
HAL Id: hal-01956501
https://hal.science/hal-01956501v6

Submitted on 12 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Living Review on Automated Program Repair
Martin Monperrus

To cite this version:
Martin Monperrus. The Living Review on Automated Program Repair. [Technical Report] hal-
01956501, HAL Archives Ouvertes. 2018. �hal-01956501v6�

https://hal.science/hal-01956501v6
https://hal.archives-ouvertes.fr

The Living Review on Automated Program Repair
Martin Monperrus

version of September 12, 2023, http://bit.ly/2CehUt5

Concept This paper is a review on automatic program repair. It covers all research
from the inception of the field up to Spring 2023. Fifteen versions of the review have been
published between December 2018 and September 2023. It uses a concise bullet-list style
meant to be easily accessible by the greatest number of readers, in particular students and
practitioners. Within a section, all papers are ordered in a reverse chronological order, so
as to easily get the research timeline.

Inclusion criteria The inclusion criteria are that the considered papers 1) must be
about automatic repair with some kind of patch generation (runtime repair without patch
generation is excluded1); 2) must be a full-length research paper (typically >10 double-
column pages); 3) are stored on an durable site (notable publisher, arXiv, Zenodo). There
is no restriction about whether the paper has been formally peer-reviewed or not.

Stopping criteria The last update of the living review was made once it reached the
500th reference in 2023.

Citation This living review can be cited as : “The Living Review on Automated Program
Repair”, Martin Monperrus, Technical Report HAL # hal-01956501, 2018.

@techreport{repair-living-review,
title = { The Living Review on Automated Program Repair },
author = { Martin Monperrus },
number = { hal-01956501 },
institution = { HAL/archives-ouvertes.fr },
year = { 2018 }

}

1the scope of my previous survey [134] was larger, it also discussed runtime repair

1

http://bit.ly/2CehUt5

Version history

• September 2023: version with 500 references, this is the final last version.

• March 2023: version with 474 references

• August 2022: version with 401 references

• Oct 2021: version with 367 references

• Dec 2020: version with 315 references

• July 2020: version with 296 references

• March 2020: version with 279 references

• December 2019: version with 264 references

• September 2019: version with 253 references

• June 2019: version with 229 references

• May 2019: version with 209 references

• April 2019: version with 205 references

• March 2019: version with 200 references

• February 2019: version with 193 references

• December 2018: version with 175 references

2

Contents
1 Program Repair of Dynamic Errors 4

1.1 Using Tests . 4
1.2 Using Crashes . 7
1.3 Using a Reference Implementation / Feedback Generation 8
1.4 Using Contracts . 9
1.5 Data-driven repair approaches . 9

1.5.1 Data-driven Patch Generation . 9
1.5.2 Inference of Fix Patterns / Templates 13

2 Program Repair of Static Errors 14
2.1 Static Warnings . 14
2.2 Bug reports . 16
2.3 Compiler Errors - Syntax Errors . 16

3 Empirical Studies for Program Repair 18
3.1 Human Study on APR . 21

4 Domain-Specific Repair 22
4.1 Test Repair . 22
4.2 Automated Repair of Concurrency errors . 23
4.3 Automated Repair of Build Scripts . 23
4.4 Automated Repair for Numerical Errors . 24
4.5 Automated Repair for the Web . 24
4.6 Automated Repair of Software Abstractions 24
4.7 Automated Repair of Security Vulnerabilities 25
4.8 Automated Repair of Smart Contracts . 26
4.9 Automated Repair of Typing Errors . 27
4.10 Misc Repair Types . 27
4.11 SQL Repair . 28

5 Optimization & Integration 28
5.1 Driving the Search . 28
5.2 Addressing the patch overfitting problem . 29
5.3 General Non-functional Improvements, incl. Fault Localization 31
5.4 Interactive Program Repair . 31
5.5 Repair Speed . 32
5.6 Integration / UI / Tooling . 33

6 Position Papers 33

7 Formal Approaches to Program Repair 34

8 Miscellaneous 34
8.1 Datasets & Benchmarks . 34
8.2 Automatic Hardening . 36
8.3 Surveys . 36
8.4 Doctoral Theses . 36

3

1 Program Repair of Dynamic Errors
1.1 Using Tests

• Rete: Learning Namespace Representation for Program Repair (2023) Para-
saram et al. [480] combine template-based repair and variable prioritization with ML
for repairing C and Python bugs.

• PropR: Property-Based Automatic Program Repair (2022) Gissurarson et al.
[406] devise a repair tool for Haskell based on property-based tests (QuickCheck) and
synthesis-driven repair with GHCs hole-fit synthesis.

• Improving Fault Localization and Program Repair with Deep Semantic
Features and Transferred Knowledge Meng et al. [425] combine fault localization
with learning-to-rank and fix template selection among 15 templates.

• TransplantFix: Graph Differencing-based Code Transplantation for Au-
tomated Program Repair (2022) Yang et al. [449] perform graph differencing of
control-flow graph to identify and automatically adapt repair ingredients in redundancy-
based program repair; the approach is implemented for Java (tool) and evaluated on
Defects4J.

• Trident: Controlling Side Effects in Automated Program Repair (2021)
Parasaram et al. [366] extends synthesis-based repair to also support insertion of
assignments and method calls in synthesized expressions. Implementation for C.

• ReFixar: Multi-version Reasoning for Automated Repair of Regression
Errors (2021) Le et al. [354] design 12 repair templates tailored to fixing regressions,
evaluated on 51 regression bugs.

• A Novel Approach For Search-Based Program Repair (2021) Trujillo et al.
[377] create a variant of GenProg integrating Lehman and Stanley’s ‘novelty search’
to promote exploration and diversity of patches.

• VarFix: Balancing Edit Expressiveness and Search Effectiveness in Auto-
mated Program Repair (2021) Wong et al. [379] combine GenProg single edits into
a metaprogram to identify those combinations that pass all tests.

• FlexiRepair: Transparent Program Repair with Generic Patches (2020),
Koyuncu et al. [304] present a repair pipeline built on top of the Coccinelle engine for
semantic patches.

• Astor: Exploring the Design Space of Generate-and-Validate Program Re-
pair beyond GenProg (2019) Martinez et al. [255] identify 12 dimensions in the
design space of generate-and-validate program repair and implement them as extension
points in the Astor framework.

• Impact Analysis of Syntactic and Semantic Similarities on Patch Priori-
tization in Automated Program Repair (2019) Asad et al. [220] propose an
alternative patch ranking technique for CapGen.

• SOSRepair: Expressive Semantic Search for Real-World Program Repair
(2019) Afzal et al. [219] proposes a better encoding than [86] to repair C programs
with SMT-based snippet search.

• LoopFix: An Approach to Automatic Repair of Buggy Loops (2019) Wang
et al. [271] describe a system that changes either the loop condition or an assignment
in the loop body, using symbolic execution and component-based synthesis.

4

https://github.com/DehengYang/TransplantFix

• Automatic patch generation with context-based change application (2019)
Kim and Kim [240] present ConFix, that first searches for past patches with surround-
ing code similar to the suspicious code locations (based on a hash of the AST) and
when a context matches, the past change is ported to the suspicious location.

• Harnessing evolution for multi-hunk program repair (2019) Saha et al. [263]
mine repair locations that evolve together in order to search for patches consisting on
the same systematic edit done at different locations.

• TBar: Revisiting Template-based Automated Program Repair (2019) Liu et
al. [246] consolidate 35 fix patterns in 15 categories and measure their effectiveness
over Defects4J.

• Ultra-Large Repair Search Space with Automatically Mined Templates: the
Cardumen Mode of Astor (2018) [189] shows that parametrized repair ingredients
yields an explosion of the repair search space and finds 8935 Patches for Defects4J.
An extension of Cardumen by Fonseca and Oliveira is Figra [401].

• Mining Stackoverflow for Program Repair (2018) Liu and Zhong [184] clusters
AST diffs from code pairs in Stackoverflow to extract 12 repair patterns.

• Towards practical program repair with on-demand candidate generation
(2018) [175] does repair with metaprograming as [125] in order to explore the search
space of variable and literal replacement.

• CFAAR: Control Flow Alteration to Assist Repair (2018) [204] uses specific
patterns to determine angelic values à la Nopol [149] (eg switch only the first execution
of the condition).

• Context-Aware Patch Generation for Better Automated Program Repair
(2018) [212] considers an ingredient-based, generate-and-validate repair loop à la Gen-
prog, and selects the ingredients that have the most similar context according to three
similarity metrics (context of the suspicious statement similar to context of the ingre-
dient). (code)

• Practical Program Repair via Bytecode Mutation (2018) [167] revisits Schulte’s
work [27] for Java bytecode and Defects4J.

• Program Repair via Direct State Manipulation (2018) [173] proposes a variation
of the repair problem: find a patch such that some variables at a specific location have
certain values.

• Connecting Program Synthesis and Reachability: Automatic Program Re-
pair Using Test-Input Generation (2017) [136] creates a meta-program parametrized
with parameters, encoding the search space: the symbolic solution to satisfy all test
constraints is the patch. The tool is called CETI.

• Contract-based Program Repair Without the Contracts (2017) Chen et al.
[122] uses 5 repair templates, called schemas, with a focus on modifying the state by
adding an assignment. (code, journal version: [289])

• Precise Condition Synthesis for Program Repair (2017) Xiong et al. [148] inte-
grate different heuristics (Github) and code analysis techniques (dependency analysis
between variables) to create good conditions à la Nopol. (code)

• Leveraging syntax-related code for automated program repair (2017) Xin and
Reiss [147] use Tf-Idf similariy to select ingredients in a GenProg-like loop, together
with variable renaming to adapt repair ingredients. The authors have proposed an
improvement of ssFix called sharpFix [273, 272].

5

https://github.com/justinwm/CapGen/
https://bitbucket.org/nguyenthanhvuh/ceti/
https://bitbucket.org/maxpei/jaid/
https://github.com/Adobee/ACS/

• ARJA: Automated Repair of Java Programs via Multi-Objective Genetic
Programming (2017) [155] combines 3 different techniques (patch representation,
multi-objective search, method scope) to improve a GenProg-based repair loop. ARJA-
e [279, 324] is an improvement over Arja integrating templates and repair anti-patterns.

• ELIXIR: Effective Object Oriented Program Repair (2017) [137] proposes 8
repair patterns à la PAR [51] to be used together with simple enumeration-based
synthesis.

• ASTOR: A Program Repair Library for Java (2016) [116] presents the Java
framework in which jGenProg [133], jKali [133], DeepRepair [146], Cardumen [189]
are implemented.

• Automated Program Repair by Using Similar Codfe Containing Fix Ingre-
dients (2016) [108] modifies RSRepair [73] in order to select the most similar repair
ingredients first.

• DynaMoth: Dynamic Code Synthesis for Automatic Program Repair (2016)
[103] uses dynamic synthesis based on the debug interface of the JVM for repairing
conditions.

• Angelix: Scalable Multiline Program Patch Synthesis via Symbolic Anal-
ysis (2016) [117] optimizes symbolic execution in order to obtain more than one an-
gelic value, being called together calledangelic forest, in order to synthesize multipoint
patches.

• Qlose: Program Repair with Quantitative Objectives (2016) [102] tries to
minimize the semantic impact of the repair, by minimizing the number of inputs for
which there is a behavioral change using the Sketch synthesis system.

• Nopol: Automatic Repair of Conditional Statement Bugs in Java Pro-
grams (2016) [149] addresses two classes of bugs: buggy if conditions and missing
preconditions. Initial paper: “Automatic Repair of Buggy If Conditions and Missing
Preconditions with SMT” [63].

• Automatic Repair of Infinite Loops (2015) [88] describes a patch generation sys-
tem for infinite loops.

• Relifix: Automated Repair of Software Regressions (2015) [99] defines 8 repair
templates that are specific to regression bugs.

• Repairing Programs with Semantic Code Search (2015) [86] repairs programs
with snippets that can be semantically indexed and queried in SMT.

• Staged Program Repair with Condition Synthesis (2015) [91] combines condi-
tion repair à la Nopol and repair templates à la PAR.

• DirectFix: Looking for Simple Program Repairs (2015) [93] demonstrates that,
under strong assumptions, we can state the repair problem as a Maximum Satisfiability
(MaxSAT), where the smallest patch is the one that satisfies the most constraints.

• Minthint: Automated Synthesis of Repair Hints (2014) [66] hints to change the
RHS of a single assignment statement based on data collected with concolic execution.

• Diagnosis and Emergency Patch Generation for Integer Overflow Exploits
(2014) [77] does automatic repair of integer overflow with three repair operators: taking
an error branch before the overflow happens, taking an error branch after the overflow
has happened, and forced program stop.

• Automatic Patch Generation Learned From Human-Written Patches (2013)
[51] defines 10 repair templates for fixing bugs such as (add null pointer check, etc).

6

• SemFix: Program Repair via Semantic Analysis (2013) [58] combines symbolic
execution and component-based synthesis to fix boolean and integer expressions in C
programs.

• Evolving Patches for Software Repair (2011) [31] describes pyEdb, a mutation
based repair approach with two mutation operators (relational operator change and
name switch) in Python.

• On the Automation of Fixing Software Bugs (2008) [11] defines 7 mutation
operators based on abstract syntax tree modification in a prototype implementation
called Jaff, that handles a subset of Java. Journal version is “Evolutionary Repair
of Faulty Software” [32]. Another version is “A Novel Co-evolutionary Approach to
Automatic Software Bug Fixing” [12].

• Automatically Finding Patches Using Genetic Programming (2009) [21] is
the seminal paper of the field, introducing GenProg, with its sister papers A Genetic
Programming Approach to Automated Software Repair [18], GenProg: a
Generic Method for Automatic Software Repair [42], Automatic Program
Repair with Evolutionary Computation [30].

• BugFix: a Learning-based Tool to Assist Developers in Fixing Bugs (2009)
[19] suggests a bug fix action using association rules based on features on the suspicious
statement.

1.2 Using Crashes
• CorCA: An Automatic Program Repair Tool for Checking and Removing

Effectively C Flaws (2023) Inácio and Medeiros [471] implement an end-to-end
approach for detecting and repairing buffer overflows in C code by replacing method
calls with safe versions or changing allocation size parameters.

• Providing Real-time Assistance for Repairing Runtime Exceptions using
Stack Overflow Posts (2022) Mahajan et al. [422] suggest a patch for handling
runtime exceptions based on a database compiled from Stackoverflow (in the line of
[184, 83]).

• Exception-Driven Fault Localization for Automated Program Repair (2022)
Ginelli et al. [405] describe a template based repair technique where templates are
associated to specific Java exceptions.

• Beyond Tests: Program Vulnerability Repair via Crash Constraint Ex-
traction Gao (2021) Gao et al. [344] use sanitizers to obtain clean crashes and fix
conditional expressions (if, loops) to avoid the crash. The prototype tool is called
ExtractFix, and is available on gaoxiang9430/extractfix.

• Crash-avoiding program repair (2019) Gao et al. [230] repair crashes in C code
with three operators (assigments, if-condition, precondition) using implicit oracles and
fuzzing to discard incorrect patches.

• Repairing crashes in Android apps (2018) [202] defines 8 repair operators tailored
for Android crashes.

• Production-Driven Patch Generation (2016) [126] proposes to use shadow appli-
cations and shadow traffic to make regression testing in production.

• Fixing Recurring Crash Bugs via Analyzing Q&A Sites (2016) [83] repairs
exception bugs based on potential solutions found on Stackoverflow.

• Automatic Repair of Infinite Loops (2015) [88] repairs infinite loops with the
same repair concept as Nopol.

7

https://hub.docker.com/r/gaoxiang9430/extractfix

• CLOTHO: Saving Programs from Malformed Strings and Incorrect String
Handling (2016) [80] is a system that generates simple catch blocks to handle certain
runtime exceptions related to string manipulation in Java.

• Automatic Error Elimination by Horizontal Code Transfer Across Multiple
Applications (2015) [114] transfers check-exit pairs between two applications to avoid
crashes due to out of bounds access, integer overflow, and divide by zero errors.

For null dereferences (null pointer exceptions):

• NPEX: Repairing Java Null Pointer Exceptions without Tests (2022) Lee
et al. [417] devise a bespoke symbolic execution technique to avoid incorrect patches
when repairing null pointer exceptions in Java without tests. The system is evaluated
on 119 NPEs and available on Github.

• VFix: Value-Flow-Guided Precise Program Repair for Null Pointer Deref-
erences (2019): VFix [275] ranks patches for null pointers based on congested places:
those places in the data-flow graph that maximize the likelihood of fixing many NPEs
at once.

• Automatic Inference of Code Transforms for Patch Generation (2017): Long
et al. [131] infers repair schemas from past commits for Java’s NullPointerException
and OutOfBoundsException.

• Dynamic Patch Generation for Null Pointer Exceptions Using Metapro-
gramming (2017) [125] introduces the idea of exploring the repair search space with
a meta-program and realizes it for crashing null pointer exceptions.

1.3 Using a Reference Implementation / Feedback Generation
In this section, many papers are in the context of automated feedback generation for stu-
dents, where a reference solution to a programming exercise exists.

• FAPR: Fast and Accurate Program Repair for Introductory Programming
Courses (2021) Lu et al.’s technique [358] consists of generating a meaningful high
level feedback based on a low-level token edit script.

• Re-factoring based Program Repair applied to Programming Assignments
(2019) [235] is a feedback generation technique based on the idea of generating equiv-
alent refactored programs so as to find a correct program which has the same control
flow structure as the buggy student Python program under consideration.

• Dynamic Neural Program Embedding for Program Repair (2018): Wang et
al. [144] compute an embedding on program traces in order to predict the kind of bug
in student’s programs from a MOOC.

• Automated Clustering and Program Repair for Introductory Programming
Assignments (2016): Gulwani et al.’s technique [106] modifies, inserts, and deletes
statements in student’s programs while preserving the control-flow.

• Semantic program repair using a reference implementation (2018): Mechtaev
et al. [192] use a reference implementation and a parameterized test to generate a
patch that changes an expression with primitive values.

• Neuro-symbolic program corrector for introductory programming assign-
ments (2018): Bhatia et al. [161] combinetoken sequence learning and Sketch to
repair MOOC student submissions in Python. Extension of [101].

• Automatic Diagnosis and Correction of Logical Errors for Functional Pro-
gramming Assignments (2018): Lee et al. [181] present a system for automati-
cally generating feedback on logical errors in functional programming assignments in
OCaml.

8

https://github.com/kupl/npex

• Automated Feedback Generation for Introductory Programming Assign-
ments (2013): Singh et al. [60] generate feedback for student programs based on
a reference implementation, using Sketch as an intermediate languages to search for
patches.

• Automated Error Localization and Correction for Imperative Programs
(2011): Könighofer and Bleam’s algorithm [36] fixes the the right-hand side (RHS)
of assignments by using the reference implementation as specification and driving the
synthesis with a meta-program and SMT solving. "Repair with On-the-fly Program
Analysis" is an extension of this work.

1.4 Using Contracts
The contracts can be invariants or runtime assertions, they can be manually written or
mined.

• Input Test Suites for Program Repair: A Novel Construction Method
Based on Metamorphic Relations (2020) Jiang et al. [302] define metamorphic
relations for the Siemens benchmark and execute Angelix, CETI, and GenProg to fix
the Siemens faults accordingly.

• Program Repair at Arbitrary Fault Depth (2019) Khaireddine et al. [238] mod-
ifies the patch validation step of Astor/jGenProg [256] to use an absolute correctness
formula and a strict relative correctness relation.

• A Metamorphic Testing Approach for Supporting Program Repair with-
out the Need for a Test Oracle (2016) Jiang et al. [109] have proposed to use
metamorphic relations as repair oracle.

• Generating Fixes From Object Behavior Anomalies (2009) [16] Dallmeier et
al. infer an object usage model from executions, and then generates a fix with two
repair operators (addition and removal of method calls) so that failing runs match the
inferred correct behavior.

• Automated Fixing of Programs with Contracts (2010, journal version in 2014
[78]) [29], uses four repair templates that consist of a snippet and an empty con-
ditional expression to be synthesized, and relies on Eiffel contacts (pre-conditions,
post-conditions, invariants) to detect and provide the fix ingredients. “Code-Based
Automated Program Fixing” [39] is an extension of this work where patches don’t
have to only use argumentless boolean methods in the patch.

• Constraint-Based Program Debugging Using Data Structure Repair (2011)
[38] translates runtime data structure repair à la Demsky as source code fix suggestion.

• Specification-based Program Repair Using SAT (2011) [33] uses Alloy to repairs
assignments and conditionals bugs.

1.5 Data-driven repair approaches
1.5.1 Data-driven Patch Generation

• Neural Program Repair with Program Dependence Analysis and Effective
Filter Mechanism (2023) Zhang et al. [497] extract the program dependence graph
of the buggy line and put it in the input representation of neural networks in a system
called RepeatNPR.

• Template-based Neural Program Repair (2023) Meng et al.[476] train a net-
work to output template-based changes, which reduces the output length, with special
handling of out-of-vocabulary tokens.

9

• TraceFixer: Execution Trace-Driven Program Repair (2023) Bouzenia et al.
[463] propose an input representation that concatenates fault localization, traces with
variable names and values, desired state (variable value) and code of the buggy pro-
gram, with an implementation in Python for single-line errors.

• ITER: Iterative Neural Repair for Multi-Location Patches (2023) Ye et al.
[494] train a self-supervised system to repair multiple, stacked errors at different lines
in order to produce final multi-location patches.

• MUFIN: Improving Neural Repair Models with Back-Translation (2023)
Silva et al. [484] devise and evaluate a fine-tuning loop that can improve the perfor-
mance of any input neural model, using a fixer/breaker back-translation loop.

• Revisiting the Plastic Surgery Hypothesis via Large Language Models (2023)
[488] does 2 kinds of self-supervised masking-based fine-tuning for CodeT5, and add
relevant identifiers in the context of the input representation.

• InferFix: End-to-End Program Repair with LLMs (2023) [475] repair Infer
static analysis warnings with retrieval-based few-shots and a rich prompt.

• Tare: Type-Aware Neural Program Repair (2023) Zhu et al. [499] devise a
graph-based input representation focusing on static typing and encode it using relation-
aware attention layer.

• Impact of Code Language Models on Automated Program Repair (2023)
Jiang et al. [473] show that fine-tuning language models is better than training from
scratch for program repair in Java, and that InCoder is the best among the considered
models.

• Detect-Localize-Repair: A Unified Framework for Learning to Debug with
CodeT5 (2023) combine three losses over three tasks (bug detection, fault localization
and patch generation).

• KNOD: Domain Knowledge Distilled Tree Decoder for Automated Pro-
gram Repair (2023) Jiang et al. [474] craft a specific decoder and its associated
training procedure to produce more grammatically correct and type-checkable patches.

• Keep the Conversation Going: Fixing 162 out of 337 bugs for $0.42 each
using ChatGPT (2023) Xia and Zhang [490] create iterative prompts for ChatGPT
based on interactive prompting containing failing test names and failing assertions.

• Conversational automated program repair (2023) Xia and Zhang [491] create
iterative prompts for LLMs based on previously generated patches, evaluated on
Quixbugs Python and Quixbugs Java.

• Improving Automated Program Repair with Domain Adaptation (2022) Zi-
rak et al. [460] fine-tune a pre-trained model with domain specific bug-fix pairs to
improve performance.

• Repairing Bugs in Python Assignments Using Large Language Models
(2022) Zhang et al. [454] construct two kinds of advanced prompts for Codex to
respectively repair syntactic and semantic errors in student Python programs, with an
evaluation on 286 buggy programs.

• An Analysis of the Automatic Bug Fixing Performance of ChatGPT (2023)
Sobania et al. [485] give all programs of Quixbugs to ChatGPT with a simple prompt
and report that 19/40 Python programs can be fixed.

• Towards JavaScript program repair with generative pre-trained transformer
(GPT-2) (2023) Lajko et al. [415] train a GPT-2 model only for Javascript with data
from benchmark BugJS, reporting up to 269/1559 patches identical to the expected
one (with beam 10).

10

• Fine-Tuning GPT-2 to Patch Programs, Is It Worth It? (2022) Lajkó et al.
[416] finetune a public HuggingFace GPT-2 model with 18736 Javscript bug-fixing
commits, and apply the resulting model to BugJS with 9% exact-match success.

• Less Training, More Repairing Please: Revisiting Automated Program Re-
pair via Zero-shot Learning (2022) Xia et al. [446] state program repair as a
masked input problem, allowing for fully self-supervised training and piggy-backing
on CodeBERT, evaluated on Defects4 2.0.

• SelfAPR: Self-supervised Program Repair with Test Execution Diagnostics
(2022) Ye et al. [450] devise a fully self-supervised training loop for repair with NMT,
as opposed to usual supervised NMT training with diffs, achieving state-of-the-art
performance.

• Automated Repair of Programs from Large Language Models (2023) Fan et
al. [467] study the error modes of Codex, with experimental results showing that 47%
of Codex outputs contain syntax errors, and suggesting that one can postprocess LLM
patches with APR.

• CIRCLE: Continual Repair across Programming Languages (2022) Yuan et al.
[452] train a T5 model on different programming languages sequentially to maximize
transfer learning for repair.

• Practical Program Repair in the Era of Large Pre-trained Language Models
(2022) Xia et al . [445] devise a prompt structure and evaluate it by querying GPT-
like models, Incoder, CodeT5 and Codex with Defects4J, Quixbugs and Manybugs,
showing the superiority of Codex.

• An empirical study of deep transfer learning-based program repair for
Kotlin projects Kim et al. [414] fine-tune TFix to repair SonarQube static anal-
ysis violations in Kotlin code, reaching 19.5% repair effectiveness with exact match.

• DEAR: A Novel Deep Learning-based Approach for Automated Program
Repair (2022) Li et al. [419] propose a mechanism to qualify the fixing scope (sequence
of lines, hunks), based on a combination of SBFL and ML to learn the "fixing-together"
relationship.

• Automated Program Repair in the Era of Large Pre-trained Language
Models (2022) Xia et al. [489] use large language models (GPT, CodeT5, InCoder,
Codex) on Defects4J, Quixbugs and Manybugs and report state-of-the-art results.

• Katana: Dual Slicing-Based Context for Learning Bug Fixes (2022) In an
NMT repair architecture, Sintaha et al. [438] define the context in the input as the
statements that have a control or data dependency on the buggy statement. Imple-
mented for Javascript, using tool ‘Understand’ for slicing, and evaluated on 11397 bugs
from an ad hoc dataset of 91181 samples. A similar follow-up is [479].

• Framing Program Repair as Code Completion (2022) Ribeiro et al. [435] per-
form an experiment to use CodeGPT for repairing 6415 bugs from ManySStuBs4J,
reporting a success rate of 27%.

• Repair Is Nearly Generation: Multilingual Program Repair with LLMs
(2022) Joshi et al. [411] show that a single large language model trained on code
(LLMC) works on six different downstream tasks (repair compilation errors, repair
linting erros, etc) in six languages (with 200 testing data points per task).

• Defect Identification, Categorization, and Repair: Better Together (2022)
Ni et al. [427] train the a single system 1) to classify lines among one of 16 defect
patterns and 2) to generate the fix with a decoder, experimenting on ManySStuBs4J.

11

• GLAD: Neural Predicate Synthesis to Repair Omission Faults (2022) Kang
and Yoo [412] train a GRU-based system to generate if conditions at certain locations
in order to early-return, guard existing code or add clauses to existing conditions.

• Fix Bugs with Transformer through a Neural-Symbolic Edit Grammar
(2022) Hu et al.’s experiments on CodeXBlue [408] indicate that predicting the edit
sequence according to an edit grammar is more effective than predicting the whole
fixed code, confirming [337].

• M3V: Multi-modal Multi-view Context Embedding for Repair Operator
Prediction (2022) Xu et al. [447] devise a graph-based neural approach to predict
one repair operator among 4 standard ones for NullPointerException and 3 for Out-
OfBoundsException.

• Can We Automatically Fix Bugs by Learning Edit Operations (2022) Connor
et al. [397] present a series of negative experimental results on using edit operations
as output to neural program repair.

• Fix-Filter-Fix: Intuitively Connect Any Models for Effective Bug Fixing
(2021) Hong et al. [347] systematically check that an NMT model transforms the code
under repair and if not, chains different NMT models together.

• GrasP: Graph-to-Sequence Learning for Automated Program Repair (2021)
Tang et al. [375] design a graph based representation for generating Java patches with
a graph-to-sequence neural architecture from IBM (IBM/Graph2Seq).

• A Controlled Experiment of Different Code Representations for Learning-
Based Bug Repair (2021) Namavar et al. [426] compare the ability of different
representations for repairing swapped arguments and wrong binary operator, showing
a relative advantage for token-based pre-order pretty-print of original code (AST4).

• A Syntax-Guided Edit Decoder for Neural Program Repair (2021) Zhu et al.
[387] propose a decoder architecture for neural program repair that 1) generates edits
(and not full sequences) 2) generates placeholders for handling rare identifiers (instead
of subtokenization or copy [224]).

• Grammar-Based Patches Generation for Automated Program Repair (2021)
Tang et al. [376] proposes a neural architecture combining a token encoder and a
grammar encoder, and experiment with the code changes of Tufano’s BFP dataset
[205].

• CURE: Code-Aware Neural Machine Translation for Automatic Program
Repair (2021) Jiang et al. [348] propose a subword tokenization technique and a
specific beam search to improve the compilation rate of patches from NMT-based
repair.

• A Software-Repair Robot Based on Continual Learning (2021) Baudry et al
[330] uses continual learning on top of the stream of continuous integration builds,
refining the patch generation ML model when new builds arrive.

• Synthesize, Execute and Debug: Learning to Repair for Neural Program
(2020) Gupta et al. [298] embed execution traces in order for a so-called neural de-
bugger to predict an edit sequence to repair Karel programs.

• DLFix: Context-based Code Transformation Learning for Automated Pro-
gram Repair (2020) Li et al. [306] use tree-based recurrent neural networks to
generate patches.

• CoCoNuT: Combining Context-Aware Neural Translation Models using
Ensemble for Program Repair (2020) Lutellier et al. [251, 309] propose a num-
ber of design changes to SequenceR [224] (fully convolutional layers, multi-attention,
multi-model prediction).

12

https://github.com/IBM/Graph2Seq

• Hoppity: Learning Graph Transformations to Detect and Fix Bugs in Pro-
grams (2020) Dinella et ak. [292] predict the changes to be made to the AST of
Javascript bug-fix commits with a graph-based neural network.

• A Study of Pyramid Structure for Code Correction (2020) Huang et al. .[301]
propose a better encoder for seq2seq and apply it to two benchmarks of programs with
static warnings: Juliet and Java SARD.

• Learning the Relation between Code Features and Code Transforms with
Structured Prediction (2019) Yu et al. [278] predict the code transformations that
must be applied to fix a bug using structured prediction with conditional random
fields.

• SequenceR: Sequence-to-Sequence Learning for End-to-End Program Re-
pair (2018) Chen et al. [224] deploy sequence-to-sequence learning over 35578 diffs
from the CodRep dataset [162] and show that the system, called Sequencer, is able to
perfectly predict the fixed line for 950/4711 testing cases and 14 bugs in Defects4J.

• Learning to Generate Corrective Patches using Neural Machine Translation
(2019) [172] trains a neural sequence-to-sequence model over 35,137 single statement
diffs from 5 open-source Java projects and applies it to 233 testing tasks.

• Search, Align, and Repair: Data-Driven Feedback Generation for Intro-
ductory Programming Exercises (2018): Wang et al. [210] use advanced AST
matching and differencing to provide a small diff to MOOC students based on a pool
of correct solutions.

• Semantic Code Repair using Neuro-Symbolic Transformation Networks
(2017) Delvin et al. [124] synthesize errors in Python programs according to 4 mutation
operators and show that an LSTM-based architecture can fix the synthetic errors.

• History Driven Program Repair (2016) [110]uses the commit history to select the
most likely patch from classical mutation-based repair (incl. Genprog and Par): the
mutations that appear the most frequently in the history are ranked first.

• Prophet: Automatic Patch Generation via Learning From Successful Patches
(2016) [114] selects the SPR generated patch that resembles the most to past human
patches.

• sk_p: a neural program corrector for MOOCs (2016) Pu et al. [119] use a
recurrent neural network to predict corrections in small student programs written in
Pyton.

1.5.2 Inference of Fix Patterns / Templates

• Expanding Fix Patterns to Enable Automatic Program Repair (2021) Nowack
et al. [365] cluster Defects4J patches to group them by fix pattern.

• DevReplay: Automatic Repair with Editable Fix Pattern (2020) Ueda et aL;
[317, 441] abstracts over commits by extracting matching and replacement regular
expressions, in order to be able to apply the same code change again later.

• FixMiner: Mining Relevant Fix Patterns for Automated Program Repair
(2020) Koyuncu et al. [305] define a novel data structure for representing and clustering
edit scripts, finding 14 full patterns automatically in a dataset of 11,416 patches.

• Phoenix: Automated Data-driven Synthesis of Repairs for Static Analysis
Violations (2019) Bavishi et al. [221] represent warning-fixing changes in a DSL
representing the AST edit script, then cluster those changes into patterns.

13

• Getafix: Learning to Fix Bugs Automatically (2019) [264] infers repair templates
for null pointer bugs detected with the static analysis tool Infer.

• Shaping Program Repair Space with Existing Patches and Similar Code
(2018) [176] selects the most similar repair ingredients that are also instances of bug
fix patterns mined over past commits.

2 Program Repair of Static Errors
2.1 Static Warnings

• StaticFixer: From Static Analysis to Static Repair (2023) Jain et al. [472]
repair two types of information flow vulnerabilities in Javascript (unvalidated dynamic
calls and cross-site scripting) using a CodeT5 neural model, trained in a self-superviser
manner with perturbations.

• A New Era in Software Security: Towards Self-Healing Software via Large
Language Models and Formal Verification (2023) Charalambous et al. [464] use
ChatGPT to fix errors in C programs found by the ESBMC model checker (testing
with 1000 cynthetic C code samples, each consisting of 20 to 50 lines of code).

• Leveraging Static Analysis for Bug Repair (2023) Mutasim et al [478] train
a system to automatically fix resource leak bugs flagged by Infer in Java using a
transformer.

• Static Analysis Warnings and Automatic Fixing: A Replication for C#
Projects (2022) Odermatt et al. [429] implement and evaluate a template-based repair
tool for C# to fix 20 ReSharper and SonarQube static analysis rules (EagleRepair on
Github).

• Towards More Reliable Automated Program Repair by Integrating Static
Analysis Techniques (2021) Al-Bataineh et al. [329] fix termination bugs by mu-
tating statements in the backward slice of the loop condition.

• TFix: Learning to Fix Coding Errors with a Text-to-Text Transformer
(2021) Berabi et al. [332] train and evaluate a T5 transformer to repair ESLint errors
in Javascript.

• Sorald: Automatic Patch Suggestions for SonarQube Static Analysis Viola-
tions (2021) Etemadi et al. [341] present a system to repair SonarJava static analysis
warnings based on AST level metaprogramming with Spoon [96].

• Automatic Integer Error Repair by Proper-Type Inference (2021) Cheng et
al. [225] write a static analysis for C integer errors based on type inference, and use
four fix patterns to repair the violations.

• Automated Code Repair to Ensure Spatial Memory Safety (2021) Klieber et
al. [352] add checks to repair warning by the verification tool Symbiotic, using an ad
hoc intermediate representation that can be transformed from and back to the AST.

• C-3PR: A Bot for Fixing Static Analysis Violations via Pull Requests (2020)
C-3PR [287] integrates ESLint, TSLint and Sonar-WalkMod into a bot that makes
pull-requests on Github for style issues and static analysis warnings.

• SAVER: Scalable, Precise, and Safe Memory-Error Repair (2020) Hong et al.
[300] propose a novel technique to patch statically found memory leak, double-free,
and use-after-free errors in C programs based on so-called object flow graphs.

• Automated Repair of Resource Leaks in Android Applications (2020) Bhatt
et al. [284] repair Android-specific static analysis warnings with a fix template.

14

https://github.com/marodev/EagleRepair
https://github.com/marodev/EagleRepair

• IntRepair: Informed Repairing of Integer Overflows (2019) Muntean et al.
[262] use 4 repair patterns to statically repair integer overflows found with static anal-
ysis.

• Automatically Generating Fix Suggestions in Response to Static Code
Analysis Warnings (2019) Marcilio et al. [253] fix 11 Sonarqube warnings with
fixing rules implemented in the Rascal metaprogramming system.

• Avatar: Fixing Semantic Bugs with Fix Patterns of Static Analysis Vio-
lations (2019) Liu et al. [247] fixe 7 FindBugs warnings with carefully selected fix
patterns.

• Neural Program Repair by Jointly Learning to Localize and Repair (2019)
Vasic et al.’s [208] does joint detection and repair of variable-misuse bugs instead of
Allamanis et al’s technique of detection followed by enumeration.

• Static Automated Program Repair for Heap Properties (2018) [203] repairs
static warnings for potential null dereferences found by the static analysis tool Infer.

• MemFix: static analysis-based repair of memory deallocation errors for C
(2018) [180] quantitatively improves over [82] and is able to handle real open-source
programs.

• Automatically Diagnosing and Repairing Error Handling Bugs in C (2017)
Tian et al. [141] repair three static warnings related to error handling with the corre-
sponding template ("Incorrect/Missing Error Propagation", "Incorrect/Missing Error
Checks", "Incorrect/Missing Resource Release")

• IntPTI: Automatic Integer Error Repair With Proper-Type Inference (2017)
[123] statically detect integer overflows, applies 3 transformations (sanity check, ex-
plicit type casting and declared type change) before proposing the change to the de-
veloper.

• Sound and complete mutation-based program repair (2016) [120] Rothenberg
and Grumberg apply standard mutation operators not to the program under repair
but to a constraint-based, SSA representation of C programs in order to fix statically
detected errors. repo

• Enhancing automated program repair with deductive verification (2016) Le
at al. [112] repair static warnings found with HIP/SLEEK with Genprog-like muta-
tions.

• Safe Memory-leak Fixing for C Programs (2015) [82] proposes an approach that
consists of statically detecting and fixing memory leaks by inserting a deallocation
statement.

• Automated Generation of Buffer Overflows Quick Fixes Using Symbolic
Execution and SMT (2015) [94] uses parametrized templates to fix buffer overflow,
where the actual parameter is found with symbolic execution and SMT.

• Sound Input Filter Generation for Integer Overflow Errors (2014) [68] uses a
static analysis specific to integer arithmetic that detects integer overflows, and repair
them by inferring a filter that simply deny the input.

• Automatic Repair of Overflowing Expressions with Abstract Interpretation
(2013) [56] statically detects arithmetic overflow and suggest fixes as re-ordering of the
arithmetic operations

• Modular and Verified Automatic Program Repair (2012) [44] proposes a repair
approach for a set of fault class identified statically (e.g. off-by-one errors),with a
specific repair operators per fault class (for example adding a precondition).

15

https://github.com/batchenRothenberg/AllRepair

• Fix-it: An Extensible Code Auto-Fix Component in Review Bot [48] (2013)
is an approach to automatically fix static warnings with AST transformation based on
XQuery (US Patent by the same author US9146712B2).

• Combining dynamic slicing and mutation operators for ESL correction
(2012) Repinski et al. [46] revisit the work of [23] with different mutation operators.

• A Formal Approach to Fixing Bugs (2011) [35] fixes Findbugs-like bugs with
Coccinelle-like templates using a transformation language called Tran. Similar work
by the same authors “Towards the Automated Correction of Bugs”.

• Automatic Error Correction of Java Programs (2010) [25] generates a meta-
program that integrates all possible mutations according to a mutation operator, and
the successful mutations are identified using symbolic execution.

• Using Mutation to Automatically Suggest Fixes for Faulty Programs (2010)
Debroy and Wong [23] propose to use standard mutations from the mutation testing
literature to fix programs: replacement of an arithmetic, relational, logical, incre-
ment/decrement, or assignment operator by another operator from the same class;
decision negation in an if or while statement.

• Proof-directed Debugging and Repair (2006) [5] uses an Isabel proof-based oracle
on on ML programs: when the proof fails, the counter-example of the proof drives a
repair approach based on repair templates (replacing one method call by another,
adding code).

• Patches As Better Bug Reports (2006) Weimer [8] uses a safety policy of the form
of a typestate property to detect and repair the control-flow graph of a method with
a patch.

2.2 Bug reports
• iFixR: bug report driven program repair (2019) Koyuncu et al. [241] show that

bug reports can be used for fault localization using information retrieval techniques
and combine this with template based repair.

• R2Fix: Automatically Generating Bug Fixes From Bug Reports (2013) [55]
takes as oracle a manually written bug report, which is used to extract the actual value
of a template parameter.

2.3 Compiler Errors - Syntax Errors
• Domain Knowledge Matters: Improving Prompts with Fix Templates for

Repairing Python Type Errors (2023) Peng et al. [482] combine fix pattern mining
and CodeT5 to fix Python type errors from benchmarks TypeBugs (109 bugs) and
BugsInPy (54 bugs).

• TransRepair: Context-aware Program Repair for Compilation Errors (2022)
Li et al. [418] devise a transformer-based approch to repair compilation errors in C,
with state-of-the-art performance on the TRACER and DeepFix datasets.

• SynShine: Improved Fixing of Syntax Errors (2022) Ahmed et al. [390] combine
three different Roberta-based models in a three-stage pipeline to repair Java syntax
errors, achieving 75% effectiveness on the single-line errors of the Blackbox dataset.

• Seq2Parse: Neurosymbolic Parse Error Repair (2022) Sakkas et al. [436] com-
bine a symbolic EC-Parser and a transformer classifier to predict error production
rules. Prototype available at https://github.com/gsakkas/seq2parse.

16

https://patents.google.com/patent/US9146712B2
https://github.com/gsakkas/seq2parse

• Break-It-Fix-It: Unsupervised Learning for Program Repair (2021) Yasunaga
and Liang [382] present a self-supervised training loop based on exercising and improv-
ing a ‘breaker’ and a ‘fixer’ simultaneously, inspired by backtranslation, in order to fix
syntax errors in Python and C.

• Self-Supervised Bug Detection and Repair (2021) Allamanis et al. [327] devise
a self-supervised loop to detect and repair four kinds of bugs ("Variable Misuse", "Ar-
gument Swapping", "Wrong operator", "Wrong literal"), with experiments in Python.

• SYNFIX: Automatically Fixing Syntax Errors using Compiler Diagnostics
(2021) Ahmed et al.’s system [326], Synfix, uses a Roberta-based model to fix syntax
errors in Java.

• GGF: A Graph-based Method for Programming Language Syntax Error
Correction (2020) Wu et al. [319] uses the AST information in a neural architecture
to improve the state-of-the-art on the DeepFix dataset.

• Graph-based Self-Supervised Program Repair from Diagnostic Feedback
(2020) Yasunaga and Liang [322] generate training data for compiler error repair,
with a self-supervised procedure based on corrupting programs, claim to improve the
state-the-art on the Deepfix dataset.

• Automatic Repair and Type Binding of Undeclared Variables using Neural
Networks (2019) Mohan et al. [259] train a system based on LSTM to repair 1059
student C programs with undeclared variable errors.

• DeepDelta Learning to Repair Compilation Errors (2019) Mesbah et al. [257]
fix Java compilation errors by training a NMT model to predict the AST diff expressed
in a textual manner.

• SampleFix: Learning to Correct Programs by Sampling Diverse Fixes (2019)
Hajipour et al. [233] repair syntax errors with a conditional variational autoencoder
with a technique to sample diverse solutions.

• Deep Reinforcement Learning for Syntactic Error Repair in Student Pro-
grams (2018) [169] uses reinforcement learning to improve the performance of DeepFix
[128] on the same dataset.

• Reducing Cascading Parsing Errors Through Fast Error Recovery (2018)
[164] Diekmann and Tratt finds repair sequences for syntax errors, with minimum cost
and acceptable time, by extending [1].

• Syntax and sensibility: Using language models to detect and correct syn-
tax errors (2018): Santos’ approach [196] repairs syntax errors (one character edits)
with n-gram and LSTM, with an evaluation on 1,715,312 before-and-after pairs of the
BlackBox dataset.

• Compilation error repair: for the student programs, from the student pro-
grams (2018): Ahmed et al. [156] improve over DeepFix [128] on a dataset containing
a total of 16985 (source, target) line pairs.

• DeepFix: Fixing Common C Language Errors by Deep Learning (2017):
Gupta et al. [128] use a language model for repairing syntactic compilation errors

• Automated correction for syntax errors in programming assignments using
recurrent neural networks (2016): Bhatia [101] set up recurrent neural networks
to fix Python syntax errors in 14000 student submissions from a MOOC.

17

3 Empirical Studies for Program Repair
• RobustNPR: Evaluating the robustness of neural program repair models

(2023) Ge et al. [500] produce semnatically equivalent buggy programs with mutation
to test whether neural models can still fix them. Most models cannot fix anymore
mutated input programs by a large proportion (80% of bugs).

• Where to Look When Repairing Code Comparing the Attention of Neural
Models and Developers (2023) Huber [470] find that humans and neural nets “look ”
at similar places and that different neural models have very different attention matrices.

• Digging into Semantics: Where do search-based software repair methods
search? (2022) Ahmad et al. [388] devise a method to compute a behavioral em-
bedding based on invariants, and proceed with dimensionality reduction with PCA,
plotting patches for six repair tools.

• Automatically Generated Patches are More Likely to be Correct than Oth-
ers: An Analysis of Defects4J Patch Features (2022) Bennett et al. [393] study
syntactic features of 395 Defects4J patches to identify correlations, such as single-line
patches being more correct on average.

• A Comparative Study of Automatic Program Repair Techniques for Se-
curity Vulnerabilities (2022) Pinconschi et al. [367] compare 10 program repair
tools for C on the DARPA Cyber Grand Challenge benchmark of 250 vulnerabilities
in C/C++ showing that AE and GenProg clearly yield more patches.

• Estimating the Potential of Program Repair Search Spaces with Commit
Analysis (2022) Etemadi et al. [399] estimate the applicability of program repair by
measuring the proportion of real-world commits that lie in known repair search spaces.

• Where were the repair ingredients for Defects4j bugs? (2021) Yang et al.
[381] study the origin of repair ingredients for redundancy-based repair and suggest
that some repair ingredients may be found in test case code.

• Evaluating Automatic Program Repair Capabilities to Repair API Misuses
(2020) Kechagia et al. [350] compare 14 Java test-suite-based repair tools on 101 API
misusage bugs. The repair tools generate patches for 28% of API misuses, 25% of the
generated patches are semantically correct, TBAR has the highest number of plausible
and correct patches.

• A Comprehensive Study of Code-removal Patches in Automated Program
Repair (2020) Ginelli et al. [297] studies code-removal patches by Astor/jKali and
finds that their presence clearly indicates test weaknesses.

• On the Impact of Flaky Tests in Automated Program Repair (2021) Qin et al.
[369] identify environment-dependent tests in Defects4J and show that their presence
impact repair results.

• Understanding the Non-Repairability Factors of Automated Program Re-
pair Techniques (2020) Lin et al. [307] study the experimental logs shared in open
science replication packages from program repair research, and find that the research
prototypes suffer from important limitations.

• Longitudinal Analysis of the Applicability of Program Repair on Past Com-
mits (2020) Etemadi et al. [295] use AST analysis to identify past commits that could
potentially have been generated by program repair tools, because the corresponding
code changes lie in the search space of known repair approaches.

• Patching as Translation: the Data and the Metaphor (2020) Ding et al. [293]
discuss to what extent the usage of neural machine translation is appropriate for
program repair.

18

• Quality of Automated Program Repair on Real-World Defects (2020) Mot-
wani et al. [310] implement the algorithms of GenProg, Par and TrpAutoRepair for
Java in a tool called JarFly, and study its effectiveness on Defects4J.

• Empirical Analysis of 1-edit Degree Patches in Syntax-Based Automatic
Program Repair (2020) Dziurzanski et al. [294] exhaustively explore the search
space on 1-edit patches (i.e. one-liners) of Arja for Defects4J, and show that much
fewer tests can be executed for one-liners.

• How Effective is Automated Program Repair for Industrial Software (2020)
Noda et al. [312] discusses the repair results (8 patches) of proprietary repair tool
Elixir on 20 single-statements bugs from Fujitsu products.

• On the Efficiency of Test Suite based Program Repair (2020) Liu et al. [308]
show that incorrect fault-localization significantly increases the chances of producing
overfitting patches.

• A manual inspection of Defects4J bugs and its implications for automatic
program repair (2019) Jiang et al. [237] classify 50 Defects4J bugs with respect to
the fault localization and repair stragegy used.

• Repairnator patches programs automatically (2019) Monperrus et al. [261]
report that program repair can be human-competitive: 5 generated patches have been
synthesized faster than the human developer, and accepted and merged in the code
base.

• The effectiveness of context-based change application on automatic pro-
gram repair (2019) Kim et al. [239] show that it is valuable to select ingredients
with similar AST context in generate-and-validate program repair. Idea related to
[212].

• How Different Is It Between Machine-Generated and Developer-Provided
Patches (2019) [270] Wang et al. asked 27 undergraduate students whether APR
patches for Defects4J are correct, are located at the same position and consist of the
same modification kind (132/177 patches are at the same location, with the same
modification).

• Empirical Review of Java Program Repair Tools: A Large-Scale Experi-
ment on 2,141 Bugs and 23,551 Repair Attempts (2019) Durieux et al. [229]
run the same set of repair tools over different benchmarks and show that research is
likely overfitting to Defects4J.

• Human-competitive Patches in Automatic Program Repair with Repair-
nator (2018) [193] shows that the state of the art techniques in 2018 can produce a
valuable patch faster than human developers.

• Attention Please: Consider Mockito when Evaluating Newly Released Au-
tomated Program Repair Techniques (2018) [211] discusses the characteristics of
the Mockito bugs in Defects4J and the performance of SimFix, CapGen and Nopol on
repairing them.

• The Remarkable Role of Similarity in Redundancy-based Program Repair
(2018) [163] describes an original experiment showing that the use of similarity can
reduce the search space of program repair by 99.35%, under certain assumptions.

• LSRepair: Live Search of Fix Ingredients for Automated Program Repair
(2018) [183] compares three kinds of similarity (similar method signature, method
embedding similarity using CNN, semantic similarity based on code-search) in the
context of generate-and-validate program repair.

19

• A Novel Fitness Function for Automated Program Repair Based on Source
Code Checkpoints (2018) [199] uses instrumentation in order to have a fitness func-
tion that has less plateaus than with only test case outcomes.

• A Comprehensive Study of Automatic Program Repair on the QuixBugs
Benchmark (2018) [215] is the first report on doing automatic repair on the Quixbugs
benchmark, using the Astor and Nopol tools [130].

• Comparing Line and AST Granularity Level for Program Repair using
PyGGI (2018) [158] claims that AST analysis in a GenProg-like approach is overall
faster than line-based analysis.

• Comparing Developer-Provided to User-Provided Tests for Fault Localiza-
tion and Automated Program Repair (2018) [177] studies whether the results of
fault localization change if one removes the failing test case provided in the commit
(experiments on Defects4J).

• The Impacts of Techniques, Programs and Tests on Automated Program
Repair: An Empirical Study (2017) Kong et al. [129] compare GenProg, RSRepair,
AE and Kali on the Siemens benchmark.

• Better test cases for better automated program repair (2017) Yang et al.
[151] use fuzz testing to generate new test cases, and employ implicit oracles (absence
of crash and memory-safety) to enhance validity checking of automatically-generated
patches in C.

• An empirical analysis of the influence of fault space on search-based auto-
mated program repair (2017) [145] shows that GenProg finds more patches (incl.
correct ones) if one assumes better fault localization.

• A correlation study between automated program repair and test-suite met-
rics (2017) [153] sets up a protocol based on held-out tests to show that the better
the coverage, the better the repair.

• Do automated program repair techniques repair hard and important bugs?
(2017) [135] suggests that the considered state-of-the-art repair techniques only repair
simple bugs according to collected bug metadata.

• An Empirical Investigation into Learning Bug-Fixing Patches in the Wild
via Neural Machine Translation (2018) Tufano et al. [205] use machine translation
on Java methods that are smaller than 50 tokens with abstracted token sequences (the
corresponding journal paper is [206]).

• Towards reusing hints from past fixes - An exploratory study on thousands
of real samples (2018) [218] confirms the results of [70] regarding redundancy-based
repair based on the novel usage delta dependency graphs.

• Mining Repair Model for Exception-Related Bug (2018) [217] studies the most
common repair actions per exception type.

• Common Statement Kind Changes to Inform Automatic Program Repair
(2018) Soto et al. [198] replicates the study of [92] on the MSR Challenge dataset.

• A feasibility study of using automated program repair for introductory
programming assignments (2017) [152] studies the application of GenProg, AE,
Angelix, and Prophet to 661 programs written by the students taking an introductory
programming course.

• Empirical Study on Synthesis Engines for Semantics-Based Program Repair
(2016) [111] compares 5 synthesis engines implemented on top of Angelix showing that
they do not have the same performance, and that Angelixs Partial MaxSMT-based
synthesis engine is the best on the considered benchmark, IntroClass.

20

• Sorting and Transforming Program Repair Ingredients via Deep Learning
Code Similarities (2016) [146] uses deep learning to match donor methods that are
similar to the buggy method under repair.

• Automatic Repair of Real Bugs in Java: A Large-Scale Experiment on the
Defects4J Dataset (2016) [133] is the first experiment ever on evaluating automatic
repair on the Defects4J dataset (with Nopol, jGenProg and jKali) showing the great
problem of overfitting.

• Improved Crossover Operators for Genetic Programming for Program Re-
pair (2016) [118] proposes new crossover operators for Genprog, that decouple fix
location, repair type, and repair ingredient. The corresponding journal paper is [194].

• An Analysis of Patch Plausibility and Correctness for Generate-And-Validate
Patch Generation Systems (2015) [97] shows that most Genprog patches simply
remove code and consequently that the overfitting problem is huge.

• The Strength of Random Search on Automated Program Repair (2014) [73]
shows that there the search in Genprog is actually not guided by the fitness function,
it’s random search.

• Do the Fix Ingredients Already Exist? An Empirical Inquiry into the Re-
dundancy Assumptions of Program Repair Approaches (2014) [70] shows that
a significant proportion of commits in open-source projects (3%-22%) are composed of
existing code.

• Mining Software Repair Models for Reasoning on the Search Space of Au-
tomated Program Fixing (2013) [92] computes the prevalence of each repair actiona
dn explores the imbalance between possible repair actions at the AST level, showing
its significant impact on the search.

• A Systematic Study of Automated Program Repair: Fixing 55 Out of 105
Bugs for $8 Each (2012) [41] has famously claimed that 52% of bugs (55/105) of
bugs can be fixed by Genprog, a ratio being undermined by the benchmark selection
biases and by overfitting.

• Automated Program Repair Through the Evolution of Assembly Code
(2010) [27] shows the feasibilty of Genprog-like repair on binary x86 code and Java
bytecode.

• Designing Better Fitness Functions for Automated Program Repair (2010)
[24] explores the design space of fitness functions of Genprog.

3.1 Human Study on APR
• Let’s Talk With Developers, Not About Developers: A Review of Auto-

matic Program Repair Research (2022) Winter et al. [443] analyze published
APR papers wrt to human factors and advocate for more APR research involving
developers.

• Trust Enhancement Issues in Program Repair (2022) Noller et al. [428] col-
lect qualitative feedback about APR from 103 developers, suggesting that developers
are willing to provide additional inputs in order to increase trust in automatically
generated patches.

• Program Repair: Automated vs. Manual (2022) Zhang et al. [455] ask 20
graduate students to repair 8 Defects4J bugs and discuss the results, suggesting that
incorrect patches may be misleading for humans.

21

• How to trust auto-generated code patches? A developer survey and em-
pirical assessment of existing program repair tools (2021) Noller et al. [364]
ask 35 questions to 100 developers about APR and suggest that trust in APR patches
would increase by presenting additional artifacts (in particular generated test cases).

• Would You Fix This Code for Me? Effects of Repair Source and Comment-
ing on Trust in Code Repair (2020) Alarcon et al. [280] asked 51 programmers
about their opinion on 5 GenProg patches on ManyBugs where the controlled variable
is the identity of the patch author (Bill vs GenProg): the subbjects trust human-being
Bill more than bot GenProg.

• Trust in Automated Software Repair (2019) Tyler et al. [268] ask 24 students
and 24 professionals to assess 5 GenProg patches and show novice programmers are
more accepting generating.

• Characterizing Developer Use of Automatically Generated Patches (2019)
Cambronero et al. [222] performs a user study consisting of giving 5 patches on 2 bugs
to 12 developers, incl. one being correct to see how developers leverage generated
patches.

• Automatically Generated Patches As Debugging Aids: a Human Study
(2014) [76] asks to 95 participants to fix bugs with either fault localization or machine-
generated patches from PAR.

• A Human Study of Patch Maintainability (2012) [40] conducted a study of
Genprog patches based on 150 participants and 32 real-world defects, showing that
machine-generated patches are slightly less maintainable than human-written ones.

4 Domain-Specific Repair
4.1 Test Repair

• TRaf: Time-based Repair for Asynchronous Wait Flaky Tests in Web Test-
ing (2023) Pei et al. [481] suggest waiting times for each asynchronous call in a web
application.

• GUI-Guided Test Script Repair for Mobile Apps (2020) Pan et al. [313] repair
Android GUI test scripts by changing test UI locators or UI events, based on image
and OCR analysis of GUI screenshots.

• iFixFlakies: A Framework for Automatically Fixing Order-Dependent Flaky
Tests (2019) Shi et al. [265] analyze and repair the test bugs related to test execution
ordering.

• Intent-Preserving Test Repair (2019) Li et al. [244] repair Java tests that do
not compile after evolution by ranking the candidate solutions according to an intent
similarity score computed from path conditions.

• Visual web test repair (2018) [200] repairs broken Selenium tests by changing the
incorrect locator, the locator being inferred by comparing visual renderings (ie images).

• Waterfall: An incremental approach for repairing record-replay tests of
web applications (2016) [107] repairs DOM locators in Selenium tests.

• Repairing Selenium Test Cases: an Industrial Case Study about Web Page
Element Localization (2013) [54] do test repair in the context of Selenium tests,
which are tests for web applications with HTML output.

• ReAssert: Suggesting Repairs for Broken Unit Tests (2009) [17] addresses
the dual problem of test-suite based repair: changing the tests instead of fixing the
application.

22

• Automatically Repairing Event Sequence-based GUI Test Suites for Re-
gression Testing (2008) [13] does test repair on GUI test models. “SITAR: GUI
Test Script Repair” [84] extends this work by considering manually scripted test cases.

4.2 Automated Repair of Concurrency errors
• Automatic Detection, Validation and Repair of Race Conditions in Interrupt-

Driven Embedded Software (2022) Yu et al. [323] suggest strategies ‘Add locks’
(AL) or ‘Interrupt disable and enable (IDE)’ after a combination of static analysis
and symbolic execution in order to repair race condition problems related to hardware
interrupts.

• HIPPODROME: Data Race Repair using Static Analysis Summaries (2021)
Hippodrome [339] repairs data races identified by RacerD, Facebook’s static concur-
rency analyser for Java, by changing mutexes of Java synchronized blocks.

• HangFix: automatically fixing software hang bugs for production cloud
systems (2020) He et al. [299] propose four automatic patching strategies that are
specific to software hang bugs in cloud systems such as Hadoop.

• DFix: automatically fixing timing bugs in distributed systems (2019) Li et al.
[243] fix atomicity violations, order violations, and fault-timing bugs with rollbacking
side-effect operations.

• Understanding and Generating High Quality Patches for Concurrency bugs
(2016) Liu et al. [113] have proposed a tool called HFix whose repair operator is to
add thread-join instructions.

• Automatic Repair for Multi-threaded Programs with Deadlock/Livelock
Using Maximum Satisfiability (2014) Lin et al. [67] insert locks by encoding the
problem as a satisfiability one.

• Axis: Automatically Fixing Atomicity Violations Through Solving Control
Constraints (2012) [43] addresses the problem of violation fixing as a constraint
solving problem using the Petri net model.

• Automated Atomicity-violation Fixing (2011) [34] is about AFix, whose repair
model consists of putting instructions into critical regions.

4.3 Automated Repair of Build Scripts
• Parfum: Detection and Automatic Repair of Dockerfile Smells (2023) Durieux

[466] design and implement AST-level querying and transformation for Dockerfiles in
order to repair Docker script smells.

• Automated Patching for Unreproducible Builds (2022) Ren et al. [434] produce
patches (changes to shell scripts) for unreproducible builds based on mined templates
(typically one-liner changes).

• Shipwright: A Human-in-the-Loop System for Dockerfile Repair (2021)
Henkel et al.[346] designs 13 rules for making automated repairs to Dockerfiles which
cannot successfully build, in a data-driven manner.

• Styler: Learning Formatting Conventions to Repair Checkstyle Violations
(2019) Madeiral et al. [421] propose to automatically repair Checkstyle formatting
errors that break the build.

• History-driven build failure fixing: how far are we? (2019) You et al. [249]
show that a simple approach works better than HireBuild [171] on a new dataset of
102 reproducible Gradle build failures.

23

• HireBuild: an automatic approach to history-driven repair of build scripts
(2018) [171] mines and apply build-fix patterns in Gradle, and apply them based on
log similarity.

4.4 Automated Repair for Numerical Errors
• Oracle-free repair synthesis for floating-point programs (2022) Zou et al. [461]

generate a polynomial patch for local intervals found to be erroneous by a detection
tool called Atomu.

• Efficient Automated Repair of High Floating-Point Errors in Numerical Li-
braries (2019) Yi et al. [276] for numerical functions (eg from GNU Scientific Library),
identify small parts of the input domain that have high floating point instability, and
replace the original implementation by a better approximation.

4.5 Automated Repair for the Web
• Usability and Aesthetics: Better Together for Automated Repair of Web

Pages (2021) Le-Cong et al. [338] design a meta-heuristic algorithm that evolves
buggy web pages to optimize both usability and aesthetics.

• Automated Repair of Cross-Site Scripting Vulnerabilities through Unit
Testing (2020) Mohammadi et al. [258] automatically add calls to sanitizers to fix
statically found XSS vulerabilities.

• Fully Automated HTML and Javascript Rewriting for Constructing a Self-
healing Web Proxy (2018) [166] uses a proxy to intercept browser errors and repair
them with HTML and Javascript rewriting strategies.

• Automated repair of mobile friendly problems in web pages (2018) [187]
explores the search space of CSS modifications to fix mobile problems such as font
sizing and extraneous spacing.

• Automated Repair of Internationalization Presentation Failures in Web
Pages Using Style Similarity Clustering and Search-Based Techniques (2018)
[188] fixes web rendering by changing the value of CSS properties

• Vejovis: Suggesting fixes for JavaScript faults (2014) [72] suggests fixes for
DOM errors based on fix patterns

• Fix Me Up: Repairing Access-Control Bugs in Web Applications. (2013)
[61] repairs access-control policies in web applications, using a static analysis and
transformations tailored to this domain.

• Automated Repair of HTML Generation Errors in PHP Applications Using
String Constraint Solving (2012) [47] fixes incorrect opening/closing HTML tags
in PHP application by encoding the problem as string constraints.

4.6 Automated Repair of Software Abstractions
Alloy:

• ICEBAR: Feedback-Driven Iterative Repair of Alloy Specifications (2022)
Gutiérrez-Brida [407] use property-based oracles in Alloy and any Alloy model repair
technique as underlying repair operator.

• ARepair: a repair framework for Alloy (2019) Wang et al. [269] describe a
generate-and-validate repair technique for Alloy models, with a test-based specification
based on AUnit.

24

• Automated model repair for Alloy (2018) [209] does repair for the Alloy language
with 11 mutation operators,

Others:

• Automated Patch Generation for Fixing Semantic Errors in ATL Transfor-
mation Rules (2022) VaraminyBahnemiry et al [378] design, implement and evaluate
a repair approach for the ATL model transformation language.

• Transforming abstract to concrete repairs with a generative approach of
repair values (2021) Kretschmer et al. [353] repair inconsistencies in UML models.

• Range Fixes: Interactive Error Resolution for Software Configuration [100]
(2015) focuses on automatically repairing configuration errors in software product lines

• Towards Automated Inconsistency Handling in Design Models (2010) Silva
et al. [28] use Prolog to propose a repair plan that fixes inconsistencies in UML models

• Supporting Automatic Model Inconsistency Fixing [22] (2009) detects and fixes
inconsistencies in MOF and UML models

• Repairing Unsatisfiable Concepts in OWL Ontologies [7] (2006) states an au-
tomatic repair problem in the context of OWL ontologies.

• Consistency Management with Repair Actions [2] (2003) detects inconsistencies
in XML documents and proposes repair actions accordingly.

4.7 Automated Repair of Security Vulnerabilities
• How Effective Are Neural Networks for Fixing Security Vulnerabilities?

(2023) Wu et al. [487] assess 9 LLMs and 4 neural program repair systems on the
Vul4J and VJBench benchmarks (resp. 79 and 42 bugs). Codex and a fine-tuned
Incoder best-perform with 10, resp 9 fixed vulnerabilities.

• SPVF: security property assisted vulnerability fixing via attention-based
models (2022) Zhou et al. [459] use a transformer model using as input a combination
of code and natural language extracted from CVEs, reporting successful repair of 153
C/C++ vulnerabilities and 276 Python vulnerabilities.

• VulRepair: A T5-Based Automated Software Vulnerability Repair (2022)
Fu et al. [402] train a T5 model based on subword BPE tokenization and embeddings
from CodeT5, then reports experimental improvements over VRepair [337].

• Example-Based Vulnerability Detection and Repair in Java Code (2022)
Zhang et al. [456] devise an approach where security experts first define a dataset of
pairs of insecure/secure Java code (28 pairs in the experiment), and then an algorithm
extracts the matching and fixing transformation.

• Automatically Mitigating Vulnerabilities in x86 Binary Programs via Par-
tially Recompilable Decompilation (2022) Under the assumption that no source
code is available, Reiter et al. [433] prove the feasibility of decompiling small chunks
of code (using Hex-Rays), running GenProg on them, recompiling and reinjecting the
fixed code in the binary to be executed.

• Neural Transfer Learning for Repairing Security Vulnerabilities in C Code
(2021) Chen et al. [337] train a transformer on bug-fixing commits and fine-tune it on
real CVE vulnearbilities, proving that transfer learning happens between bug fixing
and vulnerability fixing (the previous iteration was [223]).

• Using Safety Properties to Generate Vulnerability Patches (2019) Huang et
al. [236] generate check-and-error patches for buffer overflows, bad casts and integer
overflows triggered by exploits and fuzzing inputs.

25

• Learning to Repair Software Vulnerabilities with Generative Adversarial
Networks (2018) [170] generates noisy data by removing source code tokens, this
data being used to train a sequence to sequence model.

• VuRLE - Automatic Vulnerability Detection and Repair by Learning from
Examples (2017) Ma et al. [132] learns systematic edits from examples and apply
them to fix vulnerabilities in Android applications.

• Cdrep: Automatic repair of cryptographic misuses in android applications
(2016) Ma et al. [115] define 7 binary transformations for Dalvik bytecode to repair 7
cryptographic API misuses in Android.

• AutoPaG: Towards Automated Software Patch Generation with Source
Code Root Cause Identification and Repair (2007) [9] generates a source code
patch from an input that triggers an array overflow in C code, with failure-oblivious
repair operators (adding a modulo in the read expression and truncating data to be
written).

• Countering Network Worms Through Automatic Patch Generation (2005 [4]
detect buffer overflow vulnerabilities at runtime in production, then produce a source
code patch that skip the execution of the overflowing statement.

4.8 Automated Repair of Smart Contracts
• Property-Based Automated Repair of DeFi Protocols (2022) Tolmach et al.

[440] reuses the mutation operators of SCRepair (add require, add initialization, move
statements) and a home-grown source level symbolic execution engine to repair nine
smart contracts in a new tool called Definery.

• Elysium: Automagically Healing Vulnerable Smart Contracts Using Context-
Aware Patching (2022) Torres et al. [400] improve over Smartshield and SGuard by
means of better code analysis and more automation.

• Aroc: An Automatic Repair Framework for On-chain Smart Contracts
(2021) Jin et al. [349] propose to modify the Ethereum virtual machine such as to be
able 1) to deploy special patch contracts and 2) to override the execution of a contract
by the patch one if a vulnerability is triggered.

• SGuard: Towards Fixing Vulnerable Smart Contracts Automatically (2021)
Nguyen et al. [360] repair reentrancy and arithmetic bugs in smart contracts, at the
source code level, with guarantees based on an operational semantics of Ethereum
opcodes.

• EVMPatch: Timely and automated patching of ethereum smart contracts
(2021) Rodler et al. [372] design an end-to-end technique to binary patch, backtest and
deploy via delegation Ethereum smart contracts. The evaluation focuses on integer
overflow attacks.

• Smartshield: Automatic smart contract protection made easy (2021) Zhang
et al. [325] propose a smart contract binary transformation for 3 pattern based prob-
lems (state change after external calls, missing checks for out-of-bound arithmetic
operations, and missing checks for failing external calls).

• Smart Contract Repair (2019) Yu et al. [277] repair smart contracts in Ethereum
to minimize gas consumption with a tool called SCRepair.

26

https://github.com/palinatolmach/DeFinery

4.9 Automated Repair of Typing Errors
• PyTER: Effective Program Repair for Python Type Errors (2022) Oh and

Oh [430] combine static and dynamic analysis to repair type errors in Python, based
on 9 repair templates, with an evaluation on 93 type errors collected from open-source.

• Type error feedback via analytic program repair (2020) Sakkas et al. [315] infer
fix templates in OCaml for repairing type system errors in programs from students in
an introductory programming course.

4.10 Misc Repair Types
• RepCoder: an automated program repair framework for probability-based

program synthesis (2022) Ji et al. [410] combine neural synthesis and input-output
based validation to perform repair for the DeepCode DSL.

• Neurosymbolic Repair for Low-Code Formula Languages (2022) Bavishi et al.
[392] combine symbalic and neural techniques to repair Excel and PowerFx formulas.

• Automatically repairing tensor shape faults in deep learning programs
(2022) Wu et al. [444] devise an end-to-end technique to fix Python code that crashes
due to tensor shape errors.

• PGPATCH: Policy-Guided Logic Bug Patching for Robotic Vehicles (2022)
Kim et al. [413] devise an end-to-end repair approach for robotic vehicle control
programs (ArduPilot and PX4) based on 5 repair templates.

• Automatic Repair for Network Programs (2022) Shi et al [437] perform repair
of programs in Floodlight, an open-source SDN controller based on Java annotations,
using a domain-specific symbolic fault localization algorithm and enumerative synthe-
sis.

• CirFix: Automatically Repairing Defects in Hardware Design Code (2022)
Ahmad et al. [389] present a framework for automatically repairing defects in Ver-
ilog, based on a novel dataflow-based fault localization approach tailored for hardware
description languages.

• Automatic Repair of Java Code with Timing Side-Channel Vulnerabilities
(2021) Lima et al. [355] repair timing side-channel issues by either removing return
statements, modifying stopping conditions of loops, or replicating if/then/else blocks.

• APIfix: Output-Oriented Program Synthesis for Combating Breaking Changes
in Libraries (2021) Gao et al. [343] synthesize adaptation rules from human made
changes in order to fix breaking changes.

• Automated Repair of Size-Based Inaccessibility Issues in Mobile Applica-
tions (2021) Alotaibi et al. [328] develop an approach that automatically increases the
size of Android UI elements, chosen based on a multi-objective minimization function.

• Automatic repair of timestamp comparisons (2021) Liva et al. [248] statically
identify time comparison problems in programs and rewrite time comparison expres-
sions in a safe normal form.

• CRNRepair: Automated Program Repair of Chemical Reaction Networks
(2021) Mesecan et al. [359] bridge the GI framework PyGGI and the Matlab environ-
ment SimBiology to do original experiments on automated repair of chemical reaction
networks.

• Repairing serializability bugs in distributed database programs via auto-
mated schema refactoring (2021) Rahmani et al. [370] target the problem of
repairing transaction serializability bugs in databases.

27

• TFix+: Self-configuring Hybrid Timeout Bug Fixing for Cloud Systems
(2021) He et al. [345] propose a technique to automatically repair timeout bugs in
distributed systems such as Hadoop.

• Automatic Software Merging using Automated Program Repair (2019) [274]
fixes merge conflicts with a search-based approach based on kGenProg.

• Towards Specification-Directed Program Repair (2018) [197] does program re-
pair for the educational programming language Karel, by training a neural net to
predict the edit (keep, delete, insert or replace token).

• Caramel: Detecting and fixing performance problems that have non-intrusive
fixes (2015) Nistor et al. [95] presents a technique to suggest addition of ‘break’ state-
ment guarded by a synthesized condition.

• Automated Repair of High Inaccuracies in Numerical Programs (2017) Yi
et al. [154] use mathematically equivalent floating-point expressions that reduce inac-
curacies found with random testing.

• Data-guided Repair of Selection Statements (2014) [64] repairs database selec-
tion statements in a specific data-oriented language (Abap fro SAP).

• A Framework for the Automatic Correction of Constraint Programs (2011)
[37] repairs constraint programs the repair consisting of declaratively removing or
adding new constraints.

4.11 SQL Repair
• SQLRepair: Identifying and Repairing Mistakes in Student-Authored SQL

Queries (2021) Presler et al.’s SQLRepair [368] combine heuristics and a SMT-based
repair approach to fix SQL queries (tool at https://github.com/kpresler/sqlrepair).

• Using Automated Fix Generation to Secure SQL Statements (2007) Thomas
et al. [10] describe an automatic transformation in Java for going from plain java SQL
to prepared statements.

5 Optimization & Integration
5.1 Driving the Search

• Improving source-code representations to enhance search-based software
repair (2022) Reiter et al. [432] show that a source-to-source transformation which
is behaviorally equivalent, as preprocessing step, improves the performance of three
program repair tools: f1x, GenProg, and Prophet.

• Multiplicative Weights Algorithms for Parallel Automated Software Repair
(2021) Renzullo et al. [371] propose to use online learning based on multiplicative
weights update to efficiently find those combinations of mutations which repair a bug.

• Concolic Program Repair (2021) Shariffdeen et al.’s technique [373] consists of al-
ternating patch enumeration, input synthesis and concolic execution on the synthesized
input to generate a small amount of patches.

• How Does Regression Test Selection Affect Program Repair? An Extensive
Study on 2 Million Patches (2021) Lou et al. [357] claim that regression test
selection is useful for program repair, based on experiments on Defects4J.

• Towards Boosting Patch Execution On-the-Fly (2022) Benton et al. [394] do
on the fly patch prioritization based on syntactic similarity with previously executed
partially correct patches. Arxiv version is [331].

28

https://github.com/kpresler/sqlrepair

• Leveraging Program Invariants to Promote Population Diversity in Search-
Based Automatic Program Repair (2019) [226] explores the usege of learned
invariants to improve the fitness function of generate-and-validate program repair,
experimenting with genprog4java.

• A new word embedding approach to evaluate potential fixes for automated
program repair (2018) [157] computes source code line embeddings from word2vec
embeddings in order to calculate distances between patches.

5.2 Addressing the patch overfitting problem
• PatchZero: Zero-Shot Automatic Patch Correctness Assessment (2023) Zhou

et al. [498] construct patch assessment on top of pre-trained model (Bloom and Code-
Parrot) with a few-shot prompt.

• Boosting Automated Patch Correctness Prediction via Pre-trained Lan-
guage Model (2023) Zhang et al. [496] do deep-learning based patch assessment
with Bert, CodeBERT and GraphCodeBERT, reporting an improvement over Cache.

• Context-aware code change embedding for better patch correctness assess-
ment (2022) Lin et al. [420] perform patch assessment using code2seq bag of paths
and contextual code, in a system called Cache (code).

• Crex: Predicting patch correctness in automated repair of C programs
through transfer learning of execution semantics (2023) Yan et al. [448] use
similarity distances on micro-traces obtained with micro-execution to capture breaking
behavior.

• Attention: Not Just Another Dataset for Patch-Correctness Checking (2022)
Wang et al. [442] reimplement certain overfitting detection techniques and apply them
to PraPA binary patches decompiled with JD, with little success.

• Patch correctness assessment in automated program repair based on the
impact of patches on production and test code (2022) Ghanbari and Marcus
[404] rank APR patches based on a combination of textual similarity and code coverage
differencing.

• Test-based Patch Clustering for Automatically-Generated Patches Assess-
ment (2022) Martinez et al. [423] cluster patches according to boolean vectors of test
results (incl. from automatically generated tests) in order to show reviewers patches
from different clusters.

• Invalidator: Automated Patch Correctness Assessment via Semantic and
Syntactic Reasoning (2023) Le-Cong et al. [465] combine Daikon invariant analysis
and a CodeBERT based neural embedding to filter out incorrect patches.

• Is this Change the Answer to that Problem Correlating Descriptions of
Bug and Code Changes for Evaluating Patch Correctness (2022) Tian et al.
[439] rank patches according to a similarity distance in an embedding space between
patches and bug descriptions.

• Identifying Incorrect Patches in Program Repair Based on Meaning of
Source Code (2022) Phung et al. [431] order APR patches by their distance to the
method intention, where the method intention is inferred from the patched method
name and the distance is computed in an embedding space based on Code2Vec.

• Exploring Plausible Patches Using Source Code Embeddings in JavaScript
(2021) Csuvik et al. [340] present experiments suggesting that the Doc2Vec embedding
of code is not useful for discarding overfitting patches.

29

https://github.com/Ringbo/Cache

• Exploring True Test Overfitting in Dynamic Automated Program Repair
using Formal Methods (2021) Nilizadeh et al. [363] assess overfitting in APR
patches using ground truth reference programs equipped with formal specifications in
OpenJML, with an experiment on 30 small programs. Follow-up paper is [362].

• Neural Program Repair with Execution-based Backpropagation (2021) Ye et
al. [385] design and optimize a loss function that embeds the results of test execution
in order to avoid overfitting.

• Adversarial Patch Generation for Automatic Program Repair (2020) Alhefdhi
et al. [282]ăpresent preliminary results on using a patch discriminator to encourage a
data-driven system to generate patches that look like human patches.

• Automated Patch Correctness Assessment: How Far are We? (2020) Wang
et al. [318] compare different overfitting detection techniques from the literature and
find that dynamic techniques do not perform better than static techniques.

• Evaluating representation learning of code changes for predicting patch
correctness in program repair (2020) Tien et al. [316] show that a purely syntactic
approach based on BERT-based embeddings associated with logistic regression does
not improve overfitting detection.

• Exploring the Differences between Plausible and Correct Patches at Fine-
Grained Level (2020) Yang et al. [321] present a preliminary experiment on using
Daikon invariants to detect overfitting patches.

• Utilizing Source Code Embeddings to Identify Correct Patches (2020) Csuvik
et al. [291] propose to order likely patches by their distance to the buggy program in
an embedding space, and compare three such spaces.

• Automated Classification of Overfitting Patches with Statically Extracted
Code Features (2019) Ye et al. [383] define features on code and train a machine
learning model to detect overfitting patches.

• Validation of Automatically Generated Patches: An Appetizer (2019) Ghan-
bari [231] proposes to use Daikon invariants to generate property-based tests that can
rank generated patches by likelihood.

• Automated Patch Assessment for Program Repair at Scale (2019) Ye et al.
[384] studies the usage of test generation based on a ground truth patch to better
evaluate program repair research.

• Alleviating Patch Overfitting with Automatic Test Generation: A Study of
Feasibility and Effectiveness for the Nopol Repair System (2018) [216] shows
that using tests that are generated against the buggy version of the program under
repair poses a serious oracle problem.

• Identifying Patch Correctness in Test-Based Program Repair (2018) Xiong
et al. [214] analyze test execution traces to filter out incorrect overfitting patches.

• Overfitting in semantics-based automated program repair (2018) [179] com-
pares Angelix and variants of it on the IntroClass and CodeFlaws benchmarks showing
that 50-75% of patches are overfitting.

• Is the Cure Worse Than the Disease? Overfitting in Automated Program
Repair (2015) [98] is the first paper to name the overfitting problem.

30

5.3 General Non-functional Improvements, incl. Fault Localization
• Better Automatic Program Repair by Using Bug Reports and Tests To-

gether (2023) Motwani and Brun [477] perform faul-localization based on the simi-
larity between bug reports and source code files using the BLUiR method.

• FLACOCO: Fault Localization for Java based on Industry-grade Coverage
(2021) Silva et al. [374] propose an implementation of SBFL that supports all major
Java bytecode versions.

• Energy Consumption of Automated Program Repair (2022) Martinez et al.
[424] measures the energy consumption per patch for 10 Java repair tools and observe
major differences, the smallest consumption being 8kJ per first patch.

• Revisiting Test Cases to Boost Generate-and-Validate Program Repair
Zhang et al. [386] study how stacktraces can be be used to improve fault localiza-
tion in APR.

• On the effectiveness of unified debugging: An extensive study on 16 pro-
gram repair systems (2020) Benton et al. [283] study the performance of a new
fault localization technique called UniDebug++, on 16 repair tools. On Defects4J,
UniDebug++ can localize over 20% more bugs at the Top-1 position.

• Automatically Repairing Programs Using Both Tests and Bug Reports
(2020), Motwani and Brun [311] improve on the fault localization component of Sim-
Fix with a new technique that combines spectrum-based and bug-report based fault
localization.

• Can Automated Program Repair Refine Fault Localization (2019) Lou et
al. [250] proposes a variant of mutation-based fault localization based on the PraPR
program repair tool.

• Restore: Retrospective fault localization enhancing automated program
repair (2020), Xu et al. [320] design a two-phase fault-localization process for repair
and apply it to Jaid and SimFix.

• You Cannot Fix What You Cannot Find! An Investigation of Fault Local-
ization Bias in Benchmarking Automated Program Repair Systems (2019)
[245] shows that one third of bugs in the Defects4J benchmark cannot be localized,
hence cannot be repair with approach based on spectrum-based fault localization.

• An Empirical Study on the Effect of Dynamic Slicing on Automated Pro-
gram Repair Efficiency (2018) [168] replaces Ochiai in Nopol [149] by a dynamic
slicing approach based on Javasclicer.

• An Empirical Study on the Usage of Fault Localization in Automated Pro-
gram Repair[150] (2017) compares two variations of spectrum based fault localization
in Nopol [149].

5.4 Interactive Program Repair
“Interactive Program Repair” means asking questions to the developer about the expected
output of some expressions, in order to drive the search towards correct oatches.

• Automatic Program Repair as Semantic Suggestions - An Empirical Study
(2021) Campos et al. [334] implement and evaluate mutation-based repair for Javascript
inside Visual Studio.

• Interactive Patch Filtering as Debugging Aid (2020) Liang et al. develop an
IDE plugin to present APR patches to developers in a debugging session and shows
how it helps fixing the bug at hand, in an experiment over 30 students and 85 Defects4J
bugs.

31

• Human-In-The-Loop Automatic Program Repair (2020) Böhme et al. [285]
propose to ask a fixed number of yes/no questions to the user/developer about the
expected behavior of the program under repair in order to reduce the risk of incorrect
patches.

• Interactive Testing and Repairing of Regular Expressions (2018) [159] pro-
poses an interactive technique to repair regular expressions, the developer being asked
for validation.

• At the End of Synthesis: Narrowing Program Candidates (2017) Shriver et
al. [139] identify inputs on which the behavior of two candidate patches differ, and
show them to the developers to ask about the preferred behavior.

5.5 Repair Speed
• Accelerating Patch Validation for Program Repair with Interception-Based

Execution Scheduling (2023) Xiao et al. [492] combine mutant schemata (MS), mu-
tant deduplication (MD), test virtualization (TV), and test case prioritization (TCP)
to speed up the assessment of all patches produced by an APR system, comparing
against UniAPR [288].

• Program Repair with Repeated Learning (2022) Chen et al. [396] propose a
repair loop for generate-and-validate repair where a prioritization model is learned
on the fly. The prioritization model is a learning-to-rank version of XGBoost, using
17 code features extracted from the patch, and which is updated depending on the
compilation and test outcome (tool).

• Speeding up constraint-based program repair using a search-based tech-
nique (2022) Yi et al. [451] replace Angelix’ symbolic execution by Monte Carlo
sampling over paths in order to find angelic paths.

• Speedup automatic program repair using dynamic software updating: an
empirical study (2019) Guo et al. [232] apply generated patches using hotswapping
/ class reload in the JVM and report the presence of a speed-up.

• Fast and Precise On-the-fly Patch Validation for All (2020) Chen and Zhang
[288] propose to only load the tentatively patched binary Java classes through hot-
swaping technology, in order to speed up validation with the test suite.
the C programming o language.

• Test-equivalence Analysis for Automatic Patch Generation [191] (2018) re-
duces the number of test executions in the repair loop by clustering candidate patches
according to their test behaviors (tool f1x).

• Improving performance of automatic program repair using learned heuris-
tics (2017) [138] uses 24 code features to identify line/expression pairs that are likely
to work together, i.e. to select good candidate ingredients in redundancy based ap-
proaches.

• Leveraging program equivalence for adaptive program repair: Models and
first results [62] (2013) discards some repair candidates using program equivalent
checks typical from compilers.

• Efficient Automated Program Repair Through Fault-Recorded Testing Pri-
oritization [59] (2013) blends test suite prioritization and classical Genprog.

• More Efficient Automatic Repair of Large-scale Programs Using Weak Re-
compilation [45] (2012) creates an incremental compilation system that is dedicated
to program repair.

32

http://www4.comp.polyu.edu.hk/~csypei/download/LIANA-TSE.zip
https://github.com/mechtaev/f1x

5.6 Integration / UI / Tooling
• AIBugHunter: A Practical Tool for Predicting, Classifying and Repairing

Software Vulnerabilities (2023) Fu et al. [468] integrate detection, clasification,
severity estimation, and repair of C/C++ vulnerabilities with VulRepair in VSCode
plugin.

• Automated Program Repair Based on Code Review: How do Pre-trained
Transformer Models Perform? (2023) Paul et al. improves performance on the
Review4Repair dataset [409] by fine-tuning a CodeT5 model.

• Review4Repair: Code review aided automatic program repairing (2022) Huq
et al. [409] address the problem statement of addressing code review comments, by
training an NMT model on 55,060 code reviews and associated code changes.

• On the introduction of automatic program repair in Bloomberg (2021) Kirbas
et al. [351] describe the integration of APR at Bloomberg, with a system based on
mining repair templates with anti-unification.

• E-APR: Mapping the Effectiveness of Automated Program Repair (2020)
Aleti and Martinez [281] present a meta-tool to predict the right repair tool to use
based on features of the buggy program.

• Visualizing Code Genealogy: How Code is Evolutionarily Fixed in Program
Repair (2019) Tomida et al. [266] proposes a user-interface to visualize the search
happening in a generate-and-validate repair loop implemented in kGenProg.

• Towards s/engineer/bot: principles for program repair bots (2019) van Ton-
der and Le Goues [267] discuss six principles for engineering repair bots related to
syntax, semantics and integration.

• SapFix: Automated End-to-End Repair at Scale (2019) [254] describes the
FaceBook implementation of automatic repair of null pointer exceptions found by the
fuzzing tool Sapienz.

• How to Design a Program Repair Bot? Insights from the Repairnator
Project (2018) [207] is the first ever blueprint architecture on using program repair
in continuous integration.

• Synergistic Debug-Repair of Heap Manipulations (2017) Verma and Roy [143]
add advanced concepts in a proof-of-concept debugger on top of GDB, which supports
specifying desired states and patch generation via SMT-based repair constraints.

• Should fixing these failures be delegated to automated program repair?
(2015) Le et al. [89] perform automatic classification of successful and unsuccessful
cases in Genprog based on features from the Genprog search.

6 Position Papers
• Towards Extending the Range of Bugs That Automated Program Repair

(2022) Al-Bataineh et al. [391] provide a taxonomy of program repair and sketch a
proposal for termination bugs in sequential and concurrent programs.

• Explainable Software Bot Contributions: Case Study of Automated Bug
Fixes (2019) Monperrus [260] claims that patches generated with automatic program
repair should come with a textual explanation.

• Beyond testing configurable systems: applying variational execution to au-
tomatic program repair and higher order mutation testing (2018) [213] sug-
gests using variational execution to find multi-location repair out of a meta-program
with all possible changes.

33

• Trusted software repair for system resiliency (2016) Weimer et al. [121]’s po-
sition paper is about detecting behavioral differences between patches using targeted
differential testing.

• When App Stores Listen to the Crowd to Fight Bugs in the Wild (2015)
[85] sets the vision of an App store that monitors and fixes bugs in production by
orchestrating the search over thousands of devices.

• A Critical Review of ”Automatic Patch Generation Learned from Human-
Written Patches”: Essay on the Problem Statement and the Evaluation of
Automatic Software Repair (2014) [71] states that program repair goes beyond
mimicking human patches, and that scientific evaluation in this research field must be
designed accordingly.

• Two Flavors in Automated Software Repair: Rigid Repair and Plastic Re-
pair (2013) [57] is an early categorization of the field, later called as generate-and-
validate approaches versus semantic-based or synthesis-based approaches.

• Current Challenges in Automatic Software Repair (2013) [53] shows the vision
of C. Le Goues at the end of her seminal PhD thesis on GenProg.

7 Formal Approaches to Program Repair
• Automatic and Incremental Repair for Speculative Information Leaks (2023)

Bard et al. [462] identify speculative execution vulnerabilites with a SeaHorn analysis
and fix themby adding fences in code.

• Automated Repair of Heap-Manipulating Programs using Deductive Syn-
thesis (2020), Nguyen et al. [361] fix static warnings found with HIP/SLEEK (as
[112]) using constraint solving on top of the Songbird prover and deductive synthesis.

• Deductive Program Repair (2015) Kneuss et al. [87] do program repair for a
"purely functional subset of Scala", evaluated on seeded bugs on small programs.

• Cost-Aware Automatic Program Repair (2014) [74] repairs boolean programs
with assertions, by using the method of inductive assertions.

• Program Repair As Sound Optimization of Broken Programs (2009) [20]
theoretically defines repair for an ad hoc formal language.

• Program Repair Suggestions From Graphical State-Transition Specifica-
tions (2008) [14] does theoretical repair using edit sequences on state machines.

• Repair of Boolean Programs with An Application to C (2006) [6] repairs a
specific class of programs called boolean programs: those that only contain boolean
variables.

• Program Repair As a Game (2005) [3] repair programs that are expressed in linear
temporal logics

8 Miscellaneous
8.1 Datasets & Benchmarks

• RunBugRun - An Executable Dataset for Automated Program Repair
(2023) Prenner and Robbers [483] present RunBugRun, a dataset of 450,000 bugs
in 8 languages (majority in Java, Python, C++), which can all be executed with test
cases.

34

• StandUp4NPR: Standardizing SetUp for Empirically Comparing Neural
Program Repair Systems (2022) Zhong et al. [457] curate a training dataset of
144,641 bug-fix pairs in Java, as well as a validation and test dataset (dataset).

• Vul4J: A Dataset of Reproducible Java Vulnerabilities Geared Towards
the Study of Program Repair Techniques (2022) Bui et al. [395] collected 79
reproducible vulnerabilities from 51 real-world Java projects, see https://github.
com/bqcuong/vul4j.

• PLUR: A unifying, graph-based view of program learning, understanding,
and repair (2021) Chen et al. [336] unify 16 software development tasks, incl. repair,
into a single, consistent benchmark (https://github.com/google-research/plur).

• Is the Ground Truth Really Accurate? Dataset Purification for Automated
Program Repair (2021) Yang et al. [380] use coverage and delta-debugging to per-
form change minimization of benchmark bugs (minimized D4J patches are at De-
hengYang/dataset_purification).

• Towards a Benchmark Set for Program Repair Based on Partial Fixes (2021)
Beyer et al. [333] curated 2204 benchmark tasks where the input is a partial fix (data
at https://gitlab.com/sosy-lab/software/partial-fix-benchmarks/).

• A critical review on the evaluation of automated program repair systems
(2020) Liu et al. [356] discuss and consolidate 8 evaluation metrics for program repair
research, which cover different aspects of the problem space.

• Critical Review of BugSwarm for Fault Localization and Program Repair
(2019) Durieux et al. [228] state desirable properties applying to benchmarks for
program repair and assess BugSwarm according to them, showing that a minority of
bugs are usable in this context.

• BugSwarm: Mining and Continuously Growing a Dataset of Reproducible
Failures and Fixes (2019) [227] uses Travis CI as [252] to collect 3,091 bugs and
encaspulates them in a reproducible Docker image.

• Bears: An Extensible Java Bug Benchmark for Automatic Program Repair
Studies (2018) Madeiral et al. [252] propose a new benchmark whose novelty is to be
based on continuous integration analysis (and not on past commits).

• DroidBugs: An Android Benchmark for Automated Program Repair (2018)
Azevedo et al. [160] gathers 13 bugs in Android apps. (code)

• Bugs.jar: a large-scale, diverse dataset of real-world Java bugs (2018) [195]
describes a dataset of 1,158 bugs and patches, over 8 open-source projects.

• Codeflaws: a programming competition benchmark for evaluating auto-
mated program repair tools (2017) Tan et al. [140] present a benchmark of 3902
defects in C, crawled from the Codeforces programming competition website.

• QuixBugs: a multi-lingual program repair benchmark set based on the
quixey challenge (2017) [130] is a benchmark of in simple programs bugs where each
bug is available in both Java and Python.

• The ManyBugs and IntroClass Benchmarks for Automated Repair of C
Programs (2015) ManyBugs [90] is the classical GenProg benchmark and has 185
bugs in 9 C open-source programs. IntroClass is composed of small (10-20 LOC)
student programs, it has been translated to Java (IntroClassJava [104]).

• Defects4J: A Database of Existing Faults to Enable Controlled Testing
Studies for Java Programs (2014) Just et al. [65] presents the Defects4J bench-
mark, extensively used in program repair research since the initial experiment by
Durieux et al. [81, 133].

35

https://github.com/kwz219/NPR4J
https://github.com/bqcuong/vul4j
https://github.com/bqcuong/vul4j
https://github.com/google-research/plur
https://github.com/DehengYang/dataset_purification
https://github.com/DehengYang/dataset_purification
https://gitlab.com/sosy-lab/software/partial-fix-benchmarks/
https://github.com/I4Soft/DroidBugs

8.2 Automatic Hardening
• Automatically Fixing C Buffer Overflows Using Program Transformations

(2014) [75] uses three program transformations dedicated to integer operations, and
shows that the approach scales to real programs.

• Program Transformations to Fix C Integers (2013) [49] proposes three program
transformations to fix common overflow problems with integer arithmetics in C code.

• A Source-to-source Transformation Tool for Error Fixing. (2013) [50] au-
tomatically adds a condition checks after all method calls with a source-to-source
transformation in C code.

8.3 Surveys
• A Survey on Automated Program Repair Techniques (2023) Huang et al. [469]

contains 164 references incl. recent references on using large language models for repair
and a comprehensive list of datasets.

• A Survey of Learning-based Automated Program Repair (2023) Zhang et al.
[495] focuses on the usage of machine-learning for repair, discussing 186 references.

• Program Repair (2022) Gao et al. [403] survey the field with 8 recent 2022 academic
references.

• Neural Program Repair: Systems, Challenges and Solutions (2022) Zhong et
al. [458] surveys the works on using neural networks to generate patches (51 refer-
ences).

• A Survey on Automatic Bug Fixing (2020), Cao et al. [286] summarize the recent
advances made since the previous surveys (113 references).

• Automated Program Repair (2019) Le Goues et al. [242] give a high-level view of
the field in Communications of the ACM (40 references).

• A Survey of Test Based Automatic Program Repair (2018) Liu et al. [185]
present 81 references, with the last ones from 2017.

• Automatic software repair: a Survey (2017) Gazzola et al.’s survey [127] at IEEE
TSE with 176 references.

• Automatic software repair: a Bibliography Monperrus [134] (first online, 2015,
journal version 2017) is the first ever survey of the field, in ACM Computing Surveys,
with 197 references.

8.4 Doctoral Theses
• Tolmach, “Securing smart contracts with formal verification and automated program

repair”, 2023 [486]

• Ye, “Improving the Precision of Automatic Program Repair with Machine Learning”,
2023 [493]

• Rothenberg, “Formal Automated Program Repair”, 2020 [314]

• Cosman, “PABLO and PYRITE: Helping Novices Debug Python Code Through Data-
Driven Fault Localization and Repair”, 2022 [398]

• Zakharchenko, “A practical approach to automated software correctness enhance-
ment”, 2022 [453]

• Chen, “Effective automatic program repair based on state abstraction”, 2021 [335]

36

• Gao, “Overfitting in Program Repair and Synthesis”, 2021 [342]

• Ginelli, “Understanding and Improving Automatic Program Repair: A Study of Code-
removal Patches and a New Exception-driven Fault Localization Approach”, 2020 [296]

• Koyuncu, “Boosting Automated Program Repair for Adoption By Practitioners”, 2020
[303]

• Coker, “Automatic Repair of Framework Applications”, 2020 [290]

• Harer, “Improved neural machine translation systems for low resource correction tasks”,
2019 [234]

• Liu, “Deep Pattern Mining for Program Repair”, 2018 [182]

• Durieux, “From Runtime Failures to Patches: Study of Patch Generation in Produc-
tion”, 2018 [165]

• Le, “Overfitting in Automated Program Repair: Challenges and Solutions”, 2018 [178]

• Long, “Automatic patch generation via learning from successful human patches”, 2018
[186]

• Hua, “Unifying Program Repair and Program Synthesis”, 2018 [174]

• Mechtaev, “Semantic Program Repair”, 2018 [190]

• Tan, “Design of repair operators for automated program repair”, 2018 [201]

• Timperley, “Advanced Techniques for Search-Based Program Repair”, 2017 [142]

• Gopinath, “Systematic techniques for more effective fault localization and program
repair”, 2016 [105]

• Cornu, “Automatic Analysis and Repair of Exception Bugs for Java Programs”, 2015
[79]

• Martinez, “Extraction and Analysis of Knowledge for Automatic Software Repair”,
2014 [69]

• Le Goues, “Automatic Program Repair Using Genetic Programming”, 2013 [52]

• Nguyen, “Automating Program Verification and Repair Using Invariant Analysis and
Test Input Generation”, 2010 [26]

• Arcuri, “Automatic Software Generation and Improvement Through Search Based
Techniques”, 2009 [15]

References
[1] Rafael Corchuelo, José A Pérez, Antonio Ruiz, and Miguel Toro. “Repairing syntax

errors in LR parsers”. In: ACM Transactions on Programming Languages and Systems
(TOPLAS) 24.6 (2002), pp. 698–710.

[2] Christian Nentwich, Wolfgang Emmerich, and Anthony Finkelstein. “Consistency
Management with Repair Actions”. In: Proceedings of the 25th International Confer-
ence on Software Engineering. 2003, pp. 455–464.

[3] Barbara Jobstmann, Andreas Griesmayer, and Roderick Bloem. “Program Repair As
a Game”. In: Computer Aided Verification. 2005, pp. 226–238.

[4] S. Sidiroglou and A.D. Keromytis. “Countering Network Worms Through Automatic
Patch Generation”. In: Security & Privacy 3.6 (2005), pp. 41–49.

37

[5] Louise A. Dennis, Raul Monroy, and Pablo Nogueira. “Proof-directed Debugging
and Repair”. In: Seventh Symposium on Trends in Functional Programming. 2006,
pp. 131–140.

[6] Andreas Griesmayer, Roderick Bloem, and Byron Cook. “Repair of Boolean Programs
with An Application to C”. In: Computer Aided Verification. 2006, pp. 358–371.

[7] Aditya Kalyanpur, Bijan Parsia, Evren Sirin, and Bernardo Cuenca-Grau. “Repairing
Unsatisfiable Concepts in OWL Ontologies”. In: The Semantic Web: Research and
Applications. Vol. 4011. 2006, pp. 170–184.

[8] Westley Weimer. “Patches As Better Bug Reports”. In: Proceedings of the Interna-
tional Conference on Generative Programming and Component Engineering. 2006.

[9] Z. Lin, X. Jiang, D. Xu, B. Mao, and L. Xie. “AutoPaG: Towards Automated Soft-
ware Patch Generation with Source Code Root Cause Identification and Repair”. In:
Proceedings of the 2nd ACM Symposium on Information, Computer and Communi-
cations Security. 2007, pp. 329–340.

[10] S. Thomas and L. Williams. “Using Automated Fix Generation to Secure SQL State-
ments”. In: Proceedings of the Third International Workshop on Software Engineering
for Secure Systems. 2007, p. 9.

[11] Andrea Arcuri. “On the Automation of Fixing Software Bugs”. In: Companion of the
30th International Conference on Software Engineering. 2008, pp. 1003–1006.

[12] Andrea Arcuri and Xin Yao. “A Novel Co-evolutionary Approach to Automatic Soft-
ware Bug Fixing”. In: Proceedings of the IEEE Congress on Evolutionary Computa-
tion. 2008, pp. 162–168.

[13] Atif M. Memon. “Automatically Repairing Event Sequence-based GUI Test Suites for
Regression Testing”. In: ACM Transactions on Software Engineering and Methodology
18.2 (2008), p. 4.

[14] Farn Wang and Chih-Hong Cheng. “Program Repair Suggestions From Graphical
State-Transition Specifications”. In: Proceedings of FORTE 2008. 2008.

[15] Andrea Arcuri. “Automatic Software Generation and Improvement Through Search
Based Techniques”. PhD thesis. University of Birmingham, 2009.

[16] Valentin Dallmeier, Andreas Zeller, and Bertrand Meyer. “Generating Fixes From
Object Behavior Anomalies”. In: Proceedings of the International Conference on Au-
tomated Software Engineering. 2009.

[17] Brett Daniel, Vilas Jagannath, Danny Dig, and Darko Marinov. “ReAssert: Suggest-
ing Repairs for Broken Unit Tests”. In: Proceedings of the 24th IEEE/ACM Interna-
tional Conference on Automated Software Engineering. 2009, pp. 433–444.

[18] S. Forrest, T.V. Nguyen, W. Weimer, and C. Le Goues. “A Genetic Programming
Approach to Automated Software Repair”. In: Proceedings of the 11th Annual Con-
ference on Genetic and Evolutionary Computation. 2009, pp. 947–954.

[19] Dennis Jeffrey, Min Feng, Neelam Gupta, and Rajiv Gupta. “BugFix: a Learning-
based Tool to Assist Developers in Fixing Bugs”. In: ICPC. 2009, pp. 70–79.

[20] Yuhua Qi, Xiaoguang Mao, and Yan Lei. “Program Repair As Sound Optimization of
Broken Programs”. In: International Symposium on Theoretical Aspects of Software
Engineering. 2009.

[21] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest. “Automatically Finding Patches
Using Genetic Programming”. In: Proceedings of the International Conference on
Software Engineering. 2009.

[22] Yingfei Xiong, Zhenjiang Hu, Haiyan Zhao, Hui Song, Masato Takeichi, and Hong
Mei. “Supporting Automatic Model Inconsistency Fixing”. In: 7th joint meeting of
the European Software engineering Conference and the ACM SIGSOFT Symposium
on The Foundations of Software Engineering. ACM. 2009, pp. 315–324.

38

[23] V. Debroy and W.E. Wong. “Using Mutation to Automatically Suggest Fixes for
Faulty Programs”. In: Proceedings of the International Conference on Software Test-
ing, Verification and Validation. 2010, pp. 65–74.

[24] Ethan Fast, Claire Le Goues, Stephanie Forrest, and Westley Weimer. “Designing
Better Fitness Functions for Automated Program Repair”. In: Proceedings of the 12th
Annual Conference on Genetic and Evolutionary Computation. 2010, pp. 965–972.

[25] Christian Kern and Javier Esparza. “Automatic Error Correction of Java Programs”.
In: Formal Methods for Industrial Critical Systems. 2010, pp. 67–81.

[26] Thanh V. Nguyen. “Automating Program Verification and Repair Using Invariant
Analysis and Test Input Generation”. PhD thesis. The Unversity of New Mexico,
2010.

[27] E. Schulte, S. Forrest, and W. Weimer. “Automated Program Repair Through the
Evolution of Assembly Code”. In: Proceedings of the IEEE/ACM International Con-
ference on Automated Software Engineering. 2010, pp. 313–316.

[28] Marcos Aurélio Almeida da Silva, Alix Mougenot, Xavier Blanc, and Reda Bendraou.
“Towards Automated Inconsistency Handling in Design Models”. In: Proceedings of
the 22nd International Conference on Advanced Information Systems Engineering.
2010, pp. 348–362.

[29] Yi Wei, Yu Pei, Carlo A. Furia, Lucas S. Silva, Stefan Buchholz, Bertrand Meyer,
and Andreas Zeller. “Automated Fixing of Programs with Contracts”. In: Proceedings
of the International Symposium on Software Testing and Analysis. 2010.

[30] Westley Weimer, Stephanie Forrest, Claire Le Goues, and ThanhVu Nguyen. “Auto-
matic Program Repair with Evolutionary Computation”. In: Communications of the
ACM 53.5 (2010), p. 109.

[31] T. Ackling, B. Alexander, and I. Grunert. “Evolving Patches for Software Repair”.
In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Compu-
tation. 2011, pp. 1427–1434.

[32] Andrea Arcuri. “Evolutionary Repair of Faulty Software”. In: Applied Soft Computing
11.4 (2011), pp. 3494–3514.

[33] Divya Gopinath, Muhammad Zubair Malik, and Sarfraz Khurshid. “Specification-
based Program Repair Using SAT”. In: Proceedings of the International Conference
on Tools and Algorithms for the Construction and Analysis of Systems. 2011.

[34] G. Jin, L. Song, W. Zhang, S. Lu, and B. Liblit. “Automated Atomicity-violation
Fixing”. In: Proceedings of the 32nd ACM SIGPLAN Conference on Programming
Language Design and Implementation. 2011, pp. 389–400.

[35] Sara Kalvala and Richard Warburton. “A Formal Approach to Fixing Bugs”. In:
Formal Methods, Foundations and Applications. 2011, pp. 172–187.

[36] Robert Könighofer and Roderick Bloem. “Automated Error Localization and Cor-
rection for Imperative Programs”. In: Formal Methods in Computer-Aided Design
(FMCAD), 2011. 2011, pp. 91–100.

[37] N. Lazaar, A. Gotlieb, and Y. Lebbah. “A Framework for the Automatic Correction
of Constraint Programs”. In: Proceedings of the International Conference on Software
Testing, Verification and Validation. 2011, pp. 319–326.

[38] M.Z. Malik, J.H. Siddiqi, and S. Khurshid. “Constraint-Based Program Debugging
Using Data Structure Repair”. In: International Conference on Software Testing,
Verification and Validation (ICST). 2011, pp. 190–199.

[39] Yu Pei, Yi Wei, Carlo A Furia, Martin Nordio, and Bertrand Meyer. Code-Based
Automated Program Fixing. Tech. rep. arXiv:1102.1059v2. 2011.

[40] Zachary P. Fry, Bryan Landau, and Westley Weimer. “A Human Study of Patch
Maintainability”. In: Proceedings of the International Symposium on Software Testing
and Analysis. 2012, pp. 177–187.

39

[41] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer. “A Systematic Study of
Automated Program Repair: Fixing 55 Out of 105 Bugs for $8 Each”. In: Proceedings
of the International Conference on Software Engineering. 2012, pp. 3–13.

[42] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. “Gen-
Prog: a Generic Method for Automatic Software Repair”. In: IEEE Transactions on
Software Engineering 38 (2012), pp. 54–72.

[43] Peng Liu and Charles Zhang. “Axis: Automatically Fixing Atomicity Violations
Through Solving Control Constraints”. In: Proceedings of the 2012 International Con-
ference on Software Engineering. 2012, pp. 299–309.

[44] Francesco Logozzo and Tom Ball. “Modular and Verified Automatic Program Re-
pair”. In: Proceedings of the 27th ACM International Conference on Object Oriented
Programming Systems Languages and Applications. 2012.

[45] YuHua Qi, XiaoGuang Mao, YanJun Wen, ZiYing Dai, and Bin Gu. “More Efficient
Automatic Repair of Large-scale Programs Using Weak Recompilation”. In: Science
China Information Sciences 55.12 (2012), pp. 2785–2799.

[46] Urmas Repinski, Hanno Hantson, Maksim Jenihhin, Jaan Raik, Raimund Ubar,
Giuseppe Di Guglielmo, Graziano Pravadelli, and Franco Fummi. “Combining dy-
namic slicing and mutation operators for ESL correction”. In: 17th IEEE European
Test Symposium. IEEE. 2012, pp. 1–6.

[47] Hesam Samimi, Max Schäfer, Shay Artzi, Todd D. Millstein, Frank Tip, and Laurie
J. Hendren. “Automated Repair of HTML Generation Errors in PHP Applications
Using String Constraint Solving”. In: Proceedings of ICSE. 2012, pp. 277–287.

[48] Vipin Balachandran. “Fix-it: An extensible code auto-fix component in review bot”.
In: IEEE 13th International Working Conference on Source Code Analysis and Ma-
nipulation, SCAM 2013. 2013, pp. 167–172.

[49] Zack Coker and Munawar Hafiz. “Program Transformations to Fix C Integers”. In:
Proceedings of the International Conference on Software Engineering. 2013, pp. 792–
801.

[50] Youry Khmelevsky, Martin C Rinard, and Stelios Sidiroglou-Douskos. “A Source-
to-source Transformation Tool for Error Fixing.” In: Proceedings of CASCON. 2013,
pp. 147–160.

[51] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. “Automatic Patch
Generation Learned From Human-Written Patches”. In: Proceedings of ICSE. 2013.

[52] Claire Le Goues. “Automatic Program Repair Using Genetic Programming”. PhD
thesis. University of Virgina, 2013.

[53] Claire Le Goues, Stephanie Forrest, and Westley Weimer. “Current Challenges in
Automatic Software Repair”. In: Software Quality Journal 21.3 (2013), pp. 421–443.

[54] Maurizio Leotta, Diego Clerissi, Filippo Ricca, and Cristiano Spadaro. “Repairing
Selenium Test Cases: an Industrial Case Study about Web Page Element Localiza-
tion”. In: International Conference on Software Testing, Verification and Validation.
IEEE. 2013, pp. 487–488.

[55] Chen Liu, Jinqiu Yang, Lin Tan, and Munawar Hafiz. “R2Fix: Automatically Gener-
ating Bug Fixes From Bug Reports”. In: Proceedings of the International Conference
on Software Testing, Verification and Validation (ICST). 2013, pp. 282–291.

[56] Francesco Logozzo and Matthieu Martel. “Automatic Repair of Overflowing Expres-
sions with Abstract Interpretation”. In: Semantics, Abstract Interpretation, and Rea-
soning About Programs: Essays Dedicated to David A. Schmidt on the Occasion of
His Sixtieth Birthday. Vol. 129. 2013, pp. 341–357.

[57] Martin Monperrus and Benoit Baudry. Two Flavors in Automated Software Repair:
Rigid Repair and Plastic Repair. Research Report Dagstuhl Seminar 13061 ”Fault
Prediction, Localization, and Repair”. Schloss Dagstuhl - Leibniz Center for Infor-
matics, 2013, p. 5.

40

[58] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chandra.
“SemFix: Program Repair via Semantic Analysis”. In: Proceedings of the International
Conference on Software Engineering. 2013.

[59] Y. Qi, X. Mao, and Y. Lei. “Efficient Automated Program Repair Through Fault-
Recorded Testing Prioritization”. In: Proceedings of ICSM. 2013.

[60] Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. “Automated Feedback
Generation for Introductory Programming Assignments”. In: ACM SIGPLAN No-
tices. Vol. 48. 6. 2013, pp. 15–26.

[61] Sooel Son, Kathryn S McKinley, and Vitaly Shmatikov. “Fix Me Up: Repairing
Access-Control Bugs in Web Applications.” In: Proceedings of the Network and Dis-
tributed System Security Symposium. 2013.

[62] Westley Weimer, Zachary P. Fry, and Stephanie Forrest. “Leveraging program equiv-
alence for adaptive program repair: Models and first results”. In: International Con-
ference on Automated Software Engineering. 2013, pp. 356–366.

[63] Favio Demarco, Jifeng Xuan, Daniel Le Berre, and Martin Monperrus. “Automatic
Repair of Buggy If Conditions and Missing Preconditions with SMT”. In: Proceedings
of the 6th International Workshop on Constraints in Software Testing, Verification,
and Analysis (CSTVA 2014). 2014.

[64] Divya Gopinath, Sarfraz Khurshid, Diptikalyan Saha, and Satish Chandra. “Data-
guided Repair of Selection Statements”. In: Proceedings of the 36th International
Conference on Software Engineering. 2014, pp. 243–253.

[65] René Just, Darioush Jalali, and Michael D. Ernst. “Defects4J: A Database of Existing
Faults to Enable Controlled Testing Studies for Java Programs”. In: Proceedings of
the 2014 International Symposium on Software Testing and Analysis (ISSTA’14).
2014.

[66] Shalini Kaleeswaran, Varun Tulsian, Aditya Kanade, and Alessandro Orso. “Minthint:
Automated Synthesis of Repair Hints”. In: Proceedings of the International Confer-
ence on Software Engineering. 2014, pp. 266–276.

[67] Yiyan Lin and Sandeep Kulkarni. “Automatic Repair for Multi-threaded Programs
with Deadlock/Livelock Using Maximum Satisfiability”. In: Proceedings of the 2014
International Symposium on Software Testing and Analysis. ACM. 2014, pp. 237–
247.

[68] Fan Long, Stelios Sidiroglou-Douskos, Deokhwan Kim, and Martin Rinard. “Sound
Input Filter Generation for Integer Overflow Errors”. In: ACM SIGPLAN Notices
49.1 (2014), pp. 439–452.

[69] Matias Martinez. “Extraction and Analysis of Knowledge for Automatic Software
Repair”. PhD thesis. Université de Lille, 2014.

[70] Matias Martinez, Westley Weimer, and Martin Monperrus. “Do the Fix Ingredients
Already Exist? An Empirical Inquiry into the Redundancy Assumptions of Program
Repair Approaches”. In: ICSE - 36th IEEE International Conference on Software
Engineering. 2014.

[71] Martin Monperrus. “A Critical Review of ”Automatic Patch Generation Learned from
Human-Written Patches”: Essay on the Problem Statement and the Evaluation of
Automatic Software Repair”. In: International Conference on Software Engineering.
2014, pp. 234–242.

[72] Frolin S Ocariza Jr, Karthik Pattabiraman, and Ali Mesbah. “Vejovis: suggesting
fixes for JavaScript faults”. In: Proceedings of the 36th International Conference on
Software Engineering. 2014.

[73] Yuhua Qi, Xiaoguang Mao, Yan Lei, Ziying Dai, and Chengsong Wang. “The Strength
of Random Search on Automated Program Repair”. In: Proceedings of the 36th In-
ternational Conference on Software Engineering. 2014, pp. 254–265.

41

[74] Roopsha Samanta, Oswaldo Olivo, and E Allen Emerson. “Cost-aware Automatic
Program Repair”. In: International Static Analysis Symposium. Springer. 2014, pp. 268–
284.

[75] Alex Shaw, Dusten Doggett, and Munawar Hafiz. “Automatically Fixing C Buffer
Overflows Using Program Transformations”. In: International Conference on Depend-
able Systems and Networks. 2014, pp. 124–135.

[76] Yida Tao, Jindae Kim, Sunghun Kim, and Chang Xu. “Automatically Generated
Patches As Debugging Aids: a Human Study”. In: Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering. 2014,
pp. 64–74.

[77] Tielei Wang, Chengyu Song, and Wenke Lee. “Diagnosis and Emergency Patch Gen-
eration for Integer Overflow Exploits”. In: Detection of Intrusions and Malware, and
Vulnerability Assessment. 2014, pp. 255–275.

[78] Andreas Zeller, Yi Wei, Bertrand Meyer, Martin Nordio, Carlo A. Furia, and Yu Pei.
“Automated Fixing of Programs with Contracts”. In: IEEE Transactions on Software
Engineering 40.5 (2014), pp. 427–449.

[79] Benoit Cornu. “Automatic Analysis and Repair of Exception Bugs for Java Pro-
grams”. PhD thesis. Université de Lille, 2015.

[80] Aritra Dhar, Rahul Purandare, Mohan Dhawan, and Suresh Rangaswamy. “CLOTHO:
Saving Programs from Malformed Strings and Incorrect String-handling”. In: Foun-
dations of Software Engineering. ACM. 2015, pp. 555–566.

[81] Thomas Durieux, Matias Martinez, Martin Monperrus, Romain Sommerard, and
Jifeng Xuan. Automatic Repair of Real Bugs: An Experience Report on the Defects4J
Dataset. Tech. rep. hal-01162221. HAL, 2015.

[82] Qing Gao, Yingfei Xiong, Yaqing Mi, Lu Zhang, Weikun Yang, Zhaoping Zhou, Bing
Xie, and Hong Mei. “Safe Memory-leak Fixing for C Programs”. In: Proceedings of
the 37th International Conference on Software Engineering. 2015, pp. 459–470.

[83] Qing Gao, Hansheng Zhang, Jie Wang, Yingfei Xiong, Lu Zhang, and Hong Mei.
“Fixing Recurring Crash Bugs via Analyzing Q&A Sites”. In: Proceedings of the 30th
IEEE/ACM International Conference on Automated Software Engineering. ACM,
2015.

[84] Z. Gao, Z. Chen, Y. Zou, and A. Memon. “SITAR: GUI Test Script Repair”. In: IEEE
Transactions on Software Engineering (2015).

[85] Maria Gomez, Matias Martinez, Martin Monperrus, and Romain Rouvoy. “When
App Stores Listen to the Crowd to Fight Bugs in the Wild”. In: 37th International
Conference on Software Engineering (ICSE), track on New Ideas and Emerging Re-
sults (NIER). IEEE, 2015, p. 4.

[86] Yalin Ke, Kathryn T. Stolee, Claire Le Goues, and Yuriy Brun. “Repairing Pro-
grams with Semantic Code Search”. In: Proceedings of the International Conference
on Automated Software Engineering. 2015.

[87] Etienne Kneuss, Manos Koukoutos, and Viktor Kuncak. “Deductive Program Re-
pair”. In: International Conference on Computer Aided Verification. Springer. 2015,
pp. 217–233.

[88] Sebastian Lamelas and Martin Monperrus. Automatic Repair of Infinite Loops. Tech-
nical Report hal-01144026. University of Lille, 2015.

[89] Xuan-Bach D. Le, Tien-Duy B. Le, and David Lo. “Should fixing these failures be
delegated to automated program repair?” In: Proceedings of the IEEE International
Symposium on Software Reliability Engineering. 2015, pp. 427–437.

[90] Claire Le Goues, Neal Holtschulte, Edward K. Smith, Yuriy Brun, Premkumar De-
vanbu, Stephanie Forrest, and Westley Weimer. “The ManyBugs and IntroClass
Benchmarks for Automated Repair of C Programs”. In: IEEE Transactions on Soft-
ware Engineering (TSE), in press (2015).

42

[91] Fan Long and Martin C. Rinard. “Staged Program Repair with Condition Synthesis”.
In: Proceedings of ESEC/FSE. 2015.

[92] Matias Martinez and Martin Monperrus. “Mining Software Repair Models for Rea-
soning on the Search Space of Automated Program Fixing”. In: Empirical Software
Engineering 20.1 (2015), pp. 176–205.

[93] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. “DirectFix: Looking for
Simple Program Repairs”. In: Proceedings of the 37th International Conference on
Software Engineering. 2015.

[94] P. Muntean, V. K. Kommanapalli, A. Ibing, and C. Eckert. “Automated Generation of
Buffer Overflows Quick Fixes Using Symbolic Execution and SMT”. In: International
Conference on Computer Safety, Reliability & Security (SAFECOMP’15). 2015.

[95] Adrian Nistor, Po-Chun Chang, Cosmin Radoi, and Shan Lu. “Caramel: Detecting
and fixing performance problems that have non-intrusive fixes”. In: 2015 IEEE/ACM
37th IEEE International Conference on Software Engineering. Vol. 1. IEEE. 2015,
pp. 902–912.

[96] Renaud Pawlak, Martin Monperrus, Nicolas Petitprez, Carlos Noguera, and Lionel
Seinturier. “Spoon: A Library for Implementing Analyses and Transformations of
Java Source Code”. In: Software: Practice and Experience 46 (2015), pp. 1155–1179.

[97] Zichao Qi, Fan Long, Sara Achour, and Martin Rinard. “An Analysis of Patch Plau-
sibility and Correctness for Generate-And-Validate Patch Generation Systems”. In:
Proceedings of ISSTA. 2015.

[98] Edward K. Smith, Earl Barr, Claire Le Goues, and Yuriy Brun. “Is the Cure Worse
Than the Disease? Overfitting in Automated Program Repair”. In: Proceedings of
the 10th Joint Meeting of the European Software Engineering Conference and ACM
SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE).
2015.

[99] Shin Hwei Tan and Abhik Roychoudhury. “Relifix: Automated Repair of Software
Regressions”. In: Proceedings of ICSE. 2015.

[100] Yingfei Xiong, Hansheng Zhang, Arnaud Hubaux, Steven She, Jie Wang, and Krzysztof
Czarnecki. “Range Fixes: Interactive Error Resolution for Software Configuration”.
In: IEEE Transactions on Software Engineering 41.6 (2015), pp. 603–619.

[101] Sahil Bhatia and Rishabh Singh. “Automated Correction for Syntax Errors in Pro-
gramming Assignments using Recurrent Neural Networks”. In: arXiv abs/1603.06129
(2016).

[102] Loris DAntoni, Roopsha Samanta, and Rishabh Singh. “Qlose: Program Repair with
Quantitative Objectives”. In: International Conference on Computer Aided Verifica-
tion. Springer. 2016, pp. 383–401.

[103] Thomas Durieux and Martin Monperrus. “DynaMoth: Dynamic Code Synthesis for
Automatic Program Repair”. In: 11th International Workshop in Automation of Soft-
ware Test (AST 2016). 2016.

[104] Thomas Durieux and Martin Monperrus. IntroClassJava: A Benchmark of 297 Small
and Buggy Java Programs. Research Report hal-01272126. Universite Lille 1, 2016.

[105] Divya Gopinath. “Systematic techniques for more effective fault localization and pro-
gram repair”. PhD thesis. University of Texas, 2016.

[106] Sumit Gulwani, Ivan Radiek, and Florian Zuleger. “Automated Clustering and Pro-
gram Repair for Introductory Programming Assignments”. In: arXiv preprint arXiv:1603.03165
(2016).

[107] Mouna Hammoudi, Gregg Rothermel, and Andrea Stocco. “Waterfall: An incremental
approach for repairing record-replay tests of web applications”. In: Proceedings of the
2016 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering. ACM. 2016, pp. 751–762.

43

[108] Tao Ji, Liqian Chen, Xiaoguang Mao, and Xin Yi. “Automated Program Repair
by Using Similar Code Containing Fix Ingredients”. In: 2016 IEEE 40th Annual
Computer Software and Applications Conference (COMPSAC) 1 (2016), pp. 197–
202.

[109] Mingyue Jiang, Tsong Yueh Chen, Fei-Ching Kuo, Dave Towey, and Zuohua Ding.
“A Metamorphic Testing Approach for Supporting Program Repair without the Need
for a Test Oracle”. In: Journal of Systems and Software (2016).

[110] X. B. D. Le, D. Lo, and C. L. Goues. “History Driven Program Repair”. In: Pro-
ceedings of the 23rd International Conference on Software Analysis, Evolution, and
Reengineering (SANER). 2016, pp. 213–224.

[111] X. D. Le, D. Lo, and C. Le Goues. “Empirical Study on Synthesis Engines for
Semantics-Based Program Repair”. In: 2016 IEEE International Conference on Soft-
ware Maintenance and Evolution (ICSME). 2016.

[112] Xuan-Bach D Le, Quang Loc Le, David Lo, and Claire Le Goues. “Enhancing auto-
mated program repair with deductive verification”. In: IEEE International Conference
on Software Maintenance and Evolution. IEEE. 2016.

[113] Haopeng Liu, Yuxi Chen, and Shan Lu. “Understanding and Generating High Quality
Patches for Concurrency bugs”. In: Proceedings of the 2016 24th ACM SIGSOFT In-
ternational Symposium on Foundations of Software Engineering. ACM. 2016, pp. 715–
726.

[114] Fan Long and Martin C. Rinard. “Prophet: Automatic Patch Generation via Learn-
ing From Successful Patches”. In: Proceedings of the Symposium on Principles of
Programming Languages. 2016.

[115] Siqi Ma, David Lo, Teng Li, and Robert H Deng. “Cdrep: Automatic repair of cryp-
tographic misuses in android applications”. In: Proceedings of the ACM on Asia Con-
ference on Computer and Communications Security. 2016.

[116] Matias Martinez and Martin Monperrus. “ASTOR: A Program Repair Library for
Java”. In: Proceedings of ISSTA, Demonstration Track. 2016, pp. 441–444.

[117] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. “Angelix: Scalable Mul-
tiline Program Patch Synthesis via Symbolic Analysis”. In: Proceedings of the 38th
International Conference on Software Engineering. 2016, pp. 691–701.

[118] Vinicius Oliveira, Eduardo Souza, Claire Le Goues, and Celso G. Camilo. “Improved
Crossover Operators for Genetic Programming for Program Repair”. In: Proceedings
of the 8th International Symposium on Search Based Software Engineering. 2016.

[119] Yewen Pu, Karthik Narasimhan, Armando Solar-Lezama, and Regina Barzilay. “sk_p:
a neural program corrector for MOOCs”. In: Companion Proceedings of the 2016 ACM
SIGPLAN International Conference on Systems, Programming, Languages and Ap-
plications: Software for Humanity. 2016.

[120] Bat-Chen Rothenberg and Orna Grumberg. “Sound and complete mutation-based
program repair”. In: International Symposium on Formal Methods. 2016, pp. 593–
611.

[121] W. Weimer, S. Forrest, M. Kim, C. L. Goues, and P. Hurley. “Trusted Software Repair
for System Resiliency”. In: 2016 46th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks Workshop (DSN-W). 2016, pp. 238–241.

[122] Liushan Chen, Yu Pei, and Carlo A. Furia. “Contract-based Program Repair Without
the Contracts”. In: Proceedings of the 32Nd IEEE/ACM International Conference on
Automated Software Engineering. 2017.

[123] Xi Cheng, Min Zhou, Xiaoyu Song, Ming Gu, and Jiaguang Sun. “IntPTI: Auto-
matic integer error repair with proper-type inference”. In: Proceedings of the 32nd
IEEE/ACM International Conference on Automated Software Engineering. IEEE
Press. 2017, pp. 996–1001.

44

[124] Jacob Devlin, Jonathan Uesato, Rishabh Singh, and Pushmeet Kohli. “Semantic
Code Repair using Neuro-Symbolic Transformation Networks”. In: arXiv preprint
arXiv:1710.11054 (2017).

[125] Thomas Durieux, Benoit Cornu, Lionel Seinturier, and Martin Monperrus. “Dynamic
Patch Generation for Null Pointer Exceptions Using Metaprogramming”. In: IEEE
International Conference on Software Analysis, Evolution and Reengineering. 2017,
pp. 349–358.

[126] Thomas Durieux, Youssef Hamadi, and Martin Monperrus. “Production-Driven Patch
Generation”. In: Proceedings of the 39th International Conference on Software Engi-
neering: New Ideas and Emerging Results Track. 2017, pp. 23–26.

[127] Luca Gazzola, Daniela Micucci, and Leonardo Mariani. “Automatic software repair:
A survey”. In: IEEE Transactions on Software Engineering (2017).

[128] Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. “DeepFix: Fixing
Common C Language Errors by Deep Learning”. In: Proceedings of the AAAI Con-
ference on Artificial Intelligence. 2017.

[129] Xianglong Kong, Lingming Zhang, W Eric Wong, and Bixin Li. “The impacts of
techniques, programs and tests on automated program repair: An empirical study”.
In: Journal of Systems and Software (2017).

[130] Derrick Lin, James Koppel, Angela Chen, and Armando Solar-Lezama. “QuixBugs:
a multi-lingual program repair benchmark set based on the quixey challenge”. In:
Proceedings Companion of the 2017 ACM SIGPLAN International Conference on
Systems, Programming, Languages, and Applications: Software for Humanity. 2017.

[131] Fan Long, Peter Amidon, and Martin Rinard. “Automatic Inference of Code Trans-
forms for Patch Generation”. In: Proceedings of the 2017 11th Joint Meeting on Foun-
dations of Software Engineering. 2017.

[132] Siqi Ma, Ferdian Thung, David Lo, Cong Sun, and Robert H Deng. “Vurle: Auto-
matic vulnerability detection and repair by learning from examples”. In: European
Symposium on Research in Computer Security. Springer. 2017, pp. 229–246.

[133] Matias Martinez, Thomas Durieux, Romain Sommerard, Jifeng Xuan, and Martin
Monperrus. “Automatic Repair of Real Bugs in Java: A Large-Scale Experiment on
the Defects4J Dataset”. In: Empirical Software Engineering 22.4 (2017), pp. 1936–
1964.

[134] Martin Monperrus. “Automatic Software Repair: a Bibliography”. In: ACM Comput-
ing Surveys 51 (2017), pp. 1–24.

[135] Manish Motwani, Sandhya Sankaranarayanan, René Just, and Yuriy Brun. “Do au-
tomated program repair techniques repair hard and important bugs?” In: Empirical
Software Engineering (2017).

[136] ThanhVu Nguyen, Westley Weimer, Deepak Kapur, and Stephanie Forrest. “Con-
necting Program Synthesis and Reachability: Automatic Program Repair Using Test-
Input Generation”. In: TACAS. 2017, pp. 301–318.

[137] Ripon K. Saha, Yingjun Lyu, and Hiroaki Yoshida. “Elixir: Effective object-oriented
program repair”. In: Proceedings of the 32nd IEEE/ACM International Conference
on Automated Software Engineering. 2017.

[138] Liam Schramm. “Improving performance of automatic program repair using learned
heuristics”. In: Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering. ACM. 2017, pp. 1071–1073.

[139] David Shriver, Sebastian Elbaum, and Kathryn T. Stolee. “At the End of Synthesis:
Narrowing Program Candidates”. In: Proceedings of the 39th International Conference
on Software Engineering: New Ideas and Emerging Results Track. 2017.

45

[140] Shin Hwei Tan, Jooyong Yi, Sergey Mechtaev, Abhik Roychoudhury, et al. “Code-
flaws: a programming competition benchmark for evaluating automated program re-
pair tools”. In: 2017 IEEE/ACM 39th International Conference on Software Engi-
neering Companion (ICSE-C). IEEE. 2017, pp. 180–182.

[141] Y. Tian and B. Ray. “Automatically Diagnosing and Repairing Error Handling Bugs
in C”. In: FSE’17. 2017.

[142] Christopher Steven Timperley. “Advanced Techniques for Search-Based Program Re-
pair”. PhD thesis. University of York, 2017.

[143] Sahil Verma and Subhajit Roy. “Synergistic debug-repair of heap manipulations”. In:
Proceedings of the Joint Meeting on Foundations of Software Engineering. 2017.

[144] Ke Wang, Rishabh Singh, and Zhendong Su. “Dynamic Neural Program Embedding
for Program Repair”. In: arXiv preprint arXiv:1711.07163 (2017).

[145] Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and Shing-Chi Cheung. “An em-
pirical analysis of the influence of fault space on search-based automated program
repair”. In: arXiv preprint arXiv:1707.05172 (2017).

[146] Martin White, Michele Tufano, Matias Martinez, Martin Monperrus, and Denys
Poshyvanyk. Sorting and Transforming Program Repair Ingredients via Deep Learn-
ing Code Similarities. Tech. rep. 1707.04742. Arxiv, 2017.

[147] Qi Xin and Steven P Reiss. “Leveraging syntax-related code for automated program
repair”. In: Proceedings of the 32nd IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE). 2017.

[148] Yingfei Xiong, Jie Wang, Runfa Yan, Jiachen Zhang, Shi Han, Gang Huang, and Lu
Zhang. “Precise Condition Synthesis for Program Repair”. In: Proceedings of the 39th
International Conference on Software Engineering. 2017.

[149] Jifeng Xuan, Matias Martinez, Favio Demarco, Maxime Clément, Sebastian Lamelas,
Thomas Durieux, Daniel Le Berre, and Martin Monperrus. “Nopol: Automatic Repair
of Conditional Statement Bugs in Java Programs”. In: IEEE Transactions on Software
Engineering 43.1 (2017), pp. 34–55.

[150] D. Yang, Y. Qi, and X. Mao. “An Empirical Study on the Usage of Fault Localization
in Automated Program Repair”. In: 2017 IEEE International Conference on Software
Maintenance and Evolution. 2017, pp. 504–508.

[151] Jinqiu Yang, Alexey Zhikhartsev, Yuefei Liu, and Lin Tan. “Better test cases for
better automated program repair”. In: Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering. 2017.

[152] J. Yi, U. Ahmed, A. Karkare, S. Tan, and A. Roychoudhury. “A feasibility study
of using automated program repair for introductory programming assignments”. In:
Proceedings of ESEC/FSE. 2017.

[153] Jooyong Yi, Shin Hwei Tan, Sergey Mechtaev, Marcel Böhme, and Abhik Roychoud-
hury. “A correlation study between automated program repair and test-suite metrics”.
In: Empirical Software Engineering (2017).

[154] Xin Yi, Liqian Chen, Xiaoguang Mao, and Tao Ji. “Automated Repair of High Inaccu-
racies in Numerical Programs”. In: 2017 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE. 2017, pp. 514–518.

[155] Yuan Yuan and Wolfgang Banzhaf. ARJA: Automated Repair of Java Programs via
Multi-Objective Genetic Programming. Tech. rep. 1712.07804. arXiv, 2017.

[156] Umair Z Ahmed, Pawan Kumar, Amey Karkare, Purushottam Kar, and Sumit Gul-
wani. “Compilation error repair: for the student programs, from the student pro-
grams”. In: Proceedings of the 40th International Conference on Software Engineer-
ing: Software Engineering Education and Training. ACM. 2018, pp. 78–87.

46

[157] Leonardo Afonso Amorim, Mateus F Freitas, Altino Dantas, Eduardo F de Souza,
Celso G Camilo-Junior, and Wellington S Martins. “A new word embedding approach
to evaluate potential fixes for automated program repair”. In: 2018 International Joint
Conference on Neural Networks (IJCNN). 2018, pp. 1–8.

[158] Gabin An, Jinhan Kim, and Shin Yoo. “Comparing line and AST granularity level
for program repair using PyGGI”. In: Proceedings of the 4th International Workshop
on Genetic Improvement. 2018, pp. 19–26.

[159] Paolo Arcaini, Angelo Gargantini, and Elvinia Riccobene. “Interactive Testing and
Repairing of Regular Expressions”. In: International Conference on Testing Software
and Systems. 2018, pp. 1–16.

[160] Larissa Azevedo, Altino Dantas, and Celso G Camilo-Junior. “DroidBugs: An An-
droid Benchmark for Automatic Program Repair”. In: arXiv preprint arXiv:1809.07353
(2018).

[161] S. Bhatia, P. Kohli, and R. Singh. “Neuro-Symbolic Program Corrector for Introduc-
tory Programming Assignments”. In: 2018 IEEE/ACM 40th International Conference
on Software Engineering. 2018, pp. 60–70.

[162] Zimin Chen and Martin Monperrus. The CodRep Machine Learning on Source Code
Competition. Tech. rep. 1807.03200. arXiv, 2018.

[163] Zimin Chen and Martin Monperrus. The Remarkable Role of Similarity in Redundancy-
based Program Repair. Tech. rep. 1811.05703. arXiv, 2018.

[164] Lukas Diekmann and Laurence Tratt. “Reducing Cascading Parsing Errors Through
Fast Error Recovery”. In: arXiv preprint arXiv:1804.07133 (2018).

[165] Thomas Durieux. “From Runtime Failures to Patches: Study of Patch Generation in
Production”. PhD thesis. Université de Lille, 2018.

[166] Thomas Durieux, Youssef Hamadi, and Martin Monperrus. “Fully Automated HTML
and Javascript Rewriting for Constructing a Self-healing Web Proxy”. In: Proceedings
of the 29th IEEE International Symposium on Software Reliability Engineering. 2018.

[167] Ali Ghanbari and Lingming Zhang. “Practical Program Repair via Bytecode Muta-
tion”. In: arXiv abs/1807.03512 (2018).

[168] Anbang Guo, Xiaoguang Mao, Deheng Yang, and Shangwen Wang. “An Empirical
Study on the Effect of Dynamic Slicing on Automated Program Repair Efficiency”.
In: International Conference on Software Maintenance and Evolution. 2018, pp. 554–
558.

[169] Rahul Gupta, Aditya Kanade, and Shirish Shevade. “Deep reinforcement learning for
programming language correction”. In: arXiv preprint arXiv:1801.10467 (2018).

[170] Jacob Harer, Onur Ozdemir, Tomo Lazovich, Christopher Reale, Rebecca Russell,
Louis Kim, et al. “Learning to repair software vulnerabilities with generative ad-
versarial networks”. In: Advances in Neural Information Processing Systems. 2018,
pp. 7933–7943.

[171] Foyzul Hassan and Xiaoyin Wang. “HireBuild: an automatic approach to history-
driven repair of build scripts”. In: Proceedings of the 40th International Conference
on Software Engineering. 2018, pp. 1078–1089.

[172] Hideaki Hata, Emad Shihab, and Graham Neubig. “Learning to Generate Corrective
Patches using Neural Machine Translation”. In: arXiv preprint 1812.07170 (2018).

[173] Qinheping Hu, Isaac Evavold, Roopsha Samanta, Rishabh Singh, and Loris D’Antoni.
“Program Repair via Direct State Manipulation”. In: CoRR abs/1803.07522 (2018).

[174] Jinru Hua. “Unifying Program Repair and Program Synthesis”. PhD thesis. Univer-
sity of Texas at Austin, 2018.

[175] Jinru Hua, Mengshi Zhang, Kaiyuan Wang, and Sarfraz Khurshid. “Towards Practical
Program Repair with On-Demand Candidate Generation”. In: Proceedings of ICSE.
2018.

47

[176] Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao, and Xiangqun Chen. “Shaping
Program Repair Space with Existing Patches and Similar Code”. In: Proceedings of
ISSTA. 2018.

[177] René Just, Chris Parnin, Ian Drosos, and Michael D Ernst. “Comparing developer-
provided to user-provided tests for fault localization and automated program repair”.
In: Proceedings of the 27th ACM SIGSOFT International Symposium on Software
Testing and Analysis. 2018, pp. 287–297.

[178] Xuan Bach D Le. “Overfitting in Automated Program Repair: Challenges and Solu-
tions”. PhD thesis. Singapore Management University, 2018.

[179] Xuan Bach D. Le, Ferdian Thung, David Lo, and Claire Le Goues. “Overfitting
in semantics-based automated program repair”. In: Empirical Software Engineering
(2018).

[180] Junhee Lee, Seongjoon Hong, and Hakjoo Oh. “MemFix: static analysis-based re-
pair of memory deallocation errors for C”. In: Proceedings of the 2018 26th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. ACM. 2018, pp. 95–106.

[181] Junho Lee, Dowon Song, Sunbeom So, and Hakjoo Oh. “Automatic diagnosis and
correction of logical errors for functional programming assignments”. In: Proceedings
of OOPSLA (2018).

[182] Kui Liu. “Deep Pattern Mining for Program Repair”. PhD thesis. University of Lux-
embourg, 2018.

[183] Kui Liu, Anil Koyuncu, Kisub Kim, Dongsun Kim, and Tegawendé François D As-
sise Bissyande. “LSRepair: Live Search of Fix Ingredients for Automated Program
Repair”. In: Proceedings of APSEC. 2018.

[184] X. Liu and H. Zhong. “Mining Stackoverflow for Program Repair”. In: 2018 IEEE
25th International Conference on Software Analysis, Evolution and Reengineering
(SANER). 2018.

[185] Yuzhen Liu, Long Zhang, and Zhenyu Zhang. “A Survey of Test Based Automatic
Program Repair”. In: Journal of Software (2018).

[186] Fan Long. “Automatic patch generation via learning from successful human patches”.
PhD thesis. Massachusetts Institute of Technology, 2018.

[187] Sonai Mahajan, Negarsadat Abolhassani, Phil McMinn, and William GJ Halfond.
“Automated repair of mobile friendly problems in web pages”. In: Proceedings of the
40th International Conference on Software Engineering. 2018, pp. 140–150.

[188] Sonal Mahajan, Abdulmajeed Alameer, Phil McMinn, and William GJ Halfond. “Au-
tomated Repair of Internationalization Presentation Failures in Web Pages Using
Style Similarity Clustering and Search-Based Techniques”. In: International Confer-
ence on Software Testing, Verification and Validation. IEEE. 2018, pp. 215–226.

[189] Matias Martinez and Martin Monperrus. “Ultra-Large Repair Search Space with
Automatically Mined Templates: the Cardumen Mode of Astor”. In: SSBSE 2018
- 10th International Symposium on Search-Based Software Engineering. Vol. 11036.
2018, pp. 65–86.

[190] Sergey Mechtaev. “Semantic Program Repair”. PhD thesis. National University of
Singapore, 2018.

[191] Sergey Mechtaev, Xiang Gao, Shin Hwei Tan, and Abhik Roychoudhury. “Test-
equivalence Analysis for Automatic Patch Generation”. In: ACM Transactions on
Software Engineering and Methodology 27.4 (2018), p. 15.

[192] Sergey Mechtaev, Manh-Dung Nguyen, Yannic Noller, Lars Grunske, and Abhik Roy-
choudhury. “Semantic Program Repair Using a Reference Implementation”. In: Pro-
ceedings of the 40th International Conference on Software Engineering. 2018.

48

[193] Martin Monperrus, Simon Urli, Thomas Durieux, Matias Martinez, Benoit Baudry,
and Lionel Seinturier. Human-competitive Patches in Automatic Program Repair with
Repairnator. Tech. rep. 1810.05806. arXiv, 2018.

[194] Vinicius Paulo L Oliveira, Eduardo Faria de Souza, Claire Le Goues, and Celso
G Camilo-Junior. “Improved representation and genetic operators for linear genetic
programming for automated program repair”. In: Empirical Software Engineering
(2018), pp. 1–27.

[195] Ripon K. Saha, Yingjun Lyu, Wing Lam, Hiroaki Yoshida, and Mukul R. Prasad.
“Bugs.jar: A Large-scale, Diverse Dataset of Real-world Java Bugs”. In: Proceedings
of the 15th International Conference on Mining Software Repositories (MSR Data
Showcase). 2018.

[196] Eddie Antonio Santos, Joshua Charles Campbell, Dhvani Patel, Abram Hindle, and
José Nelson Amaral. “Syntax and sensibility: Using language models to detect and
correct syntax errors”. In: 2018 IEEE 25th International Conference on Software
Analysis, Evolution and Reengineering (SANER). 2018, pp. 311–322.

[197] Richard Shin, Illia Polosukhin, and Dawn Song. “Towards Specification-Directed Pro-
gram Repair”. In: ICLR Workshop. 2018.

[198] Mauricio Soto and Claire Le Goues. “Common Statement Kind Changes to Inform
Automatic Program Repair”. In: Proceedings of the 15th International Conference on
Mining Software Repositories. 2018, pp. 102–105.

[199] Eduardo Faria de Souza, Claire Le Goues, and Celso Gonçalves Camilo-Junior. “A
Novel Fitness Function for Automated Program Repair Based on Source Code Check-
points”. In: Proceedings of the Genetic and Evolutionary Computation Conference.
GECCO ’18. 2018.

[200] Andrea Stocco, Rahulkrishna Yandrapally, and Ali Mesbah. “Visual Web Test Re-
pair”. In: Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineer-
ing. 2018.

[201] Shin Hwei Tan. “Design of repair operators for automated program repair”. PhD
thesis. National University of Singapore, 2018.

[202] Shin Hwei Tan, Zhen Dong, Xiang Gao, and Abhik Roychoudhury. “Repairing Crashes
in Android Apps”. In: Proceedings of the International Conference on Software En-
gineering. 2018.

[203] Rijnard van Tonder and Claire Le Goues. “Static Automated Program Repair for
Heap Properties”. In: Proceedings of ICSE. 2018.

[204] Chadi Trad, Rawad Abou Assi, Wes Masri, and Fadi Zaraket. CFAAR: Control Flow
Alteration to Assist Repair. Tech. rep. arXiv preprint 1808.09229, 2018.

[205] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin
White, and Denys Poshyvanyk. “An Empirical Investigation into Learning Bug-fixing
Patches in the Wild via Neural Machine Translation”. In: Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering. 2018,
pp. 832–837.

[206] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin
White, and Denys Poshyvanyk. “An Empirical Study on Learning Bug-Fixing Patches
in the Wild via Neural Machine Translation”. In: ACM Transactions on Software En-
gineering and Methodology (2018).

[207] Simon Urli, Zhongxing Yu, Lionel Seinturier, and Martin Monperrus. “How to Design
a Program Repair Bot? Insights from the Repairnator Project”. In: 40th International
Conference on Software Engineering, Track Software Engineering in Practice. 2018,
pp. 95–104.

[208] Marko Vasic, Aditya Kanade, Petros Maniatis, and David Bieber. “Neural Program
Repair by Jointly Learning to Localize and Repair”. In: Proceedings of ICLR. 2018.

49

[209] Kaiyuan Wang, Allison Sullivan, and Sarfraz Khurshid. “Automated model repair
for Alloy”. In: Proceedings of the 33rd ACM/IEEE International Conference on Au-
tomated Software Engineering. ACM. 2018, pp. 577–588.

[210] Ke Wang, Rishabh Singh, and Zhendong Su. “Search, Align, and Repair: Data-
driven Feedback Generation for Introductory Programming Exercises”. In: PLDI.
2018, pp. 481–495.

[211] Shangwen Wang, Ming Wen, Deheng Yang, and Xiaoguang Mao. “Attention Please:
Consider Mockito when Evaluating Newly Released Automated Program Repair
Techniques”. In: arXiv e-prints (2018).

[212] Ming Wen, Junjie Chen, rongxin wu, Dan Hao, and Shing-Chi Cheung. “Context-
Aware Patch Generation for Better Automated Program Repair”. In: Proceedings of
ICSE. 2018.

[213] Chu-Pan Wong, Jens Meinicke, and Christian Kästner. “Beyond Testing Configurable
Systems: Applying Variational Execution to Automatic Program Repair and Higher
Order Mutation Testing”. In: Proceedings of the 26th International Symposium on
Foundations of Software Engineering – New Ideas Track (FSE-NIER). Cary, NC,
2018.

[214] Yingfei Xiong, Xinyuan Liu, Muhan Zeng, Lu Zhang, and Gang Huang. “Identifying
patch correctness in test-based program repair”. In: Proceedings of ICSE. 2018.

[215] He Ye, Matias Martinez, and Martin Monperrus. A Comprehensive Study of Auto-
matic Program Repair on the QuixBugs Benchmark. Tech. rep. 1805.03454. arXiv,
2018.

[216] Zhongxing Yu, Matias Martinez, Benjamin Danglot, Thomas Durieux, and Martin
Monperrus. “Alleviating Patch Overfitting with Automatic Test Generation: A Study
of Feasibility and Effectiveness for the Nopol Repair System”. In: Empirical Software
Engineering (2018).

[217] Hao Zhong and Hong Mei. “Mining repair model for exception-related bug”. In: Jour-
nal of Systems and Software 141 (2018), pp. 16–31.

[218] Hao Zhong and Na Meng. “Towards reusing hints from past fixes - An exploratory
study on thousands of real samples”. In: Empirical Software Engineering 23.5 (2018),
pp. 2521–2549.

[219] Afsoon Afzal, Manish Motwani, Kathryn Stolee, Yuriy Brun, and Claire Le Goues.
“SOSRepair: Expressive Semantic Search for Real-World Program Repair”. In: IEEE
Transactions on Software Engineering (2019).

[220] Moumita Asad, Kishan Kumar Ganguly, and Kazi Sakib. “Impact Analysis of Syntac-
tic and Semantic Similarities on Patch Prioritization in Automated Program Repair”.
In: Proceedings of the International Conference on Software Maintenance and Evo-
lution. 2019.

[221] Rohan Bavishi, Hiroaki Yoshida, and Mukul R Prasad. “Phoenix: automated data-
driven synthesis of repairs for static analysis violations”. In: Proceedings of the 2019
27th ACM Joint Meeting on European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering. ACM. 2019, pp. 613–624.

[222] José Pablo Cambronero, Jiasi Shen, Jürgen Cito, Elena Glassman, and Martin Ri-
nard. “Characterizing Developer Use of Automatically Generated Patches”. In: arXiv
preprint arXiv:1907.06535 (2019).

[223] Zimin Chen, Steve Kommrusch, and Martin Monperrus. Using Sequence-to-Sequence
Learning for Repairing C Vulnerabilities. Tech. rep. 1912.02015. arXiv, 2019.

[224] Zimin Chen, Steve Kommrusch, Michele Tufano, Louis-Noël Pouchet, Denys Poshy-
vanyk, and Martin Monperrus. “SequenceR: Sequence-to-Sequence Learning for End-
to-End Program Repair”. In: IEEE Transactions on Software Engineering (2019).

50

[225] Xi Cheng, Min Zhou, Xiaoyu Song, Ming Gu, and Jiaguang Sun. “Automatic Integer
Error Repair by Proper-Type Inference”. In: IEEE Transactions on Dependable and
Secure Computing (2019).

[226] Zhen Yu Ding, Yiwei Lyu, Christopher S Timperley, and Claire Le Goues. “Leverag-
ing Program Invariants to Promote Population Diversity in Search-Based Automatic
Program Repair”. In: Proceedings of the Genetic Improvement Workshop. 2019.

[227] Naji Dmeiri, David A Tomassi, Yichen Wang, Antara Bhowmick, Yen-Chuan Liu,
Premkumar Devanbu, Bogdan Vasilescu, and Cindy Rubio-Gonzélez. “BugSwarm:
Mining and Continuously Growing a Dataset of Reproducible Failures and Fixes”.
In: arXiv preprint arXiv:1903.06725 (2019).

[228] Thomas Durieux and Rui Abreu. “Critical Review of BugSwarm for Fault Localiza-
tion and Program Repair”. In: arXiv preprint arXiv:1905.09375 (2019).

[229] Thomas Durieux, Fernanda Madeiral, Matias Martinez, and Rui Abreu. “Empirical
Review of Java Program Repair Tools: A Large-Scale Experiment on 2,141 Bugs and
23,551 Repair Attempts”. In: Proceedings of FSE. 2019.

[230] Xiang Gao, Sergey Mechtaev, and Abhik Roychoudhury. “Crash-Avoiding Program
Repair”. In: International Symposium on Software Testing and Analysis. 2019.

[231] Ali Ghanbari. “Validation of Automatically Generated Patches: An Appetizer”. In:
arXiv preprint arXiv:1912.00117 (2019).

[232] Rongxun Guo, Tianxiao Gu, Yuan Yao, Feng Xu, and Xiaoxing Ma. “Speedup au-
tomatic program repair using dynamic software updating: an empirical study”. In:
Proceedings of the 11th Asia-Pacific Symposium on Internetware. 2019, pp. 1–10.

[233] Hossein Hajipour, Apratim Bhattacharya, and Mario Fritz. “SampleFix: Learning to
Correct Programs by Sampling Diverse Fixes”. In: arXiv preprint arXiv:1906.10502
(2019).

[234] Jacob Alexander Harer. “Improved neural machine translation systems for low re-
source correction tasks”. PhD thesis. Boston University, 2019.

[235] Yang Hu, Umair Z Ahmed, Sergey Mechtaev, Ben Leong, and Abhik Roychoudhury.
“Re-factoring based Program Repair applied to Programming Assignments”. In: Pro-
ceedings of ASE. 2019.

[236] Zhen Huang, David Lie, Gang Tan, and Trent Jaeger. “Using Safety Properties to
Generate Vulnerability Patches”. In: Proceedings of the 40th IEEE Symposium on
Security and Privacy. 2019.

[237] Jiajun Jiang, Yingfei Xiong, and Xin Xia. “A manual inspection of Defects4J bugs
and its implications for automatic program repair”. In: Science China Information
Sciences 62.10 (2019).

[238] Besma Khaireddine, Matias Martinez, and Ali Mili. “Program Repair at Arbitrary
Fault Depth”. In: IEEE Conference on Software Testing, Validation and Verification.
2019, pp. 465–472.

[239] Jindae Kim, Jeongho Kim, Eunseok Lee, and Sunghun Kim. “The effectiveness of
context-based change application on automatic program repair”. In: Empirical Soft-
ware Engineering (2019), pp. 1–36.

[240] Jindae Kim and Sunghun Kim. “Automatic patch generation with context-based
change application”. In: Empirical Software Engineering (2019).

[241] Anil Koyuncu, Kui Liu, Tegawendé F Bissyandé, Dongsun Kim, Martin Monperrus,
Jacques Klein, and Yves Le Traon. “iFixR: bug report driven program repair”. In:
Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. ACM. 2019,
pp. 314–325.

[242] Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. “Automated Program
Repair”. In: Communications of the ACM (2019).

51

[243] Guangpu Li, Haopeng Liu, Xianglan Chen, Haryadi S Gunawi, and Shan Lu. “DFix:
automatically fixing timing bugs in distributed systems”. In: Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and Implementation.
2019, pp. 994–1009.

[244] Xiangyu Li, Marcelo d’Amorim, and Alessandro Orso. “Intent-Preserving Test Re-
pair”. In: 2019 12th IEEE Conference on Software Testing, Validation and Verifica-
tion (ICST). IEEE. 2019, pp. 217–227.

[245] Kui Liu, Anil Koyuncu, Tegawendé F. Bissyandé, Dongsun Kim, Jacques Klein, and
Yves Le Traon. “You Cannot Fix What You Cannot Find! An Investigation of Fault
Localization Bias in Benchmarking Automated Program Repair Systems”. In: Pro-
ceedings of the 12th IEEE International Conference on Software Testing, Verification
and Validation. IEEE. 2019.

[246] Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F Bissyandé. “TBar: Revisit-
ing Template-based Automated Program Repair”. In: Proceedings of ISSTA. 2019.

[247] Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F. Bissyandé. “AVATAR:
Fixing Semantic Bugs with Fix Patterns of Static Analysis Violations”. In: Proceedings
of SANER. 2019.

[248] Giovanni Liva, Muhammad Taimoor Khan, Martin Pinzger, Francesco Spegni, and
Luca Spalazzi. “Automatic repair of timestamp comparisons”. In: IEEE Transactions
on Software Engineering (2019).

[249] Yiling Lou, Junjie Chen, Lingming Zhang, Dan Hao, and Lu Zhang. “History-driven
build failure fixing: how far are we?” In: Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis. ACM. 2019, pp. 43–54.

[250] Yiling Lou, Ali Ghanbari, Xia Li, Lingming Zhang, Dan Hao, and Lu Zhang. “Can Au-
tomated Program Repair Refine Fault Localization?” In: arXiv preprint arXiv:1910.01270
(2019).

[251] Thibaud Lutellier, Lawrence Pang, Viet Hung Pham, Moshi Wei, and Lin Tan. EN-
CORE: Ensemble Learning using Convolution Neural Machine Translation for Auto-
matic Program Repair. 2019.

[252] Fernanda Madeiral, Simon Urli, Marcelo Maia, and Martin Monperrus. “Bears: An
Extensible Java Bug Benchmark for Automatic Program Repair Studies”. In: SANER
2019 - 26th IEEE International Conference on Software Analysis, Evolution and
Reengineering. 2019.

[253] Diego Marcilio, Carlo A Furia, Rodrigo Bonifécio, and Gustavo Pinto. “Automatically
Generating Fix Suggestions in Response to Static Code Analysis Warnings”. In: 19th
SCAM (2019).

[254] Alexandru Marginean, Johannes Bader, Satish Chandra, Yue Jia Mark Harman, Ke
Mao, Alexander Mols, and Andrew Scott. “SapFix: Automated End-to-End Repair at
Scale”. In: International Conference on Software Engineering - Software Engineering
in Practice. 2019.

[255] Matias Martinez and Martin Monperrus. “Astor: Exploring the Design Space of
Generate-and-Validate Program Repair beyond GenProg”. In: Journal of Systems
and Software, Elsevier (2019).

[256] Matias Martinez and Martin Monperrus. “Astor: Exploring the Design Space of
Generate-and-Validate Program Repair beyond GenProg”. In: Journal of Systems
and Software, Elsevier (2019).

[257] Ali Mesbah, Andrew Rice, Emily Johnston, Nick Glorioso, and Eddie Aftandilian.
“DeepDelta: learning to repair compilation errors”. In: Proceedings of ESEC/FSE.
2019.

52

[258] Mahmoud Mohammadi, Bill Chu, and Heather Richter Lipford. “Automated Repair
of Cross-Site Scripting Vulnerabilities through Unit Testing”. In: 2019 IEEE Interna-
tional Symposium on Software Reliability Engineering Workshops (ISSREW). IEEE.
2019, pp. 370–377.

[259] Venkatesh Theru Mohan and Ali Jannesari. “Automatic Repair and Type Binding of
Undeclared Variables using Neural Networks”. In: arXiv preprint arXiv:1907.06205
(2019).

[260] Martin Monperrus. “Explainable Software Bot Contributions: Case Study of Auto-
mated Bug Fixes”. In: Proceedings of IEEE/ACM International Workshop on Bots
in Software Engineering (BotSE). 2019.

[261] Martin Monperrus, Simon Urli, Thomas Durieux, Martin Martinez, Benoit Baudry,
and Lionel Seinturier. “Repairnator patches programs automatically”. In: Ubiquity
2019 (2019).

[262] Paul Muntean, Martin Monperrus, Hao Sun, Jens Grossklags, and Claudia Eckert.
“IntRepair: Informed Repairing of Integer Overflows”. In: IEEE Transactions on Soft-
ware Engineering (2019).

[263] Seemanta Saha, Ripon K Saha, and Mukul R Prasad. “Harnessing evolution for multi-
hunk program repair”. In: Proceedings of the International Conference on Software
Engineering. 2019, pp. 13–24.

[264] Andrew Scott, Johannes Bader, and Satish Chandra. “Getafix: Learning to Fix Bugs
Automatically”. In: arXiv preprint arXiv:1902.06111 (2019).

[265] August Shi, Wing Lam, Reed Oei, Tao Xie, and Darko Marinov. “iFixFlakies: a
framework for automatically fixing order-dependent flaky tests”. In: Proceedings of
the 2019 27th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. ACM. 2019, pp. 545–555.

[266] Yuya Tomida, Yoshiki Higo, Shinsuke Matsumoto, and Shinji Kusumoto. “Visual-
izing Code Genealogy: How Code is Evolutionarily Fixed in Program Repair?” In:
Proceedings of the Working Conference on Software Visualization. 2019.

[267] Rijnard van Tonder and Claire Le Goues. “Towards s/engineer/bot: principles for
program repair bots”. In: Proceedings of the 1st International Workshop on Bots in
Software Engineering. 2019.

[268] J Tyler, Gene M Alarcon, Charles Walter, Rose Gamble, A Sarah, August Capiola,
and Marc D Pfahler. “Trust in Automated Software Repair”. In: First International
Conference on HCI for Cybersecurity, Privacy and Trust. 2019.

[269] Kaiyuan Wang, Allison Sullivan, and Sarfraz Khurshid. “ARepair: a repair frame-
work for alloy”. In: Proceedings of the 41st International Conference on Software
Engineering: Companion Proceedings. 2019, pp. 103–106.

[270] Shangwen Wang, Ming Wen, Liqian Chen, Xin Yi, and Xiaoguang Mao. “How Dif-
ferent Is It Between Machine-Generated and Developer-Provided Patches? An Em-
pirical Study on The Correct Patches Generated by Automated Program Repair
Techniques”. In: arXiv preprint arXiv:1906.03447 (2019).

[271] Weichao Wang, Zhaopeng Menga, Zan Wanga, Shuang Liua, and Jianye Haoa. “Loop-
Fix: An Approach to Automatic Repair of Buggy Loops”. In: Journal of Systems and
Software (2019).

[272] Qi Xin and Steven P Reiss. “Better code search and reuse for better program repair”.
In: Proceedings of the 6th International Workshop on Genetic Improvement. 2019,
pp. 10–17.

[273] Qi Xin and Steven P Reiss. “Revisiting ssFix for Better Program Repair”. In: arXiv
preprint 1903.04583 (2019).

[274] Xiaoqian Xing and Katsuhisa Maruyama. “Automatic Software Merging using Auto-
mated Program Repair”. In: International Workshop on Intelligent Bug Fixing. 2019.

53

[275] Xuezheng Xu, Yulei Sui, Hua Yan, and Jingling Xue. “VFix: Value-Flow-Guided
Precise Program Repair for Null Pointer Dereferences”. In: Proceedings of ICSE. 2019.

[276] Xin Yi, Liqian Chen, Xiaoguang Mao, and Tao Ji. “Efficient automated repair of high
floating-point errors in numerical libraries”. In: Proceedings of the ACM on Program-
ming Languages 3.POPL (2019), p. 56.

[277] Xiao Liang Yu, Omar Al-Bataineh, David Lo, and Abhik Roychoudhury. “Smart
Contract Repair”. In: arXiv preprint arXiv:1912.05823 (2019).

[278] Zhongxing Yu, Matias Martinez, Tegawendé F. Bissyandé, and Martin Monperrus.
Learning the Relation between Code Features and Code Transforms with Structured
Prediction. Tech. rep. 1907.09282. arXiv, 2019.

[279] Yuan Yuan and Wolfgang Banzhaf. “A hybrid evolutionary system for automatic
software repair”. In: Proceedings of the Genetic and Evolutionary Computation Con-
ference. ACM. 2019, pp. 1417–1425.

[280] Gene M Alarcon, Charles Walter, Anthony M Gibson, Rose F Gamble, August Capi-
ola, Sarah A Jessup, and Tyler J Ryan. “Would You Fix This Code for Me? Effects
of Repair Source and Commenting on Trust in Code Repair”. In: Systems 8.1 (2020),
p. 8.

[281] Aldeida Aleti and Matias Martinez. “E-APR: Mapping the Effectiveness of Auto-
mated Program Repair”. In: arXiv preprint arXiv:2002.03968 (2020).

[282] Abdulaziz Alhefdhi, Hoa Khanh Dam, Xuan-Bach D Le, and Aditya Ghose. “Adver-
sarial Patch Generation for Automatic Program Repair”. In: arXiv preprint arXiv:2012.11060
(2020).

[283] Samuel Benton, Xia Li, Yiling Lou, and Lingming Zhang. “On the effectiveness of
unified debugging: An extensive study on 16 program repair systems”. In: 2020 35th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE. 2020, pp. 907–918.

[284] Bhargav Nagaraja Bhatt and Carlo A Furia. “Automated Repair of Resource Leaks
in Android Applications”. In: arXiv preprint arXiv:2003.03201 (2020).

[285] Marcel Böhme, Charaka Geethal, and Van-Thuan Pham. “Human-In-The-Loop Au-
tomatic Program Repair”. In: Proceedings of ICST. 2020.

[286] Heling Cao, YangXia Meng, Jianshu Shi, Lei Li, Tiaoli Liao, and Chenyang Zhao. “A
Survey on Automatic Bug Fixing”. In: 2020 6th International Symposium on System
and Software Reliability (ISSSR). IEEE. 2020, pp. 122–131.

[287] Antônio Carvalho, Welder Luz, Diego Marcilio, Rodrigo Bonifécio, Gustavo Pinto,
and Edna Dias Canedo. “C-3PR: A Bot for Fixing Static Analysis Violations via Pull
Requests”. In: Proceedings of SANER. 2020.

[288] Lingchao Chen and Lingming Zhang. “Fast and Precise On-the-fly Patch Validation
for All”. In: arXiv preprint arXiv:2007.11449 (2020).

[289] Liushan Chen, Yu Pei, and Carlo Alberto Furia. “Contract-Based Program Repair
without The Contracts: An Extended Study”. In: IEEE Transactions on Software
Engineering (2020).

[290] Zack Coker. “Automatic Repair of Framework Applications”. PhD thesis. Carnegie
Mellon University, 2020.

[291] V. Csuvik, D. Horváth, F. Horváth, and L. Vidács. “Utilizing Source Code Embed-
dings to Identify Correct Patches”. In: IEEE 2nd International Workshop on Intelli-
gent Bug Fixing (IBF). 2020, pp. 18–25.

[292] Elizabeth Dinella, Hanjun Dai, Ziyang Li, Mayur Naik, Le Song, and Ke Wang.
“Hoppity: learning graph transformations to detect and fix bugs in programs”. In:
Proceedings of ICLR. 2020.

54

[293] Yangruibo Ding, Baishakhi Ray, Premkumar Devanbu, and Vincent J Hellendoorn.
“Patching as Translation: the Data and the Metaphor”. In: arXiv preprint arXiv:2008.10707
(2020).

[294] Piotr Dziurzanski, Simos Gerasimou, Dimitris Kolovos, and Nicholas Matragkas.
“Empirical Analysis of 1-edit Degree Patches in Syntax-Based Automatic Program
Repair”. In: IEEE Congress on Evolutionary Computation. 2020.

[295] Khashayar Etemadi, Niloofar Tarighat, Siddharth Yadav, Matias Martinez, and Mar-
tin Monperrus. Longitudinal Analysis of the Applicability of Program Repair on Past
Commits. Tech. rep. 2007.06986. arXiv, 2020.

[296] Davide Ginelli. “Understanding and Improving Automatic Program Repair: A Study
of Code-removal Patches and a New Exception-driven Fault Localization Approach”.
PhD thesis. Università Degli Studi Di Milano-Bicocca, 2020.

[297] Davide Ginelli, Matias Martinez, Leonardo Mariani, and Martin Monperrus. “A Com-
prehensive Study of Code-removal Patches in Automated Program Repair”. In: arXiv
preprint arXiv:2012.06264 (2020).

[298] Kavi Gupta, Peter Ebert Christensen, Xinyun Chen, and Dawn Song. “Synthesize,
execute and debug: Learning to repair for neural program synthesis”. In: Advances in
Neural Information Processing Systems 33 (2020).

[299] Jingzhu He, Ting Dai, Xiaohui Gu, and Guoliang Jin. “HangFix: automatically fixing
software hang bugs for production cloud systems”. In: Proceedings of the 11th ACM
Symposium on Cloud Computing. 2020, pp. 344–357.

[300] Seongjoon Hong, Junhee Lee, Jeongsoo Lee, and Hakjoo Oh. “SAVER: Scalable,
Precise, and Safe Memory-Error Repair”. In: Proceedings of ICSE. 2020.

[301] Shan Huang, Xiao Zhou, and Sang Chin. “A Study of Pyramid Structure for Code
Correction”. In: arXiv preprint arXiv:2001.11367 (2020).

[302] Mingyue Jiang, Tsong Yueh Chen, Zhi Quan Zhou, and Zuohua Ding. “Input Test
Suites for Program Repair: A Novel Construction Method Based on Metamorphic
Relations”. In: IEEE Transactions on Reliability (2020).

[303] Anil Koyuncu. “Boosting Automated Program Repair for Adoption By Practitioners”.
PhD thesis. University of Luxembourg, 2020.

[304] Anil Koyuncu, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon. “FlexiRe-
pair: Transparent Program Repair with Generic Patches”. In: arXiv preprint arXiv:2011.13280
(2020).

[305] Anil Koyuncu, Kui Liu, Tegawendé F. Bissyandé, Dongsun Kim, Jacques Klein, Mar-
tin Monperrus, and Yves Le Traon. “FixMiner: Mining Relevant Fix Patterns for
Automated Program Repair”. In: Empirical Software Engineering Journal, Springer
Verlag (2020).

[306] Yi Li, Shaohua Wang, and Tien N Nguyen. “DLfix: Context-based code transforma-
tion learning for automated program repair”. In: Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering. 2020, pp. 602–614.

[307] Bo Lin, Shangwen Wang, Ming Wen, Zhang Zhang, Hongjun Wu, Yihao Qin, and Xi-
aoguang Mao. “Understanding the Non-Repairability Factors of Automated Program
Repair Techniques”. In: Proceedings of APSEC. 2020.

[308] Kui Liu, Shangwen Wang, Anil Koyuncu, Kisub Kim, Tegawendé F Bissyandé, Dong-
sun Kim, Peng Wu, Jacques Klein, Xiaoguang Mao, and Yves Le Traon. “On the
Efficiency of Test Suite based Program Repair”. In: Proceedings of ICSE. 2020.

[309] Thibaud Lutellier, Hung Viet Pham, Lawrence Pang, Yitong Li, Moshi Wei, and
Lin Tan. “CoCoNuT: Combining Context-Aware Neural Translation Models using
Ensemble for Program Repair”. In: Proceedings of ISSTA. 2020.

55

[310] M. Motwani, M. Soto, Y. Brun, R. Just, and C. Le Goues. “Quality of Automated
Program Repair on Real-World Defects”. In: IEEE Transactions on Software Engi-
neering (2020).

[311] Manish Motwani and Yuriy Brun. “Automatically Repairing Programs Using Both
Tests and Bug Reports”. In: arXiv preprint arXiv:2011.08340 (2020).

[312] Kunihiro Noda, Yusuke Nemoto, Keisuke Hotta, Hideo Tanida, and Shinji Kikuchi.
“Experience Report: How Effective is Automated Program Repair for Industrial Soft-
ware?” In: 27th International Conference on Software Analysis, Evolution and Reengi-
neering (SANER). 2020.

[313] Minxue Pan, Tongtong Xu, Yu Pei, Zhong Li, Tian Zhang, and Xuandong Li. “GUI-
Guided Test Script Repair for Mobile Apps”. In: IEEE Transactions on Software
Engineering (2020).

[314] Bat-Chen Rothenberg. “Formal Automated Program Repair”. PhD thesis. Technion
- Israel Institute of Technology, Israel, 2020.

[315] Georgios Sakkas, Madeline Endres, Benjamin Cosman, Westley Weimer, and Ranjit
Jhala. “Type error feedback via analytic program repair”. In: Proceedings of the 41st
ACM SIGPLAN Conference on Programming Language Design and Implementation.
2020, pp. 16–30.

[316] Haoye Tian, Kui Liu, Abdoul Kader Kaboreé, Anil Koyuncu, Li Li, Jacques Klein,
and Tegawendé F Bissyandé. “Evaluating representation learning of code changes for
predicting patch correctness in program repair”. In: Proceedings of ASE. 2020.

[317] Yuki Ueda, Takashi Ishio, Akinori Ihara, and Kenichi Matsumoto. “DevReplay: Auto-
matic Repair with Editable Fix Pattern”. In: arXiv preprint arXiv:2005.11040 (2020).

[318] Shangwen Wang, Ming Wen, Bo Lin, Hongjun Wu, Yihao Qin, Deqing Zou, Xi-
aoguang Mao, and Hai Jin. “Automated Patch Correctness Assessment: How Far are
We?” In: Proceedings of ASE. 2020.

[319] Liwei Wu, Fei Li, Youhua Wu, and Tao Zheng. “GGF: A Graph-based Method for
Programming Language Syntax Error Correction”. In: Proceedings of the 28th Inter-
national Conference on Program Comprehension. 2020, pp. 139–148.

[320] Tongtong Xu, Liushan Chen, Yu Pei, Tian Zhang, Minxue Pan, and Carlo Alberto
Furia. “Restore: Retrospective fault localization enhancing automated program re-
pair”. In: IEEE Transactions on Software Engineering (2020).

[321] Bo Yang and Jinqiu Yang. “Exploring the Differences between Plausible and Correct
Patches at Fine-Grained Level”. In: IEEE 2nd International Workshop on Intelligent
Bug Fixing (IBF). IEEE. 2020, pp. 1–8.

[322] Michihiro Yasunaga and Percy Liang. “Graph-based, Self-Supervised Program Repair
from Diagnostic Feedback”. In: arXiv preprint arXiv:2005.10636 (2020).

[323] Wang Yu, Fengjuan Gao, Linzhang Wang, Tingting Yu, Jianhua Zhao, and Xuandong
Li. “Automatic Detection, Validation and Repair of Race Conditions in Interrupt-
Driven Embedded Software”. In: IEEE Transactions on Software Engineering (2020).

[324] Yuan Yuan and Wolfgang Banzhaf. “Toward Better Evolutionary Program Repair:
An Integrated Approach”. In: ACM Trans. Softw. Eng. Methodol. (2020).

[325] Yuyao Zhang, Siqi Ma, Juanru Li, Kailai Li, Surya Nepal, and Dawu Gu. “Smartshield:
Automatic smart contract protection made easy”. In: 2020 IEEE 27th International
Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE.
2020, pp. 23–34.

[326] Toufique Ahmed, Noah Rose Ledesma, and Premkumar Devanbu. “SYNFIX: Au-
tomatically Fixing Syntax Errors using Compiler Diagnostics”. In: arXiv preprint
arXiv:2104.14671 (2021).

[327] Miltiadis Allamanis, Henry Jackson-Flux, and Marc Brockschmidt. “Self-Supervised
Bug Detection and Repair”. In: arXiv preprint arXiv:2105.12787 (2021).

56

[328] Ali S Alotaibi, Paul T Chiou, and William GJ Halfond. “Automated Repair of
Size-Based Inaccessibility Issues in Mobile Applications”. In: 2021 36th IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE. 2021,
pp. 730–742.

[329] Omar I Al-Bataineh, Anastasiia Grishina, and Leon Moonen. “Towards More Reliable
Automated Program Repair by Integrating Static Analysis Techniques”. In: 2021
IEEE 21st International Conference on Software Quality, Reliability and Security
(QRS). IEEE. 2021, pp. 654–663.

[330] Benoit Baudry, Zimin Chen, Khashayar Etemadi, Han Fu, Davide Ginelli, Steve
Kommrusch, Matias Martinez, Martin Monperrus, Javier Ron Arteaga, He Ye, et al.
“A Software-Repair Robot Based on Continual Learning”. In: IEEE Software 38.4
(2021), pp. 28–35.

[331] Samuel Benton, Mengshi Zhang, Xia Li, and Lingming Zhang. “Self-Boosted Auto-
mated Program Repair”. In: arXiv preprint arXiv:2104.04611 (2021).

[332] Berkay Berabi, Jingxuan He, Veselin Raychev, and Martin Vechev. “TFix: Learning
to Fix Coding Errors with a Text-to-Text Transformer”. In: International Conference
on Machine Learning. PMLR. 2021, pp. 780–791.

[333] Dirk Beyer, Lars Grunske, Thomas Lemberger, and Minxing Tang. “Towards a Bench-
mark Set for Program Repair Based on Partial Fixes”. In: arXiv preprint arXiv:2107.08038
(2021).

[334] Diogo Campos, André Restivo, Hugo Sereno Ferreira, and Afonso Ramos. “Automatic
Program Repair as Semantic Suggestions: An Empirical Study”. In: 2021 14th IEEE
Conference on Software Testing, Verification and Validation (ICST). IEEE. 2021,
pp. 217–228.

[335] Liushan Chen. “Effective automatic program repair based on state abstraction”. PhD
thesis. Hong Kong Polytechnic University, 2021.

[336] Zimin Chen, Vincent J Hellendoorn, Pascal Lamblin, Petros Maniatis, Pierre-Antoine
Manzagol, Daniel Tarlow, and Subhodeep Moitra. “PLUR: A unifying, graph-based
view of program learning, understanding, and repair”. In: Advances in Neural Infor-
mation Processing Systems 34 (2021), pp. 23089–23101.

[337] Zimin Chen, Steve Kommrusch, and Martin Monperrus. Neural Transfer Learning
for Repairing Security Vulnerabilities in C Code. Tech. rep. 2104.08308. arXiv, 2021.

[338] Thanh Le-Cong, Xuan Bach D Le, Quyet Thang Huynh, and Phi Le Nguyen. “Usabil-
ity and Aesthetics: Better Together for Automated Repair of Web Pages”. In: 2021
IEEE 32nd International Symposium on Software Reliability Engineering (ISSRE).
IEEE. 2021, pp. 173–183.

[339] Andreea Costea, Abhishek Tiwari, Sigmund Chianasta, Abhik Roychoudhury, Ilya
Sergey, et al. “HIPPODROME: Data Race Repair using Static Analysis Summaries”.
In: arXiv preprint arXiv:2108.02490 (2021).

[340] Viktor Csuvik, Déniel Horvéth, Mérk Lajkó, and Lészló Vidécs. “Exploring Plau-
sible Patches Using Source Code Embeddings in JavaScript”. In: arXiv preprint
arXiv:2103.16846 (2021).

[341] Khashayar Etemadi, Nicolas Harrand, Simon Larsen, Haris Adzemovic, Henry Luong
Phu, Ashutosh Verma, Fernanda Madeiral, Douglas Wikstrom, and Martin Monper-
rus. Sorald: Automatic Patch Suggestions for SonarQube Static Analysis Violations.
Tech. rep. 2103.12033. arXiv, 2021.

[342] Xiang Gao. “Overfitting in Program Repair and Synthesis”. PhD thesis. National
University of Singapore, 2021.

[343] Xiang Gao, Arjun Radhakrishna, Gustavo Soares, Ridwan Shariffdeen, Sumit Gul-
wani, and Abhik Roychoudhury. “APIfix: output-oriented program synthesis for com-
bating breaking changes in libraries.” In: Proc. ACM Program. Lang. 5.OOPSLA
(2021), pp. 1–27.

57

[344] Xiang Gao, Bo Wang, Gregory J Duck, Ruyi Ji, Yingfei Xiong, and Abhik Roy-
choudhury. “Beyond Tests: Program Vulnerability Repair via Crash Constraint Ex-
traction”. In: ACM Transactions on Software Engineering and Methodology (TOSEM)
30.2 (2021), pp. 1–27.

[345] Jingzhu He, Ting Dai, and Xiaohui Gu. “TFix+: Self-configuring Hybrid Timeout
Bug Fixing for Cloud Systems”. In: arXiv preprint arXiv:2110.04101 (2021).

[346] Jordan Henkel, Denini Silva, Leopoldo Teixeira, Marcelo dAmorim, and Thomas
Reps. “Shipwright: A Human-in-the-Loop System for Dockerfile Repair”. In: 2021
IEEE/ACM 43rd International Conference on Software Engineering (ICSE). IEEE.
2021, pp. 1148–1160.

[347] Haiwen Hong, Jingfeng Zhang, Yin Zhang, Yao Wan, and Yulei Sui. “Fix-Filter-Fix:
Intuitively Connect Any Models for Effective Bug Fixing”. In: Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing. 2021, pp. 3495–
3504.

[348] Nan Jiang, Thibaud Lutellier, and Lin Tan. “CURE: Code-Aware Neural Machine
Translation for Automatic Program Repair”. In: 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). IEEE. 2021, pp. 1161–1173.

[349] Hai Jin, Zeli Wang, Ming Wen, Weiqi Dai, Yu Zhu, and Deqing Zou. “Aroc: An
Automatic Repair Framework for On-chain Smart Contracts”. In: IEEE Transactions
on Software Engineering (2021).

[350] Maria Kechagia, Sergey Mechtaev, Federica Sarro, and Mark Harman. “Evaluating
Automatic Program Repair Capabilities to Repair API Misuses”. In: IEEE Transac-
tions on Software Engineering (2021).

[351] Serkan Kirbas, Etienne Windels, Olayori McBello, Kevin Kells, Matthew Pagano,
Rafal Szalanski, Vesna Nowack, Emily Rowan Winter, Steve Counsell, David Bowes,
et al. “On the introduction of automatic program repair in Bloomberg”. In: IEEE
Software 38.4 (2021), pp. 43–51.

[352] William Klieber, Ruben Martins, Ryan Steele, Matt Churilla, Mike McCall, and
David Svoboda. “Automated Code Repair to Ensure Spatial Memory Safety”. In:
2021 IEEE/ACM International Workshop on Automated Program Repair (APR).
IEEE. 2021, pp. 23–30.

[353] Roland Kretschmer, Djamel Eddine Khelladi, and Alexander Egyed. “Transforming
abstract to concrete repairs with a generative approach of repair values”. In: Journal
of Systems and Software 175 (2021), p. 110889.

[354] Xuan-Bach D Le and Quang Loc Le. “ReFixar: Multi-version Reasoning for Auto-
mated Repair of Regression Errors”. In: 2021 IEEE 32nd International Symposium
on Software Reliability Engineering (ISSRE). IEEE. 2021, pp. 162–172.

[355] Rui Lima, Joao F Ferreira, and Alexandra Mendes. “Automatic Repair of Java Code
with Timing Side-Channel Vulnerabilities”. In: 2021 36th IEEE/ACM International
Conference on Automated Software Engineering Workshops (ASEW). IEEE. 2021,
pp. 1–8.

[356] Kui Liu, Li Li, Anil Koyuncu, Dongsun Kim, Zhe Liu, Jacques Klein, and Tegawendé
F Bissyandé. “A critical review on the evaluation of automated program repair sys-
tems”. In: Journal of Systems and Software 171 (2021), p. 110817.

[357] Yiling Lou, Samuel Benton, Dan Hao, Lu Zhang, and Lingming Zhang. “How Does
Regression Test Selection Affect Program Repair? An Extensive Study on 2 Million
Patches”. In: arXiv preprint arXiv:2105.07311 (2021).

[358] Yunlong Lu, Na Meng, and Wenxin Li. “FAPR: Fast and Accurate Program Repair
for Introductory Programming Courses”. In: arXiv preprint arXiv:2107.06550 (2021).

58

[359] Ibrahim Mesecan, Michael C Gerten, James I Lathrop, Myra B Cohen, and Tomas
Haddad Caldas. “CRNRepair: Automated Program Repair of Chemical Reaction
Networks”. In: 2021 IEEE/ACM International Workshop on Genetic Improvement
(GI). IEEE. 2021, pp. 23–30.

[360] Tai D Nguyen, Long H Pham, and Jun Sun. “SGUARD: Towards Fixing Vulnerable
Smart Contracts Automatically”. In: 2021 IEEE Symposium on Security and Privacy
(SP). IEEE. 2021, pp. 1215–1229.

[361] Thanh-Toan Nguyen, Quang-Trung Ta, Ilya Sergey, and Wei-Ngan Chin. “Automated
Repair of Heap-Manipulating Programs using Deductive Synthesis”. In: Proceedings
of VMCAI. 2021.

[362] Amirfarhad Nilizadeh, Marlon Calvo, Gary T Leavens, and Xuan-Bach D Le. “More
Reliable Test Suites for Dynamic APR by using Counterexamples”. In: 2021 IEEE
32th International Symposium on Software Reliability Engineering (ISSRE)(In Press).
IEEE. 2021.

[363] Amirfarhad Nilizadeh, Gary T Leavens, Xuan-Bach D Le, Corina S Psreanu, and
David R Cok. “Exploring true test overfitting in dynamic automated program re-
pair using formal methods”. In: 2021 14th IEEE Conference on Software Testing,
Verification and Validation (ICST). IEEE. 2021, pp. 229–240.

[364] Yannic Noller, Ridwan Shariffdeen, Xiang Gao, and Abhik Roychoudhury. “How to
trust auto-generated code patches? A developer survey and empirical assessment of
existing program repair tools”. In: arXiv preprint arXiv:2108.13064 (2021).

[365] Vesna Nowack, David Bowes, Steve Counsell, Tracy Hall, Saemundur Haraldsson,
Emily Winter, and John Woodward. “Expanding Fix Patterns to Enable Automatic
Program Repair”. In: 2021 IEEE 32nd International Symposium on Software Relia-
bility Engineering (ISSRE). IEEE. 2021, pp. 12–23.

[366] Nikhil Parasaram, Earl T Barr, and Sergey Mechtaev. “Trident: Controlling Side Ef-
fects in Automated Program Repair”. In: IEEE Transactions on Software Engineering
(2021).

[367] Eduard Pinconschi, Rui Abreu, and Pedro Adão. “A Comparative Study of Auto-
matic Program Repair Techniques for Security Vulnerabilities”. In: 2021 IEEE 32nd
International Symposium on Software Reliability Engineering (ISSRE). IEEE. 2021,
pp. 196–207.

[368] Kai Presler-Marshall, Sarah Heckman, and Kathryn T Stolee. “SQLRepair: Identify-
ing and Repairing Mistakes in Student-Authored SQL Queries”. In: 2021 IEEE/ACM
43rd International Conference on Software Engineering: Software Engineering Edu-
cation and Training (ICSE-SEET). IEEE. 2021, pp. 199–210.

[369] Yihao Qin, Shangwen Wang, Kui Liu, Xiaoguang Mao, and Tegawendé F Bissyandé.
“On the Impact of Flaky Tests in Automated Program Repair”. In: 2021 IEEE Inter-
national Conference on Software Analysis, Evolution and Reengineering (SANER).
IEEE. 2021, pp. 295–306.

[370] Kia Rahmani, Kartik Nagar, Benjamin Delaware, and Suresh Jagannathan. “Re-
pairing serializability bugs in distributed database programs via automated schema
refactoring”. In: Proceedings of the 42nd ACM SIGPLAN International Conference
on Programming Language Design and Implementation. 2021, pp. 32–47.

[371] Joseph Renzullo, Westley Weimer, and Stephanie Forrest. “Multiplicative Weights
Algorithms for Parallel Automated Software Repair”. In: 2021 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). IEEE. 2021, pp. 984–993.

[372] Michael Rodler, Wenting Li, Ghassan O Karame, and Lucas Davi. “EVMPatch:
Timely and Automated Patching of Ethereum Smart Contracts”. In: 30th USENIX
Security Symposium (USENIX Security 21). 2021, pp. 1289–1306.

59

[373] Ridwan Shariffdeen, Yannic Noller, Lars Grunske, and Abhik Roychoudhury. “Con-
colic program repair”. In: Proceedings of the 42nd ACM SIGPLAN International
Conference on Programming Language Design and Implementation. 2021, pp. 390–
405.

[374] André Silva, Matias Martinez, Benjamin Danglot, Davide Ginelli, and Martin Mon-
perrus. FLACOCO: Fault Localization for Java based on Industry-grade Coverage.
Tech. rep. 2111.12513. arXiv, 2021.

[375] Ben Tang, Bin Li, Lili Bo, Xiaoxue Wu, Sicong Cao, and Xiaobing Sun. “GrasP:
Graph-to-Sequence Learning for Automated Program Repair”. In: 2021 IEEE 21st
International Conference on Software Quality, Reliability and Security (QRS). IEEE.
2021, pp. 819–828.

[376] Yu Tang, Long Zhou, Ambrosio Blanco, Shujie Liu, Furu Wei, Ming Zhou, and Muyun
Yang. “Grammar-Based Patches Generation for Automated Program Repair”. In:
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. 2021,
pp. 1300–1305.

[377] Leonardo Trujillo, Omar M Villanueva, and Daniel Eduardo Hernandez. “A novel
approach for search-based program repair”. In: IEEE Software 38.4 (2021), pp. 36–
42.

[378] Zahra VaraminyBahnemiry, Jessie Galasso, Khalid Belharbi, and Houari Sahraoui.
“Automated Patch Generation for Fixing Semantic Errors in ATL Transformation
Rules”. In: 2021 ACM/IEEE 24th International Conference on Model Driven Engi-
neering Languages and Systems (MODELS). IEEE. 2021, pp. 13–23.

[379] Chu-Pan Wong, Priscila Santiesteban, Christian Kästner, and Claire Le Goues. “VarFix:
balancing edit expressiveness and search effectiveness in automated program repair”.
In: Proceedings of the 29th ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering. 2021,
pp. 354–366.

[380] Deheng Yang, Yan Lei, Xiaoguang Mao, David Lo, Huan Xie, and Meng Yan. “Is
the Ground Truth Really Accurate? Dataset Purification for Automated Program
Repair”. In: 2021 IEEE International Conference on Software Analysis, Evolution
and Reengineering (SANER). IEEE. 2021, pp. 96–107.

[381] Deheng Yang, Kui Liu, Dongsun Kim, Anil Koyuncu, Kisub Kim, Haoye Tian, Yan
Lei, Xiaoguang Mao, Jacques Klein, and Tegawendé F Bissyandé. “Where were the re-
pair ingredients for Defects4j bugs?” In: Empirical Software Engineering 26.6 (2021),
pp. 1–33.

[382] Michihiro Yasunaga and Percy Liang. “Break-It-Fix-It: Unsupervised Learning for
Program Repair”. In: arXiv preprint arXiv:2106.06600 (2021).

[383] He Ye, Jian Gu, Matias Martinez, Thomas Durieux, and Martin Monperrus. “Auto-
mated Classification of Overfitting Patches with Statically Extracted Code Features”.
In: IEEE Transactions on Software Engineering (2021).

[384] He Ye, Matias Martinez, and Martin Monperrus. “Automated Patch Assessment for
Program Repair at Scale”. In: Empirical Software Engineering (2021).

[385] He Ye, Matias Martinez, and Martin Monperrus. “Neural Program Repair with
Execution-based Backpropagation”. In: arXiv preprint arXiv:2105.04123 (2021).

[386] Jingtang Zhang, Kui Liu, Dongsun Kim, Li Li, Zhe Liu, Jacques Klein, and Tegawendé
Bissyandé. “Revisiting Test Cases to Boost Generate-and-Validate Program Repair”.
In: Proceedings of ICSME. 2021.

[387] Qihao Zhu, Zeyu Sun, Yuan-an Xiao, Wenjie Zhang, Kang Yuan, Yingfei Xiong, and
Lu Zhang. “A Syntax-Guided Edit Decoder for Neural Program Repair”. In: Proceed-
ings of the 29th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. 2021.

60

[388] Hammad Ahmad, Padriac Cashin, Stephanie Forrest, and Westley Weimer. “Digging
into Semantics: Where do search-based software repair methods search?” In: Parallel
Problem Solving from Nature–PPSN XVII: 17th International Conference, PPSN
2022, Dortmund, Germany, September 10–14, 2022, Proceedings, Part II. Springer.
2022, pp. 3–18.

[389] Hammad Ahmad, Yu Huang, and Westley Weimer. “CirFix: Automatically Repairing
Defects in Hardware Design Code”. In: Proceedings of the 27th ACM International
Conference on Architectural Support for Programming Languages and Operating Sys-
tems. 2022.

[390] Toufique Ahmed, Noah Rose Ledesma, and Premkumar Devanbu. “SYNSHINE: im-
proved fixing of Syntax Errors”. In: IEEE Transactions on Software Engineering
(2022).

[391] Omar I Al-Bataineh and Leon Moonen. “Towards Extending the Range of Bugs
That Automated Program Repair Can Handle”. In: arXiv preprint arXiv:2211.03911
(2022).

[392] Rohan Bavishi, Harshit Joshi, José Pablo Cambronero Sénchez, Anna Fariha, Sumit
Gulwani, Vu Le, Ivan Radicek, and Ashish Tiwari. “Neurosymbolic repair for low-
code formula languages”. In: arXiv preprint arXiv:2207.11765 (2022).

[393] Gareth Bennett, Tracy Hall, and David Bowes. “Some Automatically Generated
Patches are More Likely to be Correct than Others: An Analysis of Defects4J Patch
Features”. In: 2022 IEEE/ACM International Workshop on Automated Program Re-
pair (APR). IEEE. 2022, pp. 46–52.

[394] Samuel Benton, Yuntong Xie, Lan Lu, Mengshi Zhang, Xia Li, and Lingming Zhang.
“Towards boosting patch execution on-the-fly”. In: 2022 IEEE/ACM 44th Interna-
tional Conference on Software Engineering (ICSE). IEEE. 2022, pp. 2165–2176.

[395] Quang-Cuong Bui, Riccardo Scandariato, and Nicolas Díaz-Ferreyra Ferreyra. “Vul4J:
A Dataset of Reproducible Java Vulnerabilities Geared Towards the Study of Pro-
gram Repair Techniques”. In: 2022 IEEE/ACM 19th International Conference on
Mining Software Repositories (MSR). 2022, pp. 464–468.

[396] Liushan Chen, Yu Pei, Minxue Pan, Tian Zhang, Qixin Wang, and Carlo Alberto
Furia. “Program Repair with Repeated Learning”. In: IEEE Transactions on Software
Engineering (2022).

[397] Aidan Connor, Aaron Harris, Nathan Cooper, and Denys Poshyvanyk. “Can We
Automatically Fix Bugs by Learning Edit Operations?” In: Proceedings of the 29th
IEEE International Conference on Software Analysis, Evolution and Reengineering.
2022.

[398] Benjamin Cosman. “PABLO and PYRITE: Helping Novices Debug Python Code
Through Data-Driven Fault Localization and Repair”. PhD thesis. University of Cal-
ifornia San Diego, 2022.

[399] Khashayar Etemadi, Niloofar Tarighat, Siddharth Yadav, Matias Martinez, and Mar-
tin Monperrus. “Estimating the potential of program repair search spaces with com-
mit analysis”. In: Journal of Systems and Software (2022), p. 111263.

[400] Christof Ferreira Torres, Hugo Jonker, et al. “Elysium: Context-Aware Bytecode-
Level Patching to Automatically Heal Vulnerable Smart Contracts”. In: International
Symposium on Research in Attacks, Intrusions and Defenses. 2022.

[401] Alcides Fonseca and Méximo Oliveira. “Figra: Evaluating a larger search space for
Cardumen in Automatic Program Repair”. In: 2022 IEEE/ACM International Work-
shop on Automated Program Repair (APR). IEEE. 2022, pp. 24–30.

[402] Michael Fu, Chakkrit Tantithamthavorn, Trung Le, Van Nguyen, and Dinh Phung.
“VulRepair: a T5-based automated software vulnerability repair”. In: Proceedings of
the 30th ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. 2022, pp. 935–947.

61

[403] Xiang Gao, Yannic Noller, and Abhik Roychoudhury. “Program Repair”. In: arXiv
preprint arXiv:2211.12787 (2022).

[404] Ali Ghanbari and Andrian Marcus. “Patch correctness assessment in automated pro-
gram repair based on the impact of patches on production and test code”. In: Pro-
ceedings of the 31st ACM SIGSOFT International Symposium on Software Testing
and Analysis. 2022, pp. 654–665.

[405] Davide Ginelli, Oliviero Riganelli, Daniela Micucci, and Leonardo Mariani. “Exception-
Driven Fault Localization for Automated Program Repair”. In: arXiv preprint arXiv:2201.00736
(2022).

[406] Matthías Péll Gissurarson, Leonhard Applis, Annibale Panichella, Arie van Deursen,
and David Sands. “PropR: property-based automatic program repair”. In: Proceedings
of the 44th International Conference on Software Engineering. 2022, pp. 1768–1780.

[407] Simón Gutiérrez Brida, Germén Regis, Guolong Zheng, Hamid Bagheri, Thanhvu
Nguyen, Nazareno Aguirre, and Marcelo Frias. “ICEBAR: Feedback-Driven Iterative
Repair of Alloy Specifications”. In: 37th IEEE/ACM International Conference on
Automated Software Engineering. 2022, pp. 1–13.

[408] Yaojie Hu, Xingjian Shi, Qiang Zhou, and Lee Pike. “Fix Bugs with Transformer
through a Neural-Symbolic Edit Grammar”. In: arXiv preprint arXiv:2204.06643
(2022).

[409] Faria Huq, Masum Hasan, Md Mahim Anjum Haque, Sazan Mahbub, Anindya Iqbal,
and Toufique Ahmed. “Review4Repair: Code review aided automatic program repair-
ing”. In: Information and Software Technology 143 (2022), p. 106765.

[410] Suhwan Ji, Sang-Min Choi, Sang-Ki Ko, Dohyung Kim, and Hyeonseung Im. “Rep-
Coder: an automated program repair framework for probability-based program syn-
thesis”. In: Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing.
2022, pp. 1554–1561.

[411] Harshit Joshi, José Cambronero, Sumit Gulwani, Vu Le, Ivan Radicek, and Gust
Verbruggen. Repair Is Nearly Generation: Multilingual Program Repair with LLMs.
2022.

[412] Sungmin Kang and Shin Yoo. “GLAD: Neural Predicate Synthesis to Repair Omission
Faults”. In: arXiv preprint arXiv:2204.06771 (2022).

[413] Hyungsub Kim, Muslum Ozgur Ozmen, Z Berkay Celik, Antonio Bianchi, and Dongyan
Xu. “PGPATCH: Policy-Guided Logic Bug Patching for Robotic Vehicles”. In: 2022
IEEE Symposium on Security and Privacy (SP). IEEE Computer Society. 2022,
pp. 1538–1538.

[414] Misoo Kim, Youngkyoung Kim, Hohyeon Jeong, Jinseok Heo, Sungoh Kim, Hyun-
hee Chung, and Eunseok Lee. “An empirical study of deep transfer learning-based
program repair for Kotlin projects”. In: Proceedings of the 30th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 2022, pp. 1441–1452.

[415] Mérk Lajkó, Viktor Csuvik, and Lészló Vidécs. “Towards JavaScript program re-
pair with generative pre-trained transformer (GPT-2)”. In: Proceedings of the Third
International Workshop on Automated Program Repair. 2022, pp. 61–68.

[416] Mérk Lajkó, Déniel Horvéth, Viktor Csuvik, and Lészló Vidécs. “Fine-tuning GPT-2
to patch programs, is it worth it?” In: Computational Science and Its Applications–
ICCSA 2022 Workshops: Malaga, Spain, July 4–7, 2022, Proceedings, Part IV. Springer.
2022, pp. 79–91.

[417] Junhee Lee, Seongjoon Hong, and Hakjoo Oh. “NPEX: Repairing Java Null Pointer
Exceptions without Tests”. In: IEEE International Conference on Software Engineer-
ing. 2022.

62

[418] Xueyang Li, Shangqing Liu, Ruitao Feng, Guozhu Meng, Xiaofei Xie, Kai Chen, and
Yang Liu. “TransRepair: Context-aware Program Repair for Compilation Errors”. In:
arXiv preprint arXiv:2210.03986 (2022).

[419] Yi Li, Shaohua Wang, and Tien N Nguyen. “DEAR: A Novel Deep Learning-based
Approach for Automated Program Repair”. In: arXiv preprint arXiv:2205.01859 (2022).

[420] Bo Lin, Shangwen Wang, Ming Wen, and Xiaoguang Mao. “Context-aware code
change embedding for better patch correctness assessment”. In: ACM Transactions
on Software Engineering and Methodology (TOSEM) 31.3 (2022), pp. 1–29.

[421] Benjamin Loriot, Fernanda Madeiral, and Martin Monperrus. “Styler: learning for-
matting conventions to repair Checkstyle violations”. In: Empirical Software Engi-
neering, Springer (2022).

[422] Sonal Mahajan and Mukul R Prasad. “Providing Real-time Assistance for Repair-
ing Runtime Exceptions using Stack Overflow Posts”. In: 2022 IEEE Conference on
Software Testing, Verification and Validation (ICST). IEEE. 2022, pp. 196–207.

[423] Matias Martinez, Maria Kechagia, Anjana Perera, Justyna Petke, Federica Sarro, and
Aldeida Aleti. “Test-based Patch Clustering for Automatically-Generated Patches
Assessment”. In: arXiv preprint arXiv:2207.11082 (2022).

[424] Matias Martinez, Silverio Martínez-Fernéndez, and Xavier Franch. “Energy Con-
sumption of Automated Program Repair”. In: arXiv preprint arXiv:2211.12104 (2022).

[425] Xiangxin Meng, Xu Wang, Hongyu Zhang, Hailong Sun, and Xudong Liu. “Improv-
ing fault localization and program repair with deep semantic features and transferred
knowledge”. In: Proceedings of the 44th International Conference on Software Engi-
neering. 2022, pp. 1169–1180.

[426] Marjane Namavar, Noor Nashid, and Ali Mesbah. “A controlled experiment of differ-
ent code representations for learning-based program repair”. In: Empirical Software
Engineering 27.7 (2022), p. 190. issn: 1573-7616.

[427] Chao Ni, Kaiwen Yang, Xin Xia, David Lo, Xiang Chen, and Xiaohu Yang. “De-
fect Identification, Categorization, and Repair: Better Together”. In: arXiv preprint
arXiv:2204.04856 (2022).

[428] Yannic Noller, Ridwan Shariffdeen, Xiang Gao, and Abhik Roychoudhury. “Trust
Enhancement Issues in Program Repair”. In: Proceedings of ICSE. 2022.

[429] Martin Odermatt, Diego Marcilio, and Carlo A Furia. “Static Analysis Warnings and
Automatic Fixing: A Replication for C# Projects”. In: 2022 IEEE International Con-
ference on Software Analysis, Evolution and Reengineering (SANER). IEEE. 2022,
pp. 805–816.

[430] Wonseok Oh and Hakjoo Oh. “PyTER: effective program repair for Python type
errors”. In: Proceedings of the 30th ACM Joint European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering. 2022, pp. 922–
934.

[431] Quang-Ngoc Phung, Misoo Kim, and Eunseok Lee. “Identifying Incorrect Patches
in Program Repair Based on Meaning of Source Code”. In: IEEE Access 10 (2022),
pp. 12012–12030.

[432] Pemma Reiter, Antonio M Espinoza, Adam Doupé, Ruoyu Wang, Westley Weimer,
and Stephanie Forrest. “Improving source-code representations to enhance search-
based software repair”. In: Proceedings of the Genetic and Evolutionary Computation
Conference. 2022, pp. 1336–1344.

[433] Pemma Reiter, Hui Jun Tay, Westley Weimer, Adam Doupé, Ruoyu Wang, and
Stephanie Forrest. “Automatically Mitigating Vulnerabilities in x86 Binary Programs
via Partially Recompilable Decompilation”. In: arXiv preprint arXiv:2202.12336 (2022).

[434] Zhilei Ren, Shiwei Sun, Jifeng Xuan, Xiaochen Li, Zhide Zhou, and He Jiang. “Auto-
mated Patching for Unreproducible Builds”. In: Proceedings of the 44th International
Conference on Software Engineering. 2022.

63

[435] Francisco Ribeiro, Rui Abreu, and João Saraiva. “Framing Program Repair as Code
Completion”. In: 2022 IEEE/ACM International Workshop on Automated Program
Repair (APR). IEEE. 2022, pp. 38–45.

[436] Georgios Sakkas, Madeline Endres, Philip J Guo, Westley Weimer, and Ranjit Jhala.
“Seq2Parse: neurosymbolic parse error repair”. In: Proceedings of the ACM on Pro-
gramming Languages 6.OOPSLA2 (2022), pp. 1180–1206.

[437] Lei Shi, Yuepeng Wang, Rajeev Alur, and Boon Thau Loo. “Automatic Repair for
Network Programs”. In: International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. Springer. 2022, pp. 353–372.

[438] Mifta Sintaha, Noor Nashid, and Ali Mesbah. “Katana: Dual Slicing-Based Context
for Learning Bug Fixes”. In: arXiv preprint arXiv:2205.00180 (2022).

[439] Haoye Tian, Xunzhu Tang, Andrew Habib, Shangwen Wang, Kui Liu, Xin Xia,
Jacques Klein, and Tegawendé F Bissyandé. “Is this Change the Answer to that
Problem? Correlating Descriptions of Bug and Code Changes for Evaluating Patch
Correctness”. In: arXiv preprint arXiv:2208.04125 (2022).

[440] Palina Tolmach, Yi Li, and Shang-Wei Lin. “Property-Based Automated Repair of
DeFi Protocols”. In: Proceedings of ASE. 2022.

[441] Yuki Ueda, Takashi Ishio, and Kenichi Matsumoto. “DevReplay: Linter that Gen-
erates Regular Expressions for Repeating Code Changes”. In: Science of Computer
Programming (2022), p. 102857. issn: 0167-6423.

[442] Yuehan Wang, Jun Yang, Yiling Lou, Ming Wen, and Lingming Zhang. “Atten-
tion: Not Just Another Dataset for Patch-Correctness Checking”. In: arXiv preprint
arXiv:2207.06590 (2022).

[443] Emily Rowan Winter, Vesna Nowack, David Bowes, Steve Counsell, Tracy Hall, Sae-
mundur O Haraldsson, and John Woodward. “Let’s Talk With Developers, Not About
Developers: A Review of Automatic Program Repair Research”. In: IEEE Transac-
tions on Software Engineering (2022).

[444] Dangwei Wu, Beijun Shen, Yuting Chen, He Jiang, and Lei Qiao. “Automatically
repairing tensor shape faults in deep learning programs”. In: Information and Software
Technology 151 (2022), p. 107027.

[445] Chunqiu Steven Xia, Yuxiang Wei, and Lingming Zhang. “Practical Program Repair
in the Era of Large Pre-trained Language Models”. In: arXiv preprint arXiv:2210.14179
(2022).

[446] Chunqiu Steven Xia and Lingming Zhang. “Less training, more repairing please:
revisiting automated program repair via zero-shot learning”. In: Proceedings of the
30th ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 2022, pp. 959–971.

[447] Xuezheng Xu, Xudong Wang, and Jingling Xue. “M3V: Multi-modal Multi-view Con-
text Embedding for Repair Operator Prediction”. In: 2022 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO). IEEE. 2022, pp. 266–277.

[448] Dapeng Yan, Kui Liu, Yuqing Niu, Li Li, Zhe Liu, Zhiming Liu, Jacques Klein, and
Tegawendé F Bissyandé. “Crex: Predicting patch correctness in automated repair of
C programs through transfer learning of execution semantics”. In: Information and
Software Technology 152 (2022), p. 107043.

[449] Deheng Yang, Xiaoguang Mao, Liqian Chen, Xuezheng Xu, Yan Lei, David Lo, and
Jiayu He. “TransplantFix: Graph Differencing-based Code Transplantation for Auto-
mated Program Repair”. In: 37th IEEE/ACM International Conference on Automated
Software Engineering. 2022, pp. 1–13.

[450] He Ye, Matias Martinez, Xiapu Luo, Tao Zhang, and Martin Monperrus. “SelfAPR:
Self-supervised Program Repair with Test Execution Diagnostics”. In: Proceedings of
ASE. 2022.

64

[451] Jooyong Yi and Elkhan Ismayilzada. “Speeding up constraint-based program repair
using a search-based technique”. In: Information and Software Technology (2022),
p. 106865.

[452] Wei Yuan, Quanjun Zhang, Tieke He, Chunrong Fang, Nguyen Quoc Viet Hung,
Xiaodong Hao, and Hongzhi Yin. “CIRCLE: Continual Repair across Programming
Languages”. In: Proceedings of the 31st ACM SIGSOFT International Symposium on
Software Testing and Analysis. 2022.

[453] Aleksandr Zakharchenko. “A practical approach to automated software correctness
enhancement”. PhD thesis. New Jersey Institute of Technology, 2022.

[454] Jialu Zhang, José Cambronero, Sumit Gulwani, Vu Le, Ruzica Piskac, Gustavo
Soares, and Gust Verbruggen. “Repairing Bugs in Python Assignments Using Large
Language Models”. In: arXiv preprint arXiv:2209.14876 (2022).

[455] Quanjun Zhang, Yuan Zhao, Weisong Sun, Chunrong Fang, Ziyuan Wang, and Ling-
ming Zhang. “Program Repair: Automated vs. Manual”. In: arXiv preprint arXiv:2203.05166
(2022).

[456] Ying Zhang, Ya Xiao, Md Mahir Asef Kabir, Na Meng, et al. “Example-Based Vul-
nerability Detection and Repair in Java Code”. In: arXiv preprint arXiv:2203.09009
(2022).

[457] Wenkang Zhong, Hongliang Ge, Hongfei Ai, Chuanyi Li, Kui Liu, Jidong Ge, and Bin
Luo. “StandUp4NPR: Standardizing SetUp for Empirically Comparing Neural Pro-
gram Repair Systems”. In: 37th IEEE/ACM International Conference on Automated
Software Engineering. 2022, pp. 1–13.

[458] Wenkang Zhong, Chuanyi Li, Jidong Ge, and Bin Luo. “Neural Program Repair:
Systems, Challenges and Solutions”. In: arXiv preprint arXiv:2202.10868 (2022).

[459] Zhou Zhou, Lili Bo, Xiaoxue Wu, Xiaobing Sun, Tao Zhang, Bin Li, Jiale Zhang,
and Sicong Cao. “SPVF: security property assisted vulnerability fixing via attention-
based models”. In: Empirical Software Engineering 27.7 (2022), p. 171.

[460] Armin Zirak and Hadi Hemati. “Improving Automated Program Repair with Domain
Adaptation”. In: arXiv preprint arXiv:2212.11414 (2022).

[461] Daming Zou, Yuchen Gu, Yuanfeng Shi, MingZhe Wang, Yingfei Xiong, and Zhen-
dong Su. “Oracle-free repair synthesis for floating-point programs”. In: Proceedings
of the ACM on Programming Languages 6.OOPSLA2 (2022), pp. 957–985.

[462] Joachim Bard, Swen Jacobs, and Yakir Vizel. “Automatic and Incremental Repair
for Speculative Information Leaks”. In: arXiv preprint arXiv:2305.10092 (2023).

[463] Islem Bouzenia, Yangruibo Ding, Kexin Pei, Baishakhi Ray, and Michael Pradel.
“TraceFixer: Execution Trace-Driven Program Repair”. In: arXiv preprint arXiv:2304.12743
(2023).

[464] Yiannis Charalambous, Norbert Tihanyi, Ridhi Jain, Youcheng Sun, Mohamed Amine
Ferrag, and Lucas C Cordeiro. “A New Era in Software Security: Towards Self-Healing
Software via Large Language Models and Formal Verification”. In: arXiv preprint
arXiv:2305.14752 (2023).

[465] Thanh Le-Cong, Duc-Minh Luong, Xuan Bach D Le, David Lo, Nhat-Hoa Tran, Bui
Quang-Huy, and Quyet-Thang Huynh. “Invalidator: Automated patch correctness
assessment via semantic and syntactic reasoning”. In: IEEE Transactions on Software
Engineering (2023).

[466] Thomas Durieux. “Parfum: Detection and Automatic Repair of Dockerfile Smells”.
In: arXiv preprint arXiv:2302.01707 (2023).

[467] Zhiyu Fan, Xiang Gao, Abhik Roychoudhury, and Shin Hwei Tan. “Automated Repair
of Programs from Large Language Models”. In: Proceedings of ICSE. 2023.

65

[468] Michael Fu, Chakkrit Tantithamthavorn, Trung Le, Yuki Kume, Van Nguyen, Dinh
Phung, and John Grundy. “AIBugHunter: A Practical Tool for Predicting, Classifying
and Repairing Software Vulnerabilities”. In: arXiv preprint arXiv:2305.16615 (2023).

[469] Kai Huang, Zhengzi Xu, Su Yang, Hongyu Sun, Xuejun Li, Zheng Yan, and Yuqing
Zhang. “A Survey on Automated Program Repair Techniques”. In: arXiv preprint
arXiv:2303.18184 (2023).

[470] Dominik Huber, Matteo Paltenghi, and Michael Pradel. “Where to Look When Re-
pairing Code? Comparing the Attention of Neural Models and Developers”. In: arXiv
preprint arXiv:2305.07287 (2023).

[471] João Inécio and Ibéria Medeiros. “CorCA: An Automatic Program Repair Tool for
Checking and Removing Effectively C Flaws”. In: 2023 IEEE Conference on Software
Testing, Verification and Validation (ICST). IEEE. 2023, pp. 71–82.

[472] Naman Jain, Shubham Gandhi, Atharv Sonwane, Aditya Kanade, Nagarajan Natara-
jan, Suresh Parthasarathy, Sriram Rajamani, and Rahul Sharma. “StaticFixer: From
Static Analysis to Static Repair”. In: arXiv preprint arXiv:2307.12465 (2023).

[473] Nan Jiang, Kevin Liu, Thibaud Lutellier, and Lin Tan. “Impact of Code Language
Models on Automated Program Repair”. In: Proceedings of ICSE. 2023.

[474] Nan Jiang, Thibaud Lutellier, Yiling Lou, Lin Tan, Dan Goldwasser, and Xiangyu
Zhang. “KNOD: Domain Knowledge Distilled Tree Decoder for Automated Program
Repair”. In: arXiv preprint arXiv:2302.01857 (2023).

[475] Matthew Jin, Syed Shahriar, Michele Tufano, Xin Shi, Shuai Lu, Neel Sundaresan,
and Alexey Svyatkovskiy. “InferFix: End-to-End Program Repair with LLMs”. In:
arXiv preprint arXiv:2303.07263 (2023).

[476] Xiangxin Meng, Xu Wang, Hongyu Zhang, Hailong Sun, Xudong Liu, and Chunming
Hu. “Template-based Neural Program Repair”. In: 2023 IEEE/ACM 45th Interna-
tional Conference on Software Engineering (ICSE). IEEE. 2023, pp. 1456–1468.

[477] Manish Motwani and Yuriy Brun. “Better Automatic Program Repair by Using Bug
Reports and Tests Together”. In: International Conference on Software Engineering
(ICSE). 2023.

[478] Ruba Mutasim, Gabriel Synnaeve, David Pichardie, and Baptiste Rozière. “Leverag-
ing Static Analysis for Bug Repair”. In: arXiv preprint arXiv:2304.10379 (2023).

[479] Noor Nashid, Mifta Sintaha, and Ali Mesbah. “Embedding Context as Code Depen-
dencies for Neural Program Repair”. In: Proceedings of ICST. 2023.

[480] Nikhil Parasaram, Earl T Barr, and Sergey Mechtaev. “Rete: Learning Namespace
Representation for Program Repair”. In: 2023 IEEE/ACM 45th International Con-
ference on Software Engineering (ICSE). IEEE. 2023, pp. 1264–1276.

[481] Yu Pei, Jeongju Sohn, Sarra Habchi, and Mike Papadakis. “TRaf: Time-based Repair
for Asynchronous Wait Flaky Tests in Web Testing”. In: arXiv preprint arXiv:2305.08592
(2023).

[482] Yun Peng, Shuzheng Gao, Cuiyun Gao, Yintong Huo, and Michael R Lyu. “Domain
Knowledge Matters: Improving Prompts with Fix Templates for Repairing Python
Type Errors”. In: arXiv preprint arXiv:2306.01394 (2023).

[483] Julian Aron Prenner and Romain Robbes. “RunBugRun–An Executable Dataset for
Automated Program Repair”. In: arXiv preprint arXiv:2304.01102 (2023).

[484] André Silva, João F Ferreira, He Ye, and Martin Monperrus. “MUFIN: Improving
Neural Repair Models with Back-Translation”. In: arXiv preprint arXiv:2304.02301
(2023).

[485] Dominik Sobania, Martin Briesch, Carol Hanna, and Justyna Petke. An Analysis of
the Automatic Bug Fixing Performance of ChatGPT. Tech. rep. 2023.

[486] Palina Tolmach. “Securing smart contracts with formal verification and automated
program repair”. PhD thesis. Nanyang Technological University, 2023.

66

[487] Yi Wu, Nan Jiang, Hung Viet Pham, Thibaud Lutellier, Jordan Davis, Lin Tan, Petr
Babkin, and Sameena Shah. “How Effective Are Neural Networks for Fixing Security
Vulnerabilities”. In: arXiv preprint arXiv:2305.18607 (2023).

[488] Chunqiu Steven Xia, Yifeng Ding, and Lingming Zhang. “Revisiting the Plastic
Surgery Hypothesis via Large Language Models”. In: arXiv preprint arXiv:2303.10494
(2023).

[489] Chunqiu Steven Xia, Yuxiang Wei, and Lingming Zhang. “Automated program repair
in the era of large pre-trained language models”. In: Proceedings of the 45th Interna-
tional Conference on Software Engineering (ICSE 2023). Association for Computing
Machinery. 2023.

[490] Chunqiu Steven Xia and Lingming Zhang. “CKeep the Conversation Going: Fixing
162 out of 337 bugs for $0.42 each using ChatGPT”. In: arXiv preprint arXiv:2304.00385
(2023).

[491] Chunqiu Steven Xia and Lingming Zhang. “Conversational automated program re-
pair”. In: arXiv preprint arXiv:2301.13246 (2023).

[492] Yuan-An Xiao, Chenyang Yang, Bo Wang, and Yingfei Xiong. “Accelerating Patch
Validation for Program Repair with Interception-Based Execution Scheduling”. In:
arXiv preprint arXiv:2305.03955 (2023).

[493] He Ye. “Improving the Precision of Automatic Program Repair with Machine Learn-
ing”. PhD thesis. KTH Royal Institute of Technology, 2023.

[494] He Ye and Martin Monperrus. “ITER: Iterative Neural Repair for Multi-Location
Patches”. In: arXiv preprint arXiv:2304.12015 (2023).

[495] Quanjun Zhang, Chunrong Fang, Yuxiang Ma, Weisong Sun, and Zhenyu Chen. “A
Survey of Learning-based Automated Program Repair”. In: arXiv preprint arXiv:2301.03270
(2023).

[496] Quanjun Zhang, Chunrong Fang, Weisong Sun, Yan Liu, Tieke He, Xiaodong Hao,
and Zhenyu Chen. “Boosting Automated Patch Correctness Prediction via Pre-trained
Language Model”. In: arXiv preprint arXiv:2301.12453 (2023).

[497] Yuwei Zhang, Ge Li, Zhi Jin, and Ying Xing. “Neural Program Repair with Program
Dependence Analysis and Effective Filter Mechanism”. In: arXiv preprint arXiv:2305.09315
(2023).

[498] Xin Zhou, Bowen Xu, Kisub Kim, DongGyun Han, Thanh Le-Cong, Junda He, Bach
Le, and David Lo. “PatchZero: Zero-Shot Automatic Patch Correctness Assessment”.
In: arXiv preprint arXiv:2303.002022 (2023).

[499] Qihao Zhu, Zeyu Sun, Wenjie Zhang, Yingfei Xiong, and Lu Zhang. “Tare: Type-
Aware Neural Program Repair”. In: International Conference on Software Engineering
(ICSE). 2023.

[500] Hongliang Ge, Wenkang Zhong, Chuanyi Li, Jidong Ge, Hao Hu, and Bin Luo. “Ro-
bustNPR: Evaluating the robustness of neural program repair models”. In: Journal
of Software: Evolution and Process (), e2586.

67

	Program Repair of Dynamic Errors
	Using Tests
	Using Crashes
	Using a Reference Implementation / Feedback Generation
	Using Contracts
	Data-driven repair approaches
	Data-driven Patch Generation
	Inference of Fix Patterns / Templates

	Program Repair of Static Errors
	Static Warnings
	Bug reports
	Compiler Errors - Syntax Errors

	Empirical Studies for Program Repair
	Human Study on APR

	Domain-Specific Repair
	Test Repair
	Automated Repair of Concurrency errors
	Automated Repair of Build Scripts
	Automated Repair for Numerical Errors
	Automated Repair for the Web
	Automated Repair of Software Abstractions
	Automated Repair of Security Vulnerabilities
	Automated Repair of Smart Contracts
	Automated Repair of Typing Errors
	Misc Repair Types
	SQL Repair

	Optimization & Integration
	Driving the Search
	Addressing the patch overfitting problem
	General Non-functional Improvements, incl. Fault Localization
	Interactive Program Repair
	Repair Speed
	Integration / UI / Tooling

	Position Papers
	Formal Approaches to Program Repair
	Miscellaneous
	Datasets & Benchmarks
	Automatic Hardening
	Surveys
	Doctoral Theses

