluate mutation-based repair for Javascript
inside Visual Studio.

• Interactive Patch Filtering as Debugging Aid (2020) Liang et al. develop an
IDE plugin to present APR patches to developers in a debugging session and shows
how it helps fixing the bug at hand, in an experiment over 30 students and 85 Defects4J
bugs.
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• Human-In-The-Loop Automatic Program Repair (2020) Böhme et al. [285]
propose to ask a fixed number of yes/no questions to the user/developer about the
expected behavior of the program under repair in order to reduce the risk of incorrect
patches.

• Interactive Testing and Repairing of Regular Expressions (2018) [159] pro-
poses an interactive technique to repair regular expressions, the developer being asked
for validation.

• At the End of Synthesis: Narrowing Program Candidates (2017) Shriver et
al. [139] identify inputs on which the behavior of two candidate patches differ, and
show them to the developers to ask about the preferred behavior.

5.5 Repair Speed
• Accelerating Patch Validation for Program Repair with Interception-Based

Execution Scheduling (2023) Xiao et al. [492] combine mutant schemata (MS), mu-
tant deduplication (MD), test virtualization (TV), and test case prioritization (TCP)
to speed up the assessment of all patches produced by an APR system, comparing
against UniAPR [288].

• Program Repair with Repeated Learning (2022) Chen et al. [396] propose a
repair loop for generate-and-validate repair where a prioritization model is learned
on the fly. The prioritization model is a learning-to-rank version of XGBoost, using
17 code features extracted from the patch, and which is updated depending on the
compilation and test outcome (tool).

• Speeding up constraint-based program repair using a search-based tech-
nique (2022) Yi et al. [451] replace Angelix’ symbolic execution by Monte Carlo
sampling over paths in order to find angelic paths.

• Speedup automatic program repair using dynamic software updating: an
empirical study (2019) Guo et al. [232] apply generated patches using hotswapping
/ class reload in the JVM and report the presence of a speed-up.

• Fast and Precise On-the-fly Patch Validation for All (2020) Chen and Zhang
[288] propose to only load the tentatively patched binary Java classes through hot-
swaping technology, in order to speed up validation with the test suite.
the C programming o language.

• Test-equivalence Analysis for Automatic Patch Generation [191] (2018) re-
duces the number of test executions in the repair loop by clustering candidate patches
according to their test behaviors (tool f1x).

• Improving performance of automatic program repair using learned heuris-
tics (2017) [138] uses 24 code features to identify line/expression pairs that are likely
to work together, i.e. to select good candidate ingredients in redundancy based ap-
proaches.

• Leveraging program equivalence for adaptive program repair: Models and
first results [62] (2013) discards some repair candidates using program equivalent
checks typical from compilers.

• Efficient Automated Program Repair Through Fault-Recorded Testing Pri-
oritization [59] (2013) blends test suite prioritization and classical Genprog.

• More Efficient Automatic Repair of Large-scale Programs Using Weak Re-
compilation [45] (2012) creates an incremental compilation system that is dedicated
to program repair.
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5.6 Integration / UI / Tooling
• AIBugHunter: A Practical Tool for Predicting, Classifying and Repairing

Software Vulnerabilities (2023) Fu et al. [468] integrate detection, clasification,
severity estimation, and repair of C/C++ vulnerabilities with VulRepair in VSCode
plugin.

• Automated Program Repair Based on Code Review: How do Pre-trained
Transformer Models Perform? (2023) Paul et al. improves performance on the
Review4Repair dataset [409] by fine-tuning a CodeT5 model.

• Review4Repair: Code review aided automatic program repairing (2022) Huq
et al. [409] address the problem statement of addressing code review comments, by
training an NMT model on 55,060 code reviews and associated code changes.

• On the introduction of automatic program repair in Bloomberg (2021) Kirbas
et al. [351] describe the integration of APR at Bloomberg, with a system based on
mining repair templates with anti-unification.

• E-APR: Mapping the Effectiveness of Automated Program Repair (2020)
Aleti and Martinez [281] present a meta-tool to predict the right repair tool to use
based on features of the buggy program.

• Visualizing Code Genealogy: How Code is Evolutionarily Fixed in Program
Repair (2019) Tomida et al. [266] proposes a user-interface to visualize the search
happening in a generate-and-validate repair loop implemented in kGenProg.

• Towards s/engineer/bot: principles for program repair bots (2019) van Ton-
der and Le Goues [267] discuss six principles for engineering repair bots related to
syntax, semantics and integration.

• SapFix: Automated End-to-End Repair at Scale (2019) [254] describes the
FaceBook implementation of automatic repair of null pointer exceptions found by the
fuzzing tool Sapienz.

• How to Design a Program Repair Bot? Insights from the Repairnator
Project (2018) [207] is the first ever blueprint architecture on using program repair
in continuous integration.

• Synergistic Debug-Repair of Heap Manipulations (2017) Verma and Roy [143]
add advanced concepts in a proof-of-concept debugger on top of GDB, which supports
specifying desired states and patch generation via SMT-based repair constraints.

• Should fixing these failures be delegated to automated program repair?
(2015) Le et al. [89] perform automatic classification of successful and unsuccessful
cases in Genprog based on features from the Genprog search.

6 Position Papers
• Towards Extending the Range of Bugs That Automated Program Repair

(2022) Al-Bataineh et al. [391] provide a taxonomy of program repair and sketch a
proposal for termination bugs in sequential and concurrent programs.

• Explainable Software Bot Contributions: Case Study of Automated Bug
Fixes (2019) Monperrus [260] claims that patches generated with automatic program
repair should come with a textual explanation.

• Beyond testing configurable systems: applying variational execution to au-
tomatic program repair and higher order mutation testing (2018) [213] sug-
gests using variational execution to find multi-location repair out of a meta-program
with all possible changes.

33



• Trusted software repair for system resiliency (2016) Weimer et al. [121]’s po-
sition paper is about detecting behavioral differences between patches using targeted
differential testing.

• When App Stores Listen to the Crowd to Fight Bugs in the Wild (2015)
[85] sets the vision of an App store that monitors and fixes bugs in production by
orchestrating the search over thousands of devices.

• A Critical Review of ”Automatic Patch Generation Learned from Human-
Written Patches”: Essay on the Problem Statement and the Evaluation of
Automatic Software Repair (2014) [71] states that program repair goes beyond
mimicking human patches, and that scientific evaluation in this research field must be
designed accordingly.

• Two Flavors in Automated Software Repair: Rigid Repair and Plastic Re-
pair (2013) [57] is an early categorization of the field, later called as generate-and-
validate approaches versus semantic-based or synthesis-based approaches.

• Current Challenges in Automatic Software Repair (2013) [53] shows the vision
of C. Le Goues at the end of her seminal PhD thesis on GenProg.

7 Formal Approaches to Program Repair
• Automatic and Incremental Repair for Speculative Information Leaks (2023)

Bard et al. [462] identify speculative execution vulnerabilites with a SeaHorn analysis
and fix themby adding fences in code.

• Automated Repair of Heap-Manipulating Programs using Deductive Syn-
thesis (2020), Nguyen et al. [361] fix static warnings found with HIP/SLEEK (as
[112]) using constraint solving on top of the Songbird prover and deductive synthesis.

• Deductive Program Repair (2015) Kneuss et al. [87] do program repair for a
"purely functional subset of Scala", evaluated on seeded bugs on small programs.

• Cost-Aware Automatic Program Repair (2014) [74] repairs boolean programs
with assertions, by using the method of inductive assertions.

• Program Repair As Sound Optimization of Broken Programs (2009) [20]
theoretically defines repair for an ad hoc formal language.

• Program Repair Suggestions From Graphical State-Transition Specifica-
tions (2008) [14] does theoretical repair using edit sequences on state machines.

• Repair of Boolean Programs with An Application to C (2006) [6] repairs a
specific class of programs called boolean programs: those that only contain boolean
variables.

• Program Repair As a Game (2005) [3] repair programs that are expressed in linear
temporal logics

8 Miscellaneous
8.1 Datasets & Benchmarks

• RunBugRun - An Executable Dataset for Automated Program Repair
(2023) Prenner and Robbers [483] present RunBugRun, a dataset of 450,000 bugs
in 8 languages (majority in Java, Python, C++), which can all be executed with test
cases.
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• StandUp4NPR: Standardizing SetUp for Empirically Comparing Neural
Program Repair Systems (2022) Zhong et al. [457] curate a training dataset of
144,641 bug-fix pairs in Java, as well as a validation and test dataset (dataset).

• Vul4J: A Dataset of Reproducible Java Vulnerabilities Geared Towards
the Study of Program Repair Techniques (2022) Bui et al. [395] collected 79
reproducible vulnerabilities from 51 real-world Java projects, see https://github.
com/bqcuong/vul4j.

• PLUR: A unifying, graph-based view of program learning, understanding,
and repair (2021) Chen et al. [336] unify 16 software development tasks, incl. repair,
into a single, consistent benchmark (https://github.com/google-research/plur).

• Is the Ground Truth Really Accurate? Dataset Purification for Automated
Program Repair (2021) Yang et al. [380] use coverage and delta-debugging to per-
form change minimization of benchmark bugs (minimized D4J patches are at De-
hengYang/dataset_purification).

• Towards a Benchmark Set for Program Repair Based on Partial Fixes (2021)
Beyer et al. [333] curated 2204 benchmark tasks where the input is a partial fix (data
at https://gitlab.com/sosy-lab/software/partial-fix-benchmarks/).

• A critical review on the evaluation of automated program repair systems
(2020) Liu et al. [356] discuss and consolidate 8 evaluation metrics for program repair
research, which cover different aspects of the problem space.

• Critical Review of BugSwarm for Fault Localization and Program Repair
(2019) Durieux et al. [228] state desirable properties applying to benchmarks for
program repair and assess BugSwarm according to them, showing that a minority of
bugs are usable in this context.

• BugSwarm: Mining and Continuously Growing a Dataset of Reproducible
Failures and Fixes (2019) [227] uses Travis CI as [252] to collect 3,091 bugs and
encaspulates them in a reproducible Docker image.

• Bears: An Extensible Java Bug Benchmark for Automatic Program Repair
Studies (2018) Madeiral et al. [252] propose a new benchmark whose novelty is to be
based on continuous integration analysis (and not on past commits).

• DroidBugs: An Android Benchmark for Automated Program Repair (2018)
Azevedo et al. [160] gathers 13 bugs in Android apps. (code)

• Bugs.jar: a large-scale, diverse dataset of real-world Java bugs (2018) [195]
describes a dataset of 1,158 bugs and patches, over 8 open-source projects.

• Codeflaws: a programming competition benchmark for evaluating auto-
mated program repair tools (2017) Tan et al. [140] present a benchmark of 3902
defects in C, crawled from the Codeforces programming competition website.

• QuixBugs: a multi-lingual program repair benchmark set based on the
quixey challenge (2017) [130] is a benchmark of in simple programs bugs where each
bug is available in both Java and Python.

• The ManyBugs and IntroClass Benchmarks for Automated Repair of C
Programs (2015) ManyBugs [90] is the classical GenProg benchmark and has 185
bugs in 9 C open-source programs. IntroClass is composed of small (10-20 LOC)
student programs, it has been translated to Java (IntroClassJava [104]).

• Defects4J: A Database of Existing Faults to Enable Controlled Testing
Studies for Java Programs (2014) Just et al. [65] presents the Defects4J bench-
mark, extensively used in program repair research since the initial experiment by
Durieux et al. [81, 133].
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8.2 Automatic Hardening
• Automatically Fixing C Buffer Overflows Using Program Transformations

(2014) [75] uses three program transformations dedicated to integer operations, and
shows that the approach scales to real programs.

• Program Transformations to Fix C Integers (2013) [49] proposes three program
transformations to fix common overflow problems with integer arithmetics in C code.

• A Source-to-source Transformation Tool for Error Fixing. (2013) [50] au-
tomatically adds a condition checks after all method calls with a source-to-source
transformation in C code.

8.3 Surveys
• A Survey on Automated Program Repair Techniques (2023) Huang et al. [469]

contains 164 references incl. recent references on using large language models for repair
and a comprehensive list of datasets.

• A Survey of Learning-based Automated Program Repair (2023) Zhang et al.
[495] focuses on the usage of machine-learning for repair, discussing 186 references.

• Program Repair (2022) Gao et al. [403] survey the field with 8 recent 2022 academic
references.

• Neural Program Repair: Systems, Challenges and Solutions (2022) Zhong et
al. [458] surveys the works on using neural networks to generate patches (51 refer-
ences).

• A Survey on Automatic Bug Fixing (2020), Cao et al. [286] summarize the recent
advances made since the previous surveys (113 references).

• Automated Program Repair (2019) Le Goues et al. [242] give a high-level view of
the field in Communications of the ACM (40 references).

• A Survey of Test Based Automatic Program Repair (2018) Liu et al. [185]
present 81 references, with the last ones from 2017.

• Automatic software repair: a Survey (2017) Gazzola et al.’s survey [127] at IEEE
TSE with 176 references.

• Automatic software repair: a Bibliography Monperrus [134] (first online, 2015,
journal version 2017) is the first ever survey of the field, in ACM Computing Surveys,
with 197 references.

8.4 Doctoral Theses
• Tolmach, “Securing smart contracts with formal verification and automated program

repair”, 2023 [486]

• Ye, “Improving the Precision of Automatic Program Repair with Machine Learning”,
2023 [493]

• Rothenberg, “Formal Automated Program Repair”, 2020 [314]

• Cosman, “PABLO and PYRITE: Helping Novices Debug Python Code Through Data-
Driven Fault Localization and Repair”, 2022 [398]

• Zakharchenko, “A practical approach to automated software correctness enhance-
ment”, 2022 [453]

• Chen, “Effective automatic program repair based on state abstraction”, 2021 [335]
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• Gao, “Overfitting in Program Repair and Synthesis”, 2021 [342]

• Ginelli, “Understanding and Improving Automatic Program Repair: A Study of Code-
removal Patches and a New Exception-driven Fault Localization Approach”, 2020 [296]

• Koyuncu, “Boosting Automated Program Repair for Adoption By Practitioners”, 2020
[303]

• Coker, “Automatic Repair of Framework Applications”, 2020 [290]

• Harer, “Improved neural machine translation systems for low resource correction tasks”,
2019 [234]

• Liu, “Deep Pattern Mining for Program Repair”, 2018 [182]

• Durieux, “From Runtime Failures to Patches: Study of Patch Generation in Produc-
tion”, 2018 [165]

• Le, “Overfitting in Automated Program Repair: Challenges and Solutions”, 2018 [178]

• Long, “Automatic patch generation via learning from successful human patches”, 2018
[186]

• Hua, “Unifying Program Repair and Program Synthesis”, 2018 [174]

• Mechtaev, “Semantic Program Repair”, 2018 [190]

• Tan, “Design of repair operators for automated program repair”, 2018 [201]

• Timperley, “Advanced Techniques for Search-Based Program Repair”, 2017 [142]

• Gopinath, “Systematic techniques for more effective fault localization and program
repair”, 2016 [105]

• Cornu, “Automatic Analysis and Repair of Exception Bugs for Java Programs”, 2015
[79]

• Martinez, “Extraction and Analysis of Knowledge for Automatic Software Repair”,
2014 [69]

• Le Goues, “Automatic Program Repair Using Genetic Programming”, 2013 [52]

• Nguyen, “Automating Program Verification and Repair Using Invariant Analysis and
Test Input Generation”, 2010 [26]

• Arcuri, “Automatic Software Generation and Improvement Through Search Based
Techniques”, 2009 [15]
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