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On the Omega Lemma

Nadji HERMAS? Nabila BEDIDA, Slimane AMRAOUI

September 11, 2018

Abstract

Dans cet article, on donne des nouvelles versions, dans le cadre des
espaces d’Holder, au lemme qui est nommé dans ’analyse globale 'the
w-lemma’, et on croit que ces versions auront des applications dans
plusieurs disciplines telles que ’la théorie des variétés des applications’
et 'la théorie des groupes de difféomorphismes’.

2010 AMS Subject Classification: 58C20, 58C25, 46G05, 46T20.

Keywords: Omega lemma; Global analysis.

1 Introduction

The aim of this paper is to give some new formulations in the context of
the Holder spaces of the Omega lemma, which is a known lemma in the
global analysis. The terminology ’Omega lemma’ was invented in 1963 by
Abraham [1].

This lemma has various important applications in the global analysis,
especially in the theory of manifolds of mappings. Sobolev [8] is the first
who gave some formulations and applications of the omega lemma in the end
of the thirties of the twentieth century. In [1], [2], and [5], we find classical
versions of this result formulated for classical Banach spaces of functions
and sections of smooth vector bundles. In [3], the authors used a suitable
version of the omega lemma in the study of the strucutres of some Hilbert
diffeomorphism groups based on Sobelev spaces. These groups have played
a crucial role in the use of the techniques of the Riemann geometry in the
study of the FEuler equations for a perfect fluid. This is probably one of the
successful applications of Riemann geometry in partial differential equations.
For further information about the omega lemma in the context of Sobolev
mappings, the reader can consult [4] and [7].

The main results of this paper are Theorem 2.5 and Proposition 2.6.
The proofs of these two results, which are based on the famous theorem of
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Taylor, were presented with greater accuracy and greater clarity, and this is
to facilitate the readers’ understanding of this paper. For the same purpose,
we gave an appropriate text for the Taylor’s theorem.

Theorem 2.8 is an important adjustment for Theorem 2.5, while Theorem
2.10, which is the result most similar to the classical version for the omega
lemma given in [1] and [2], is a suitable formulation in the case of smooth
vector bundles, for Theorem 2.5. We also gave here the proofs of these two
theorems.

Always in order to facilitate the reading of the paper, we gave a short
and precise text containing the necessary definitions of Holder spaces and
their natural topologies. The three simple results 'Propositions 2.3 and 2.4
and Lemma 2.7’ about these spaces have been given here because we need
them and also because they are not, as we see, very much presented in the
literature of these spaces. Moreover, we believe that the results 2.4 and 2.7
have not yet been given in this literature.

We expect that the results obtained in this paper have appropriate uses
in several disciplines as Theory of manifolds of mappings, Theory of groups
of diffeomorphisms, and Finsler Geometry.

2 Some formulations of the Omega Lemma

2.1 Taylor’s theorem

In this subsection, we give a suitable text of the famous theorem of Taylor.
Let F1, ..., E, and F' be normed spaces. We provide the space

L(E1,...,EyF),
of all bounded n-linear mappings from E; x --- X E,, to F with the norm

HEHLJ(El,...,En;F) = sup ”E (U’l?""un)HF’ge ﬁ(Ela”'vEn;F)v

lua g oolln |, <1

which defines the topology of uniform convergence on bounded sets in F7 x
X BE,. f By =--- = FE, = E, we simply write

L" (B F)=L(E1,...,E,; F).

Let E be a normed space. For k > 1, we denote by Poly* (E; F) the
space of homogeneous polynomials of degree k from E to F. Recall that
Poly® (E; F) is defined as follows:

Poly* (F; F)
= {P:E—>F:EIBG,Ck(E;F),P(u):B(u,...,u),UEE}.



We equip Poly* (E; F) with the norm
sup {|| P (u)|[ : [lv]lz < 1}, P € Poly” (E; F).

Let Els“ym (E; F) denote the subspaces of symmetric elements of £* (E; F).
Then for each P € Poly” (E; F), there is an unique element P € Lk (B;F)
such that

P(u)=P(u,...,u) = Pu) uekE.

Furthermore, the mapping P € Poly” (E; F) — P ¢ Efym
homeomorphism.
Let 2 be a non-empty open subset of . We put

(E; F) is a linear

Q={(z,u) € QX E: |ju|p < dist (x,00)},

where

dist (z,09) = inf {|ly — ] ..y € 92},

is the distance between x and 9€2. This set is open in 2 X F by the continuity
of the function z € E + dist (z,09) € Ry, and has the property: for each
(z,u,t) € A [0,1], = + tu € Q.

If 90 = ¢, then Q = E and Q = E x E.

Let f: Q — F be a given function, which is k£ times differentiable at
x € ), where k > 1. For j € {1,...,k}, we note by fU) (z) the derivative of
order j of f at x. Knowing that ) (z) € Liym (E; F), we put

9 () (w)? = f9) (2) (u,...,u),uc E.
For j = 0, we have f© = f and then f(© (z) (u)" = f (z) for all u € E.

Theorem 2.1 (Taylor’s theorem) Let E be normed space, let F' be a Ba-
nach space, and let f: Q C E — F be a given function defined on an open
set Q C E. The following two statements are true.

1. If f is C* in Q with k > 1, then

o) — f9 () (w)’ La-ptt! 8 (3 + ) ()
flx+ )_og]%_l ; +/0 Gy 1 ) ()

for all (x,u) € Q.

2. If there are functions P; € C° (Q;Polyj (E; F)) (1<j<k)andRy €
oL (Q; Poly* (E; F)) such that

flaztu)=f()+ Y Pjx) )+ Ry (z,u) (u), Ry (z,0) =0,

1<j<k



for all (xz,u) € Q, then f is C*, and we necessarily have:

@ (2) (u
P = T g

11 k=1 ®) () (o)

Rea ) = [ S ) ot - S

for (z,u) € Q and v € E.

The proof of the statement 1 is easy. Concerning the statement 2, which
is known by the name ’the converse to Taylor’s theorem’, we can consult [5]
(Theorem 2.4.15) and [6] (Theorem 3, p. 7).

2.2 Holder spaces

In this subsection, we discuss the Holder spaces and their linear topologies.

For any subset A of a topological space, we denote by A = cl(A) the
closure of A and by A = int (4) the interior of A. For s € R, [s] denotes the
integer part of s, that is the unique integer checking the double inequality
[s] <s<[s]+ 1

Let E and F be normed spaces and let €2 be an open set of E. For a
positive integer s € N, we denote by C® (£2; F') the space of the functions
u: Q — F of class C® such that all the derivatives u) : Q — L7 (E; F),
0 <j <s, of u are bounded.

For s € ]0, 1, we define the Holder space C* (€2; F) to consist of functions
u € CY(Q; F) such that

wp 1) —u @l
z,yeNx#y H'T - yHE

< 00

If s € Ry|N = [0,400[| N, we define C* (2; F) to consist of functions u €
Cls! (Q; F) such that the derivative u((*) belongs to ¢3! (2 LB (E; F)).
The standard norm of C* (Q; F'), s € Ry, is given by

_ () ’ S (Q;

U s . — su u X 7u E C Q; F b

[ulles gy m Og;sxegu () LI (E;F) (5 F)
when s € N, and by
- (4)

[P, = sup ‘u T ’ v

|| Hc (4F) 0§'<S en ( ) LI (E;F)
[ullD (@) = w0 )] 2y oy
+ sup s—s]
z,y€Q, x4y H$ - y”E

when s € Ry |N.



If £ =R", the norm ||-||¢s(q. ) can also be given as follows:

Z Supgeq [|0%u ()|, for s €N,

la|<s
llles ey = Y. swuen [[0°u ()] 5
a€eN |a|<]s]
-+ sup z,y€Q, x4y 1o u(m)_as,u[s(]y)”F, for s € R+| N,
aeN™ |a|=[s] ”x_yHE

with u € C* (Q; F'), where 0%u denote the partial derivative of order a =
(a1,...,an) E N"of uw and |a] = a1 + -+ - ap.

When F is a Banach space, C* (2; F'), s € R4, provided with its standard
norm is again a Banach space.

Also, for s € N, we denote by C* (ﬁ; F) the space of the functions w :
Q — F of class C® such that all the derivatives u), 0 < j < s, have
bounded, continuous extensions defined in Q. If s € ]0, 1], we take C* (Q2; F)
to consist of functions u € C° (ﬁ; F ) such that

wp 1@ v @Il

5 < 0,
z,y€Q,x#y HIL‘ - y”E‘

and if s € [1,4+o0[| N, we take C* (ﬁ; F) to consist of functions u € Cl¥l (ﬁ; F)
such that u(ls) € ¢5~1l (ﬁ; Ll (E; F))

The standard norm of C* (ﬁ; F ), s € Ry, is given by the same expression
of the norm of C* (2; F') where € is replaced by €.

For given s € R, the relationship between the two spaces C* (Q; F)
and C* (ﬁ; F ) is easy to detect. First, we note that the linear mapping of
restriction

Ry:ueC (G F) — ulg €C (4 F),

is an isometry. In addition, if F' is a Banach space, then, for each s € R;|N,
the mapping R is an isometric linear homeomorphism. This statement
comes from the fact that, for every function u € C*(Q; F'), the derivatives
w0 < j < [s], are uniformly continuous in €2, so that they have bounded,
continuous extensions defined in €.

Let s € N. If Q is compact (so, by the Riesz lemma, E has finite
dimension), then the space C* (ﬁ; F ) coincides with the space C* (ﬁ; F ) of
functions u € C* (€; F) such that all the derivatives ul¥), 0 < j < s, have
continuous extensions defined in Q. Hence, if F is a Banach space, then
C? (ﬁ; F) is exactly the space of functions u € C*® (Q2; F) such that all the
derivatives u(9), 0 < j < s, are uniformly continuous in .

Let U be a subset of E satisfying int (U) C U C int (U). Since every
continuous function in int (U) admits at most one continuous extension in
U, we define the spaces C* (U; F), s € R4, just like the spaces C* (ﬁ; F),
S € R+.




We recall that if U is a subset of E having the property int (U) C U C
int (U), then each open subset V' of U checks the same property int (V) C
V Cint (V).

We now define the local Holder spaces.

Let U be a subset of E satisfying int (U) C U C int (U). For s € N,
we put Cj,.(U; F') = C*(U; F), where C* (U; F) is the space of functions
u € C®(int (U); F) such that all the derivatives u9), 0 < j < s, have
continuous extensions defined in U.

If s € Ry|N, we take C;, (U; F) to consist of functions u € Cl¥l (U; F)
such that, for each z¢ € U, there exists an open neighbourhood V (xy) in U
of zo with uly () € C*(V (20) ; F).

In the following, we assume that F is finite dimensional and U is a locally
compact subset of E having the property int (U) C U C int (U).

It is not hard to verify that, for s € Ry|N, C} . (U; F') is the space of
functions u € Cl* (U; F) such that

[ulD (@) = D ()| 2o ey
sup

yEK oty |z — g5

9

for every compact set K of U. Indeed, if u € CI# (U; F') checks the previous

condition, then u € C; (U;F) since U is locally compact. Now, let u €

loc
Cp.(U; F) and let K be compact set of U. There is an open covering U =

(Uj)i<j<n in U of K such that, for all j € {1,..., N}, K; = Uj is a compact
subset of U and

Hu([s]) (z) — ulls) (y)HL[S](E;F)
< 00

sup —
ryCk; arty |z — y)) 5

By Lebesgue covering theorem, there exists A > 0 such that, for all (z,y) €
K x K with ||z —y||p < A, there is a set in U containing both z and y.
Thus, for (z,y) € K x K with ||z —y||; > A, we have

Iz —yls N

(15D

o (KLl (B F))

and for (z,y) € K x K with 0 < ||z — y|[ga < A, there is jo € {1,..., N},
such that (z,y) € Kj,, and so,

Jo>

Hu([s]) (z) — w(lsD) (y)HF

o =yl ™
Yk [|ullD (z) — D @)HUS](E.F)
‘ J _— B
Cs(KjgillUBF))  wyek, asty Iz — gl [s]




Hence, we get

* Hu([s}) (z) — ulls) (y HLJ[S](E'F)
Huqsn ~ ap :
cs(K;c[sl(E;F)) v yeK aty H y||5 s
< max u(s) H < 0.
)\s CO(K;LlN (B F)) 1<3<N s(Kj;L1(B;F))

The standard topology of C}} . (U; F) is the locally convex topology gen-
erated by the seminorms

( Z supIeKHu(j) (x)HU(E;F), if seN,
0<j<s
() .
lulles(x:ry = 0<j2<[5] Sup,e e [|u (x)Hz:J(E;F)
D @)= D @) || e
| TS WPayeKary e i s € Ry|N,
E

where u € C} . (U; F) and K is a compact set in U.

The completeness of F' implies that of C; (U; F'). So, if F' is a Banach
space, then Cj . (U; F') is a Fréchet space.

If U is compact, then U = int (U), and thus C;. (U; F') = C*® (int (U); F)
with s € Ry.

The topology of the space

loc

C®(U;F) = () Cie (U F) = () C7 (U; F)

seRy jeN

is generated by the seminorms

wup [ )

zeK Li( EF)

where K is a compact set in U and j € N.

We now discuss the Holder spaces on the manifolds.

Let M be a finite dimensional manifold (possibly with corners) modeled
on the space R™ with n > 1 and let (U, ¢) be a chart of M. Then ¢ (U) is
an open subset of a quadrant

Q={zeR": 4 (z)>0,...,0,(z) >0},

of R™. Here {/1,...,¢;} is a linearly independent subset of the dual (R™)*
and k € {0,1,...,n}. This quadrant is a convex closed subset of R" satis-

fying @ = int (Q) where

int (Q)={xeR": 41 (x) >0,...,0 (z)>0}.




So ¢ (U) has the property int (¢ (U)) C ¢ (U) C int (¢ (U)). In addition,
¢ (U) provided with the restriction of the Euclidean topology of R is locally
compact and locally convex.

This fact allows us to define the Holder spaces over the manifold M.
Indeed, let N be a smooth manifold modeled on normed spaces and let
s € RyU{oo}. We define the functional set C; . (M; N) to consist of functions
u: M — N such that, for each chart (U, ) of M and each chart (V,1) of
N with w(U) C V,¢ouop™t €C (p(U);Ey), where Ey is the normed
space associated with the chart (V,4) (that is ¢ (V) C Ey).

If M is compact, we put C* (M;N) =C} .(M;N).

There is an important situation here when N = FE is a normed space. In
this case, Cj . (M; E) is a vector space. We equip it with the initial topology

with respect to the mappings
ot U € Cioo (M3 E) = uo ™" € Co (¢ (U) 5 B),

where (U, ¢) is a chart of M. Thus, we obtain a locally convex space, which
is complete when FE is a Banach space.

If M is compact, we consider an atlas ((Ug, 1)) <p<,, of M and then we
consider a partition of unity (Ax);<j<, of M dominated by (Ug);<p<,. For
s € Ry, the space C* (M; E) = C; . (M; E) provided with the norm
weC (M;E)— > |[(Asu) oot

1<k<n

Cs (supp)\kogo,;l;E) € R+’

is a normed space, which is complete when FE is complete. In addition,
the topology associated with this norm is exactly the standard topology of
C* (M; E).

Now let E be a smooth vector bundle of standard fiber F' (which is a
normed space) over M. For s € Ry U{oo}, we put

Ci (M — E)={XeC., (M;E):Vz e MX (z) € E,},

where E, = ;' ({x}) is the fiber of F at « and 7 : E — M is the bundle
projection. This set has a real vector structure and is called the space of
sections of class Cj . of E. It is not hard to see that a continuous section

X € CY(M — E) belongs to Ci . (M — E) if, and only if, for each bundle

loc

chart (U,v¢) of E, prgot o (X|,) € Cj.(U; F'), where pry is the projection

loc

(z,v) € U F + v € F. The standard topology of C; . (M — E), which is a
locally convex topology, is the initial topology with respect to the mappings

XGC?OC(MHE)’_)prQOwO<X‘U> GCZSOC<U;F)7

where (U, 1) is a bundle chart of E.
This topology is also the initial topology with respect to the mappings

XGCZSOC<M_>E)’_)prZOwO(X‘U)Ogoil ECZSOC(QO(U);F)v



where (U, ¢) is a chart of M and (U, ) is a bundle chart of E.

Assume that M is compact and let s € Ry. Let ((Ug, ¢));<p<, be an
atlas of M, let ((Ug, 1)1 <1<, be a bundle atlas of E, and let (A\x); <4<, be
a partition of unity of M dominated by (Uk),<,. The standard topology
of the space C* (M — E) = C;,.(M — E) is the topology associated with
this norm

X € C(M—E)
— Z H{)\kpr20¢ko(X‘Uk)}o<p’;1

1<k<n

€R,.

Cs (supp)\kogolzl;F)
The proof of the following simple proposition is easy.

Proposition 2.2 1. Let E, Eq, ..., Ex, and F be normed spaces. Let
U C E be a subset having the pmperty int (U) C U C int (U)and let
s € Ry. IfLEClOC(U,,C(El,...,Ek, )) U1 ECZOC(U El) ceey
u € CJ.(U; Ey), then L(-)(u1(-),...,ur(-)) € Ci.(U;F). In ad-
dition, if F is finite dimensional cmd U is a locally compact, then

the mapping (u1,...,ug, L) — L(-)(u1(-),...,ur(-)) is continuous
from C (Us; Ey) x -+ x C}(U; Ey) x Clsoc (U; L(E1,...,Ex; F)) to
Cp. (U F). In particular, zf Ey =+ = E, = F = C, then the
mapping (u1,...,uk) — up---uy is continuous from C; (U;C)*
Cp.(U;C).

2. Let B, F and G be three normed spaces, let U C E and V C F two
subsets with int (U) C U C int (U) and int (V) C V C int (V). We
assume that U is locally convex. If u € Cj . (U; F) and v € C} . (V;G)
withw (U) CV and s € ]1,+00[ =N, thenvou € C} . (U;G).

We note that the composition of two functions of class C;. with s € ]0, 1]
is not generally a function of class Cj .. For example, the function |- \1/ 2.
z € R |z|"? € R belongs to the space C/2 (R;R) C C1/2 (R;R), however
Y20 |2 = |.|V/* ¢ CV/2 (]—¢,£[;R) for every & > 0. Thus, the satement
2 is wrong for s € |0, 1].

The approximation of functions of class C; . or of class C* by smooth
functions is an important problem. In this context, we present the following.

Proposition 2.3 Let F be a Banach space, and let p € C*(R™; F) with
s e Ry We consider a function 6 € C° (R"™;R) having the properties 6 > 0
and [p, 0 (y)dy =1, and then for j > 1, we put 0; (x) = j"0 (jx) and

p;(z) =bjxp (x) = . 0j (x—y)p(y)dy = - 0; (y) o (x —y)dy,x € R".

Then ((‘Oj)jZI CC® (R F) =g, C* (R™ F) and:

9



1. For s € N, if the derivatives 0%p : R™ — F, |a| = [s], are uniformly
continuous, then @; — ¢ in C* (R™ F).

2. For s € R[N, if the functions
% (z) = ¢ (y)

|z =yl

(z,y) € R" x R" — Agn — F,la| = [s],

where Apn = {(z,x):xz € R"}, are uniformly continuous, then we
have p; — ¢ in C* (R™; F).

Proof. Let j > 1. It is obvious that ¢, € C* (R"; F) with
0%p; (z) = . 0%0; (y) ¢ (r —y)dy,z € R",a € N".
So,
107, ooy < Ielcogaosry [, 1076 @y < 0.0 €W,
which proves that ¢; € C*° (R™; F). On the other hand, since we have

00 (@)= [ 6,00 (—y)dya € B a e N Jal < 5],

it is enough to treat the case s € [0, 1][.
Indeed, for j > 1 and x € R”, we write

0@ -0@) = [ 6w eE-y-¢@)dy

- /ne(y){go (w—iy) —w(w)}dy,
¢(o-20) 0@

Hence, if ¢ is uniformly continuous in R"”, it follows, since supp# is bounded,

that
@ (x— ;y> — ¢ ()

= 0. This proves the statement 1.

and therefore,

o <
HSOJ SOHCO(IR";F) - xeRnS,;/leP;uppe

F

:07
F

lim sup
J 700 xeR™, yesuppb

and then lim;_, Hcpj — (PHCO(Rn;F)
Now let s € ]0,1[. By the above, ¢; — ¢ in C% (R™; F) since ¢ is

uniformly continuous in R™.

10



For j > 1 and (z,y) € R" x R with x # y, we have

1

BEGW g Plrde) —olv3)

1z = yllgn 1z = yllgn
_p(@) - ws(y) } &
2 = yllgn
1 1
= O(z)sm|z—=-z,y— =z | —m(z,y) ; dz,
n J J
where 9; = ¢; — ¢ and
m(zy) = LD Z2W e gr gy,
2 = Yllgn
So,
Jllcs (R F) 2,yER™ wty |z — yllgn
1 1
< sup mlz—-z,y—=2|)—m(z,y)
z,yE€R™ z7y, J J F
z€suppl

Hence, if m is uniformly continuous from R"™ x R™ — Agrn to F, it follows
that

1 1
lim sup m <3: — =2,y — z) —m(z,y)|| =0,
j—o0 z,yER" xty, J J F
z€suppb
and then lim;_ Hv,bj| ZS(RH;F) = lim; o Hgoj — (p! ZS(RH;F) = 0, meaning

that ¢; — ¢ in C*(R"; F). =
We adjust the previous proposition for the local Holder spaces as follows.

Proposition 2.4 Let F' be a Banach space, let ¢ € Cj. (R"; F) with s €
R, and let (goj)j>1 be the sequence defined in Proposition 2.3. The following
statements are true.

1. If s €N, then ¢; — ¢ in C (R"; F) = C° (R™; F).

loc

2. If s € R[N, then ¢; — ¢ in C},.(R" F) if, and only if, for all

loc

zo € R™ and all o € N with |a| = [s],

0% (z) — 0% (y)
%;[5}

@)z —y|

11



Proof. The statement 1 follows immediately from the local uniform conti-
nuity of the derivatives 0%, |a| < s, and the fact that

J=2 1
F

0% <x - jy) — 0% (z)

o« 9o <
Ha (pj a (pHCO(K;F) o EGK,SyuelzuppG

for all compact subset K of R and all & € N with |a| < s.
As in the proof of Proposition 2.3, for the statement 2, it suffices to treat
the case s €]0,1[. For all j > 1 and all (z,y) € R? with = # y, we have

o (@) — 0 (W) fo & Wttl@—y) (z—y)dt

2 —yllgn 2 — yllgn ’
and then
lle; () — ¢, ()]
ot < el [0y

which shows that
’ @; (T) —; (y)
m s
(zy)—(zo.x0) |7 — yllgn

in F' for all xp € R". If p; — ¢ in C} . (R"; F'), then

=0,

p; (@) —v;(¥) o) —e(y)

|z — yllzn lz — yllgn

=0,
F

lim sup
J7% g ye B(zo,R),z#y

for every closed ball B (zg, R) = {z € R" : ||z — z¢||gn < R} of R". From
this, it is not difficult to deduce that

li M =0,Vzg € R™
@y)=(@ow0) |12 = Yllgn
Now, assume that

b e@-0®

=0,Vzy € R",
(@y)—(z0w0) ||Z — Yllpn

and let K be a compact subset of R™. Since the function

¢ () — v (y)

(z,y) € R" x R" — Agn — m (z,y) =
[ER] %

€F,

has a continuous extension defined in R™ x R", it follows that it is uniformly
continuous in K x K — Ak, and then

) 1 1
lim  sup m|\z—=-2y—-z|-—m(zy)| =0.
J=0 e K aty J J F
z€E€suppl
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Thus, using the inequality
95 (2) = v; W)

4] ZS(K‘F) - s
’ z,yeK,xy H.’L‘ - y”]R"
1 1 .
< sup mlr——=z,y— =2 —m(x,y) 7> 1,
z,yeK msty J J F
zEsuppl

loc

we get lim; Hlﬁj‘ ZS(K;F) = 0, which means that ¢; — ¢ in Cj, (R™; F),

since K is arbitrary. m

In the end of this subsection, we recall that the sequence (u;) jen C
Cp . (R™; F) converges, in C; . (R™; F'), to u € C}, . (R™; F') if, and only if, for
all function n € C2° (R™; F), the sequence (nu;), . converges, in C* (R"; F),
to nu.
2.3 Some results

In this subsection, we present a several convenient variants of Omega lemma.
Let S be a topological space and let E be a normed space. For given
compact subset K C S, we provide the space

CO (S B)|c = {uly s ue CO(S; B},

which is a vector subspace of C°(K;E), with the norm of the uniform
convergence on K defined by

”UHcﬂ(K;E) = Sg;[; lu(@)|g, v e c? (S§E)}K-

If Q) is a subset of E, we put
C*(S,K;Q) = {ue C'(S;E)|, :u(K)cCQ}
= {v|g:ve C°(S;E),v(K) C Q}.
This set is a subset of the set CY (K; ) and contains the set
CO(S;Q)| = {ulg 1 ueC®(S;0)}.

If S is compact, then C? (S, 5;Q) = C°(S;Q).
We equip the space C°(S; E) with its compact-open topology (or CO-
topology) generated by the family of semi-norms

ue C?(S;E) - lulgllcogr, iy € Ry
where K is a compact subset of S.

Theorem 2.5 Let E& be a normed space and let F' be a Banach space. Let
Q be an open set of E, let S be a topological space, and let M be a compact
manifold (possibly with corners). Then the following statements holds.

13



1. Let K be a compact subset of S. The set C°(S,K;Q) is open in
C0(S; E)}K, and if o € C* (Q; F) with k € NU{oo}, then the mapping
®:us pou is CF from C° (S, K;Q) to C° (K; F). In particular, if
S is compact, then C°(S;9Q) is open in C°(S;E) and ® is C* from
CY(S;9) to C°(S; F).

2. If p € CO(; F), then ® : u — powu is continuous from C°(S;Q)
equipped with the trace of the compact-open topology of C°(S; E) to
CO(S;F).

3. If p € CVE(Q; F) with j € N and k € NU {00}, then ® is C* from
CI(M;Q) to CV (M; F).

4. Assume that E is finite dimensional and let ¢ € C¥TF (Q; F), where
s € Ry |N and k € N* U {oo}. Then ® is C*~1 from C* (M;Q) to
C*(M; F).

Proof. We first treat the case £ = 0 in the statement 1. Let ug €
CY(S,K;Q) and let ¢ > 0. Since ug (K) is compact, there exists § =
d (up (K),e) > 0 such that

V(y,2) €uo (K) xQ:lly—zlp<d=lle(z) —e@)lp <e
So, if u € C° (S, K;Q) with [ju — ol co(k.) < 6, then
e (u(2)) =@ (uo (2)|p <& Vo € K,
and thus

12 (w) = @ (uo)llcos;ry = sup ll (u(2)) = (o ()l < &,

which proves that ® : u € CY (S, K;Q) — ¢ ou € C°(K; F) is continuous
at ug.

On the other hand, due to the compactness of ug (K), there is p > 0
such that {z € E : dist (z,ug (K)) < p} C Q, where

dist (z,ug (K)) = inf ||z — .
(oo (K) = inf 12—y

This implies that the open ball {u € CO(S;E)| ¢ lu— wollco(x;m) < ,0} is

included in C° (S, K;Q). Hence C° (S, K;Q) is open in C°(S; E)‘K since
ug is arbitrary in C9 (S, K;Q).

14



Let (u,h) € CO(S,K;Q) and let k > 1. According to Taylor’s formula
applied to the function ¢, we write

k—1

® (u+h)( Y (h(fﬂ))j
0=3,
+/0 (tk_—t)l)'gp()( (2) + th (2) (h ()" dt
_ +Z<I> D)+ Ry (u,h) (h) (2) 7 € K,

where ®; and Rj, are defined as follows:

) (u (z z))’
&) = SDROE o,

Ry, (u, ) (ﬁ) (z) = /0 1 (tk__t);lw“) (u(x) + th(z)) (ﬁ (m))k dt
o @) (7 @)

J!

with z € S and h € C° (S; F) ‘K We verify just like the case £ = 0
that the mappings ®;,1 < j < k, are continuous from C°(S,K;Q) to
Poly’ (C’O (S; E) ‘K :CY(K; F)) and the mapping R} is continuous from the

set C9 (S, K;Q) to Poly* (CO (S; F) }K,CO (K; F)) Hence by Theorem 2.1,
® is C* from C° (S, K;Q) to C° (K; F). This proves the statement 1.

By the above, for each compact subset K of S, ® is continuous from
CY(5;9) }K to C°(K; F). So, it is continuous from C? (S;9) to C°(S; F).
ThlS gives the statement 2.

Now, let s € Ry. Since the inclusion mapping C* (M; E) — C°(M; E)
is continuous and CY (M;Q) is open in C°(M;E) by the statement 1, it
follows that the set C* (M; Q) = C* (M; E)NCY (M;9) is open in C* (M; E).

As in the proof of the statement 1, it is sufficient to treat the case k =0
in the statement 3 and the case £k = 1 in the statement 4. Recall that,
according to the definitions of topologies of spaces C* (M; E) and C* (M; F),
to prove that ® is continuous from C* (M;Q) to C* (M; F'), it is enough to
verify that, for all local chart (U, f) of M, the mapping f.o®o f*: u+— pou
is continuous from C; . (f (U);Q) C C; . (f(U); E) to Cp . (f (U); F), where

loc
[  r weCl.(f(U);Q)— ffu=uofeC, (U;Q),
fo @ vECH.(U;F)—uvoft el (f(U);F).

So, let (U, f) be alocal chart of M. By Proposition 2.2, the statement 2, and
the chain rule, all mappings u — 9% {p ou}, |a| < [s], are continuous from
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C:.(f(U);Q) to C°(f(U); F). This implies the continuity of the mapping
feo®o f* from C;_(f(U);Q) to CEI(f(U); F). Hence, the statement 3
is true for k£ = 0. On the other hand, to prove the satement 4 for k = 1,
it suffices to check that, for ¢ € C'(;F) and s € ]0,1[, f. o ® o f* is
continuous from C; . (f (U);Q) to C; . (f (U); F).

We assume that £ = R", and let ¢ € C* (4 F), ug € C5,(f (U);9Q)
with s € ]0,1[. Let K be a compact subset of f(U) and let V' be an open
set in  such that ug (K) C V and V = cl(V) is a compact set in Q2. We
choose a function 7 € C° (2;R) with the property that n =1 on V. As in

the proof of the statement 1, we check that the set
Cioe (f (U), K5 V) ={ulg s u € Cp (f (U);R") ,u(K) C VY,

is open in Cj . (f (U);R")|, equipped, of course, with the norm

)

u(z) — u(y)llgn
[ulles(gmny = sup [[u(z)|gn +  sup S
zeK z,yeK,x#y ||l‘ - y”]Rd

where u € C! (f(U);R")‘K and d = dim M. So, the set
W:Clsoc(fa])aK;V)mClsoc(f(U>;Q)‘K7

is an open neighborhood of ug in Cj_ (f (U);)|, and for any u € W, we
have g ou = (ny) ou in K with np € C} (Q; F). Therefore, we can assume
that ¢ € CL(; F) C CL(R™; F) (that is to say ¢ is in C! (€; F) and has
compact support). Let § and 6; be as in Proposition 2.3. For j > 1, we put
@; = 0j . If j is sufficiently large, we have ¢; € C2° (€; F). In addition,
by Proposition 2.3, the sequence (goj) converges in C! (R™; F) to ¢ since
the derivative ¢’ : R” — L (R"; F') is uniformly continuous, which means
that C2° (€; F) is dense in C! (©; F') with respect to the norm of C! (Q; F).
Hence, we can treat first the case ¢ € C° (; F).
Let u e C: . (f (U);9). By the mean value theorem, we have

loc

1
@ou—cpouoz/ ¢ (up +n (u — up)) (u — ug) dn.
0

Putting v = v —up and w = p ou — p o ug, we claim that we have the
estimate

HwHCS(K;F) (1)
< HQO/H(Zl(R";E(R";F)) {1 + ||u0”CS(K;R”) + ||U||CS(K;R")} HUHCS(K;R") )

where
H@’HCI(Rn;L(Rn;F)) = féﬁ@ ¢’ (x)”c(Rn;F) + fé‘ﬂgl l¢” (x)H£2(]R”;F) .
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Indeed, we have

1
]ﬁ ¢ (uo +nv) (v) dn

HwHCO(K;F) =
CO(K;F)

< H‘PIHCO(Rn;z(Rn;F)) HU”CO(K;R”) ’
On the other hand, for (z,y) € K x K with = # y, we write
w (@) — w(y)

| — yllga
Jo ¢ (uo () + v (2)) (v () dy — [5 ¢ (wo (y) + v () (v () dy

|z — yllga

/Wﬂw@+m@»ﬂﬂw@+mw»@mw
0 |z — yllga

# [ o)+ ) (SR g

1z — yllga

Ui

with d = dim M. So,
w(z) —w ()|l p

I O TR ¥
1
< HU”CO(K;R")/0 HSOI (uo + ) st;um;m) n
19 oy e
1
< Tollegsen 19| ssguny 180 100y 00
4‘}PP'HCO(RH;£(RH;F))H?}HZs(}<ﬂRn>v
and then
ey < Molleoqieey 1971 caanrry (1O + 190 )
1€ oy, e
Hence,

lwlles (r,ry = lWlleoie,ry + lwlles (. m)

< ”('O/HCO(R";E(R";F)) 1vllcoamen)
e llentaemny 19" a0y + 10 )
L DO s
<10 sy (2 100y 100 ) ey
< |1 (1 190 ] my + 19 ny ) 0l

cl(®™;L(R™;F))
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which is the desired estimate (1).
This estimate shows that the mapping

u € Cioe (f (U); )| = poue Cpe (f (U); Flg

is continuous at ug.

Let ¢ € C} (4 F) and let (p;) C C° (2 F) with ¢; — ¢ in C! (R F).
For all uw € C, (f (U);€2) with |lu — uollcs(g;pny < 1 and all ¥ € CH(; F),
we have

IN

{1+ lulles (e | 1 llcr e @)

{2 + HUOHCS(K;Rn)} 19l (mns 1y

1% 0 ulles (k. r)

IN

So, we get

I o u—@ougllesk,r

< lgjou—p;ouo cs(kiF) T [(# = ;) ou Cs(K;F)
+|(; — ) o uo Cs(K;F)
< lojou—p;ou Cs(K;F)

+2 {2 + HUOHCS(K;R”)} H‘Pj o SOHCl(Rn;F) ’

where j > 1 and u € G, (f (U);€) with [Ju — uoles(g.gn)y < 1. Let & > 0.
If we choose 7 > 1 and ¢ € ]0, 1] such that

2 {2 + HUUHCS(K;R")} H(p] - SO”CI(]R”;F) < %7

and

g
= wolles sesmmy < 8= [lj 0w = 95 00| ey < 55

we obtain
e €
lu—wolles(grny £ 6 = [lpou—woulesg,p < 5ts=6
which shows that the mapping

u € Cioe (f (U); )| = poue Cp (f (U); Flg

is continuous at ug. Since ug and K are arbitrary, it follows that f,o®o f*
is continuous from C; . (f (U);Q) to C..(f (U); F).

The proof of the theorem is finished. m

In the previous proof, we used the fact that if for all local chart (U, f) of
M, fyo®o f* 1 u pouis continuous from Cj . (f (U);Q) C C;.(f(U); E)
to Cp.(f(U); F), then ® is continuous from C® (M;Q) to C* (M; F). We
mention here that the inverse implication is also true if 2 is a convex open
containing 0.

The statement 4 in Theorem 2.5 may be modified in the manner de-

scribed in the following proposition.

18



Proposition 2.6 Let ' be a Banach space, let 2 be an open set of R, and
let M be a compact manifold (possibly with corners). For s € ]1,00[|N and
keN, let ¢ € CHE(Q; F) be a function having the property

loc
9%p (z) — 0%¢ (y)
%;[S]

=0,]al = [s] + k,20 € Q.
@y)=(@o,z0) ||z — y|

Then ® : u — @ owu is CF from C* (M;Q) to C* (M; F).

Proof. As in the proof of Theorem 2.5, we only treat the case £k = 0. We
can easily notice that to complete the proof, it suffices to simply check that,
for p € C; . (Q; F) with s €]0,1[, foo®o f* is continuous from C* (f (U); Q)
to Cp. (f (U); F) for every local chart (U, f) of M.

Let (U, f) be a local chart of M. We can assume, always as in the proof
of Theorem 2.5, that ¢ € C5 (; F') C C3 (R™; F). If (goj)j>1 is the sequence
defined in Proposition 2.3, then we can find a compact subset K’ C € such
that, for j sufficiently large, p; = 0 and ¢ = 0 in Q— K'. By Proposition 2.4,
the sequence (gaj) converges in C; . (R™; F) to ¢. So, p;=Np; o NP =@
in C* (R™; F'), where n € C° (Q2;R) is a function with the property that
n =1 on K’. This allows us to treat, in the first step, the smooth case
peCX () F).

Let ugp € C(f (U);Q) and let K be a compact subset of f(U). The
estimate (1) shows that the mapping

u € Coe (f (U); Q)| = poue Cpe (f (U); F)lg
is continuous at ug. So, since the natural injection
CHfU); Q)| = Cioe (f (U);Dlge
is continuous, it follows that the mapping
u € Cl(f(U)79)|K —pouc Clsoc(f(U);F)‘Ka
is continuous at ug.

Now let ¢ € C5 (2 F) and (¢;) C C° (4 F) with ¢; — ¢ in C* (R™; F).
We assume, in the first step, that K is convex, and let ’s check that if
ue CH(f(U);Q) with |lu— woller(grny < 1 and ¢ € CZ(Q; F), then

[ oullesi.ry < {1 + Hu”(sjl(K;R")} 19l es (rn; ) (3)

< {1 + (1 + HUOHCl(K;R”))S} 1¥lles(n; Py -

A
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Indeed, for any (z,y) € K x K with z # y and u (z) # u (y), we write
You(z) —pou(y)

|z — yllga
vou(x)—pouly) |ul@)—uy)lg
Ju () = u (y)|gn | — yllga
voule)—vou) |[h¥ @t ey,
Ju(z) —u(y )IIRn |z — yllga ’
and then,
[You(z) —You(ylp
2 — yllga
[ out@) —vouwle ([, )
< e () e ) gus )

[You(z)—voulylp

- () — u (y)||jn x [u HCO(K;[:(Rd;Rn))-

So,

|4 o quS(K;F) < WHés(Rn;F) HUIHZo(K;ﬁ(Rd;Rn)) < HT/JHCS(R";F) H“”z’l(K;R")’

and therefore,

[Woullesry < I1¥llco@nsry + 1¥llesmnsry 1eller i mmy
< {1 + HuHél(K;R")} 19l s ;)
< {1 + (1 + HUOHCl(K;R”)) } [¥lles(n; Py

which is the estimate (3). Now, for j > 1, we write

[pou—wpo UOHcs(K;F)

< lpjou—wjou co(kiF) T [(e = ;) ou Cs (K F)
+ ” (Soj — ) oug Cs(K;F)
< H‘pj U= P OUO|es (k)
S
+2 {1 + (1 + Hu0||C1(K;R")> } H90j - ¥ Cs(R™;F)
Let £ > 0. If we choose j > 1 and 0 € |0, 1] such that
s 5
2 {1 + (1 + ||u0||C1(K;]R”)> } H(Ioj - Cs(R™;F) < 57
and -
I = woller (s mmy < 6 = || 0u—; e (kiF) S
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then for any u € C* (f (U); Q) with |Ju — uo|le1(g;rny < 6, we have

€
||90°U*<POU0HCS (KF) S 5 +§
This proves that the mapping
ue CH(f(U); Q)| —poue C(f(U); F)lk

is continuous at wug.

If K is an arbitrary compact subset of f (U), there is an open covering
U= (Uj)<j<n in f(U) of K such that, for all j € {1,..., N}, K; =Ujisa
convex and compact subset of f (U). By Lebesgue covering theorem, there
exists A > 0 such that, for all (z,y) € K x K with ||z — y[/[ga < A, there is
a set in U containing both x and y.

Let u € C1(f(U);Q) and let (z,y) € K x K. For ||z — y|lga > A, we

have
lw (@) —w@lp o
2 — yllga
with w = pou—poug, and for 0 < ||z — y[|ge < A, thereis jo € {1,..., N},
such that (z,y) € Kj,, and so,

@) —w@)le _

2 = yllza

> )\s Hw”co (KF) >

HCS(KJ'o;F) '

Thus, we get the inequality

2
Hsz’S(K;F) < max {)\s ”wHCO(K;F) 1I<nf£§v HwHCS K; F)} )

which prove, with the above, that the mapping
ue CHf(U);9Q)] = poue Ce(f(U); F)ly

is continuous at ug.

Now, since ug and K are arbitrary, it follows that f.o®o f* is continuous
from C' (f (U); Q) to G, (f (U); F). m

We want to make a change to the text of Theorem 2.5. But before that,
we need to introduce some concepts.

Let £ and F be normed spaces, let 2 be an open set of E, and let
M be a finite dimensional manifold (possibly with corners). For s € N
and k € NU {oo}, we denote by C*5*¥ (M x ; F) the space of functions
¢ € C°(M x Q; F) such that, for all z € M, o (x,-) € C*tF(Q; F) with
85@ eCs (M x Q; LF (E; F)), 0 </? < k+1. Here, 85@ denote the partial
derivative of order ¢ of ¢ with respect to the second variable y in €. For
k = oo, we simply write C55T (M x Q; F) = C® (M x ; F).
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Let s € Ry|N and k € N. If p € ClsblsHE (M % Q; F) is a function with
the property: for every local chart (U, f) of M, every (zo,y0) € f(U) x Q,
and every j € {0,...,k}, we have

o (@,y) — o (@)

(0) o) s
x?y - x07y0 b _— / / SIS
(m’,y’)ﬂ(xo,yo) ||(‘/E7y) ($ 'Y )HRde

=0, (4)

where ¢; (-,-) = e (f(-),-) and d = dim M, then obviously, the partial
derivative 8590 belongs to C;,, (M x Q; L (E; F)) for 0 < ¢ < k.

Let U be a subset of a normed space G satisfying int (U) C U C int (U).
It is not difficult to see that we have

int(UxQ) = int(U)xQcCUxN
C int(U)x Q=int(U) x Q =int (U x Q).

Thus, we can define the spaces C**T% (U x Q; F) (s € N, k € NU {c0}) in
the same way as before.
We need here the following lemma.

Lemma 2.7 Let F be a Banach space, let M be a finite dimensional man-
ifold (possibly with corners), and let p € CO(M x R™; F). For j > 1, we
put

03 (0.) =0, (@) () = [ 65— 2)0(e,2)dso € My R,

n

where 0 is as in Proposition 2.3. Then (cpj)j>1 C C%® (M x R™ F) and:

1. If ¢ € C**F (M xR™; F) with s € N and k € N U {0}, then
(97),5, C C*° (M x R F), and 9¢; — ¢ in C* (M x R"; F)
for all € N™ with |8 < k + 1.

2. If o € Clshlsl+k (M x R™ F) is a function with the property (4), where
s € Ry|N and k € N, then (9)p;) € Cio(M xR™F) and

Jj=Z
8y — B in Cp (M x R F) for all € N with |8] < k.

Proof. Without loss of generality, we assume that M is an open subset of a
quadrant of R%. Let ¢ € C**TF (M x R™; F) with s € N and k € NU {co}.
For given j > 1, it is obvious that ; € C** (M x R"; F) with

0205 o (z,y) = /Rn 070; (y — ) 0505 (z,2) dz,x € M,y € R",

where o € N4, 3, v € N”, |a| < s, |3] < s+ k+ 1. So, it is enough to treat
the case s = k = 0 in the statement 1.
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Let K be a compact subset of M x R™. For j > 1 and (z,y) € K, we
write

@ (x,y) —¢(r,y) = o 0; (2){p(z,y —2) — ¢ (z,y)} dz

- /nG(z){w <x,y— ;z) —¢($’y)}dz’

where 6 is chosen as in Proposition 2.3. So,

1
s = ‘PHco(K;F) < (:;IE)K H‘P <$7y - j2> —¢(z,9)
zésupp@

F

Since suppf is bounded, it follows by the local uniform continuity of ¢ in
M x R™ that

F

] 1
lim sup |j¢|z,y——-2)—¢(z,y)
170 (a,y)€K J

zE€suppl

and then lim;_, H(pj = 0. This proves that we have p; — ¢ in

- SOHCO(K;F)
C° (M x R™; F) because K is arbitrary.

For the statement 2, it suffices to treat the case s € ]0,1[, kK = 0. So, let
@ € C%(M x R™; F) with the property (4). Let K be a compact subset of
M x R™ and let j > 1. For (z,y) € K and (2/,y') € K with (z,y) # (2, 1/),

we have

o (T,y) —p;(@y) oy Jely—z) ey =2
s s = o ) { 1.9) — @ 9 [ }d

Lo e e |

and therefore,

. _ . ! !
_ - 0; (z,9) —@; (@, 9)| 5

(zy),(z" ¥ )EK, H(xa y) - (xlvy/)H[SRdXRn
(zy)#(" ')

H<‘0.7 ZS(K;F)

N

where K = {(z,y—2): (z,y) € K,z € suppb;}, which is a compact subset
of M x R"™. Hence, ¢; € Cj, . (M x R"; F) since K is arbitrary.

On the other hand, for (z,y) € K and (2/,y') € K with (z,y) # (¢',y/),
we write

Uy y) = @hy) | o o (r=jz) —o (v - 2)
16,9) = @9 e : 12,9) = @) o

o (z,y) — ¢ @, y) }dz
[(z,y) = (@, 9 ) lgaxpn |
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where ¢; = ¢; — . Thus, if we put

o (x,y) — o @,y)
z,y) — (2", y) |Raxgn

m(z,y,2',y) = i
for (z,y), (',y") € M x R™ with (z,y) # (2/,y’), it follows that

i

* 1 A 1 /o
S(K- < sup Hm<x,y—.2,m Yy — =z —m(:c,y,x,y)
C3(K;F) (z,y),(z' ' )EK, Vi ’ ]
(zy)# @' y"),
z€suppl

F

By (4), m is locally uniformly continuous from M x R™ x M X R™ — Apsygn
to F', where

Apixre = {(z,y,2,y) : (z,y) € M x R"},

which gives

1

1
hm sup Hm (ﬁ,y—,%ﬂ?,:y/_»z) _m(xaya$/ay/) :07
I7% (2,9),(2' ¥ )EK, J J F
(zy)# @'y,
z€suppl
and then limj_wo Hl/}] ZS(K;F) = hmj—>oo Hgoj — @ ZS(K;F) = 0. So, p; —

in C} . (M x R"; F) since K is arbitrary. m

Theorem 2.8 Let E be a normed space and let F' be a Banach space. Let
Q be an open set of E, let S be a topological space, and let M be a compact
manifold (possibly with corners). Then we have the following:

1. If K is a compact subset of S and if ¢ € COF (S x Q; F) with k €
NU {oo} (that is, p € CO(S x Q; F), which is C* in the second vari-
able), then the mapping ® : u — ¢ (-, u (-)) is C* from C° (S, K;Q) to
CO(K; F). In particular, if S is compact, ® is C* from C°(S;9Q) to
CO(S;F).

2. @ is continuous from C° (S;Q) to C°(S; F).

3. If o € CIIHE (M x Q; F) with j € N and k € NU {co}, then ® is C*
from C7 (M;Q) to C7 (M; F).

4. Assume that E is finite dimensional and let ¢ € CBMSIE (M x Q; F)
be a function having the property (4), where s € Ry|N and k € N.
Then:

(a) For s € ]1,00[|N, ® is C* from C* (M;Q) to C* (M;F).
(b) Forsc]0,1[ and k > 1, ® is C*~1 from C° (M;Q) to C* (M; F).
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Proof. As in the proof of Theorem 2.5, it suffices to treat the case k = 0 in
both statements 1 and 3.

Let ug € C%(S, K;Q) and € > 0. Since K and ug (K) are compact, there
exists 0 = 0 (ug (K),e) > 0 such that

V(y:2) €uo (K) x Qi fly =2|p <d=Vee K:p(@z2)—p@y)lr<e
So, if u € C° (S, K; Q) with |ju — wollco(x;) < 0, then

o (z,u (x)) — ¢ (2,u0 ()| <€,V € K,
and thus

19 () = @ (wo)llcog;py = sup lle (2, u(2)) = ¢ (2, w0 ()] < &

which proves that @ : u € C° (S, K;Q) — ¢ (-,u(-)) € CY(K; F) is continu-
ous at ug. Hence the validity of the statement 1 for k = 0.

According to the above, for each compact subset K of S, ® is continu-
ous from C°(S;Q) |K to CY(K; F). So, it is continuous from C°(S;Q) to
CY(S; F), Wthh is the statement 2.

From Proposition 2.2, the statement 2, and the chain rule, it follows
that, for any local chart (U, f) of M, the mapping

feo®o f rur o (F7H(),u(),

is continuous from C7 (f (U);Q) C C? (f(U);E) to C7 (f (U); F). Ther-
fore, ® is continuous from C7 (M; E) to CJ (M; F), which means that the
statement 3 is true for £ = 0.

As in the proof of Proposition 2.6, to prove the satement (a), it suffices to
simply check that, for s € |0, 1[ and ¢ € C} . (M x §; F') having the property
(4), f« o ® o f* is continuous from C (f (U);Q) to Ci,.(f (U); F) for every
local chart (U, f) of M.

Without loss of generality, we assume that £ = R™ and M is an open
subset of a quadrant of R%, so U = M and f = Idy;. Also, we can assume,
always as in the proof of Proposition 2.6, that the function ¢ is equal to 0 in a
subset of the form M x (2 — K'), where K’ is a compact subset of Q. Hence,
¢ €Cp.(MxR"F), and for all z € M, ¢ (x,-) € C3(Q; F) C CS (R™; F).
If (goj) >1 is the sequence defined in Lemma 2.7, then we can find a compact
subset K” C € such that, for j sufficiently large, ¢; =0 in M x (Q — K").
From this fact and Lemma 2.7, it follows that, for every compact subset
K Cc M, limj_, H¢J =0, where ¢; = ¢; — ¢ and

Cs(KxR™;F)
H¢] Cs(KxRm;F) }}¢j“CO(KXR";F) T Hd}f ZS(KXR"§F)
‘ Vi (z,y) —9; (x’,y’)HF
= ) ) + S '
s L el U, I [ e e
(@y)#("Y)
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As we did in the proof of Proposition 2.6, we first treat the case when ¢ €
C%* (M x R™; F) with the property (4). Let ’s check that if u € Cj, . (M; Q)
then v = ¢ (,u (")) € C;.(M; F). Indeed, for any compact subset K of M

and for (z,y) € K x K with x # y, we write

V@) -vl) _ ) - e@ul) | eu) - @)
Iz =yl Iz =yl Iz =yl

= 1 T, U u(x) —u 716(‘%)_“(?/)

- [apum e —ue) ()

e (z,u(y) —¢y,uly)
[(z,u () = (v u (Y)) | gasrn

So,

||UH23(K;F) < Hay(p|’(30([(><Rn;L(Rn;F)) HUHZS(K;F) + H‘:DHE’S(KXR”;F) < 00,

which proves that v € C;  (M; F).

loc
As in the proof of estimate (1), we use the mean value theorem to get

the following

HwHCS(K;F) < {H‘PHCS(Kan;F) + ”8y<ﬂ||CO(Kan;L(Rn;F))
+ H%@HCO(KX]RTL;EQ(R”;F)) (”uOHCS(K;]R”) + HUHCS(K;R"))} HUHCS(K;R") )

where ug, v € C, . (M;Q), v =u—ug, w = pou—poug, and K is a compact

subset of M. From this estimate and the fact that the natural injection
CH(M; Q)| = Coe (M5 Q)|
is continuous, it follows that the mapping
ue CH(M;Q)|, = pou€ Cho (M F)|y,

is continuous.
For the treatment of the case ¢ € Cj . (M x R™ F), we first get the
following estimate

IN

Il CouDllesgrery < {2+ Nelldsgaegn b 18 les (o

< {2 + (1 - ||u0||cl(K;]R”))S} 1¥lles (ke xrn; Py -

which holds for every convex and compact subset K of M, every u, ug €
Cl (M; Q) with ||u — Uoller(xmny < 1, and every ¢ € Cjp, (M x R™; F) hav-
ing the property of being equal to 0 in a subset of the form M x (Q — K,
where K" is a compact subset of €. Then we use this estimate, which is

A
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similar to that (3), and the sequence (cpj)j>1 defined in Lemma 2.7 to prove
that the mapping -

u € Cl(M;Q)|K—>gpou€ Croe (M5 F)|

is continuous.
The statement (b) is proven exactly like the statement 4 in Theorem 2.5,
where we use, instead of the estimate (2), the following estimate.

¢ (- u ('))HCS(K;F)

||1/’||CS(Kan;F) + |’82¢’\c0(Kan;ﬁ(Rn;F)) HUHCS(K;R”)

IN

IN

[ les (ke xrmsry + 11029 [l oo (i xrrscR7; F)) <1 + HUOH(:s(K;R")> ;

where u, ug € C* (M; Q) with |ju — Uol|es(grny < 1, K is a compact subset
of M, and ¢ € Cj . (M x R"; F)NC%! (M x R™; F) is a function having the
property of being equal to 0 in a subset of the form M x (2 — K"), with
K" is a compact subset of 2. =

We note that the statement 4 in Theorem 2.5 and the statements 3 and
(b) in Theorem 2.8 remain valid if M is the closure of a bounded open
set of a finite dimensional space. If, moreover, M is locally convex, then
Proposition 2.6 and the statement (a) in Theorem 2.8 also remain valid. In
fact, the proofs in this case are more concise and more clearer.

In this context, we cite the following corollary.

Corollary 2.9 Let E be normed space, let F' be a Banach space, let ) be an
open set of E, and let M be the closure of a bounded open set of R%. Then
the following statements are true.

1. Let s € N and k € NU {oo}. Let N be the cardinality of the set
{aeNt:1<|a|<j} withj > 1. If o € C*FF (M x Qx EN; F)
(here the second variable is in 0 X EN), then the mapping

d:ur—® (U) = (l‘,u’ (8au)1§\a|§j) ’
is CF from C*%7 (M;Q) to C* (M; F).

2. Assume that E is finite dimensional and let s € Ry |N and k € N. If
@ € Clshlsltk (M x Q x EN: F) is a function, which hase the property
(4), then:

(a) For k € N*, ® is C*=1 from C*%7 (M;Q) to C* (M; F).

(b) If M is locally convex, then for s € |1,00[|N, ® is C* from
CTI (M; ) to C* (M; F).
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Proof. Let s € N. By the statement 3 in Theorem 2.8, the mapping
v e (M;Qx EN) = (v () € C*(M;F),
is C*. So, since the linear continuous mapping

By :ue O (M E) — (u(-) (0% <'))1g|a\§j> eC (M;E x EV),

is C°, it follows that ® = ®; o (@g\CSH(M;Q)) is C*.

In the same way, we prove the statement 2. =

Below, we present a theorem containing two formulations for statements
3 and 4 from Theorem 2.5 in the case of smooth vector bundles.

Let M be a paracompact manifold (possibly with corners) and let E be
a smooth vector bundle of standard fiber € (which is a normed space) over
M. Let ) be an open subset of F such that for all x € M, QN E, is a convex
neighborhood of the zero 0, of E,. Under this assumption, we can find a
bundle atlas {(Uw wv) 1y € F} of E and a family of open neighborhoods
(V5),er of 0 in € such that for every v € I', Uy x V;, C 4, (Qnrg (Uy)).

Now we consider a partition of unity (/\7)7 cr of M dominated by (Uﬁy)V cr
and for v € I', we choose a function Y, € C* (Uy;V,) and then we put
X, (z) =v ' (z,Y, (z)),s € Uy. The function X = > er M X, belongs to
C*® (M — FE) and has the property: X (z) € Q for all z € M. Therfore,

C®(M—-Q)={XeC®M—E): X (z)eQVre M}+#q¢,

and hence Cj . (M — Q) # ¢ for all s € R,. Furthermore, if M is compact,
we check that C* (M — Q) = C; . (M — Q), s € Ry, is an open subset of
C* (M — E).

Theorem 2.10 Let M be a compact manifold (possibly with corners), let E
and F' be two Banach vector bundles over M, and let ) be an open set of E.
We suppose that E is finite dimensional and that for each x € M, QN E,
is a convex neighborhood of 0, in E,. Then the following assertions holds.

1. Let j €N, k € NU{oc}, and let ¢ € CTH*(Q; F) be a function such
that mp = wp o @, where g and wg are the bundle projections of B
and F. Then ® : X +— @oX is C* from CI (M — Q) to C7 (M — F).

2. Let s € Ry|N and k € N*U {oo}. If ¢ € CEF(Q F) with np =
mr o, then ® is C*~1 from C3(M — Q) to C° (M — F).

Proof. As in the proof of Theorem 2.5, it is sufficient to treat the case
7 € N, £ = 0 in the statement 1 and the case 0 < s < 1, £ = 1 in the
statement 2.

Let Xo € C°(M — Q), ¢ € ClsI+F (Q; F) with s € R, and let V be an
open set in Q such that Xo (M) C V and V = cl (V) is a compact set in (.
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Since F is paracompact, we can choose a function n € C2° (2;R) with the
property that n = 1 on V. The set C* (M — V) is an open neighborhood of
Xoin C* (M — ), and for any X € C* (M — V), we have po X = (np)o X
with gy € CE* (@ F) ¢ ¢ (B F) and 7p = 7p o (). So, in the
study of the continuity of ®, we can assume in advance that ¢ is a function
with compact support, which allows us to suppose without loss of generality
that Q = F.

On the other hand, according to the definitions of topologies of spaces
C* (M — E)and C*® (M — F), to prove the continuity of ® from C* (M — FE)
to C* (M — F), it is enough to verify that, for all bundle charts (U, v )
and (U,1p) of E and F, the mapping X + pry otz opoy! (X () is
continuous from Cj, . (U; €) to C; . (U;§), where € and § are the standard
fibers of F and F.

Let (U,v ) and (U,v ) be bundle charts of E and F. For ¢ € C7 (; F)
with 7 € N, we have p = pryotppopo wgl € C7 (U x ¢;F). Hence,
we verify, exactly like the statement 3 in Theorem 2.8, that the mapping
X — (-, X (+)) is continuous from C7 (U; &) to C7 (U; F).

Let ¢ € C1 (4 F). Since ¢ € C1 (U x &;F) c C% (U x ¢&;F) and since
¢ checks the condition (4) for s € ]0,1] and k& = 0, it follows that the
mapping X — @ (-, X (-)) is continuous from C;,. (U; €) to C},. (U;F). This
fact is proved exactly as the assertion (b) in Theorem 2.8. m
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