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The Living Review on Automated Program Repair

Concept

This paper is a review on automatic program repair. It covers all research from the inception of the field up to Spring 2023. Fifteen versions of the review have been published between December 2018 and September 2023. It uses a concise bullet-list style meant to be easily accessible by the greatest number of readers, in particular students and practitioners. Within a section, all papers are ordered in a reverse chronological order, so as to easily get the research timeline.

Inclusion criteria The inclusion criteria are that the considered papers 1) must be about automatic repair with some kind of patch generation (runtime repair without patch generation is excluded 1 ); 2) must be a full-length research paper (typically >10 doublecolumn pages); 3) are stored on an durable site (notable publisher, arXiv, Zenodo). There is no restriction about whether the paper has been formally peer-reviewed or not.

Stopping criteria The last update of the living review was made once it reached the 500th reference in 2023.

Version history

• September 2023: version with 500 references, this is the final last version. [START_REF] Parasaram | Rete: Learning Namespace Representation for Program Repair[END_REF] combine template-based repair and variable prioritization with ML for repairing C and Python bugs.

• PropR: Property-Based Automatic Program Repair (2022) Gissurarson et al. [START_REF] Péll Gissurarson | PropR: property-based automatic program repair[END_REF] devise a repair tool for Haskell based on property-based tests (QuickCheck) and synthesis-driven repair with GHCs hole-fit synthesis.

• Improving Fault Localization and Program Repair with Deep Semantic Features and Transferred Knowledge Meng et al. [START_REF] Meng | Improving fault localization and program repair with deep semantic features and transferred knowledge[END_REF] combine fault localization with learning-to-rank and fix template selection among 15 templates.

• TransplantFix: Graph Differencing-based Code Transplantation for Automated Program Repair (2022) Yang et al. [START_REF] Yang | TransplantFix: Graph Differencing-based Code Transplantation for Automated Program Repair[END_REF] perform graph differencing of control-flow graph to identify and automatically adapt repair ingredients in redundancybased program repair; the approach is implemented for Java (tool) and evaluated on Defects4J.

• Trident: Controlling Side Effects in Automated Program Repair (2021) Parasaram et al. [START_REF] Parasaram | Trident: Controlling Side Effects in Automated Program Repair[END_REF] extends synthesis-based repair to also support insertion of assignments and method calls in synthesized expressions. Implementation for C.

• ReFixar: Multi-version Reasoning for Automated Repair of Regression Errors (2021) Le et al. [START_REF] Le | ReFixar: Multi-version Reasoning for Automated Repair of Regression Errors[END_REF] design 12 repair templates tailored to fixing regressions, evaluated on 51 regression bugs.

• A Novel Approach For Search-Based Program Repair (2021) Trujillo et al. [START_REF] Trujillo | A novel approach for search-based program repair[END_REF] create a variant of GenProg integrating Lehman and Stanley's 'novelty search' to promote exploration and diversity of patches.

• VarFix: Balancing Edit Expressiveness and Search Effectiveness in Automated Program Repair (2021) Wong et al. [START_REF] Wong | VarFix: balancing edit expressiveness and search effectiveness in automated program repair[END_REF] combine GenProg single edits into a metaprogram to identify those combinations that pass all tests.

• FlexiRepair: Transparent Program Repair with Generic Patches (2020), Koyuncu et al. [START_REF] Koyuncu | FlexiRepair: Transparent Program Repair with Generic Patches[END_REF] present a repair pipeline built on top of the Coccinelle engine for semantic patches.

• Astor: Exploring the Design Space of Generate-and-Validate Program Repair beyond GenProg (2019) Martinez et al. [START_REF] Martinez | Astor: Exploring the Design Space of Generate-and-Validate Program Repair beyond GenProg[END_REF] identify 12 dimensions in the design space of generate-and-validate program repair and implement them as extension points in the Astor framework.

• Impact Analysis of Syntactic and Semantic Similarities on Patch Prioritization in Automated Program Repair (2019) Asad et al. [START_REF] Asad | Impact Analysis of Syntactic and Semantic Similarities on Patch Prioritization in Automated Program Repair[END_REF] propose an alternative patch ranking technique for CapGen.

• SOSRepair: Expressive Semantic Search for Real-World Program Repair (2019) Afzal et al. [START_REF] Afzal | SOSRepair: Expressive Semantic Search for Real-World Program Repair[END_REF] proposes a better encoding than [START_REF] Ke | Repairing Programs with Semantic Code Search[END_REF] to repair C programs with SMT-based snippet search.

• LoopFix: An Approach to Automatic Repair of Buggy Loops (2019) Wang et al. [START_REF] Wang | Loop-Fix: An Approach to Automatic Repair of Buggy Loops[END_REF] describe a system that changes either the loop condition or an assignment in the loop body, using symbolic execution and component-based synthesis.

• Automatic patch generation with context-based change application (2019) Kim and Kim [START_REF] Kim | Automatic patch generation with context-based change application[END_REF] present ConFix, that first searches for past patches with surrounding code similar to the suspicious code locations (based on a hash of the AST) and when a context matches, the past change is ported to the suspicious location.

• Harnessing evolution for multi-hunk program repair (2019) Saha et al. [START_REF] Saha | Harnessing evolution for multihunk program repair[END_REF] mine repair locations that evolve together in order to search for patches consisting on the same systematic edit done at different locations.

• TBar: Revisiting Template-based Automated Program Repair (2019) Liu et al. [START_REF] Liu | TBar: Revisiting Template-based Automated Program Repair[END_REF] consolidate 35 fix patterns in 15 categories and measure their effectiveness over Defects4J.

• Ultra-Large Repair Search Space with Automatically Mined Templates: the Cardumen Mode of Astor (2018) [START_REF] Martinez | Ultra-Large Repair Search Space with Automatically Mined Templates: the Cardumen Mode of Astor[END_REF] shows that parametrized repair ingredients yields an explosion of the repair search space and finds 8935 Patches for Defects4J. An extension of Cardumen by Fonseca and Oliveira is Figra [START_REF] Fonseca | Figra: Evaluating a larger search space for Cardumen in Automatic Program Repair[END_REF].

• Mining Stackoverflow for Program Repair (2018) Liu and Zhong [START_REF] Liu | Mining Stackoverflow for Program Repair[END_REF] clusters AST diffs from code pairs in Stackoverflow to extract 12 repair patterns.

• Towards practical program repair with on-demand candidate generation (2018) [START_REF] Hua | Towards Practical Program Repair with On-Demand Candidate Generation[END_REF] does repair with metaprograming as [START_REF] Durieux | Dynamic Patch Generation for Null Pointer Exceptions Using Metaprogramming[END_REF] in order to explore the search space of variable and literal replacement.

• CFAAR: Control Flow Alteration to Assist Repair (2018) [START_REF] Trad | CFAAR: Control Flow Alteration to Assist Repair[END_REF] uses specific patterns to determine angelic values à la Nopol [START_REF] Xuan | Nopol: Automatic Repair of Conditional Statement Bugs in Java Programs[END_REF] (eg switch only the first execution of the condition).

• Context-Aware Patch Generation for Better Automated Program Repair (2018) [START_REF] Wen | Context-Aware Patch Generation for Better Automated Program Repair[END_REF] considers an ingredient-based, generate-and-validate repair loop à la Genprog, and selects the ingredients that have the most similar context according to three similarity metrics (context of the suspicious statement similar to context of the ingredient). (code)

• Practical Program Repair via Bytecode Mutation (2018) [START_REF] Ghanbari | Practical Program Repair via Bytecode Mutation[END_REF] revisits Schulte's work [START_REF] Schulte | Automated Program Repair Through the Evolution of Assembly Code[END_REF] for Java bytecode and Defects4J.

• Program Repair via Direct State Manipulation (2018) [START_REF] Hu | Program Repair via Direct State Manipulation[END_REF] proposes a variation of the repair problem: find a patch such that some variables at a specific location have certain values.

• Connecting Program Synthesis and Reachability: Automatic Program Repair Using Test-Input Generation (2017) [START_REF] Nguyen | Connecting Program Synthesis and Reachability: Automatic Program Repair Using Test-Input Generation[END_REF] creates a meta-program parametrized with parameters, encoding the search space: the symbolic solution to satisfy all test constraints is the patch. The tool is called CETI.

• Contract-based Program Repair Without the Contracts (2017) Chen et al. [START_REF] Chen | Contract-based Program Repair Without the Contracts[END_REF] uses 5 repair templates, called schemas, with a focus on modifying the state by adding an assignment. (code, journal version: [START_REF] Chen | Contract-Based Program Repair without The Contracts: An Extended Study[END_REF])

• Precise Condition Synthesis for Program Repair (2017) Xiong et al. [START_REF] Xiong | Precise Condition Synthesis for Program Repair[END_REF] integrate different heuristics (Github) and code analysis techniques (dependency analysis between variables) to create good conditions à la Nopol. (code)

• Leveraging syntax-related code for automated program repair (2017) Xin and Reiss [START_REF] Xin | Leveraging syntax-related code for automated program repair[END_REF] use Tf-Idf similariy to select ingredients in a GenProg-like loop, together with variable renaming to adapt repair ingredients. The authors have proposed an improvement of ssFix called sharpFix [START_REF] Xin | Revisiting ssFix for Better Program Repair[END_REF][START_REF] Xin | Better code search and reuse for better program repair[END_REF].

• ARJA: Automated Repair of Java Programs via Multi-Objective Genetic Programming (2017) [START_REF] Yuan | ARJA: Automated Repair of Java Programs via Multi-Objective Genetic Programming[END_REF] combines 3 different techniques (patch representation, multi-objective search, method scope) to improve a GenProg-based repair loop. ARJAe [START_REF] Yuan | A hybrid evolutionary system for automatic software repair[END_REF][START_REF] Yuan | Toward Better Evolutionary Program Repair: An Integrated Approach[END_REF] is an improvement over Arja integrating templates and repair anti-patterns.

• ELIXIR: Effective Object Oriented Program Repair (2017) [START_REF] Ripon | Elixir: Effective object-oriented program repair[END_REF] proposes 8 repair patterns à la PAR [START_REF] Kim | Automatic Patch Generation Learned From Human-Written Patches[END_REF] to be used together with simple enumeration-based synthesis.

• ASTOR: A Program Repair Library for Java (2016) [START_REF] Martinez | ASTOR: A Program Repair Library for Java[END_REF] presents the Java framework in which jGenProg [START_REF] Martinez | Automatic Repair of Real Bugs in Java: A Large-Scale Experiment on the Defects4J Dataset[END_REF], jKali [START_REF] Martinez | Automatic Repair of Real Bugs in Java: A Large-Scale Experiment on the Defects4J Dataset[END_REF], DeepRepair [START_REF] White | Sorting and Transforming Program Repair Ingredients via Deep Learning Code Similarities[END_REF], Cardumen [START_REF] Martinez | Ultra-Large Repair Search Space with Automatically Mined Templates: the Cardumen Mode of Astor[END_REF] are implemented.

• Automated Program Repair by Using Similar Codfe Containing Fix Ingredients (2016) [START_REF] Ji | Automated Program Repair by Using Similar Code Containing Fix Ingredients[END_REF] modifies RSRepair [START_REF] Qi | The Strength of Random Search on Automated Program Repair[END_REF] in order to select the most similar repair ingredients first.

• DynaMoth: Dynamic Code Synthesis for Automatic Program Repair (2016) [START_REF] Durieux | DynaMoth: Dynamic Code Synthesis for Automatic Program Repair[END_REF] uses dynamic synthesis based on the debug interface of the JVM for repairing conditions.

• Angelix: Scalable Multiline Program Patch Synthesis via Symbolic Analysis (2016) [START_REF] Mechtaev | Angelix: Scalable Multiline Program Patch Synthesis via Symbolic Analysis[END_REF] optimizes symbolic execution in order to obtain more than one angelic value, being called together calledangelic forest, in order to synthesize multipoint patches.

• Qlose: Program Repair with Quantitative Objectives (2016) [START_REF] Dantoni | Qlose: Program Repair with Quantitative Objectives[END_REF] tries to minimize the semantic impact of the repair, by minimizing the number of inputs for which there is a behavioral change using the Sketch synthesis system.

• Nopol: Automatic Repair of Conditional Statement Bugs in Java Programs (2016) [START_REF] Xuan | Nopol: Automatic Repair of Conditional Statement Bugs in Java Programs[END_REF] addresses two classes of bugs: buggy if conditions and missing preconditions. Initial paper: "Automatic Repair of Buggy If Conditions and Missing Preconditions with SMT" [START_REF] Demarco | Automatic Repair of Buggy If Conditions and Missing Preconditions with SMT[END_REF].

• Automatic Repair of Infinite Loops (2015) [START_REF] Lamelas | Automatic Repair of Infinite Loops[END_REF] describes a patch generation system for infinite loops.

• Relifix: Automated Repair of Software Regressions (2015) [START_REF] Hwei | Relifix: Automated Repair of Software Regressions[END_REF] defines 8 repair templates that are specific to regression bugs.

• Repairing Programs with Semantic Code Search (2015) [START_REF] Ke | Repairing Programs with Semantic Code Search[END_REF] repairs programs with snippets that can be semantically indexed and queried in SMT.

• Staged Program Repair with Condition Synthesis (2015) [START_REF] Long | Staged Program Repair with Condition Synthesis[END_REF] combines condition repair à la Nopol and repair templates à la PAR.

• DirectFix: Looking for Simple Program Repairs (2015) [START_REF] Mechtaev | DirectFix: Looking for Simple Program Repairs[END_REF] demonstrates that, under strong assumptions, we can state the repair problem as a Maximum Satisfiability (MaxSAT), where the smallest patch is the one that satisfies the most constraints.

• Minthint: Automated Synthesis of Repair Hints (2014) [START_REF] Shalini Kaleeswaran | Minthint: Automated Synthesis of Repair Hints[END_REF] hints to change the RHS of a single assignment statement based on data collected with concolic execution.

• Diagnosis and Emergency Patch Generation for Integer Overflow Exploits (2014) [START_REF] Wang | Diagnosis and Emergency Patch Generation for Integer Overflow Exploits[END_REF] does automatic repair of integer overflow with three repair operators: taking an error branch before the overflow happens, taking an error branch after the overflow has happened, and forced program stop.

• Automatic Patch Generation Learned From Human-Written Patches (2013) [START_REF] Kim | Automatic Patch Generation Learned From Human-Written Patches[END_REF] defines 10 repair templates for fixing bugs such as (add null pointer check, etc).

• SemFix: Program Repair via Semantic Analysis (2013) [START_REF] Duong | SemFix: Program Repair via Semantic Analysis[END_REF] combines symbolic execution and component-based synthesis to fix boolean and integer expressions in C programs.

• Evolving Patches for Software Repair (2011) [START_REF] Ackling | Evolving Patches for Software Repair[END_REF] describes pyEdb, a mutation based repair approach with two mutation operators (relational operator change and name switch) in Python.

• On the Automation of Fixing Software Bugs (2008) [START_REF] Arcuri | On the Automation of Fixing Software Bugs[END_REF] defines 7 mutation operators based on abstract syntax tree modification in a prototype implementation called Jaff, that handles a subset of Java. Journal version is "Evolutionary Repair of Faulty Software" [START_REF] Arcuri | Evolutionary Repair of Faulty Software[END_REF]. Another version is "A Novel Co-evolutionary Approach to Automatic Software Bug Fixing" [START_REF] Arcuri | A Novel Co-evolutionary Approach to Automatic Software Bug Fixing[END_REF].

• Automatically Finding Patches Using Genetic Programming (2009) [START_REF] Weimer | Automatically Finding Patches Using Genetic Programming[END_REF] is the seminal paper of the field, introducing GenProg, with its sister papers A Genetic Programming Approach to Automated Software Repair [START_REF] Forrest | A Genetic Programming Approach to Automated Software Repair[END_REF], GenProg: a Generic Method for Automatic Software Repair [START_REF] Le Goues | Gen-Prog: a Generic Method for Automatic Software Repair[END_REF], Automatic Program Repair with Evolutionary Computation [START_REF] Weimer | Automatic Program Repair with Evolutionary Computation[END_REF].

• BugFix: a Learning-based Tool to Assist Developers in Fixing Bugs (2009) [START_REF] Jeffrey | BugFix: a Learningbased Tool to Assist Developers in Fixing Bugs[END_REF] suggests a bug fix action using association rules based on features on the suspicious statement.

Using Crashes

• CorCA: An Automatic Program Repair Tool for Checking and Removing Effectively C Flaws (2023) Inácio and Medeiros [START_REF] Inécio | CorCA: An Automatic Program Repair Tool for Checking and Removing Effectively C Flaws[END_REF] implement an end-to-end approach for detecting and repairing buffer overflows in C code by replacing method calls with safe versions or changing allocation size parameters.

• Providing Real-time Assistance for Repairing Runtime Exceptions using Stack Overflow Posts (2022) Mahajan et al. [START_REF] Mahajan | Providing Real-time Assistance for Repairing Runtime Exceptions using Stack Overflow Posts[END_REF] suggest a patch for handling runtime exceptions based on a database compiled from Stackoverflow (in the line of [START_REF] Liu | Mining Stackoverflow for Program Repair[END_REF][START_REF] Gao | Fixing Recurring Crash Bugs via Analyzing Q&A Sites[END_REF]).

• Exception-Driven Fault Localization for Automated Program Repair (2022) Ginelli et al. [START_REF] Ginelli | Exception-Driven Fault Localization for Automated Program Repair[END_REF] describe a template based repair technique where templates are associated to specific Java exceptions.

• Beyond Tests: Program Vulnerability Repair via Crash Constraint Extraction Gao (2021) Gao et al. [START_REF] Gao | Beyond Tests: Program Vulnerability Repair via Crash Constraint Extraction[END_REF] use sanitizers to obtain clean crashes and fix conditional expressions (if, loops) to avoid the crash. The prototype tool is called ExtractFix, and is available on gaoxiang9430/extractfix.

• Crash-avoiding program repair (2019) Gao et al. [START_REF] Gao | Crash-Avoiding Program Repair[END_REF] repair crashes in C code with three operators (assigments, if-condition, precondition) using implicit oracles and fuzzing to discard incorrect patches.

• Repairing crashes in Android apps (2018) [START_REF] Hwei Tan | Repairing Crashes in Android Apps[END_REF] defines 8 repair operators tailored for Android crashes.

• Production-Driven Patch Generation (2016) [START_REF] Durieux | Production-Driven Patch Generation[END_REF] proposes to use shadow applications and shadow traffic to make regression testing in production.

• Fixing Recurring Crash Bugs via Analyzing Q&A Sites (2016) [START_REF] Gao | Fixing Recurring Crash Bugs via Analyzing Q&A Sites[END_REF] repairs exception bugs based on potential solutions found on Stackoverflow.

• Automatic Repair of Infinite Loops (2015) [START_REF] Lamelas | Automatic Repair of Infinite Loops[END_REF] repairs infinite loops with the same repair concept as Nopol.

• CLOTHO: Saving Programs from Malformed Strings and Incorrect String Handling (2016) [START_REF] Dhar | CLOTHO: Saving Programs from Malformed Strings and Incorrect String-handling[END_REF] is a system that generates simple catch blocks to handle certain runtime exceptions related to string manipulation in Java.

• Automatic Error Elimination by Horizontal Code Transfer Across Multiple Applications (2015) [START_REF] Long | Prophet: Automatic Patch Generation via Learning From Successful Patches[END_REF] transfers check-exit pairs between two applications to avoid crashes due to out of bounds access, integer overflow, and divide by zero errors.

For null dereferences (null pointer exceptions):

• NPEX: Repairing Java Null Pointer Exceptions without Tests (2022) Lee et al. [START_REF] Lee | NPEX: Repairing Java Null Pointer Exceptions without Tests[END_REF] devise a bespoke symbolic execution technique to avoid incorrect patches when repairing null pointer exceptions in Java without tests. The system is evaluated on 119 NPEs and available on Github.

• VFix: Value-Flow-Guided Precise Program Repair for Null Pointer Dereferences (2019): VFix [START_REF] Xu | VFix: Value-Flow-Guided Precise Program Repair for Null Pointer Dereferences[END_REF] ranks patches for null pointers based on congested places: those places in the data-flow graph that maximize the likelihood of fixing many NPEs at once.

• Automatic Inference of Code Transforms for Patch Generation (2017): Long et al. [START_REF] Long | Automatic Inference of Code Transforms for Patch Generation[END_REF] infers repair schemas from past commits for Java's NullPointerException and OutOfBoundsException.

• Dynamic Patch Generation for Null Pointer Exceptions Using Metaprogramming (2017) [START_REF] Durieux | Dynamic Patch Generation for Null Pointer Exceptions Using Metaprogramming[END_REF] introduces the idea of exploring the repair search space with a meta-program and realizes it for crashing null pointer exceptions.

Using a Reference Implementation / Feedback Generation

In this section, many papers are in the context of automated feedback generation for students, where a reference solution to a programming exercise exists. • Semantic program repair using a reference implementation (2018): Mechtaev et al. [START_REF] Mechtaev | Semantic Program Repair Using a Reference Implementation[END_REF] use a reference implementation and a parameterized test to generate a patch that changes an expression with primitive values.

• Neuro-symbolic program corrector for introductory programming assignments (2018): Bhatia et al. [START_REF] Bhatia | Neuro-Symbolic Program Corrector for Introductory Programming Assignments[END_REF] combinetoken sequence learning and Sketch to repair MOOC student submissions in Python. Extension of [START_REF] Bhatia | Automated Correction for Syntax Errors in Programming Assignments using Recurrent Neural Networks[END_REF].

• Automatic Diagnosis and Correction of Logical Errors for Functional Programming Assignments (2018): Lee et al. [START_REF] Lee | Automatic diagnosis and correction of logical errors for functional programming assignments[END_REF] present a system for automatically generating feedback on logical errors in functional programming assignments in OCaml.

• Automated Feedback Generation for Introductory Programming Assignments (2013): Singh et al. [START_REF] Singh | Automated Feedback Generation for Introductory Programming Assignments[END_REF] generate feedback for student programs based on a reference implementation, using Sketch as an intermediate languages to search for patches.

• Automated Error Localization and Correction for Imperative Programs (2011): Könighofer and Bleam's algorithm [START_REF] Könighofer | Automated Error Localization and Correction for Imperative Programs[END_REF] fixes the the right-hand side (RHS) of assignments by using the reference implementation as specification and driving the synthesis with a meta-program and SMT solving. "Repair with On-the-fly Program Analysis" is an extension of this work.

Using Contracts

The contracts can be invariants or runtime assertions, they can be manually written or mined.

• Input Test Suites for Program Repair: A Novel Construction Method Based on Metamorphic Relations (2020) Jiang et al. [START_REF] Jiang | Input Test Suites for Program Repair: A Novel Construction Method Based on Metamorphic Relations[END_REF] define metamorphic relations for the Siemens benchmark and execute Angelix, CETI, and GenProg to fix the Siemens faults accordingly.

• Program Repair at Arbitrary Fault Depth (2019) Khaireddine et al. [START_REF] Khaireddine | Program Repair at Arbitrary Fault Depth[END_REF] modifies the patch validation step of Astor/jGenProg [START_REF] Martinez | Astor: Exploring the Design Space of Generate-and-Validate Program Repair beyond GenProg[END_REF] to use an absolute correctness formula and a strict relative correctness relation.

• A Metamorphic Testing Approach for Supporting Program Repair without the Need for a Test Oracle (2016) Jiang et al. [START_REF] Jiang | A Metamorphic Testing Approach for Supporting Program Repair without the Need for a Test Oracle[END_REF] have proposed to use metamorphic relations as repair oracle.

• Generating Fixes From Object Behavior Anomalies (2009) [START_REF] Dallmeier | Generating Fixes From Object Behavior Anomalies[END_REF] Dallmeier et al. infer an object usage model from executions, and then generates a fix with two repair operators (addition and removal of method calls) so that failing runs match the inferred correct behavior.

• Automated Fixing of Programs with Contracts (2010, journal version in 2014 [START_REF] Zeller | Automated Fixing of Programs with Contracts[END_REF]) [START_REF] Wei | Automated Fixing of Programs with Contracts[END_REF], uses four repair templates that consist of a snippet and an empty conditional expression to be synthesized, and relies on Eiffel contacts (pre-conditions, post-conditions, invariants) to detect and provide the fix ingredients. "Code-Based Automated Program Fixing" [START_REF] Pei | Code-Based Automated Program Fixing[END_REF] is an extension of this work where patches don't have to only use argumentless boolean methods in the patch.

• Constraint-Based Program Debugging Using Data Structure Repair (2011) [START_REF] Malik | Constraint-Based Program Debugging Using Data Structure Repair[END_REF] translates runtime data structure repair à la Demsky as source code fix suggestion.

• Specification-based Program Repair Using SAT (2011) [START_REF] Gopinath | Specificationbased Program Repair Using SAT[END_REF] uses Alloy to repairs assignments and conditionals bugs. [494] train a self-supervised system to repair multiple, stacked errors at different lines in order to produce final multi-location patches.

Data-driven repair approaches

• MUFIN: Improving Neural Repair Models with Back-Translation (2023) Silva et al. [START_REF] Silva | MUFIN: Improving Neural Repair Models with Back-Translation[END_REF] devise and evaluate a fine-tuning loop that can improve the performance of any input neural model, using a fixer/breaker back-translation loop.

• Revisiting the Plastic Surgery Hypothesis via Large Language Models (2023) [START_REF] Steven Xia | Revisiting the Plastic Surgery Hypothesis via Large Language Models[END_REF] does 2 kinds of self-supervised masking-based fine-tuning for CodeT5, and add relevant identifiers in the context of the input representation.

• InferFix: End-to-End Program Repair with LLMs (2023) [START_REF] Jin | InferFix: End-to-End Program Repair with LLMs[END_REF] repair Infer static analysis warnings with retrieval-based few-shots and a rich prompt.

• Tare: Type-Aware Neural Program Repair (2023) Zhu et al. [START_REF] Zhu | Tare: Type-Aware Neural Program Repair[END_REF] devise a graph-based input representation focusing on static typing and encode it using relationaware attention layer.

• Impact of Code Language Models on Automated Program Repair (2023) Jiang et al. [START_REF] Jiang | Impact of Code Language Models on Automated Program Repair[END_REF] show that fine-tuning language models is better than training from scratch for program repair in Java, and that InCoder is the best among the considered models.

• Detect-Localize-Repair: A Unified Framework for Learning to Debug with CodeT5 (2023) combine three losses over three tasks (bug detection, fault localization and patch generation).

• KNOD: Domain Knowledge Distilled Tree Decoder for Automated Program Repair (2023) Jiang et al. [START_REF] Jiang | KNOD: Domain Knowledge Distilled Tree Decoder for Automated Program Repair[END_REF] craft a specific decoder and its associated training procedure to produce more grammatically correct and type-checkable patches.

• Keep the Conversation Going: Fixing 162 out of 337 bugs for $0.42 each using ChatGPT (2023) Xia and Zhang [START_REF] Steven | CKeep the Conversation Going: Fixing 162 out of 337 bugs for $0.42 each using ChatGPT[END_REF] create iterative prompts for ChatGPT based on interactive prompting containing failing test names and failing assertions.

• Conversational automated program repair (2023) Xia and Zhang [START_REF] Steven | Conversational automated program repair[END_REF] create iterative prompts for LLMs based on previously generated patches, evaluated on Quixbugs Python and Quixbugs Java.

• Improving Automated Program Repair with Domain Adaptation (2022) Zirak et al. [START_REF] Zirak | Improving Automated Program Repair with Domain Adaptation[END_REF] fine-tune a pre-trained model with domain specific bug-fix pairs to improve performance.

• Repairing Bugs in Python Assignments Using Large Language Models (2022) Zhang et al. [START_REF] Zhang | Repairing Bugs in Python Assignments Using Large Language Models[END_REF] construct two kinds of advanced prompts for Codex to respectively repair syntactic and semantic errors in student Python programs, with an evaluation on 286 buggy programs.

• An Analysis of the Automatic Bug Fixing Performance of ChatGPT (2023) Sobania et al. [START_REF] Sobania | An Analysis of the Automatic Bug Fixing Performance of ChatGPT[END_REF] give all programs of Quixbugs to ChatGPT with a simple prompt and report that 19/40 Python programs can be fixed.

• Towards JavaScript program repair with generative pre-trained transformer (GPT-2) (2023) Lajko et al. [START_REF] Lajkó | Towards JavaScript program repair with generative pre-trained transformer (GPT-2)[END_REF] train a GPT-2 model only for Javascript with data from benchmark BugJS, reporting up to 269/1559 patches identical to the expected one (with beam 10). [START_REF] Li | DEAR: A Novel Deep Learning-based Approach for Automated Program Repair[END_REF] propose a mechanism to qualify the fixing scope (sequence of lines, hunks), based on a combination of SBFL and ML to learn the "fixing-together" relationship.

• Automated Program Repair in the Era of Large Pre-trained Language Models (2022) Xia et al. [START_REF] Steven Xia | Automated program repair in the era of large pre-trained language models[END_REF] use large language models (GPT, CodeT5, InCoder, Codex) on Defects4J, Quixbugs and Manybugs and report state-of-the-art results.

• Katana: Dual Slicing-Based Context for Learning Bug Fixes (2022) In an NMT repair architecture, Sintaha et al. [START_REF] Sintaha | Katana: Dual Slicing-Based Context for Learning Bug Fixes[END_REF] define the context in the input as the statements that have a control or data dependency on the buggy statement. Implemented for Javascript, using tool 'Understand' for slicing, and evaluated on 11397 bugs from an ad hoc dataset of 91181 samples. A similar follow-up is [START_REF] Nashid | Embedding Context as Code Dependencies for Neural Program Repair[END_REF].

• Framing Program Repair as Code Completion (2022) Ribeiro et al. [START_REF] Ribeiro | Framing Program Repair as Code Completion[END_REF] perform an experiment to use CodeGPT for repairing 6415 bugs from ManySStuBs4J, reporting a success rate of 27%.

• Repair Is Nearly Generation: Multilingual Program Repair with LLMs (2022) Joshi et al. [START_REF] Joshi | Repair Is Nearly Generation: Multilingual Program Repair with LLMs[END_REF] show that a single large language model trained on code (LLMC) works on six different downstream tasks (repair compilation errors, repair linting erros, etc) in six languages (with 200 testing data points per task).

• Defect Identification, Categorization, and Repair: Better Together (2022) Ni et al. [START_REF] Ni | Defect Identification, Categorization, and Repair: Better Together[END_REF] train the a single system 1) to classify lines among one of 16 defect patterns and 2) to generate the fix with a decoder, experimenting on ManySStuBs4J.

• GLAD: Neural Predicate Synthesis to Repair Omission Faults (2022) Kang and Yoo [START_REF] Kang | GLAD: Neural Predicate Synthesis to Repair Omission Faults[END_REF] train a GRU-based system to generate if conditions at certain locations in order to early-return, guard existing code or add clauses to existing conditions.

• Fix Bugs with Transformer through a Neural-Symbolic Edit Grammar (2022) Hu et al.'s experiments on CodeXBlue [START_REF] Hu | Fix Bugs with Transformer through a Neural-Symbolic Edit Grammar[END_REF] indicate that predicting the edit sequence according to an edit grammar is more effective than predicting the whole fixed code, confirming [START_REF] Chen | Neural Transfer Learning for Repairing Security Vulnerabilities in C Code[END_REF].

• M3V: Multi-modal Multi-view Context Embedding for Repair Operator Prediction (2022) Xu et al. [START_REF] Xu | M3V: Multi-modal Multi-view Context Embedding for Repair Operator Prediction[END_REF] devise a graph-based neural approach to predict one repair operator among 4 standard ones for NullPointerException and 3 for Out-OfBoundsException.

• Can We Automatically Fix Bugs by Learning Edit Operations (2022) Connor et al. [START_REF] Connor | Can We Automatically Fix Bugs by Learning Edit Operations?[END_REF] present a series of negative experimental results on using edit operations as output to neural program repair.

• Fix-Filter-Fix: Intuitively Connect Any Models for Effective Bug Fixing (2021) Hong et al. [START_REF] Hong | Fix-Filter-Fix: Intuitively Connect Any Models for Effective Bug Fixing[END_REF] systematically check that an NMT model transforms the code under repair and if not, chains different NMT models together.

• GrasP: Graph-to-Sequence Learning for Automated Program Repair (2021) Tang et al. [START_REF] Tang | GrasP: Graph-to-Sequence Learning for Automated Program Repair[END_REF] design a graph based representation for generating Java patches with a graph-to-sequence neural architecture from IBM (IBM/Graph2Seq).

• A Controlled Experiment of Different Code Representations for Learning-Based Bug Repair (2021) Namavar et al. [START_REF] Namavar | A controlled experiment of different code representations for learning-based program repair[END_REF] compare the ability of different representations for repairing swapped arguments and wrong binary operator, showing a relative advantage for token-based pre-order pretty-print of original code (AST4).

• A Syntax-Guided Edit Decoder for Neural Program Repair (2021) Zhu et al. [START_REF] Zhu | A Syntax-Guided Edit Decoder for Neural Program Repair[END_REF] propose a decoder architecture for neural program repair that 1) generates edits (and not full sequences) 2) generates placeholders for handling rare identifiers (instead of subtokenization or copy [START_REF] Chen | SequenceR: Sequence-to-Sequence Learning for Endto-End Program Repair[END_REF]).

• Grammar-Based Patches Generation for Automated Program Repair (2021) Tang et al. [START_REF] Tang | Grammar-Based Patches Generation for Automated Program Repair[END_REF] proposes a neural architecture combining a token encoder and a grammar encoder, and experiment with the code changes of Tufano's BFP dataset [START_REF] Tufano | An Empirical Investigation into Learning Bug-fixing Patches in the Wild via Neural Machine Translation[END_REF].

• CURE: Code-Aware Neural Machine Translation for Automatic Program Repair (2021) Jiang et al. [START_REF] Jiang | CURE: Code-Aware Neural Machine Translation for Automatic Program Repair[END_REF] propose a subword tokenization technique and a specific beam search to improve the compilation rate of patches from NMT-based repair.

• A Software-Repair Robot Based on Continual Learning (2021) Baudry et al [START_REF] Benoit Baudry | A Software-Repair Robot Based on Continual Learning[END_REF] uses continual learning on top of the stream of continuous integration builds, refining the patch generation ML model when new builds arrive.

• Synthesize, Execute and Debug: Learning to Repair for Neural Program (2020) Gupta et al. [START_REF] Gupta | Synthesize, execute and debug: Learning to repair for neural program synthesis[END_REF] embed execution traces in order for a so-called neural debugger to predict an edit sequence to repair Karel programs.

• DLFix: Context-based Code Transformation Learning for Automated Program Repair (2020) Li et al. [START_REF] Li | DLfix: Context-based code transformation learning for automated program repair[END_REF] use tree-based recurrent neural networks to generate patches.

• CoCoNuT: Combining Context-Aware Neural Translation Models using Ensemble for Program Repair (2020) Lutellier et al. [START_REF] Lutellier | EN-CORE: Ensemble Learning using Convolution Neural Machine Translation for Automatic Program Repair[END_REF][START_REF] Lutellier | CoCoNuT: Combining Context-Aware Neural Translation Models using Ensemble for Program Repair[END_REF] propose a number of design changes to SequenceR [START_REF] Chen | SequenceR: Sequence-to-Sequence Learning for Endto-End Program Repair[END_REF] (fully convolutional layers, multi-attention, multi-model prediction).

• Hoppity: Learning Graph Transformations to Detect and Fix Bugs in Programs (2020) Dinella et ak. [START_REF] Dinella | Hoppity: learning graph transformations to detect and fix bugs in programs[END_REF] predict the changes to be made to the AST of Javascript bug-fix commits with a graph-based neural network.

• A Study of Pyramid Structure for Code Correction (2020) Huang et al. . [START_REF] Huang | A Study of Pyramid Structure for Code Correction[END_REF] propose a better encoder for seq2seq and apply it to two benchmarks of programs with static warnings: Juliet and Java SARD.

• Learning the Relation between Code Features and Code Transforms with Structured Prediction (2019) Yu et al. [START_REF] Yu | Learning the Relation between Code Features and Code Transforms with Structured Prediction[END_REF] predict the code transformations that must be applied to fix a bug using structured prediction with conditional random fields.

• SequenceR: Sequence-to-Sequence Learning for End-to-End Program Repair (2018) Chen et al. [START_REF] Chen | SequenceR: Sequence-to-Sequence Learning for Endto-End Program Repair[END_REF] deploy sequence-to-sequence learning over 35578 diffs from the CodRep dataset [START_REF] Chen | The CodRep Machine Learning on Source Code Competition[END_REF] and show that the system, called Sequencer, is able to perfectly predict the fixed line for 950/4711 testing cases and 14 bugs in Defects4J.

• Learning to Generate Corrective Patches using Neural Machine Translation (2019) [START_REF] Hata | Learning to Generate Corrective Patches using Neural Machine Translation[END_REF] trains a neural sequence-to-sequence model over 35,137 single statement diffs from 5 open-source Java projects and applies it to 233 testing tasks.

• Search, Align, and Repair: Data-Driven Feedback Generation for Introductory Programming Exercises (2018): Wang et al. [START_REF] Wang | Search, Align, and Repair: Datadriven Feedback Generation for Introductory Programming Exercises[END_REF] use advanced AST matching and differencing to provide a small diff to MOOC students based on a pool of correct solutions.

• Semantic Code Repair using Neuro-Symbolic Transformation Networks (2017) Delvin et al. [START_REF] Devlin | Semantic Code Repair using Neuro-Symbolic Transformation Networks[END_REF] synthesize errors in Python programs according to 4 mutation operators and show that an LSTM-based architecture can fix the synthetic errors.

• History Driven Program Repair (2016) [START_REF] Le | History Driven Program Repair[END_REF]uses the commit history to select the most likely patch from classical mutation-based repair (incl. Genprog and Par): the mutations that appear the most frequently in the history are ranked first.

• Prophet: Automatic Patch Generation via Learning From Successful Patches (2016) [START_REF] Long | Prophet: Automatic Patch Generation via Learning From Successful Patches[END_REF] selects the SPR generated patch that resembles the most to past human patches.

• sk_p: a neural program corrector for MOOCs (2016) Pu et al. [START_REF] Pu | sk_p: a neural program corrector for MOOCs[END_REF] use a recurrent neural network to predict corrections in small student programs written in Pyton.

Inference of Fix Patterns / Templates

• Expanding Fix Patterns to Enable Automatic Program Repair (2021) Nowack et al. [START_REF] Nowack | Expanding Fix Patterns to Enable Automatic Program Repair[END_REF] cluster Defects4J patches to group them by fix pattern.

• DevReplay: Automatic Repair with Editable Fix Pattern (2020) Ueda et aL; [START_REF] Ueda | DevReplay: Automatic Repair with Editable Fix Pattern[END_REF][START_REF] Ueda | DevReplay: Linter that Generates Regular Expressions for Repeating Code Changes[END_REF] abstracts over commits by extracting matching and replacement regular expressions, in order to be able to apply the same code change again later.

• FixMiner: Mining Relevant Fix Patterns for Automated Program Repair (2020) Koyuncu et al. [START_REF] Koyuncu | FixMiner: Mining Relevant Fix Patterns for Automated Program Repair[END_REF] define a novel data structure for representing and clustering edit scripts, finding 14 full patterns automatically in a dataset of 11,416 patches.

• Phoenix: Automated Data-driven Synthesis of Repairs for Static Analysis Violations (2019) Bavishi et al. [START_REF] Bavishi | Phoenix: automated datadriven synthesis of repairs for static analysis violations[END_REF] represent warning-fixing changes in a DSL representing the AST edit script, then cluster those changes into patterns.

• Getafix: Learning to Fix Bugs Automatically (2019) [START_REF] Scott | Getafix: Learning to Fix Bugs Automatically[END_REF] infers repair templates for null pointer bugs detected with the static analysis tool Infer.

• Shaping Program Repair Space with Existing Patches and Similar Code (2018) [START_REF] Jiang | Shaping Program Repair Space with Existing Patches and Similar Code[END_REF] selects the most similar repair ingredients that are also instances of bug fix patterns mined over past commits.

Program Repair of Static Errors

Static Warnings

• StaticFixer: From Static Analysis to Static Repair (2023) Jain et al. [START_REF] Jain | StaticFixer: From Static Analysis to Static Repair[END_REF] repair two types of information flow vulnerabilities in Javascript (unvalidated dynamic calls and cross-site scripting) using a CodeT5 neural model, trained in a self-superviser manner with perturbations.

• A New Era in Software Security: Towards Self-Healing Software via Large Language Models and Formal Verification (2023) Charalambous et al. [START_REF] Charalambous | A New Era in Software Security: Towards Self-Healing Software via Large Language Models and Formal Verification[END_REF] use ChatGPT to fix errors in C programs found by the ESBMC model checker (testing with 1000 cynthetic C code samples, each consisting of 20 to 50 lines of code).

• Leveraging Static Analysis for Bug Repair (2023) Mutasim et al [START_REF] Mutasim | Leveraging Static Analysis for Bug Repair[END_REF] train a system to automatically fix resource leak bugs flagged by Infer in Java using a transformer.

• Static Analysis Warnings and Automatic Fixing: A Replication for C# Projects (2022) Odermatt et al. [START_REF] Odermatt | Static Analysis Warnings and Automatic Fixing: A Replication for C# Projects[END_REF] implement and evaluate a template-based repair tool for C# to fix 20 ReSharper and SonarQube static analysis rules (EagleRepair on Github).

• Towards More Reliable Automated Program Repair by Integrating Static Analysis Techniques (2021) Al-Bataineh et al. [START_REF] Omar | Towards More Reliable Automated Program Repair by Integrating Static Analysis Techniques[END_REF] fix termination bugs by mutating statements in the backward slice of the loop condition.

• TFix: Learning to Fix Coding Errors with a Text-to-Text Transformer (2021) Berabi et al. [START_REF] Berabi | TFix: Learning to Fix Coding Errors with a Text-to-Text Transformer[END_REF] train and evaluate a T5 transformer to repair ESLint errors in Javascript.

• Sorald: Automatic Patch Suggestions for SonarQube Static Analysis Violations (2021) Etemadi et al. [START_REF] Etemadi | Sorald: Automatic Patch Suggestions for SonarQube Static Analysis Violations[END_REF] present a system to repair SonarJava static analysis warnings based on AST level metaprogramming with Spoon [START_REF] Pawlak | Spoon: A Library for Implementing Analyses and Transformations of Java Source Code[END_REF].

• Automatic Integer Error Repair by Proper-Type Inference (2021) Cheng et al. [START_REF] Cheng | Automatic Integer Error Repair by Proper-Type Inference[END_REF] write a static analysis for C integer errors based on type inference, and use four fix patterns to repair the violations.

• Automated Code Repair to Ensure Spatial Memory Safety (2021) Klieber et al. [START_REF] Klieber | Automated Code Repair to Ensure Spatial Memory Safety[END_REF] add checks to repair warning by the verification tool Symbiotic, using an ad hoc intermediate representation that can be transformed from and back to the AST.

• C-3PR: A Bot for Fixing Static Analysis Violations via Pull Requests (2020) C-3PR [START_REF] Carvalho | C-3PR: A Bot for Fixing Static Analysis Violations via Pull Requests[END_REF] integrates ESLint, TSLint and Sonar-WalkMod into a bot that makes pull-requests on Github for style issues and static analysis warnings.

• SAVER: Scalable, Precise, and Safe Memory-Error Repair (2020) Hong et al. [START_REF] Hong | SAVER: Scalable, Precise, and Safe Memory-Error Repair[END_REF] propose a novel technique to patch statically found memory leak, double-free, and use-after-free errors in C programs based on so-called object flow graphs.

• Automated Repair of Resource Leaks in Android Applications (2020) Bhatt et al. [START_REF] Bhargav | Automated Repair of Resource Leaks in Android Applications[END_REF] repair Android-specific static analysis warnings with a fix template. • Static Automated Program Repair for Heap Properties (2018) [START_REF] Van Tonder | Static Automated Program Repair for Heap Properties[END_REF] repairs static warnings for potential null dereferences found by the static analysis tool Infer.

• MemFix: static analysis-based repair of memory deallocation errors for C (2018) [START_REF] Lee | MemFix: static analysis-based repair of memory deallocation errors for C[END_REF] quantitatively improves over [START_REF] Gao | Safe Memory-leak Fixing for C Programs[END_REF] and is able to handle real open-source programs.

• Automatically Diagnosing and Repairing Error Handling Bugs in C (2017) Tian et al. [START_REF] Tian | Automatically Diagnosing and Repairing Error Handling Bugs in C[END_REF] repair three static warnings related to error handling with the corresponding template ("Incorrect/Missing Error Propagation", "Incorrect/Missing Error Checks", "Incorrect/Missing Resource Release")

• IntPTI: Automatic Integer Error Repair With Proper-Type Inference (2017) [START_REF] Cheng | IntPTI: Automatic integer error repair with proper-type inference[END_REF] statically detect integer overflows, applies 3 transformations (sanity check, explicit type casting and declared type change) before proposing the change to the developer.

• Sound and complete mutation-based program repair (2016) [START_REF] Rothenberg | Sound and complete mutation-based program repair[END_REF] Rothenberg and Grumberg apply standard mutation operators not to the program under repair but to a constraint-based, SSA representation of C programs in order to fix statically detected errors. repo

• Enhancing automated program repair with deductive verification (2016) Le at al. [START_REF] Le | Enhancing automated program repair with deductive verification[END_REF] repair static warnings found with HIP/SLEEK with Genprog-like mutations.

• Safe Memory-leak Fixing for C Programs (2015) [START_REF] Gao | Safe Memory-leak Fixing for C Programs[END_REF] proposes an approach that consists of statically detecting and fixing memory leaks by inserting a deallocation statement.

• Automated Generation of Buffer Overflows Quick Fixes Using Symbolic Execution and SMT (2015) [START_REF] Muntean | Automated Generation of Buffer Overflows Quick Fixes Using Symbolic Execution and SMT[END_REF] uses parametrized templates to fix buffer overflow, where the actual parameter is found with symbolic execution and SMT.

• Sound Input Filter Generation for Integer Overflow Errors (2014) [START_REF] Long | Sound Input Filter Generation for Integer Overflow Errors[END_REF] uses a static analysis specific to integer arithmetic that detects integer overflows, and repair them by inferring a filter that simply deny the input.

• Automatic Repair of Overflowing Expressions with Abstract Interpretation (2013) [START_REF] Logozzo | Semantics, Abstract Interpretation, and Reasoning About Programs: Essays Dedicated to David A[END_REF] statically detects arithmetic overflow and suggest fixes as re-ordering of the arithmetic operations

• Modular and Verified Automatic Program Repair (2012) [START_REF] Logozzo | Modular and Verified Automatic Program Repair[END_REF] proposes a repair approach for a set of fault class identified statically (e.g. off-by-one errors),with a specific repair operators per fault class (for example adding a precondition).

• Fix-it: An Extensible Code Auto-Fix Component in Review Bot [START_REF] Balachandran | Fix-it: An extensible code auto-fix component in review bot[END_REF] (2013) is an approach to automatically fix static warnings with AST transformation based on XQuery (US Patent by the same author US9146712B2).

• Combining dynamic slicing and mutation operators for ESL correction (2012) Repinski et al. [START_REF] Repinski | Combining dynamic slicing and mutation operators for ESL correction[END_REF] revisit the work of [START_REF] Debroy | Using Mutation to Automatically Suggest Fixes for Faulty Programs[END_REF] with different mutation operators.

• A Formal Approach to Fixing Bugs (2011) [START_REF] Kalvala | A Formal Approach to Fixing Bugs[END_REF] fixes Findbugs-like bugs with Coccinelle-like templates using a transformation language called Tran. Similar work by the same authors "Towards the Automated Correction of Bugs".

• Automatic Error Correction of Java Programs (2010) [START_REF] Kern | Automatic Error Correction of Java Programs[END_REF] generates a metaprogram that integrates all possible mutations according to a mutation operator, and the successful mutations are identified using symbolic execution.

• Using Mutation to Automatically Suggest Fixes for Faulty Programs (2010) Debroy and Wong [START_REF] Debroy | Using Mutation to Automatically Suggest Fixes for Faulty Programs[END_REF] propose to use standard mutations from the mutation testing literature to fix programs: replacement of an arithmetic, relational, logical, increment/decrement, or assignment operator by another operator from the same class; decision negation in an if or while statement.

• Proof-directed Debugging and Repair (2006) [START_REF] Dennis | Proof-directed Debugging and Repair[END_REF] uses an Isabel proof-based oracle on on ML programs: when the proof fails, the counter-example of the proof drives a repair approach based on repair templates (replacing one method call by another, adding code).

• Patches As Better Bug Reports (2006) Weimer [START_REF] Weimer | Patches As Better Bug Reports[END_REF] uses a safety policy of the form of a typestate property to detect and repair the control-flow graph of a method with a patch.

Bug reports

• iFixR: bug report driven program repair (2019) Koyuncu et al. [START_REF] Koyuncu | iFixR: bug report driven program repair[END_REF] show that bug reports can be used for fault localization using information retrieval techniques and combine this with template based repair.

• R2Fix: Automatically Generating Bug Fixes From Bug Reports (2013) [START_REF] Liu | R2Fix: Automatically Generating Bug Fixes From Bug Reports[END_REF] takes as oracle a manually written bug report, which is used to extract the actual value of a template parameter. • Self-Supervised Bug Detection and Repair (2021) Allamanis et al. [START_REF] Allamanis | Self-Supervised Bug Detection and Repair[END_REF] devise a self-supervised loop to detect and repair four kinds of bugs ("Variable Misuse", "Argument Swapping", "Wrong operator", "Wrong literal"), with experiments in Python.

Compiler Errors -Syntax Errors

• SYNFIX: Automatically Fixing Syntax Errors using Compiler Diagnostics (2021) Ahmed et al.'s system [START_REF] Ahmed | SYNFIX: Automatically Fixing Syntax Errors using Compiler Diagnostics[END_REF], Synfix, uses a Roberta-based model to fix syntax errors in Java.

• GGF: A Graph-based Method for Programming Language Syntax Error Correction (2020) Wu et al. [START_REF] Wu | GGF: A Graph-based Method for Programming Language Syntax Error Correction[END_REF] uses the AST information in a neural architecture to improve the state-of-the-art on the DeepFix dataset.

• Graph-based Self-Supervised Program Repair from Diagnostic Feedback (2020) Yasunaga and Liang [START_REF] Yasunaga | Graph-based, Self-Supervised Program Repair from Diagnostic Feedback[END_REF] generate training data for compiler error repair, with a self-supervised procedure based on corrupting programs, claim to improve the state-the-art on the Deepfix dataset.

• Automatic Repair and Type Binding of Undeclared Variables using Neural Networks (2019) Mohan et al. [START_REF] Venkatesh | Automatic Repair and Type Binding of Undeclared Variables using Neural Networks[END_REF] train a system based on LSTM to repair 1059 student C programs with undeclared variable errors.

• DeepDelta Learning to Repair Compilation Errors (2019) Mesbah et al. [START_REF] Mesbah | DeepDelta: learning to repair compilation errors[END_REF] fix Java compilation errors by training a NMT model to predict the AST diff expressed in a textual manner.

• SampleFix: Learning to Correct Programs by Sampling Diverse Fixes (2019) Hajipour et al. [START_REF] Hajipour | SampleFix: Learning to Correct Programs by Sampling Diverse Fixes[END_REF] repair syntax errors with a conditional variational autoencoder with a technique to sample diverse solutions.

• Deep Reinforcement Learning for Syntactic Error Repair in Student Programs (2018) [START_REF] Gupta | Deep reinforcement learning for programming language correction[END_REF] uses reinforcement learning to improve the performance of DeepFix [START_REF] Gupta | DeepFix: Fixing Common C Language Errors by Deep Learning[END_REF] on the same dataset.

• Reducing Cascading Parsing Errors Through Fast Error Recovery (2018) [START_REF] Diekmann | Reducing Cascading Parsing Errors Through Fast Error Recovery[END_REF] Diekmann and Tratt finds repair sequences for syntax errors, with minimum cost and acceptable time, by extending [START_REF] Corchuelo | Repairing syntax errors in LR parsers[END_REF].

• Syntax and sensibility: Using language models to detect and correct syntax errors (2018): Santos' approach [START_REF] Antonio | Syntax and sensibility: Using language models to detect and correct syntax errors[END_REF] repairs syntax errors (one character edits) with n-gram and LSTM, with an evaluation on 1,715,312 before-and-after pairs of the BlackBox dataset.

• Compilation error repair: for the student programs, from the student programs (2018): Ahmed et al. [START_REF] Umair Z Ahmed | Compilation error repair: for the student programs, from the student programs[END_REF] improve over DeepFix [START_REF] Gupta | DeepFix: Fixing Common C Language Errors by Deep Learning[END_REF] on a dataset containing a total of 16985 (source, target) line pairs.

• DeepFix: Fixing Common C Language Errors by Deep Learning (2017): Gupta et al. [START_REF] Gupta | DeepFix: Fixing Common C Language Errors by Deep Learning[END_REF] use a language model for repairing syntactic compilation errors

• Automated correction for syntax errors in programming assignments using recurrent neural networks (2016): Bhatia [START_REF] Bhatia | Automated Correction for Syntax Errors in Programming Assignments using Recurrent Neural Networks[END_REF] set up recurrent neural networks to fix Python syntax errors in 14000 student submissions from a MOOC.

Empirical Studies for Program Repair

• RobustNPR: Evaluating the robustness of neural program repair models (2023) Ge et al. [START_REF] Ge | Ro-bustNPR: Evaluating the robustness of neural program repair models[END_REF] produce semnatically equivalent buggy programs with mutation to test whether neural models can still fix them. Most models cannot fix anymore mutated input programs by a large proportion (80% of bugs).

• Where to Look When Repairing Code Comparing the Attention of Neural Models and Developers (2023) Huber [START_REF] Huber | Where to Look When Repairing Code? Comparing the Attention of Neural Models and Developers[END_REF] find that humans and neural nets "look " at similar places and that different neural models have very different attention matrices.

• Digging into Semantics: Where do search-based software repair methods search? (2022) Ahmad et al. [START_REF] Ahmad | Digging into Semantics: Where do search-based software repair methods search?[END_REF] devise a method to compute a behavioral embedding based on invariants, and proceed with dimensionality reduction with PCA, plotting patches for six repair tools.

• • Longitudinal Analysis of the Applicability of Program Repair on Past Commits (2020) Etemadi et al. [START_REF] Etemadi | Longitudinal Analysis of the Applicability of Program Repair on Past Commits[END_REF] use AST analysis to identify past commits that could potentially have been generated by program repair tools, because the corresponding code changes lie in the search space of known repair approaches.

• Patching as Translation: the Data and the Metaphor (2020) Ding et al. [START_REF] Ding | Patching as Translation: the Data and the Metaphor[END_REF] discuss to what extent the usage of neural machine translation is appropriate for program repair.

• Quality of Automated Program Repair on Real-World Defects (2020) Motwani et al. [START_REF] Motwani | Quality of Automated Program Repair on Real-World Defects[END_REF] implement the algorithms of GenProg, Par and TrpAutoRepair for Java in a tool called JarFly, and study its effectiveness on Defects4J.

• Empirical Analysis of 1-edit Degree Patches in Syntax-Based Automatic Program Repair (2020) Dziurzanski et al. [START_REF] Dziurzanski | Empirical Analysis of 1-edit Degree Patches in Syntax-Based Automatic Program Repair[END_REF] exhaustively explore the search space on 1-edit patches (i.e. one-liners) of Arja for Defects4J, and show that much fewer tests can be executed for one-liners.

• How Effective is Automated Program Repair for Industrial Software (2020) Noda et al. [START_REF] Noda | Experience Report: How Effective is Automated Program Repair for Industrial Software?[END_REF] discusses the repair results (8 patches) of proprietary repair tool Elixir on 20 single-statements bugs from Fujitsu products.

• On the Efficiency of Test Suite based Program Repair (2020) Liu et al. [START_REF] Liu | On the Efficiency of Test Suite based Program Repair[END_REF] show that incorrect fault-localization significantly increases the chances of producing overfitting patches.

• A manual inspection of Defects4J bugs and its implications for automatic program repair (2019) Jiang et al. [START_REF] Jiang | A manual inspection of Defects4J bugs and its implications for automatic program repair[END_REF] classify 50 Defects4J bugs with respect to the fault localization and repair stragegy used.

• Repairnator patches programs automatically (2019) Monperrus et al. [START_REF] Monperrus | Repairnator patches programs automatically[END_REF] report that program repair can be human-competitive: 5 generated patches have been synthesized faster than the human developer, and accepted and merged in the code base.

• The effectiveness of context-based change application on automatic program repair (2019) Kim et al. [START_REF] Kim | The effectiveness of context-based change application on automatic program repair[END_REF] show that it is valuable to select ingredients with similar AST context in generate-and-validate program repair. Idea related to [START_REF] Wen | Context-Aware Patch Generation for Better Automated Program Repair[END_REF].

• • Empirical Review of Java Program Repair Tools: A Large-Scale Experiment on 2,141 Bugs and 23,551 Repair Attempts (2019) Durieux et al. [START_REF] Durieux | Empirical Review of Java Program Repair Tools: A Large-Scale Experiment on 2,141 Bugs and 23,551 Repair Attempts[END_REF] run the same set of repair tools over different benchmarks and show that research is likely overfitting to Defects4J.

• Human-competitive Patches in Automatic Program Repair with Repairnator (2018) [START_REF] Monperrus | Human-competitive Patches in Automatic Program Repair with Repairnator[END_REF] shows that the state of the art techniques in 2018 can produce a valuable patch faster than human developers.

• Attention Please: Consider Mockito when Evaluating Newly Released Automated Program Repair Techniques (2018) [START_REF] Wang | Attention Please: Consider Mockito when Evaluating Newly Released Automated Program Repair Techniques[END_REF] discusses the characteristics of the Mockito bugs in Defects4J and the performance of SimFix, CapGen and Nopol on repairing them.

• The Remarkable Role of Similarity in Redundancy-based Program Repair (2018) [START_REF] Chen | The Remarkable Role of Similarity in Redundancybased Program Repair[END_REF] describes an original experiment showing that the use of similarity can reduce the search space of program repair by 99.35%, under certain assumptions.

• LSRepair: Live Search of Fix Ingredients for Automated Program Repair (2018) [START_REF] Liu | LSRepair: Live Search of Fix Ingredients for Automated Program Repair[END_REF] compares three kinds of similarity (similar method signature, method embedding similarity using CNN, semantic similarity based on code-search) in the context of generate-and-validate program repair.

• A Novel Fitness Function for Automated Program Repair Based on Source Code Checkpoints (2018) [START_REF] Souza | A Novel Fitness Function for Automated Program Repair Based on Source Code Checkpoints[END_REF] uses instrumentation in order to have a fitness function that has less plateaus than with only test case outcomes.

• A Comprehensive Study of Automatic Program Repair on the QuixBugs Benchmark (2018) [START_REF] Ye | A Comprehensive Study of Automatic Program Repair on the QuixBugs Benchmark[END_REF] is the first report on doing automatic repair on the Quixbugs benchmark, using the Astor and Nopol tools [START_REF] Lin | QuixBugs: a multi-lingual program repair benchmark set based on the quixey challenge[END_REF].

• Comparing Line and AST Granularity Level for Program Repair using PyGGI (2018) [START_REF] Gabin An | Comparing line and AST granularity level for program repair using PyGGI[END_REF] claims that AST analysis in a GenProg-like approach is overall faster than line-based analysis. • An empirical analysis of the influence of fault space on search-based automated program repair (2017) [START_REF] Wen | An empirical analysis of the influence of fault space on search-based automated program repair[END_REF] shows that GenProg finds more patches (incl. correct ones) if one assumes better fault localization.

• A correlation study between automated program repair and test-suite metrics (2017) [START_REF] Yi | A correlation study between automated program repair and test-suite metrics[END_REF] sets up a protocol based on held-out tests to show that the better the coverage, the better the repair.

• Do automated program repair techniques repair hard and important bugs? (2017) [START_REF] Motwani | Do automated program repair techniques repair hard and important bugs?[END_REF] suggests that the considered state-of-the-art repair techniques only repair simple bugs according to collected bug metadata.

• An Empirical Investigation into Learning Bug-Fixing Patches in the Wild via Neural Machine Translation (2018) Tufano et al. [START_REF] Tufano | An Empirical Investigation into Learning Bug-fixing Patches in the Wild via Neural Machine Translation[END_REF] use machine translation on Java methods that are smaller than 50 tokens with abstracted token sequences (the corresponding journal paper is [START_REF] Tufano | An Empirical Study on Learning Bug-Fixing Patches in the Wild via Neural Machine Translation[END_REF]).

• Towards reusing hints from past fixes -An exploratory study on thousands of real samples (2018) [START_REF] Zhong | Towards reusing hints from past fixes -An exploratory study on thousands of real samples[END_REF] confirms the results of [START_REF] Martinez | Do the Fix Ingredients Already Exist? An Empirical Inquiry into the Redundancy Assumptions of Program Repair Approaches[END_REF] regarding redundancy-based repair based on the novel usage delta dependency graphs.

• Mining Repair Model for Exception-Related Bug (2018) [START_REF] Zhong | Mining repair model for exception-related bug[END_REF] studies the most common repair actions per exception type.

• Common Statement Kind Changes to Inform Automatic Program Repair (2018) Soto et al. [START_REF] Soto | Common Statement Kind Changes to Inform Automatic Program Repair[END_REF] replicates the study of [START_REF] Martinez | Mining Software Repair Models for Reasoning on the Search Space of Automated Program Fixing[END_REF] on the MSR Challenge dataset.

• A feasibility study of using automated program repair for introductory programming assignments (2017) [START_REF] Yi | A feasibility study of using automated program repair for introductory programming assignments[END_REF] studies the application of GenProg, AE, Angelix, and Prophet to 661 programs written by the students taking an introductory programming course.

• Empirical Study on Synthesis Engines for Semantics-Based Program Repair (2016) [START_REF] Le | Empirical Study on Synthesis Engines for Semantics-Based Program Repair[END_REF] compares 5 synthesis engines implemented on top of Angelix showing that they do not have the same performance, and that Angelixs Partial MaxSMT-based synthesis engine is the best on the considered benchmark, IntroClass.

• Sorting and Transforming Program Repair Ingredients via Deep Learning

Code Similarities (2016) [START_REF] White | Sorting and Transforming Program Repair Ingredients via Deep Learning Code Similarities[END_REF] uses deep learning to match donor methods that are similar to the buggy method under repair.

• Automatic Repair of Real Bugs in Java: A Large-Scale Experiment on the Defects4J Dataset (2016) [START_REF] Martinez | Automatic Repair of Real Bugs in Java: A Large-Scale Experiment on the Defects4J Dataset[END_REF] is the first experiment ever on evaluating automatic repair on the Defects4J dataset (with Nopol, jGenProg and jKali) showing the great problem of overfitting.

• Improved Crossover Operators for Genetic Programming for Program Repair (2016) [START_REF] Oliveira | Improved Crossover Operators for Genetic Programming for Program Repair[END_REF] proposes new crossover operators for Genprog, that decouple fix location, repair type, and repair ingredient. The corresponding journal paper is [START_REF] Paulo | Improved representation and genetic operators for linear genetic programming for automated program repair[END_REF].

• An Analysis of Patch Plausibility and Correctness for Generate-And-Validate Patch Generation Systems (2015) [START_REF] Qi | An Analysis of Patch Plausibility and Correctness for Generate-And-Validate Patch Generation Systems[END_REF] shows that most Genprog patches simply remove code and consequently that the overfitting problem is huge.

• The Strength of Random Search on Automated Program Repair (2014) [START_REF] Qi | The Strength of Random Search on Automated Program Repair[END_REF] shows that there the search in Genprog is actually not guided by the fitness function, it's random search.

• Do the Fix Ingredients Already Exist? An Empirical Inquiry into the Redundancy Assumptions of Program Repair Approaches (2014) [START_REF] Martinez | Do the Fix Ingredients Already Exist? An Empirical Inquiry into the Redundancy Assumptions of Program Repair Approaches[END_REF] shows that a significant proportion of commits in open-source projects (3%-22%) are composed of existing code.

• Mining Software Repair Models for Reasoning on the Search Space of Automated Program Fixing (2013) [START_REF] Martinez | Mining Software Repair Models for Reasoning on the Search Space of Automated Program Fixing[END_REF] computes the prevalence of each repair actiona dn explores the imbalance between possible repair actions at the AST level, showing its significant impact on the search.

• A Systematic Study of Automated Program Repair: Fixing 55 Out of 105 Bugs for $8 Each (2012) [START_REF] Le Goues | A Systematic Study of Automated Program Repair: Fixing 55 Out of 105 Bugs for $8 Each[END_REF] has famously claimed that 52% of bugs (55/105) of bugs can be fixed by Genprog, a ratio being undermined by the benchmark selection biases and by overfitting.

• Automated Program Repair Through the Evolution of Assembly Code (2010) [START_REF] Schulte | Automated Program Repair Through the Evolution of Assembly Code[END_REF] shows the feasibilty of Genprog-like repair on binary x86 code and Java bytecode.

• Designing Better Fitness Functions for Automated Program Repair (2010) [START_REF] Fast | Designing Better Fitness Functions for Automated Program Repair[END_REF] explores the design space of fitness functions of Genprog. [START_REF] Alarcon | Would You Fix This Code for Me? Effects of Repair Source and Commenting on Trust in Code Repair[END_REF] asked 51 programmers about their opinion on 5 GenProg patches on ManyBugs where the controlled variable is the identity of the patch author (Bill vs GenProg): the subbjects trust human-being Bill more than bot GenProg.

Human Study on APR

• Trust in Automated Software Repair (2019) Tyler et al. [START_REF] Tyler | Trust in Automated Software Repair[END_REF] ask 24 students and 24 professionals to assess 5 GenProg patches and show novice programmers are more accepting generating.

• Characterizing Developer Use of Automatically Generated Patches (2019) Cambronero et al. [START_REF] José | Characterizing Developer Use of Automatically Generated Patches[END_REF] performs a user study consisting of giving 5 patches on 2 bugs to 12 developers, incl. one being correct to see how developers leverage generated patches.

• Automatically Generated Patches As Debugging Aids: a Human Study (2014) [START_REF] Tao | Automatically Generated Patches As Debugging Aids: a Human Study[END_REF] asks to 95 participants to fix bugs with either fault localization or machinegenerated patches from PAR.

• A Human Study of Patch Maintainability (2012) [START_REF] Fry | A Human Study of Patch Maintainability[END_REF] conducted a study of Genprog patches based on 150 participants and 32 real-world defects, showing that machine-generated patches are slightly less maintainable than human-written ones.

Domain-Specific Repair

Test Repair

• TRaf: Time-based Repair for Asynchronous Wait Flaky Tests in Web Testing (2023) Pei et al. [START_REF] Pei | TRaf: Time-based Repair for Asynchronous Wait Flaky Tests in Web Testing[END_REF] suggest waiting times for each asynchronous call in a web application.

• GUI-Guided Test Script Repair for Mobile Apps (2020) Pan et al. [START_REF] Pan | GUI-Guided Test Script Repair for Mobile Apps[END_REF] repair Android GUI test scripts by changing test UI locators or UI events, based on image and OCR analysis of GUI screenshots.

• iFixFlakies: A Framework for Automatically Fixing Order-Dependent Flaky Tests (2019) Shi et al. [START_REF] Shi | iFixFlakies: a framework for automatically fixing order-dependent flaky tests[END_REF] analyze and repair the test bugs related to test execution ordering.

• Intent-Preserving Test Repair (2019) Li et al. [START_REF] Li | Intent-Preserving Test Repair[END_REF] repair Java tests that do not compile after evolution by ranking the candidate solutions according to an intent similarity score computed from path conditions.

• Visual web test repair (2018) [START_REF] Stocco | Visual Web Test Repair[END_REF] repairs broken Selenium tests by changing the incorrect locator, the locator being inferred by comparing visual renderings (ie images).

• Waterfall: An incremental approach for repairing record-replay tests of web applications (2016) [START_REF] Hammoudi | Waterfall: An incremental approach for repairing record-replay tests of web applications[END_REF] repairs DOM locators in Selenium tests.

• Repairing Selenium Test Cases: an Industrial Case Study about Web Page Element Localization (2013) [START_REF] Leotta | Repairing Selenium Test Cases: an Industrial Case Study about Web Page Element Localization[END_REF] do test repair in the context of Selenium tests, which are tests for web applications with HTML output.

• ReAssert: Suggesting Repairs for Broken Unit Tests (2009) [START_REF] Daniel | ReAssert: Suggesting Repairs for Broken Unit Tests[END_REF] addresses the dual problem of test-suite based repair: changing the tests instead of fixing the application.

• Automatically Repairing Event Sequence-based GUI Test Suites for Regression Testing (2008) [START_REF] Atif | Automatically Repairing Event Sequence-based GUI Test Suites for Regression Testing[END_REF] does test repair on GUI test models. "SITAR: GUI Test Script Repair" [START_REF] Gao | SITAR: GUI Test Script Repair[END_REF] extends this work by considering manually scripted test cases.

Automated Repair of Concurrency errors

• Automatic Detection, Validation and Repair of Race Conditions in Interrupt-Driven Embedded Software (2022) Yu et al. [START_REF] Yu | Automatic Detection, Validation and Repair of Race Conditions in Interrupt-Driven Embedded Software[END_REF] suggest strategies 'Add locks' (AL) or 'Interrupt disable and enable (IDE)' after a combination of static analysis and symbolic execution in order to repair race condition problems related to hardware interrupts.

• HIPPODROME: Data Race Repair using Static Analysis Summaries (2021) Hippodrome [START_REF] Costea | HIPPODROME: Data Race Repair using Static Analysis Summaries[END_REF] repairs data races identified by RacerD, Facebook's static concurrency analyser for Java, by changing mutexes of Java synchronized blocks.

• HangFix: automatically fixing software hang bugs for production cloud systems (2020) He et al. [START_REF] He | HangFix: automatically fixing software hang bugs for production cloud systems[END_REF] propose four automatic patching strategies that are specific to software hang bugs in cloud systems such as Hadoop.

• DFix: automatically fixing timing bugs in distributed systems (2019) Li et al. [START_REF] Li | DFix: automatically fixing timing bugs in distributed systems[END_REF] fix atomicity violations, order violations, and fault-timing bugs with rollbacking side-effect operations.

• Understanding and Generating High Quality Patches for Concurrency bugs (2016) Liu et al. [START_REF] Liu | Understanding and Generating High Quality Patches for Concurrency bugs[END_REF] have proposed a tool called HFix whose repair operator is to add thread-join instructions.

• Automatic Repair for Multi-threaded Programs with Deadlock/Livelock Using Maximum Satisfiability (2014) Lin et al. [START_REF] Lin | Automatic Repair for Multi-threaded Programs with Deadlock/Livelock Using Maximum Satisfiability[END_REF] insert locks by encoding the problem as a satisfiability one.

• Axis: Automatically Fixing Atomicity Violations Through Solving Control Constraints (2012) [START_REF] Liu | Axis: Automatically Fixing Atomicity Violations Through Solving Control Constraints[END_REF] addresses the problem of violation fixing as a constraint solving problem using the Petri net model.

• Automated Atomicity-violation Fixing (2011) [START_REF] Jin | Automated Atomicity-violation Fixing[END_REF] is about AFix, whose repair model consists of putting instructions into critical regions.

Automated Repair of Build Scripts

• Parfum: Detection and Automatic Repair of Dockerfile Smells (2023) Durieux [START_REF] Durieux | Parfum: Detection and Automatic Repair of Dockerfile Smells[END_REF] design and implement AST-level querying and transformation for Dockerfiles in order to repair Docker script smells.

• Automated Patching for Unreproducible Builds (2022) Ren et al. [START_REF] Zhilei Ren | Automated Patching for Unreproducible Builds[END_REF] produce patches (changes to shell scripts) for unreproducible builds based on mined templates (typically one-liner changes).

• Shipwright: A Human-in-the-Loop System for Dockerfile Repair (2021) Henkel et al. [START_REF] Henkel | Shipwright: A Human-in-the-Loop System for Dockerfile Repair[END_REF] designs 13 rules for making automated repairs to Dockerfiles which cannot successfully build, in a data-driven manner.

• Styler: Learning Formatting Conventions to Repair Checkstyle Violations (2019) Madeiral et al. [START_REF] Loriot | Styler: learning formatting conventions to repair Checkstyle violations[END_REF] propose to automatically repair Checkstyle formatting errors that break the build.

• History-driven build failure fixing: how far are we? (2019) You et al. [START_REF] Lou | History-driven build failure fixing: how far are we?[END_REF] show that a simple approach works better than HireBuild [START_REF] Hassan | HireBuild: an automatic approach to historydriven repair of build scripts[END_REF] on a new dataset of 102 reproducible Gradle build failures.

• HireBuild: an automatic approach to history-driven repair of build scripts (2018) [START_REF] Hassan | HireBuild: an automatic approach to historydriven repair of build scripts[END_REF] mines and apply build-fix patterns in Gradle, and apply them based on log similarity.

Automated Repair for Numerical Errors

• Oracle-free repair synthesis for floating-point programs (2022) Zou et al. [START_REF] Zou | Oracle-free repair synthesis for floating-point programs[END_REF] generate a polynomial patch for local intervals found to be erroneous by a detection tool called Atomu.

• Efficient Automated Repair of High Floating-Point Errors in Numerical Libraries (2019) Yi et al. [START_REF] Yi | Efficient automated repair of high floating-point errors in numerical libraries[END_REF] for numerical functions (eg from GNU Scientific Library), identify small parts of the input domain that have high floating point instability, and replace the original implementation by a better approximation.

Automated Repair for the Web

• Usability and Aesthetics: Better Together for Automated Repair of Web Pages (2021) Le-Cong et al. [START_REF] Le-Cong | Usability and Aesthetics: Better Together for Automated Repair of Web Pages[END_REF] design a meta-heuristic algorithm that evolves buggy web pages to optimize both usability and aesthetics.

• Automated Repair of Cross-Site Scripting Vulnerabilities through Unit Testing (2020) Mohammadi et al. [START_REF] Mohammadi | Automated Repair of Cross-Site Scripting Vulnerabilities through Unit Testing[END_REF] automatically add calls to sanitizers to fix statically found XSS vulerabilities.

• Fully Automated HTML and Javascript Rewriting for Constructing a Selfhealing Web Proxy (2018) [START_REF] Durieux | Fully Automated HTML and Javascript Rewriting for Constructing a Self-healing Web Proxy[END_REF] uses a proxy to intercept browser errors and repair them with HTML and Javascript rewriting strategies.

• Automated repair of mobile friendly problems in web pages (2018) [START_REF] Sonai Mahajan | Automated repair of mobile friendly problems in web pages[END_REF] explores the search space of CSS modifications to fix mobile problems such as font sizing and extraneous spacing.

• Automated Repair of Internationalization Presentation Failures in Web

Pages Using Style Similarity Clustering and Search-Based Techniques (2018) [START_REF] Sonal Mahajan | Automated Repair of Internationalization Presentation Failures in Web Pages Using Style Similarity Clustering and Search-Based Techniques[END_REF] fixes web rendering by changing the value of CSS properties

• Vejovis: Suggesting fixes for JavaScript faults (2014) [START_REF] Frolin | Vejovis: suggesting fixes for JavaScript faults[END_REF] suggests fixes for DOM errors based on fix patterns

• Fix Me Up: Repairing Access-Control Bugs in Web Applications. (2013) [START_REF] Sooel Son | Fix Me Up: Repairing Access-Control Bugs in Web Applications[END_REF] repairs access-control policies in web applications, using a static analysis and transformations tailored to this domain.

• Automated Repair of HTML Generation Errors in PHP Applications Using String Constraint Solving (2012) [START_REF] Samimi | Automated Repair of HTML Generation Errors in PHP Applications Using String Constraint Solving[END_REF] fixes incorrect opening/closing HTML tags in PHP application by encoding the problem as string constraints.

Automated Repair of Software Abstractions

Alloy:

• ICEBAR: Feedback-Driven Iterative Repair of Alloy Specifications (2022) Gutiérrez-Brida [START_REF] Simón | ICEBAR: Feedback-Driven Iterative Repair of Alloy Specifications[END_REF] use property-based oracles in Alloy and any Alloy model repair technique as underlying repair operator.

• ARepair: a repair framework for Alloy (2019) Wang et al. [START_REF] Wang | ARepair: a repair framework for alloy[END_REF] describe a generate-and-validate repair technique for Alloy models, with a test-based specification based on AUnit.

• Automated model repair for Alloy (2018) [START_REF] Wang | Automated model repair for Alloy[END_REF] does repair for the Alloy language with 11 mutation operators, Others:

• Automated Patch Generation for Fixing Semantic Errors in ATL Transformation Rules (2022) VaraminyBahnemiry et al [START_REF] Varaminybahnemiry | Automated Patch Generation for Fixing Semantic Errors in ATL Transformation Rules[END_REF] design, implement and evaluate a repair approach for the ATL model transformation language.

• Transforming abstract to concrete repairs with a generative approach of repair values (2021) Kretschmer et al. [START_REF] Kretschmer | Transforming abstract to concrete repairs with a generative approach of repair values[END_REF] repair inconsistencies in UML models.

• Range Fixes: Interactive Error Resolution for Software Configuration [START_REF] Xiong | Range Fixes: Interactive Error Resolution for Software Configuration[END_REF] (2015) focuses on automatically repairing configuration errors in software product lines

• Towards Automated Inconsistency Handling in Design Models (2010) Silva et al. [START_REF] Aurélio Almeida Da Silva | Towards Automated Inconsistency Handling in Design Models[END_REF] use Prolog to propose a repair plan that fixes inconsistencies in UML models

• Supporting Automatic Model Inconsistency Fixing [START_REF] Xiong | Supporting Automatic Model Inconsistency Fixing[END_REF] (2009) detects and fixes inconsistencies in MOF and UML models

• Repairing Unsatisfiable Concepts in OWL Ontologies [START_REF] Kalyanpur | Repairing Unsatisfiable Concepts in OWL Ontologies[END_REF] (2006) states an automatic repair problem in the context of OWL ontologies.

• Consistency Management with Repair Actions [START_REF] Nentwich | Consistency Management with Repair Actions[END_REF] (2003) detects inconsistencies in XML documents and proposes repair actions accordingly. • VulRepair: A T5-Based Automated Software Vulnerability Repair (2022) Fu et al. [START_REF] Fu | VulRepair: a T5-based automated software vulnerability repair[END_REF] train a T5 model based on subword BPE tokenization and embeddings from CodeT5, then reports experimental improvements over VRepair [START_REF] Chen | Neural Transfer Learning for Repairing Security Vulnerabilities in C Code[END_REF].

Automated Repair of Security Vulnerabilities

• Example-Based Vulnerability Detection and Repair in Java Code (2022) Zhang et al. [START_REF] Zhang | Example-Based Vulnerability Detection and Repair in Java Code[END_REF] devise an approach where security experts first define a dataset of pairs of insecure/secure Java code (28 pairs in the experiment), and then an algorithm extracts the matching and fixing transformation.

• Automatically Mitigating Vulnerabilities in x86 Binary Programs via Partially Recompilable Decompilation (2022) Under the assumption that no source code is available, Reiter et al. [START_REF] Reiter | Automatically Mitigating Vulnerabilities in x86 Binary Programs via Partially Recompilable Decompilation[END_REF] prove the feasibility of decompiling small chunks of code (using Hex-Rays), running GenProg on them, recompiling and reinjecting the fixed code in the binary to be executed.

• Neural Transfer Learning for Repairing Security Vulnerabilities in C Code (2021) Chen et al. [START_REF] Chen | Neural Transfer Learning for Repairing Security Vulnerabilities in C Code[END_REF] train a transformer on bug-fixing commits and fine-tune it on real CVE vulnearbilities, proving that transfer learning happens between bug fixing and vulnerability fixing (the previous iteration was [START_REF] Chen | Using Sequence-to-Sequence Learning for Repairing C Vulnerabilities[END_REF]).

• Using Safety Properties to Generate Vulnerability Patches (2019) Huang et al. [START_REF] Huang | Using Safety Properties to Generate Vulnerability Patches[END_REF] generate check-and-error patches for buffer overflows, bad casts and integer overflows triggered by exploits and fuzzing inputs.

• Learning to Repair Software Vulnerabilities with Generative Adversarial Networks (2018) [START_REF] Harer | Learning to repair software vulnerabilities with generative adversarial networks[END_REF] generates noisy data by removing source code tokens, this data being used to train a sequence to sequence model.

• VuRLE -Automatic Vulnerability Detection and Repair by Learning from Examples (2017) Ma et al. [START_REF] Ma | Vurle: Automatic vulnerability detection and repair by learning from examples[END_REF] learns systematic edits from examples and apply them to fix vulnerabilities in Android applications.

• Cdrep: Automatic repair of cryptographic misuses in android applications (2016) Ma et al. [START_REF] Ma | Cdrep: Automatic repair of cryptographic misuses in android applications[END_REF] define 7 binary transformations for Dalvik bytecode to repair 7 cryptographic API misuses in Android.

• AutoPaG: Towards Automated Software Patch Generation with Source Code Root Cause Identification and Repair (2007) [START_REF] Lin | AutoPaG: Towards Automated Software Patch Generation with Source Code Root Cause Identification and Repair[END_REF] generates a source code patch from an input that triggers an array overflow in C code, with failure-oblivious repair operators (adding a modulo in the read expression and truncating data to be written).

• Countering Network Worms Through Automatic Patch Generation (2005 [START_REF] Sidiroglou | Countering Network Worms Through Automatic Patch Generation[END_REF] detect buffer overflow vulnerabilities at runtime in production, then produce a source code patch that skip the execution of the overflowing statement.

Automated Repair of Smart Contracts

• Property-Based Automated Repair of DeFi Protocols (2022) Tolmach et al. [START_REF] Tolmach | Property-Based Automated Repair of DeFi Protocols[END_REF] reuses the mutation operators of SCRepair (add require, add initialization, move statements) and a home-grown source level symbolic execution engine to repair nine smart contracts in a new tool called Definery.

• Elysium: Automagically Healing Vulnerable Smart Contracts Using Context-Aware Patching (2022) Torres et al. [START_REF] Torres | Elysium: Context-Aware Bytecode-Level Patching to Automatically Heal Vulnerable Smart Contracts[END_REF] improve over Smartshield and SGuard by means of better code analysis and more automation.

• Aroc: An Automatic Repair Framework for On-chain Smart Contracts (2021) Jin et al. [START_REF] Jin | Aroc: An Automatic Repair Framework for On-chain Smart Contracts[END_REF] propose to modify the Ethereum virtual machine such as to be able 1) to deploy special patch contracts and 2) to override the execution of a contract by the patch one if a vulnerability is triggered.

• SGuard: Towards Fixing Vulnerable Smart Contracts Automatically (2021) Nguyen et al. [START_REF] Tai D Nguyen | SGUARD: Towards Fixing Vulnerable Smart Contracts Automatically[END_REF] repair reentrancy and arithmetic bugs in smart contracts, at the source code level, with guarantees based on an operational semantics of Ethereum opcodes.

• EVMPatch: Timely and automated patching of ethereum smart contracts (2021) Rodler et al. [START_REF] Rodler | EVMPatch: Timely and Automated Patching of Ethereum Smart Contracts[END_REF] design an end-to-end technique to binary patch, backtest and deploy via delegation Ethereum smart contracts. The evaluation focuses on integer overflow attacks.

• Smartshield: Automatic smart contract protection made easy (2021) Zhang et al. [START_REF] Zhang | Smartshield: Automatic smart contract protection made easy[END_REF] propose a smart contract binary transformation for 3 pattern based problems (state change after external calls, missing checks for out-of-bound arithmetic operations, and missing checks for failing external calls).

• Smart Contract Repair (2019) Yu et al. [START_REF] Liang | Smart Contract Repair[END_REF] repair smart contracts in Ethereum to minimize gas consumption with a tool called SCRepair.

Automated Repair of Typing Errors

• PyTER: Effective Program Repair for Python Type Errors (2022) Oh and Oh [START_REF] Oh | PyTER: effective program repair for Python type errors[END_REF] combine static and dynamic analysis to repair type errors in Python, based on 9 repair templates, with an evaluation on 93 type errors collected from open-source.

• Type error feedback via analytic program repair (2020) Sakkas et al. [START_REF] Sakkas | Type error feedback via analytic program repair[END_REF] infer fix templates in OCaml for repairing type system errors in programs from students in an introductory programming course.

Misc Repair Types

• RepCoder: an automated program repair framework for probability-based program synthesis (2022) Ji et al. [START_REF] Ji | Rep-Coder: an automated program repair framework for probability-based program synthesis[END_REF] combine neural synthesis and input-output based validation to perform repair for the DeepCode DSL.

• Neurosymbolic Repair for Low-Code Formula Languages (2022) Bavishi et al. [START_REF] Bavishi | Neurosymbolic repair for lowcode formula languages[END_REF] combine symbalic and neural techniques to repair Excel and PowerFx formulas.

• Automatically repairing tensor shape faults in deep learning programs (2022) Wu et al. [START_REF] Wu | Automatically repairing tensor shape faults in deep learning programs[END_REF] devise an end-to-end technique to fix Python code that crashes due to tensor shape errors.

• PGPATCH: Policy-Guided Logic Bug Patching for Robotic Vehicles (2022) Kim et al. [START_REF] Kim | PGPATCH: Policy-Guided Logic Bug Patching for Robotic Vehicles[END_REF] devise an end-to-end repair approach for robotic vehicle control programs (ArduPilot and PX4) based on 5 repair templates.

• Automatic Repair for Network Programs (2022) Shi et al [START_REF] Shi | Automatic Repair for Network Programs[END_REF] perform repair of programs in Floodlight, an open-source SDN controller based on Java annotations, using a domain-specific symbolic fault localization algorithm and enumerative synthesis.

• CirFix: Automatically Repairing Defects in Hardware Design Code (2022) Ahmad et al. [START_REF] Ahmad | CirFix: Automatically Repairing Defects in Hardware Design Code[END_REF] present a framework for automatically repairing defects in Verilog, based on a novel dataflow-based fault localization approach tailored for hardware description languages.

• Automatic Repair of Java Code with Timing Side-Channel Vulnerabilities (2021) Lima et al. [START_REF] Lima | Automatic Repair of Java Code with Timing Side-Channel Vulnerabilities[END_REF] repair timing side-channel issues by either removing return statements, modifying stopping conditions of loops, or replicating if/then/else blocks.

• APIfix: Output-Oriented Program Synthesis for Combating Breaking Changes in Libraries (2021) Gao et al. [START_REF] Gao | APIfix: output-oriented program synthesis for combating breaking changes in libraries[END_REF] synthesize adaptation rules from human made changes in order to fix breaking changes.

• Automated Repair of Size-Based Inaccessibility Issues in Mobile Applications (2021) Alotaibi et al. [START_REF] Ali S Alotaibi | Automated Repair of Size-Based Inaccessibility Issues in Mobile Applications[END_REF] develop an approach that automatically increases the size of Android UI elements, chosen based on a multi-objective minimization function.

• Automatic repair of timestamp comparisons (2021) Liva et al. [START_REF] Liva | Automatic repair of timestamp comparisons[END_REF] statically identify time comparison problems in programs and rewrite time comparison expressions in a safe normal form.

• CRNRepair: Automated Program Repair of Chemical Reaction Networks (2021) Mesecan et al. [START_REF] Mesecan | CRNRepair: Automated Program Repair of Chemical Reaction Networks[END_REF] bridge the GI framework PyGGI and the Matlab environment SimBiology to do original experiments on automated repair of chemical reaction networks.

• Repairing serializability bugs in distributed database programs via automated schema refactoring (2021) Rahmani et al. [START_REF] Rahmani | Repairing serializability bugs in distributed database programs via automated schema refactoring[END_REF] target the problem of repairing transaction serializability bugs in databases.

• TFix+: Self-configuring Hybrid Timeout Bug Fixing for Cloud Systems (2021) He et al. [START_REF] He | TFix+: Self-configuring Hybrid Timeout Bug Fixing for Cloud Systems[END_REF] propose a technique to automatically repair timeout bugs in distributed systems such as Hadoop.

• Automatic Software Merging using Automated Program Repair (2019) [START_REF] Xing | Automatic Software Merging using Automated Program Repair[END_REF] fixes merge conflicts with a search-based approach based on kGenProg.

• Towards Specification-Directed Program Repair (2018) [START_REF] Shin | Towards Specification-Directed Program Repair[END_REF] does program repair for the educational programming language Karel, by training a neural net to predict the edit (keep, delete, insert or replace token).

• Caramel: Detecting and fixing performance problems that have non-intrusive fixes (2015) Nistor et al. [START_REF] Nistor | Caramel: Detecting and fixing performance problems that have non-intrusive fixes[END_REF] presents a technique to suggest addition of 'break' statement guarded by a synthesized condition.

• Automated Repair of High Inaccuracies in Numerical Programs (2017) Yi et al. [START_REF] Yi | Automated Repair of High Inaccuracies in Numerical Programs[END_REF] use mathematically equivalent floating-point expressions that reduce inaccuracies found with random testing.

• Data-guided Repair of Selection Statements (2014) [START_REF] Gopinath | Dataguided Repair of Selection Statements[END_REF] repairs database selection statements in a specific data-oriented language (Abap fro SAP).

• A Framework for the Automatic Correction of Constraint Programs (2011) [START_REF] Lazaar | A Framework for the Automatic Correction of Constraint Programs[END_REF] repairs constraint programs the repair consisting of declaratively removing or adding new constraints.

SQL Repair

• SQLRepair: Identifying and Repairing Mistakes in Student-Authored SQL Queries (2021) Presler et al.'s SQLRepair [START_REF] Presler-Marshall | SQLRepair: Identifying and Repairing Mistakes in Student-Authored SQL Queries[END_REF] combine heuristics and a SMT-based repair approach to fix SQL queries (tool at https://github.com/kpresler/sqlrepair).

• Using Automated Fix Generation to Secure SQL Statements (2007) Thomas et al. [START_REF] Thomas | Using Automated Fix Generation to Secure SQL Statements[END_REF] describe an automatic transformation in Java for going from plain java SQL to prepared statements.

Optimization & Integration

Driving the Search

• Improving source-code representations to enhance search-based software repair (2022) Reiter et al. [START_REF] Reiter | Improving source-code representations to enhance searchbased software repair[END_REF] show that a source-to-source transformation which is behaviorally equivalent, as preprocessing step, improves the performance of three program repair tools: f1x, GenProg, and Prophet.

• Multiplicative Weights Algorithms for Parallel Automated Software Repair (2021) Renzullo et al. [START_REF] Renzullo | Multiplicative Weights Algorithms for Parallel Automated Software Repair[END_REF] propose to use online learning based on multiplicative weights update to efficiently find those combinations of mutations which repair a bug. • Towards Boosting Patch Execution On-the-Fly (2022) Benton et al. [START_REF] Benton | Towards boosting patch execution on-the-fly[END_REF] do on the fly patch prioritization based on syntactic similarity with previously executed partially correct patches. Arxiv version is [START_REF] Benton | Self-Boosted Automated Program Repair[END_REF].

• Leveraging Program Invariants to Promote Population Diversity in Search-Based Automatic Program Repair (2019) [START_REF] Yu Ding | Leveraging Program Invariants to Promote Population Diversity in Search-Based Automatic Program Repair[END_REF] explores the usege of learned invariants to improve the fitness function of generate-and-validate program repair, experimenting with genprog4java.

• A new word embedding approach to evaluate potential fixes for automated program repair (2018) [START_REF] Amorim | A new word embedding approach to evaluate potential fixes for automated program repair[END_REF] computes source code line embeddings from word2vec embeddings in order to calculate distances between patches.

Addressing the patch overfitting problem

• PatchZero: Zero-Shot Automatic Patch Correctness Assessment (2023) Zhou et al. [START_REF] Zhou | PatchZero: Zero-Shot Automatic Patch Correctness Assessment[END_REF] construct patch assessment on top of pre-trained model (Bloom and Code-Parrot) with a few-shot prompt.

• Boosting Automated Patch Correctness Prediction via Pre-trained Language Model (2023) Zhang et al. [START_REF] Zhang | Boosting Automated Patch Correctness Prediction via Pre-trained Language Model[END_REF] do deep-learning based patch assessment with Bert, CodeBERT and GraphCodeBERT, reporting an improvement over Cache.

• Context-aware code change embedding for better patch correctness assessment (2022) Lin et al. [START_REF] Lin | Context-aware code change embedding for better patch correctness assessment[END_REF] perform patch assessment using code2seq bag of paths and contextual code, in a system called Cache (code).

• Crex: Predicting patch correctness in automated repair of C programs through transfer learning of execution semantics (2023) Yan et al. [START_REF] Yan | Crex: Predicting patch correctness in automated repair of C programs through transfer learning of execution semantics[END_REF] use similarity distances on micro-traces obtained with micro-execution to capture breaking behavior.

• Attention: Not Just Another Dataset for Patch-Correctness Checking (2022) Wang et al. [START_REF] Wang | Attention: Not Just Another Dataset for Patch-Correctness Checking[END_REF] reimplement certain overfitting detection techniques and apply them to PraPA binary patches decompiled with JD, with little success.

• Patch correctness assessment in automated program repair based on the impact of patches on production and test code (2022) Ghanbari and Marcus [START_REF] Ghanbari | Patch correctness assessment in automated program repair based on the impact of patches on production and test code[END_REF] rank APR patches based on a combination of textual similarity and code coverage differencing.

• Test-based Patch Clustering for Automatically-Generated Patches Assessment (2022) Martinez et al. [START_REF] Martinez | Test-based Patch Clustering for Automatically-Generated Patches Assessment[END_REF] cluster patches according to boolean vectors of test results (incl. from automatically generated tests) in order to show reviewers patches from different clusters.

• Invalidator: Automated Patch Correctness Assessment via Semantic and Syntactic Reasoning (2023) Le-Cong et al. [START_REF] Le-Cong | Invalidator: Automated patch correctness assessment via semantic and syntactic reasoning[END_REF] combine Daikon invariant analysis and a CodeBERT based neural embedding to filter out incorrect patches.

• Is this Change the Answer to that Problem Correlating Descriptions of Bug and Code Changes for Evaluating Patch Correctness (2022) Tian et al. [START_REF] Tian | Is this Change the Answer to that Problem? Correlating Descriptions of Bug and Code Changes for Evaluating Patch Correctness[END_REF] rank patches according to a similarity distance in an embedding space between patches and bug descriptions.

• Identifying Incorrect Patches in Program Repair Based on Meaning of Source Code (2022) Phung et al. [START_REF] Phung | Identifying Incorrect Patches in Program Repair Based on Meaning of Source Code[END_REF] order APR patches by their distance to the method intention, where the method intention is inferred from the patched method name and the distance is computed in an embedding space based on Code2Vec.

• Exploring Plausible Patches Using Source Code Embeddings in JavaScript (2021) Csuvik et al. [START_REF] Csuvik | Exploring Plausible Patches Using Source Code Embeddings in JavaScript[END_REF] present experiments suggesting that the Doc2Vec embedding of code is not useful for discarding overfitting patches.

• Exploring True Test Overfitting in Dynamic Automated Program Repair using Formal Methods (2021) Nilizadeh et al. [START_REF] Nilizadeh | Exploring true test overfitting in dynamic automated program repair using formal methods[END_REF] assess overfitting in APR patches using ground truth reference programs equipped with formal specifications in OpenJML, with an experiment on 30 small programs. Follow-up paper is [START_REF] Nilizadeh | More Reliable Test Suites for Dynamic APR by using Counterexamples[END_REF].

• Neural Program Repair with Execution-based Backpropagation (2021) Ye et al. [START_REF] Ye | Neural Program Repair with Execution-based Backpropagation[END_REF] design and optimize a loss function that embeds the results of test execution in order to avoid overfitting.

• Adversarial Patch Generation for Automatic Program Repair (2020) Alhefdhi et al. [START_REF] Alhefdhi | Adversarial Patch Generation for Automatic Program Repair[END_REF]ăpresent preliminary results on using a patch discriminator to encourage a data-driven system to generate patches that look like human patches.

• Automated Patch Correctness Assessment: How Far are We? (2020) Wang et al. [START_REF] Wang | Automated Patch Correctness Assessment: How Far are We?[END_REF] compare different overfitting detection techniques from the literature and find that dynamic techniques do not perform better than static techniques.

• Evaluating representation learning of code changes for predicting patch correctness in program repair (2020) Tien et al. [START_REF] Tian | Evaluating representation learning of code changes for predicting patch correctness in program repair[END_REF] show that a purely syntactic approach based on BERT-based embeddings associated with logistic regression does not improve overfitting detection.

• Exploring the Differences between Plausible and Correct Patches at Fine-Grained Level (2020) Yang et al. [START_REF] Yang | Exploring the Differences between Plausible and Correct Patches at Fine-Grained Level[END_REF] present a preliminary experiment on using Daikon invariants to detect overfitting patches.

• Utilizing Source Code Embeddings to Identify Correct Patches (2020) Csuvik et al. [START_REF] Csuvik | Utilizing Source Code Embeddings to Identify Correct Patches[END_REF] propose to order likely patches by their distance to the buggy program in an embedding space, and compare three such spaces.

• Automated Classification of Overfitting Patches with Statically Extracted Code Features (2019) Ye et al. [START_REF] Ye | Automated Classification of Overfitting Patches with Statically Extracted Code Features[END_REF] define features on code and train a machine learning model to detect overfitting patches.

• Validation of Automatically Generated Patches: An Appetizer (2019) Ghanbari [START_REF] Ghanbari | Validation of Automatically Generated Patches: An Appetizer[END_REF] proposes to use Daikon invariants to generate property-based tests that can rank generated patches by likelihood.

• Automated Patch Assessment for Program Repair at Scale (2019) Ye et al. [START_REF] Ye | Automated Patch Assessment for Program Repair at Scale[END_REF] studies the usage of test generation based on a ground truth patch to better evaluate program repair research.

• Alleviating Patch Overfitting with Automatic Test Generation: A Study of Feasibility and Effectiveness for the Nopol Repair System (2018) [START_REF] Yu | Alleviating Patch Overfitting with Automatic Test Generation: A Study of Feasibility and Effectiveness for the Nopol Repair System[END_REF] shows that using tests that are generated against the buggy version of the program under repair poses a serious oracle problem.

• Identifying Patch Correctness in Test-Based Program Repair (2018) Xiong et al. [START_REF] Xiong | Identifying patch correctness in test-based program repair[END_REF] analyze test execution traces to filter out incorrect overfitting patches.

• Overfitting in semantics-based automated program repair (2018) [START_REF] Bach | Overfitting in semantics-based automated program repair[END_REF] compares Angelix and variants of it on the IntroClass and CodeFlaws benchmarks showing that 50-75% of patches are overfitting.

• Is the Cure Worse Than the Disease? Overfitting in Automated Program Repair (2015) [START_REF] Smith | Is the Cure Worse Than the Disease? Overfitting in Automated Program Repair[END_REF] is the first paper to name the overfitting problem.

General Non-functional Improvements, incl. Fault Localization

• Better Automatic Program Repair by Using Bug Reports and Tests Together (2023) Motwani and Brun [START_REF] Motwani | Better Automatic Program Repair by Using Bug Reports and Tests Together[END_REF] perform faul-localization based on the similarity between bug reports and source code files using the BLUiR method.

• FLACOCO: Fault Localization for Java based on Industry-grade Coverage (2021) Silva et al. [START_REF] Silva | FLACOCO: Fault Localization for Java based on Industry-grade Coverage[END_REF] propose an implementation of SBFL that supports all major Java bytecode versions.

• Energy Consumption of Automated Program Repair (2022) Martinez et al. [START_REF] Martinez | Energy Consumption of Automated Program Repair[END_REF] measures the energy consumption per patch for 10 Java repair tools and observe major differences, the smallest consumption being 8kJ per first patch.

• Revisiting Test Cases to Boost Generate-and-Validate Program Repair Zhang et al. [START_REF] Zhang | Revisiting Test Cases to Boost Generate-and-Validate Program Repair[END_REF] study how stacktraces can be be used to improve fault localization in APR.

• On the effectiveness of unified debugging: An extensive study on 16 program repair systems (2020) Benton et al. [START_REF] Benton | On the effectiveness of unified debugging: An extensive study on 16 program repair systems[END_REF] study the performance of a new fault localization technique called UniDebug++, on 16 repair tools. On Defects4J, UniDebug++ can localize over 20% more bugs at the Top-1 position.

• Automatically Repairing Programs Using Both Tests and Bug Reports (2020), Motwani and Brun [START_REF] Motwani | Automatically Repairing Programs Using Both Tests and Bug Reports[END_REF] improve on the fault localization component of Sim-Fix with a new technique that combines spectrum-based and bug-report based fault localization.

• Can Automated Program Repair Refine Fault Localization (2019) Lou et al. [START_REF] Lou | Can Automated Program Repair Refine Fault Localization?[END_REF] proposes a variant of mutation-based fault localization based on the PraPR program repair tool.

• Restore: Retrospective fault localization enhancing automated program repair (2020), Xu et al. [START_REF] Xu | Restore: Retrospective fault localization enhancing automated program repair[END_REF] design a two-phase fault-localization process for repair and apply it to Jaid and SimFix.

• You Cannot Fix What You Cannot Find! An Investigation of Fault Localization Bias in Benchmarking Automated Program Repair Systems (2019) [START_REF] Liu | You Cannot Fix What You Cannot Find! An Investigation of Fault Localization Bias in Benchmarking Automated Program Repair Systems[END_REF] shows that one third of bugs in the Defects4J benchmark cannot be localized, hence cannot be repair with approach based on spectrum-based fault localization.

• An Empirical Study on the Effect of Dynamic Slicing on Automated Program Repair Efficiency (2018) [START_REF] Guo | An Empirical Study on the Effect of Dynamic Slicing on Automated Program Repair Efficiency[END_REF] replaces Ochiai in Nopol [START_REF] Xuan | Nopol: Automatic Repair of Conditional Statement Bugs in Java Programs[END_REF] by a dynamic slicing approach based on Javasclicer. 

Interactive Program Repair

"Interactive Program Repair" means asking questions to the developer about the expected output of some expressions, in order to drive the search towards correct oatches.

• Automatic Program Repair as Semantic Suggestions -An Empirical Study (2021) Campos et al. [START_REF] Campos | Automatic Program Repair as Semantic Suggestions: An Empirical Study[END_REF] implement and evaluate mutation-based repair for Javascript inside Visual Studio.

• Interactive Patch Filtering as Debugging Aid (2020) Liang et al. develop an IDE plugin to present APR patches to developers in a debugging session and shows how it helps fixing the bug at hand, in an experiment over 30 students and 85 Defects4J bugs.

• Human-In-The-Loop Automatic Program Repair (2020) Böhme et al. [START_REF] Böhme | Human-In-The-Loop Automatic Program Repair[END_REF] propose to ask a fixed number of yes/no questions to the user/developer about the expected behavior of the program under repair in order to reduce the risk of incorrect patches.

• Interactive Testing and Repairing of Regular Expressions (2018) [START_REF] Arcaini | Interactive Testing and Repairing of Regular Expressions[END_REF] proposes an interactive technique to repair regular expressions, the developer being asked for validation.

• At the End of Synthesis: Narrowing Program Candidates (2017) Shriver et al. [START_REF] Shriver | At the End of Synthesis: Narrowing Program Candidates[END_REF] identify inputs on which the behavior of two candidate patches differ, and show them to the developers to ask about the preferred behavior. • Speeding up constraint-based program repair using a search-based technique (2022) Yi et al. [START_REF] Yi | Speeding up constraint-based program repair using a search-based technique[END_REF] replace Angelix' symbolic execution by Monte Carlo sampling over paths in order to find angelic paths.

Repair Speed

• Speedup automatic program repair using dynamic software updating: an empirical study (2019) Guo et al. [START_REF] Guo | Speedup automatic program repair using dynamic software updating: an empirical study[END_REF] apply generated patches using hotswapping / class reload in the JVM and report the presence of a speed-up.

• Fast and Precise On-the-fly Patch Validation for All (2020) Chen and Zhang [START_REF] Chen | Fast and Precise On-the-fly Patch Validation for All[END_REF] propose to only load the tentatively patched binary Java classes through hotswaping technology, in order to speed up validation with the test suite.

the C programming o language.

• Test-equivalence Analysis for Automatic Patch Generation [START_REF] Mechtaev | Testequivalence Analysis for Automatic Patch Generation[END_REF] (2018) reduces the number of test executions in the repair loop by clustering candidate patches according to their test behaviors (tool f1x).

• Improving performance of automatic program repair using learned heuristics (2017) [START_REF] Schramm | Improving performance of automatic program repair using learned heuristics[END_REF] uses 24 code features to identify line/expression pairs that are likely to work together, i.e. to select good candidate ingredients in redundancy based approaches.

• Leveraging program equivalence for adaptive program repair: Models and first results [START_REF] Weimer | Leveraging program equivalence for adaptive program repair: Models and first results[END_REF] (2013) discards some repair candidates using program equivalent checks typical from compilers.

• Efficient Automated Program Repair Through Fault-Recorded Testing Prioritization [START_REF] Qi | Efficient Automated Program Repair Through Fault-Recorded Testing Prioritization[END_REF] (2013) blends test suite prioritization and classical Genprog.

• More Efficient Automatic Repair of Large-scale Programs Using Weak Recompilation [START_REF] Qi | More Efficient Automatic Repair of Large-scale Programs Using Weak Recompilation[END_REF] (2012) creates an incremental compilation system that is dedicated to program repair. • SapFix: Automated End-to-End Repair at Scale (2019) [START_REF] Marginean | SapFix: Automated End-to-End Repair at Scale[END_REF] describes the FaceBook implementation of automatic repair of null pointer exceptions found by the fuzzing tool Sapienz.

Integration / UI / Tooling

• How to Design a Program Repair Bot? Insights from the Repairnator Project (2018) [START_REF] Urli | How to Design a Program Repair Bot? Insights from the Repairnator Project[END_REF] is the first ever blueprint architecture on using program repair in continuous integration.

• Synergistic Debug-Repair of Heap Manipulations (2017) Verma and Roy [START_REF] Verma | Synergistic debug-repair of heap manipulations[END_REF] add advanced concepts in a proof-of-concept debugger on top of GDB, which supports specifying desired states and patch generation via SMT-based repair constraints.

• Should fixing these failures be delegated to automated program repair? (2015) Le et al. [START_REF] Xuan-Bach | Should fixing these failures be delegated to automated program repair?[END_REF] perform automatic classification of successful and unsuccessful cases in Genprog based on features from the Genprog search.

Position Papers

• Towards Extending the Range of Bugs That Automated Program Repair (2022) Al-Bataineh et al. [START_REF] Moonen | Towards Extending the Range of Bugs That Automated Program Repair Can Handle[END_REF] provide a taxonomy of program repair and sketch a proposal for termination bugs in sequential and concurrent programs.

• Explainable Software Bot Contributions: Case Study of Automated Bug Fixes (2019) Monperrus [START_REF] Monperrus | Explainable Software Bot Contributions: Case Study of Automated Bug Fixes[END_REF] claims that patches generated with automatic program repair should come with a textual explanation.

• Beyond testing configurable systems: applying variational execution to automatic program repair and higher order mutation testing (2018) [START_REF] Wong | Beyond Testing Configurable Systems: Applying Variational Execution to Automatic Program Repair and Higher Order Mutation Testing[END_REF] suggests using variational execution to find multi-location repair out of a meta-program with all possible changes.

• Trusted software repair for system resiliency (2016) Weimer et al. [START_REF] Weimer | Trusted Software Repair for System Resiliency[END_REF]'s position paper is about detecting behavioral differences between patches using targeted differential testing.

• When App Stores Listen to the Crowd to Fight Bugs in the Wild (2015) [START_REF] Gomez | When App Stores Listen to the Crowd to Fight Bugs in the Wild[END_REF] sets the vision of an App store that monitors and fixes bugs in production by orchestrating the search over thousands of devices.

• A Critical Review of "Automatic Patch Generation Learned from Human-Written Patches": Essay on the Problem Statement and the Evaluation of Automatic Software Repair (2014) [START_REF] Monperrus | A Critical Review of "Automatic Patch Generation Learned from Human-Written Patches": Essay on the Problem Statement and the Evaluation of Automatic Software Repair[END_REF] states that program repair goes beyond mimicking human patches, and that scientific evaluation in this research field must be designed accordingly.

• Two Flavors in Automated Software Repair: Rigid Repair and Plastic Repair (2013) [START_REF] Monperrus | Two Flavors in Automated Software Repair: Rigid Repair and Plastic Repair[END_REF] is an early categorization of the field, later called as generate-andvalidate approaches versus semantic-based or synthesis-based approaches.

• Current Challenges in Automatic Software Repair (2013) [START_REF] Le Goues | Current Challenges in Automatic Software Repair[END_REF] shows the vision of C. Le Goues at the end of her seminal PhD thesis on GenProg.

Formal Approaches to Program Repair

• Automatic and Incremental Repair for Speculative Information Leaks (2023) Bard et al. [START_REF] Bard | Automatic and Incremental Repair for Speculative Information Leaks[END_REF] identify speculative execution vulnerabilites with a SeaHorn analysis and fix themby adding fences in code.

• Automated Repair of Heap-Manipulating Programs using Deductive Synthesis (2020), Nguyen et al. [START_REF] Nguyen | Automated Repair of Heap-Manipulating Programs using Deductive Synthesis[END_REF] fix static warnings found with HIP/SLEEK (as [START_REF] Le | Enhancing automated program repair with deductive verification[END_REF]) using constraint solving on top of the Songbird prover and deductive synthesis.

• Deductive Program Repair (2015) Kneuss et al. [START_REF] Kneuss | Deductive Program Repair[END_REF] do program repair for a "purely functional subset of Scala", evaluated on seeded bugs on small programs.

• Cost-Aware Automatic Program Repair (2014) [START_REF] Samanta | Cost-aware Automatic Program Repair[END_REF] repairs boolean programs with assertions, by using the method of inductive assertions.

• Program Repair As Sound Optimization of Broken Programs (2009) [START_REF] Qi | Program Repair As Sound Optimization of Broken Programs[END_REF] theoretically defines repair for an ad hoc formal language.

• Program Repair Suggestions From Graphical State-Transition Specifications (2008) [START_REF] Wang | Program Repair Suggestions From Graphical State-Transition Specifications[END_REF] does theoretical repair using edit sequences on state machines.

• Repair of Boolean Programs with An Application to C (2006) [START_REF] Griesmayer | Repair of Boolean Programs with An Application to C[END_REF] repairs a specific class of programs called boolean programs: those that only contain boolean variables.

• • BugSwarm: Mining and Continuously Growing a Dataset of Reproducible Failures and Fixes (2019) [START_REF] Dmeiri | BugSwarm: Mining and Continuously Growing a Dataset of Reproducible Failures and Fixes[END_REF] uses Travis CI as [START_REF] Madeiral | Bears: An Extensible Java Bug Benchmark for Automatic Program Repair Studies[END_REF] to collect 3,091 bugs and encaspulates them in a reproducible Docker image.

• Bears: An Extensible Java Bug Benchmark for Automatic Program Repair Studies (2018) Madeiral et al. [START_REF] Madeiral | Bears: An Extensible Java Bug Benchmark for Automatic Program Repair Studies[END_REF] propose a new benchmark whose novelty is to be based on continuous integration analysis (and not on past commits).

• DroidBugs: An Android Benchmark for Automated Program Repair (2018) Azevedo et al. [START_REF] Azevedo | DroidBugs: An Android Benchmark for Automatic Program Repair[END_REF] gathers 13 bugs in Android apps. (code)

• Bugs.jar: a large-scale, diverse dataset of real-world Java bugs (2018) [START_REF] Ripon | Bugs.jar: A Large-scale, Diverse Dataset of Real-world Java Bugs[END_REF] describes a dataset of 1,158 bugs and patches, over 8 open-source projects.

• Codeflaws: a programming competition benchmark for evaluating automated program repair tools (2017) Tan et al. [START_REF] Hwei Tan | Codeflaws: a programming competition benchmark for evaluating automated program repair tools[END_REF] present a benchmark of 3902 defects in C, crawled from the Codeforces programming competition website.

• QuixBugs: a multi-lingual program repair benchmark set based on the quixey challenge (2017) [START_REF] Lin | QuixBugs: a multi-lingual program repair benchmark set based on the quixey challenge[END_REF] is a benchmark of in simple programs bugs where each bug is available in both Java and Python.

• The ManyBugs and IntroClass Benchmarks for Automated Repair of C Programs (2015) ManyBugs [START_REF] Le Goues | The ManyBugs and IntroClass Benchmarks for Automated Repair of C Programs[END_REF] is the classical GenProg benchmark and has 185 bugs in 9 C open-source programs. IntroClass is composed of small (10-20 LOC) student programs, it has been translated to Java (IntroClassJava [START_REF] Durieux | IntroClassJava: A Benchmark of 297 Small and Buggy Java Programs[END_REF]).

• Defects4J: A Database of Existing Faults to Enable Controlled Testing Studies for Java Programs (2014) Just et al. [START_REF] Just | Defects4J: A Database of Existing Faults to Enable Controlled Testing Studies for Java Programs[END_REF] presents the Defects4J benchmark, extensively used in program repair research since the initial experiment by Durieux et al. [START_REF] Durieux | Automatic Repair of Real Bugs: An Experience Report on the Defects4J Dataset[END_REF][START_REF] Martinez | Automatic Repair of Real Bugs in Java: A Large-Scale Experiment on the Defects4J Dataset[END_REF].

Automatic Hardening

• Automatically Fixing C Buffer Overflows Using Program Transformations (2014) [START_REF] Shaw | Automatically Fixing C Buffer Overflows Using Program Transformations[END_REF] uses three program transformations dedicated to integer operations, and shows that the approach scales to real programs.

• Program Transformations to Fix C Integers (2013) [START_REF] Coker | Program Transformations to Fix C Integers[END_REF] proposes three program transformations to fix common overflow problems with integer arithmetics in C code.

• A Source-to-source Transformation Tool for Error Fixing. (2013) [START_REF] Khmelevsky | A Sourceto-source Transformation Tool for Error Fixing[END_REF] automatically adds a condition checks after all method calls with a source-to-source transformation in C code.

Surveys

• A Survey on Automated Program Repair Techniques (2023) Huang et al. [START_REF] Huang | A Survey on Automated Program Repair Techniques[END_REF] contains 164 references incl. recent references on using large language models for repair and a comprehensive list of datasets.

• A Survey of Learning-based Automated Program Repair (2023) Zhang et al. [START_REF] Zhang | A Survey of Learning-based Automated Program Repair[END_REF] focuses on the usage of machine-learning for repair, discussing 186 references.

• Program Repair (2022) Gao et al. [START_REF] Gao | Program Repair[END_REF] survey the field with 8 recent 2022 academic references.

• Neural Program Repair: Systems, Challenges and Solutions (2022) Zhong et al. [START_REF] Zhong | Neural Program Repair: Systems, Challenges and Solutions[END_REF] surveys the works on using neural networks to generate patches (51 references).

• A Survey on Automatic Bug Fixing (2020), Cao et al. [START_REF] Cao | A Survey on Automatic Bug Fixing[END_REF] summarize the recent advances made since the previous surveys (113 references).

• Automated Program Repair (2019) Le Goues et al. [START_REF] Le Goues | Automated Program Repair[END_REF] give a high-level view of the field in Communications of the ACM (40 references).

• A Survey of Test Based Automatic Program Repair (2018) Liu et al. [START_REF] Liu | A Survey of Test Based Automatic Program Repair[END_REF] present 81 references, with the last ones from 2017.

• Automatic software repair: a Survey (2017) Gazzola et al.'s survey [START_REF] Gazzola | Automatic software repair: A survey[END_REF] at IEEE TSE with 176 references.

• Automatic software repair: a Bibliography Monperrus [START_REF] Monperrus | Automatic Software Repair: a Bibliography[END_REF] (first online, 2015, journal version 2017) is the first ever survey of the field, in ACM Computing Surveys, with 197 references.

Doctoral Theses

• Tolmach, "Securing smart contracts with formal verification and automated program repair", 2023 [START_REF] Tolmach | Securing smart contracts with formal verification and automated program repair[END_REF] • Ye, "Improving the Precision of Automatic Program Repair with Machine Learning", 2023 [START_REF] Ye | Improving the Precision of Automatic Program Repair with Machine Learning[END_REF] • Rothenberg, "Formal Automated Program Repair", 2020 [START_REF] Rothenberg | Formal Automated Program Repair[END_REF] • Cosman, "PABLO and PYRITE: Helping Novices Debug Python Code Through Data-Driven Fault Localization and Repair", 2022 [START_REF] Cosman | PABLO and PYRITE: Helping Novices Debug Python Code Through Data-Driven Fault Localization and Repair[END_REF] • Zakharchenko, "A practical approach to automated software correctness enhancement", 2022 [START_REF] Zakharchenko | A practical approach to automated software correctness enhancement[END_REF] • Chen, "Effective automatic program repair based on state abstraction", 2021 [START_REF] Chen | Effective automatic program repair based on state abstraction[END_REF] • Gao, "Overfitting in Program Repair and Synthesis", 2021 [START_REF] Gao | Overfitting in Program Repair and Synthesis[END_REF] • Ginelli, "Understanding and Improving Automatic Program Repair: A Study of Coderemoval Patches and a New Exception-driven Fault Localization Approach", 2020 [START_REF] Ginelli | Understanding and Improving Automatic Program Repair: A Study of Code-removal Patches and a New Exception-driven Fault Localization Approach[END_REF] • Koyuncu, "Boosting Automated Program Repair for Adoption By Practitioners", 2020 [START_REF] Koyuncu | Boosting Automated Program Repair for Adoption By Practitioners[END_REF] • Coker, "Automatic Repair of Framework Applications", 2020 [START_REF] Coker | Automatic Repair of Framework Applications[END_REF] • Harer, "Improved neural machine translation systems for low resource correction tasks", 2019 [START_REF] Alexander | Improved neural machine translation systems for low resource correction tasks[END_REF] • Liu, "Deep Pattern Mining for Program Repair", 2018 [START_REF] Liu | Deep Pattern Mining for Program Repair[END_REF] • Durieux, "From Runtime Failures to Patches: Study of Patch Generation in Production", 2018 [START_REF] Durieux | From Runtime Failures to Patches: Study of Patch Generation in Production[END_REF] • Le, "Overfitting in Automated Program Repair: Challenges and Solutions", 2018 [START_REF] Bach | Overfitting in Automated Program Repair: Challenges and Solutions[END_REF] • Long, "Automatic patch generation via learning from successful human patches", 2018 [START_REF] Long | Automatic patch generation via learning from successful human patches[END_REF] • Hua, "Unifying Program Repair and Program Synthesis", 2018 [START_REF] Hua | Unifying Program Repair and Program Synthesis[END_REF] • Mechtaev, "Semantic Program Repair", 2018 [START_REF] Mechtaev | Semantic Program Repair[END_REF] • Tan, "Design of repair operators for automated program repair", 2018 [START_REF] Hwei | Design of repair operators for automated program repair[END_REF] • Timperley, "Advanced Techniques for Search-Based Program Repair", 2017 [START_REF] Steven | Advanced Techniques for Search-Based Program Repair[END_REF] • Gopinath, "Systematic techniques for more effective fault localization and program repair", 2016 [START_REF] Gopinath | Systematic techniques for more effective fault localization and program repair[END_REF] • Cornu, "Automatic Analysis and Repair of Exception Bugs for Java Programs", 2015 [START_REF] Benoit | Automatic Analysis and Repair of Exception Bugs for Java Programs[END_REF] • Martinez, "Extraction and Analysis of Knowledge for Automatic Software Repair", 2014 [START_REF] Martinez | Extraction and Analysis of Knowledge for Automatic Software Repair[END_REF] • Le Goues, "Automatic Program Repair Using Genetic Programming", 2013 [START_REF] Le | Automatic Program Repair Using Genetic Programming[END_REF] • Nguyen, "Automating Program Verification and Repair Using Invariant Analysis and Test Input Generation", 2010 [START_REF] Nguyen | Automating Program Verification and Repair Using Invariant Analysis and Test Input Generation[END_REF] • Arcuri, "Automatic Software Generation and Improvement Through Search Based Techniques", 2009 [START_REF] Arcuri | Automatic Software Generation and Improvement Through Search Based Techniques[END_REF] 

••

  March 2023: version with 474 references • August 2022: version with 401 references • Oct 2021: version with 367 references • Dec 2020: version with 315 references • July 2020: version with 296 references • March 2020: version with 279 references • December 2019: version with 264 references • September 2019: version with 253 references • June 2019: version with 229 references • May 2019: version with 209 references • April 2019: version with 205 references • March 2019: version with 200 references • February 2019: version with 193 references • December 2018: version with 175 references Rete: Learning Namespace Representation for Program Repair (2023) Parasaram et al.

  How Different Is It Between Machine-Generated and Developer-Provided Patches (2019) [270] Wang et al. asked 27 undergraduate students whether APR patches for Defects4J are correct, are located at the same position and consist of the same modification kind (132/177 patches are at the same location, with the same modification).

1.5.1 Data-driven Patch Generation • Neural Program Repair with Program Dependence Analysis and Effective Filter Mechanism

  

	• TraceFixer: Execution Trace-Driven Program Repair (2023) Bouzenia et al.
	[463] propose an input representation that concatenates fault localization, traces with
	variable names and values, desired state (variable value) and code of the buggy pro-
	gram, with an implementation in Python for single-line errors.
	• ITER:
	(2023) Zhang et al. [497] extract the program dependence graph
	of the buggy line and put it in the input representation of neural networks in a system
	called RepeatNPR.
	• Template-based Neural Program Repair (2023) Meng et al.[476] train a net-
	work to output template-based changes, which reduces the output length, with special
	handling of out-of-vocabulary tokens.

Iterative Neural Repair for Multi-Location Patches (

  2023) Ye et al.

• Fine-Tuning GPT-2 to Patch Programs, Is It Worth It? (

  

	2022) Lajkó et al.
	[416] finetune a public HuggingFace GPT-2 model with 18736 Javscript bug-fixing
	commits, and apply the resulting model to BugJS with 9% exact-match success.
	• Less

Training, More Repairing Please: Revisiting Automated Program Re- pair via Zero-shot Learning

  

	(2022) Xia et al. [446] state program repair as a
	masked input problem, allowing for fully self-supervised training and piggy-backing
	on CodeBERT, evaluated on Defects4 2.0.
	• SelfAPR:

Self-supervised Program Repair with Test Execution Diagnostics

  

	(2022) Ye et al. [450] devise a fully self-supervised training loop for repair with NMT,
	as opposed to usual supervised NMT training with diffs, achieving state-of-the-art
	performance.
	• Automated

Repair of Programs from Large Language Models

  

	(2023) Fan et
	al. [467] study the error modes of Codex, with experimental results showing that 47%
	of Codex outputs contain syntax errors, and suggesting that one can postprocess LLM
	patches with APR.
	• CIRCLE: Continual Repair across Programming Languages (2022) Yuan et al.
	[452] train a T5 model on different programming languages sequentially to maximize
	transfer learning for repair.
	• Practical

Program Repair in the Era of Large Pre-trained Language Models

  

	(2022) Xia et al . [445] devise a prompt structure and evaluate it by querying GPT-
	like models, Incoder, CodeT5 and Codex with Defects4J, Quixbugs and Manybugs,
	showing the superiority of Codex.

• An

empirical study of deep transfer learning-based program repair for Kotlin projects Kim et

  

	al. [414] fine-tune TFix to repair SonarQube static anal-
	ysis violations in Kotlin code, reaching 19.5% repair effectiveness with exact match.
	• DEAR:

A Novel Deep Learning-based Approach for Automated Program Repair

  

(2022) Li et al.

Knowledge Matters: Improving Prompts with Fix Templates for Repairing Python Type Errors

  (2023) Peng et al.[START_REF] Peng | Domain Knowledge Matters: Improving Prompts with Fix Templates for Repairing Python Type Errors[END_REF] combine fix pattern mining and CodeT5 to fix Python type errors from benchmarks TypeBugs (109 bugs) and BugsInPy (54 bugs).

	• TransRepair: Context-aware Program Repair for Compilation Errors (2022)
	Li et al. [418] devise a transformer-based approch to repair compilation errors in C,
	with state-of-the-art performance on the TRACER and DeepFix datasets.
	• SynShine: Improved Fixing of Syntax Errors (2022) Ahmed et al. [390] combine
	three different Roberta-based models in a three-stage pipeline to repair Java syntax
	errors, achieving 75% effectiveness on the single-line errors of the Blackbox dataset.

• Domain

• Seq2Parse: Neurosymbolic Parse Error Repair (2022) Sakkas et al.

[START_REF] Sakkas | Seq2Parse: neurosymbolic parse error repair[END_REF] 

combine a symbolic EC-Parser and a transformer classifier to predict error production rules. Prototype available at https://github.com/gsakkas/seq2parse.

• Break-

It-Fix-It: Unsupervised Learning for Program Repair

  (2021) Yasunaga and Liang[START_REF] Yasunaga | Break-It-Fix-It: Unsupervised Learning for Program Repair[END_REF] present a self-supervised training loop based on exercising and improving a 'breaker' and a 'fixer' simultaneously, inspired by backtranslation, in order to fix syntax errors in Python and C.

Automatically Generated Patches are More Likely to be Correct than Oth- ers: An Analysis of Defects4J Patch Features

  (2022) Bennett et al.[START_REF] Bennett | Some Automatically Generated Patches are More Likely to be Correct than Others: An Analysis of Defects4J Patch Features[END_REF] study syntactic features of 395 Defects4J patches to identify correlations, such as single-line patches being more correct on average.

• A

Comparative Study of Automatic Program Repair Techniques for Se- curity Vulnerabilities

  (2022) Pinconschi et al. [367] compare 10 program repair tools for C on the DARPA Cyber Grand Challenge benchmark of 250 vulnerabilities in C/C++ showing that AE and GenProg clearly yield more patches.

• Estimating the Potential of Program Repair Search Spaces with Commit

Analysis (2022) Etemadi et al.

[START_REF] Etemadi | Estimating the potential of program repair search spaces with commit analysis[END_REF] 

estimate the applicability of program repair by measuring the proportion of real-world commits that lie in known repair search spaces.

• Where were the repair ingredients for Defects4j bugs? (2021) Yang et al.

[START_REF] Yang | Where were the repair ingredients for Defects4j bugs?[END_REF] 

study the origin of repair ingredients for redundancy-based repair and suggest that some repair ingredients may be found in test case code.

• Evaluating Automatic Program Repair Capabilities to Repair API Misuses (2020) Kechagia et al.

[START_REF] Kechagia | Evaluating Automatic Program Repair Capabilities to Repair API Misuses[END_REF] 

compare 14 Java test-suite-based repair tools on 101 API misusage bugs. The repair tools generate patches for 28% of API misuses, 25% of the generated patches are semantically correct, TBAR has the highest number of plausible and correct patches.

• A

Comprehensive Study of Code-removal Patches in Automated Program Repair

  

(2020) Ginelli et al.

[START_REF] Ginelli | A Comprehensive Study of Code-removal Patches in Automated Program Repair[END_REF] 

studies code-removal patches by Astor/jKali and finds that their presence clearly indicates test weaknesses.

• On

the Impact of Flaky Tests in Automated Program Repair

  (2021) Qin et al.[START_REF] Qin | On the Impact of Flaky Tests in Automated Program Repair[END_REF] identify environment-dependent tests in Defects4J and show that their presence impact repair results.

• Understanding

the Non-Repairability Factors of Automated Program Re- pair Techniques

  (2020) Lin et al.[START_REF] Lin | Understanding the Non-Repairability Factors of Automated Program Repair Techniques[END_REF] study the experimental logs shared in open science replication packages from program repair research, and find that the research prototypes suffer from important limitations.

• Comparing Developer-Provided to User-Provided Tests for Fault Localiza- tion and Automated Program Repair

  (2018) [START_REF] Just | Comparing developerprovided to user-provided tests for fault localization and automated program repair[END_REF] studies whether the results of fault localization change if one removes the failing test case provided in the commit (experiments on Defects4J).

• The Impacts of Techniques, Programs and Tests on Automated Program Repair: An Empirical Study (2017) Kong et al. [129] compare GenProg, RSRepair, AE and Kali on the Siemens benchmark. • Better test cases for better automated program repair (2017) Yang et al. [151] use fuzz testing to generate new test cases, and employ implicit oracles (absence of crash and memory-safety) to enhance validity checking of automatically-generated patches in C.

to trust auto-generated code patches? A developer survey and em- pirical assessment of existing program repair tools

  (2021) Noller et al.[START_REF] Noller | How to trust auto-generated code patches? A developer survey and empirical assessment of existing program repair tools[END_REF] ask 35 questions to 100 developers about APR and suggest that trust in APR patches would increase by presenting additional artifacts (in particular generated test cases).

	• Let's Talk With Developers, Not About Developers: A Review of Auto-
	matic Program Repair Research (2022) Winter et al. [443] analyze published
	APR papers wrt to human factors and advocate for more APR research involving
	developers.
	• Trust Enhancement Issues in Program Repair (2022) Noller et al. [428] col-
	lect qualitative feedback about APR from 103 developers, suggesting that developers
	are willing to provide additional inputs in order to increase trust in automatically
	generated patches.
	• Program Repair: Automated vs. Manual (2022) Zhang et al. [455] ask 20
	graduate students to repair 8 Defects4J bugs and discuss the results, suggesting that
	incorrect patches may be misleading for humans.

• How

• Would

You Fix This Code for Me? Effects of Repair Source and Comment- ing on Trust in Code Repair

  

(2020) Alarcon et al.

• An Empirical Study on the Usage of Fault Localization in Automated Pro- gram Repair[150

  

] (2017) compares two variations of spectrum based fault localization in Nopol

[START_REF] Xuan | Nopol: Automatic Repair of Conditional Statement Bugs in Java Programs[END_REF]

.

  Chen et al. [396] propose a repair loop for generate-and-validate repair where a prioritization model is learned on the fly. The prioritization model is a learning-to-rank version of XGBoost, using 17 code features extracted from the patch, and which is updated depending on the compilation and test outcome (tool).

	• Accelerating Patch Validation for Program Repair with Interception-Based
	Execution Scheduling (2023) Xiao et al. [492] combine mutant schemata (MS), mu-
	tant deduplication (MD), test virtualization (TV), and test case prioritization (TCP)
	to speed up the assessment of all patches produced by an APR system, comparing
	against UniAPR [288].

• Program Repair with Repeated Learning

(2022) 

Practical Tool for Predicting, Classifying and Repairing Software Vulnerabilities

  (2023) Fu et al.[START_REF] Fu | AIBugHunter: A Practical Tool for Predicting, Classifying and Repairing Software Vulnerabilities[END_REF] integrate detection, clasification, severity estimation, and repair of C/C++ vulnerabilities with VulRepair in VSCode plugin.

	• Automated Program Repair Based on Code Review: How do Pre-trained
	Transformer Models Perform? (2023) Paul et al. improves performance on the
	Review4Repair dataset [409] by fine-tuning a CodeT5 model.
	• Review4Repair: Code review aided automatic program repairing (2022) Huq
	et al. [409] address the problem statement of addressing code review comments, by
	training an NMT model on 55,060 code reviews and associated code changes.
	• On the introduction of automatic program repair in Bloomberg (2021) Kirbas
	et al. [351] describe the integration of APR at Bloomberg, with a system based on
	mining repair templates with anti-unification.
	• E-

• AIBugHunter: A

APR: Mapping the Effectiveness of Automated Program Repair

  (2020) Aleti and Martinez[START_REF] Aleti | E-APR: Mapping the Effectiveness of Automated Program Repair[END_REF] present a meta-tool to predict the right repair tool to use based on features of the buggy program.

• Visualizing Code Genealogy: How Code is Evolutionarily Fixed in Program

Repair (2019) Tomida et al.

[START_REF] Tomida | Visualizing Code Genealogy: How Code is Evolutionarily Fixed in Program Repair?[END_REF] 

proposes a user-interface to visualize the search happening in a generate-and-validate repair loop implemented in kGenProg.

• Towards s/engineer/bot: principles for program repair bots (2019) van Tonder and Le Goues

[START_REF] Van Tonder | Towards s/engineer/bot: principles for program repair bots[END_REF] 

discuss six principles for engineering repair bots related to syntax, semantics and integration.

An Executable Dataset for Automated Program Repair

  Program Repair As a Game (2005)[START_REF] Jobstmann | Program Repair As a Game[END_REF] repair programs that are expressed in linear temporal logics (2023) Prenner and Robbers[START_REF] Julian | RunBugRun-An Executable Dataset for Automated Program Repair[END_REF] present RunBugRun, a dataset of 450,000 bugs in 8 languages (majority in Java, Python, C++), which can all be executed with test cases.

	8 Miscellaneous
	8.1 Datasets & Benchmarks

• RunBugRun -

• StandUp4NPR:

Standardizing SetUp for Empirically Comparing Neural Program Repair Systems

  (2022) Zhong et al.[START_REF] Zhong | StandUp4NPR: Standardizing SetUp for Empirically Comparing Neural Program Repair Systems[END_REF] curate a training dataset of 144,641 bug-fix pairs in Java, as well as a validation and test dataset (dataset).

	• Vul4J: A

Dataset of Reproducible Java Vulnerabilities Geared Towards the Study of Program Repair Techniques

  (2022) Bui et al.[START_REF] Bui | Vul4J: A Dataset of Reproducible Java Vulnerabilities Geared Towards the Study of Program Repair Techniques[END_REF] collected 79 reproducible vulnerabilities from 51 real-world Java projects, see https://github. com/bqcuong/vul4j.

• PLUR: A

unifying, graph-based view of program learning, understanding, and repair

  (2021) Chen et al.[START_REF] Chen | PLUR: A unifying, graph-based view of program learning, understanding, and repair[END_REF] unify 16 software development tasks, incl. repair, into a single, consistent benchmark (https://github.com/google-research/plur).

• Is

the Ground Truth Really Accurate? Dataset Purification for Automated Program Repair

  (2021) Yang et al.[START_REF] Yang | Is the Ground Truth Really Accurate? Dataset Purification for Automated Program Repair[END_REF] use coverage and delta-debugging to perform change minimization of benchmark bugs (minimized D4J patches are at De-hengYang/dataset_purification).

• Towards a

Benchmark Set for Program Repair Based on Partial Fixes

  (2021) Beyer et al.[START_REF] Beyer | Towards a Benchmark Set for Program Repair Based on Partial Fixes[END_REF] curated 2204 benchmark tasks where the input is a partial fix (data at https://gitlab.com/sosy-lab/software/partial-fix-benchmarks/).

• A

critical review on the evaluation of automated program repair systems

  (2020) Liu et al.[START_REF] Liu | A critical review on the evaluation of automated program repair systems[END_REF] discuss and consolidate 8 evaluation metrics for program repair research, which cover different aspects of the problem space.

• Critical Review

of BugSwarm for Fault Localization and Program Repair

  (2019) Durieux et al.[START_REF] Durieux | Critical Review of BugSwarm for Fault Localization and Program Repair[END_REF] state desirable properties applying to benchmarks for program repair and assess BugSwarm according to them, showing that a minority of bugs are usable in this context.