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THE EDDY CURRENT MODEL AS A LOW-FREQUENCY,
HIGH-CONDUCTIVITY ASYMPTOTIC FORM OF THE MAXWELL

TRANSMISSION PROBLEM

MARC BONNET AND EDOUARD DEMALDENT

ABSTRACT. We study the relationship between the Maxwell and eddy current (EC) models
for three-dimensional configurations involving bounded regions with high conductivity σ in air
and with sources placed remotely from the conducting objects, which typically occur in the
numerical simulation of eddy current nondestructive testing (ECT) experiments. The underlying
Maxwell transmission problem is formulated using boundary integral formulations of PMCHWT
type. In this context, we derive and rigorously justify an asymptotic expansion of the Maxwell

integral problem with respect to the non-dimensional parameter γ :=
√
ωε0/σ. The EC integral

problem is shown to constitute the limiting form of the Maxwell integral problem as γ → 0, i.e.
as its low-frequency and high-conductivity limit. Estimates in γ are obtained for the solution
remainders (in terms of the surface currents, which are the primary unknowns of the PMCHWT
problem, and the electromagnetic fields) and the impedance variation measured at the extremities
of the excitating coil. In particular, the leading and remainder orders in γ of the surface currents
are found to depend on the current component (electric or magnetic, charge-free or not). These
theoretical results are demonstrated on three-dimensional illustrative numerical examples, where
the mathematically established estimates in γ are reproduced by the numerical results.

1. Introduction. Eddy currents have diverse industrial applications, e.g. inductive heating, braking
of heavy vehicles, or nondestructive testing, the latter being the primary inspiration for this work. In
addition, the ongoing advent of mid-frequency testing for complex media (e.g. made of fibers with
diverse conductivities) spurs the development of computational formulations allowing transition from
the full Maxwell equation system to modified versions of eddy current (EC) models. Insight into such
transition can be gained by considering the influence of a non-dimensional physical parameter, chosen
such that the eddy current model is the limiting form of the Maxwell model as that parameter becomes
arbitrarily small. This work investigates one such asymptotic approach.

We consider situations involving media with piecewise constant electromagnetic coefficients (di-
electric permittivity εd, electric conductivity σ, magnetic permeability µ) and assume time-harmonic
conditions with angular frequency ω. Maxwell’s equations govern the electric field E and the magnetic
field H, from which one deduces the electric induction D := εdE and magnetic induction B := µH.
Eddy currents are electric currents σE created in a conducting medium by a time-dependent magnetic
field. The electromagnetic state is said to pertain to the eddy current (EC) regime when the displace-
ment currents iωεdE are small relative to σE, see e.g. [14, 23] or [21, Chap. 1]. The EC model then
results from neglecting the displacement currents in Maxwell’s equations. This suggests an asymptotic
approach, whereby the EC model is treated as the limiting form of the Maxwell problem for a dielectric
permittivity εd

δ = δεd with δ → 0 (see e.g. [3, Chap. 8] or [11]). In this framework, the electric fields
Eδ and EEC, respectively solving the Maxwell and EC problems, have been shown (in [11] and later
in [21, Sec. 2.2]) to verify ∥∥Eδ −EEC

∥∥ ≤ Cδ.
In addition, the justification in a transient setting of the eddy current model (again defined as the
zero-permittivity limit of the Maxwell model) is addressed in [18].

Alternatively, the low-frequency asymptotic viewpoint (see e.g. [17]) is also relevant since displace-
ment currents iωεdE may become negligible for ω small enough. Indeed, low-frequency expansions of
both the Maxwell and EC models are compared in [2] for bounded conductors in air, resulting (under
suitable assumptions on the source that are for example verified by an excitating coil placed in air) in
the estimate ∥∥E(ω)−EEC(ω)

∥∥ ≤ Cω2,
∥∥H(ω)−HEC(ω)

∥∥ ≤ Cω2.
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(with underlying function-analytic issues however undergoing some critical discussion in [19, Sec. 5.4])
This viewpoint is also pursued, for bounded media, in [1], [21, Sec. 2.3]. and [23]. In [23], the
electric field is decomposed as E = EEC +δE, where EEC solves the EC model while δE also solves a
EC problem, this time with displacement currents acting as sources; the estimate δE = O(ω2) is then
established for cases where the source has no galvanic connection with the conductor.

In this work, the relationship between the Maxwell and EC models is studied by investigating
the asymptotic behavior of the former with respect to the nondimensional parameter γ :=

√
ωε0/σ,

whose choice is well suited to eddy current nondestructive testing (ECT) [25] conditions. In ECT
experiments, a coil carrying an alternative current is placed in air above a potentially flawed conducting
part undergoing inspection, the impedance variation ∆Z (see eq. (27)) measured at the coil extremities
being related to perturbations caused by defects to the eddy currents induced in the part. ECT
experiments are modeled as Maxwell (or eddy current) transmission problems, formulated in this work
using boundary integral equations (BIEs) [5, 8, 14, 16, 20, 22, 26, 28]. Operating ECT conditions

can be characterized in terms of the non-dimensional parameters γ and ξ := L
√
ωσµ0 =

√
2L/d (with

L denoting the characteristic diameter of the inspected part and d the skin depth). The experimental
goal being to set d to a given target value commensurate with the expected depth of subsurface defects
to be detected, we assume ξ = O(1). When testing highly conducting parts, this goal is achieved by
choosing a low value for ω, in which case we have γ � 1. This leads us to investigate the transition
from Maxwell to EC models by seeking and establishing an asymptotic expansion of the Maxwell BIE
formulation with respect to γ about γ = 0. In particular, we show that, under the previously mentioned
assumptions on the source, the electric and magnetic fields Eγ ,Hγ and their EC counterparts satisfy,
away from the surface separating the two media, the pointwise estimates

|Eγ |=O(γ), |Eγ−EEC|=O(γ3), |Hγ |=O(1), |Hγ−HEC|=O(γ2), (1)

implying that the impedance variation ∆Z verifies

|∆Zγ | = O(γ), |∆Zγ−∆ZEC| = O(γ3). (2)

The present small-γ asymptotic approach is distinct from the previously-considered asymptotic justi-
fications of the EC model. In particular, its results serve to highlight the scaling disparities between
components of the surface currents (which are the primary unknowns in BEM formulations of PM-
CHWT type) that can severely affect solution accuracy in the low-frequency, high-conductivity limit.
We note in passing that the parameter γ is also introduced in [6], where conducting bodies coated by
a thin dielectric layer are studied in the large-conductivity limit.

This article is organized as follows. Our starting point is the well-known PMCHWT integral
formulation for the electromagnetic transmission problem [20] with a Hodge decomposition applied
to the unknown surface currents, which is recalled in Sec. 2. Then, in Section 3, we introduce the
parameter γ into the PMCHWT integral problem, define rescaled surface currents, derive governing
problems for the first two coefficients of the solution expansion in γ and state the corresponding (main)
result on the small-γ expansion of the Maxwell problem, whose complete proof is given next in Sec. 4.
The integral problem for the leading-order contribution to the surface currents is found to coincide
with the EC integral problem established in [14], and the proof of Sec. 4 exploits the known coercivity
of the latter [14, Thm. 12]. Then, estimates (1) and (2) stem from related expansions of integral
representations given in Sec. 3.3. Finally, in Sec. 5, the discretized form of the PMCHWT problem
incorporating a Hodge decomposition is briefly described and the established asymptotic properties are
demonstrated on corroborating numerical results for a simple 3D configuration.

2. Preliminaries: Maxwell transmission problem and PMCHWT integral formulation.
We assume time-harmonic conditions with given angular frequency ω, the time-harmonic factor e−iωt

being implicitly understood wherever relevant. Electromagnetic testing can be mathematically modeled
as a transmission problem whereby a three-dimensional bounded conducting object (or a set thereof)
with complex permittivity ε1 := ε0εr = εd + iσ/ω and permeability µ1 = µ0µr, which occupies the
bounded Lipschitz domain Ω1⊂R3, is surrounded by vacuum filling the unbounded surrounding space
Ω0 := R3 \Ω1 (Fig. 1). The unit normal n on the boundary Γ = ∂Ω1 points from Ω1 to Ω0 (i.e. is
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Figure 1. Scattering by a conducting object: geometry and notation.

chosen exterior to Γ). The conducting object is excited by electric and magnetic fields created by a
given current density J inc, which is assumed to have a compact support D b Ω0. As a result of the
foregoing assumptions, the electric and magnetic fields E and H solve the linear frequency-domain
Maxwell equations

rotE = iωµ0H, rotH = −iωε0E + J inc in Ω0,

rotE = iωµ1H, rotH = −iωεdE−σE in Ω1,

where rot denotes the curl operator. In addition, E and H in Ω0 are assumed to satisfy the Silver–
Müller radiation condition at infinity:∣∣∣ |r|−1rotu×r − iω

√
ε0µ0u

∣∣∣ = O(|r|−1), uniformly for |r| → ∞ (u = E,H). (3)

On adopting E as the primary unknown, the above-described problem leads to the following
transmission problem for the electric fields E0 in the vacuum Ω0 and E1 in the conducting part
Ω1:

(rot rot − κ2
0)E0 = iωµ0J inc in Ω0, γ−×E1 − γ+

×E0 = 0 on Γ,

(rot rot − κ2
1)E1 = 0 in Ω1, µ−1

r γ−NE1 − γ+
NE0 = 0 on Γ,

E0 satisfies (3) at infinity,

(4)

wherein the wavenumbers κ0 and κ1 associated with the respective media are given by

κ2
0 = ε0µ0ω

2, κ2
1 = κ2

0εrµr with εr := εd
r + i

σ

ωε0

and the boundary trace operators γ±×, γ±N acting on vector fields are defined by

γ`×u := γ`0u×n, γ`Nu := γ`×(rotu) (`=±), (5)

where γ+
0 u and γ−0 u are the exterior and interior Dirichlet traces of u, i.e. (for sufficiently regular

fields u) the restrictions to Γ of u|Ω0
and u|Ω1

.

Eddy current model. The eddy current model is formally obtained by removing the displacement
current terms from Maxwell’s equations, i.e. assuming that E,H now solve

rotE0 = iωµ0H0, rotH0 = J inc in Ω0, γ−×E1 − γ+
×E0 = 0 on Γ,

rotE1 = iωµ1H1, rotH1 = −σE1 in Ω1, µ−1
r γ−NE1 − γ+

NE0 = 0 on Γ;

moreover the Silver–Müller condition (3) is replaced by the decay conditions E0(x) = O(|x|−1) and
H0(x) =O(|x|−1) (uniformly for |x| → ∞).

Source term. Let the volume potentials Φ` be defined by

Φ`[J ](x) :=

∫
R3

G(x−x′;κ`)J(x′) dx′ (`= 0, 1), (6)
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where J is a (scalar- or vector-valued) density and G(z;κ) is the well-known fundamental solution of
−(∆+κ2)G= δ given by

G(z;κ) =
eiκ|z|

4π|z|
, z ∈R3 \{0}.

The fieldw := Φ`[J ] then solves −(∆+κ2
`)w = J in R3 and satisfies the Sommerfeld radiation condition.

In problem (4), the given current density J inc is assumed to satisfy divJ inc = 0 in D and J inc·n= 0
on ∂D. The incident electric field Einc created by J inc in R3 filled by the vacuum medium, given by

Einc(x) := iωµ0Φ0[J inc](x) (7)

(i.e. the Biot-Savart law), satisfies (rot rot−κ2
0)Einc = iωµ0J inc in R3 and the radiation condition (3).

Function space setting. Boldface symbols Hm,L2, . . . indicate classical Sobolev spaces of vector-
valued fields, e.g. H1(X) = H1(X;C3) for some domain X ⊂R3.

We first note that the volume potentials (6) can be defined for densities in Sobolev spaces, so that
for example the linear mapping Φ` : H−1

comp(R3) → H1
loc(R3) is well-defined and continuous [15, 22].

Moreover, the following spaces of vector fields in Ω0 or Ω1 are suitable for Maxwell solutions, see e.g. [5]:

H loc(D,Ω0) =
{
u∈L2

loc(Ω0) : Du∈L2
loc(Ω0)

}
H(D,Ω1) =

{
u∈L2(Ω1) : Du∈L2(Ω1)

}
where D is the (distributional) partial differential operator D = rot or D = rot rot . In addition, let
the space of tangential vector fields V be defined by

V :=
{
v ∈H−1/2

‖ (Γ) : divSv ∈H−1/2(Γ)
}

where H
−1/2
‖ (Γ) is the L2(Γ) dual of H

1/2
‖ (Γ) := n×

(
γ−0 H

1(Ω1)×n
)

and divS denotes the surface

divergence operator, see e.g. [16, Sec. 2.5.6]. Then, we know (see [4]) that:

Lemma 1. The trace operators γ+
×, γ

−
×, γ

+
N , γ

−
N introduced in (5) can be extended to linear continuous

operators from H loc(rot ,Ω0), H(rot ,Ω1), H loc(rot rot ,Ω0), H(rot rot ,Ω1), respectively, to V.

Stratton–Chu integral representation formulas. Introduce the single-layer Helmholtz (vector or
scalar) potentials

Ψ`[u](x) :=

∫
Γ

G(x−x′;κ`)u(x′) dS(x′) (`= 0, 1), (8)

which solve the (vector or scalar) Helmholtz equation −(∆+κ2
`)Ψ` = 0 in R3\Γ (note in particular that

Ψ0[u] is defined in Ω1 and vice versa). Then, the single- and double-layer Maxwell potentials Ψ`
S,Ψ

`
D,

defined in terms of Ψ` by

Ψ`
S[u] = Ψ`[u] + κ−2

` ∇Ψ`[divSu] (κ` 6= 0),

Ψ`
D[u] = rot Ψ`[u],

(9)

are Maxwell solutions in R3\Γ and define continuous V →H loc(rot rot ,Ω0) and V →H(rot rot ,Ω1)
linear operators [5]. Moreover, they verify the interrelations

rot Ψ`
S = Ψ`

D, rot Ψ`
D = κ2

`Ψ
`
S. (10)

Using these definitions, the well-known Stratton–Chu integral representation formula for the electric
field (see e.g. [9, Thm. 6.2]) reads

E0 = −Ψ0
S[γ+

NE]−Ψ0
D[γ+
×E] +Einc in Ω0,

E1 = Ψ1
S[γ−NE] + Ψ1

D[γ−×E] in Ω1.

Then, introducing the surface current densities J ,M ∈ V defined by

γ+
NE = iωµ0J , γ−NE = iωµ0µrJ , γ+

×E = γ−×E = iωµ0M
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in order to satisfy the transmission conditions of problem (4), the above Stratton–Chu formulas become

E0 = iµ0ω
(
−Ψ0

S[J ]−Ψ0
D[M ] + Φ0[J inc]

)
in Ω0,

E1 = iµ0ω
(
µrΨ

1
S[J ] + Ψ1

D[M ]
)

in Ω1.
(11)

PMCHWT integral formulation. By Lemma 1, the boundary traces of Ψ`
S,Ψ

`
D under γ±× and

γ±N are well-defined. Let {γ×} := 1
2 (γ+
× + γ−×) and {γN} := 1

2 (γ+
N + γ−N ) denote the symmetric

parts of γ×,γN . Then, the boundary traces of Ψ`
S,Ψ

`
D under γ±× are found, using their known jump

properties [5], to verify

γ+
×Ψ`

S = {γ×}Ψ
`
S, γ−×Ψ`

S = {γ×}Ψ
`
S,

γ+
×Ψ`

D = {γ×}Ψ
`
D− 1

2I, γ−×Ψ`
D = {γ×}Ψ

`
D + 1

2I.

Moreover, the interrelations (10) imply γNΨ`
S = γ×Ψ`

D and γNΨ`
D = κ2

`γ×Ψ`
S, so that the boundary

traces of Ψ`
S,Ψ

`
D under γ±N verify

γ+
NΨ`

S = {γ×}Ψ
`
D− 1

2I, γ−NΨ`
S = {γ×}Ψ

`
D + 1

2I,

γ+
NΨ`

D = κ2
`{γ×}Ψ

`
S, γ−NΨ`

D = κ2
`{γ×}Ψ

`
S.

We next write the boundary traces of the Stratton–Chu formulas (11), expressing γ+
×E0,γ

−
×E1,γ

+
NE0,γ

−
NE1

(in that order) in terms of J ,M and rearranging terms, to obtain

(a) {γ×}Ψ
0
S[J ] + {γ×}Ψ

0
D[M ] + 1

2M = γ+
×Φ0[J inc],

(b) µr{γ×}Ψ
1
S[J ] + {γ×}Ψ

1
D[M ]− 1

2M = 0,

(c) {γ×}Ψ
0
D[J ] + 1

2J + κ2
0{γ×}Ψ

0
S[M ] = γ+

NΦ0[J inc],

(d) {γ×}Ψ
1
D[J ]− 1

2J + µ−1
r κ2

1{γ×}Ψ
1
S[M ] = 0.

The combinations (a)+(b) and (c)+(d) of the above equations finally yield the governing system of
integral equations

ZJ [J ] + B[M ] = γ+
×Φ0[J inc],

B[J ] + ZM [M ] = γ+
NΦ0[J inc]

(12)

for J ,M , known as the Poggio-Miller-Chang-Harrington-Wu-Tsai (PMCHWT) integral formula-
tion [20] for the scattering problem (4), with the integral operators ZJ , ZM , B given by

ZJ = {γ×}
(
Ψ0

S +µrΨ
1
S

)
= {γ×}

(
Ψ0 +µrΨ1

)
+ {γ×}

(
κ−2

0 ∇Ψ0 + κ−2
1 µr∇Ψ1

)
◦ divS ,

ZM = {γ×}
(
κ2

0Ψ
0
S +µ−1

r κ2
1Ψ

1
S

)
= {γ×}

(
κ2

0Ψ0 +µ−1
r κ2

1Ψ1

)
+ {γ×}

(
∇Ψ0 + µ−1

r ∇Ψ1

)
◦ divS ,(13)

B = {γ×}
(
Ψ0

D +Ψ1
D

)
= {γ×}

(
rot Ψ0 + rot Ψ1

)
.

We introduce the Cartesian product space V :=V×V , define the twisted inner product
〈
· , ·
〉
× by〈

u , v
〉
× := −

∫
Γ

u·(v×n) dS,

and set
〈
X̃ , X

〉
× :=

〈
J̃ , J

〉
× +

〈
M̃ ,M

〉
× and ‖X‖2V := ‖J‖2V +‖M‖2V for any X = (J ,M), X̃ =

(J̃ ,M̃). With these definitions, the weak formulation of the PMCHWT integral problem (12) reads

Find X = (J ,M)∈V,
〈
X̃ , ZX

〉
× =

〈
X̃ , Y

〉
× for all X̃ = (J̃ ,M̃)∈V

with Z =

[
ZJ B
B ZM

]
, Y =

{
γ+
×Φ0[J inc]

γ+
NΦ0[J inc]

}
.

Helmholtz–Hodge decomposition. We introduce a Helmholtz–Hodge decomposition V = V
L
⊕V

T

of V , where V
L

:=
{
u ∈ V : divSu = 0

}
, see [4], and the corresponding additive decompositions
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J = JL+JT andM = ML+MT of the unknown surface currents, with JL,ML ∈ V
L

and JT,MT ∈ V
T

.〈
X̃ , ZX

〉
× =

〈
X̃ , Y

〉
× for all X̃ ∈V

Z =


AJ AJ B B
AJ ZJ B B
B B AM AM
B B AM ZM

 , X =


JL
JT
ML

MT

 , X̃ =


J̃L

J̃T

M̃L

M̃T

 , Y =


γ+
×Φ0[J inc]

γ+
×Φ0[J inc]

γ+
NΦ0[J inc]

γ+
NΦ0[J inc]

 , (14)

with integral operators ZJ , ZM , B as defined in (13) and

AJ := {γ×}
(
Ψ0 +µrΨ1

)
, AM := {γ×}

(
κ2

0Ψ0 +µ−1
r κ2

1Ψ1

)
. (15)

Discrete Helmholtz–Hodge decompositions of finite-dimensional (BE approximation) subspaces of V
exist in several forms, such as the well-known loop–tree decomposition (to which the L,T subscripts
introduced above refer) used in Sec. 5. They are in particular used for circumventing low-frequency
breakdown in integral equation methods for electromagnetic scattering, see e.g. [7]. In this work, the
Helmholtz–Hodge decomposition will play an essential role in the asymptotic analysis to follow.

3. Eddy current problem as asymptotic expansion of PMCHWT problem. The eddy
current (EC) model arises from a quasi-static approximation that is suitable at low frequencies. It
is formally obtained by dropping the displacement current term in the Maxwell model, which yields
the EC field equations

rotE = iωµ0H, rotH = J inc in Ω0,

rotE = iωµ1H, rotH = σE in Ω1.

We introduce the non-dimensional parameters

γ :=
√
ωε0/σ, ξ :=L

√
ωµ0σ

(
with L := diam(Ω1)

)
,

noting for later reference that κ0L = ξγ. Our aim is to investigate the limiting case of the Maxwell
(integral equation) model (14) when γ � 1 and ξ = O(1), i.e. for regimes simultaneously involving low
frequencies and highly conducting bodies. We observe that κ0L = ξγ → 0 but κ1L = ξ

√
iµr+O(γ2) 6→ 0

as γ → 0, meaning that usual low-frequency approaches [7] (where κ0L, κ1L = O(ω)) do not directly
apply to ECs. The EC regime is here studied by seeking an expansion in powers of γ of the surface
currents solving problem (14). For this purpose, we follow the two-step approach commonly used in
asymptotic analysis whereby expansions are (i) formally derived, then (ii) precisely formulated and
justified. Those two steps are carried out in Secs. 3.1 and 3.2, respectively, with the proof of the main
result deferred to Sec. 4. Then, expansions of related quantities are given in Sec. 3.3.

Remark 1. The small parameter γ is directly related to the notion of displacement currents being small
relative to eddy currents since the former take, in either medium, the form iωεdE= iγ2εd

r (σE).

3.1. Expansion derivation. To derive the sought expansion of the surface currents, we use a formal
expansion of the right-hand side and integral operator matrix of (14). The latter depend on γ through
the wavenumbers κ`, for which we have

κ0L = γξ = O(γ), κ1L = ξ
√
µr(i+εd

r γ
2) = ξ

√
iµr +O(γ2). (16)

Then, the (wavenumber-dependent) Helmholtz fundamental solutions admit as a result the expansions

(a) G(z;κ0) = G
(0)
0 (z) +G

(1)
0 (z)γ +O(γ2),

(c) ∇G(z;κ0) = ∇G
(0)
0 (z) +O(γ2),

(b) G(z;κ1) = G
(0)
1 (z) +O(γ2),

(d) ∇G(z;κ1) = ∇G
(0)
1 (z) +O(γ2),

(17)

with

G
(0)
0 (z) :=

1

4π|z|
, G

(1)
0 (z) :=

iξ

4πL
, G

(0)
1 (z) :=

eiξ
√

iµr|z|/L

4π|z|
.

The sought expansion of problem (14) can now be set up by using expansions (16) and (17).
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Expansion of the right-hand side. We first examine the right-hand side of (14). Use of expan-
sion (17a) in Φ0[J inc] yields

Φγ
0 [J inc] = Φ

(0)
0 [J inc] + γΦ

(1)
0 [J inc] +O(γ2) = Φ

(0)
0 [J inc] +O(γ2) (18)

where the notation Φγ
0 serves to emphasize the dependence in γ of the volume potential Φ0 defined

by (6), and Φ
(m)
0 is the volume potential obtained by replacing G(·;κ0) with G

(m)
0 in (6), and the

second equality results from:

Lemma 2. Let J inc be such that divJ inc = 0 in D and J inc ·n= 0 on ∂D. Then Φ
(1)
0 [J inc] = 0.

Proof. Using that div (x′⊗J inc(x′)) = x′divJ inc + J inc while G
(1)
0 is a constant function, we have

Φ
(1)
0 [J inc](x) = G

(1)
0

∫
D

J inc(x′) dx′ = G
(1)
0

∫
D

(
div (x′⊗J inc(x′))− x′divJ inc

)
dx′ = 0,

where the last equality results from the assumptions on J inc and Green’s identity. �

Expansion of the integral operators. Using expansions (16) and (17) in the relevant integral
operators given by (13) and (15), we find

AJ = A(0)
J + γA(1)

J +O(γ2), γ2ZJ = Z(0)
J +O(γ2), B = B(0) +O(γ2),

AM = A(0)
M +O(γ2), ZM = Z(0)

M +O(γ2),
(19)

with

A(0)
J u = {γ×}

(
Ψ

(0)
0 u+ µrΨ

(0)
1 u

)
, B(0)u = {γN}

(
Ψ

(0)
0 u+ Ψ

(0)
1 u

)
,

A(1)
J u = {γ×}Ψ

(1)
0 u, Z(0)

J u = ξ−2L2{γ×}∇Ψ
(0)
0 [divSu],

A(0)
M u = iµrξ

2L−2{γ×}Ψ
(0)
1 u, Z(0)

M u = A(0)
M u+ {γ×}

(
∇Ψ

(0)
0 + µ−1

r ∇Ψ
(0)
1

)
[divSu],

and where Ψ
(m)
` is the potential defined by (8) with G(·;κ`) replaced by G

(m)
` .

Expansion of surface currents. Expansions (19) of the integral operators reveal that ZJ = O(γ−2).
This suggests to recast the PMCHWT problem (14) for γ 6= 0 in the rescaled form

find X̂γ ∈V such that:
〈
X̃ , ẐγX̂γ

〉
× =

〈
X̃ , Y γ

〉
× for all X̃ ∈V, (20)

wherein the notation now emphasizes the dependence on γ of the problem and its solution, and having
set

Ẑγ :=


AJ γ2AJ B B
AJ γ2ZJ B B
B γ2B AM AM
B γ2B AM ZM

 , X̂γ :=


JL

γ−2JT

ML

MT

 , Y γ =


γ+
×Φγ

0 [J inc]

γ+
×Φγ

0 [J inc]

γ+
NΦγ

0 [J inc]

γ+
NΦγ

0 [J inc]

 .

The integral operator matrix Ẑγ is then expanded as

Ẑγ = Z(0) + γZ(1) +O(γ2) (21)

where, recalling expansions (19), Z(0) and Z(1) are given by

Z(0) =


A(0)
J 0 B(0) B(0)

A(0)
J Z(0)

J B(0) B(0)

B(0) 0 A(0)
M A(0)

M

B(0) 0 A(0)
M Z(0)

M

 , Z(1) =


A(1)
J 0 0 0

A(1)
J 0 0 0
0 0 0 0
0 0 0 0

 .
In particular, all integral operators featured in Ẑγ have a finite limit as γ → 0 (this limit being nonzero
in particular for all operators on the main diagonal), whereas in (14) ZJ diverges when γ → 0. Likewise,
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the right-hand side Y in (14) has, by virtue of (18), the expansion

Y γ = Y (0) +O(γ2), Y (0) =


γ+
×Φ

(0)
0 [J inc]

γ+
×Φ

(0)
0 [J inc]

γ+
NΦ

(0)
0 [J inc]

γ+
NΦ

(0)
0 [J inc]

 . (22)

The following natural ansatz is then made for the unknown X̂γ of problem (20):

X̂γ = X(0) + γX(1) + . . . , X(0) =


J

(0)
L

J
(0)
T

M
(0)
L

M
(0)
T

 , X(1) =


J

(1)
L

J
(1)
T

M
(1)
L

M
(1)
T

 .

Inserting this ansatz, together with expansions (21) and (22), into problem (20) and setting to zero the

resulting O(1) and O(γ) contributions, we find that X(0) and X(1) are sequentially governed by the
following zeroth-order and first-order integral problems:〈

X̃ , Z(0)X(0)
〉
× =

〈
X̃ , Y (0)

〉
× for all X̃ ∈V,〈

X̃ , Z(0)X(1)
〉
× =

〈
X̃ , Y (1)−Z(1)X(0)

〉
× for all X̃ ∈V.

(23)

Problem (23a) for X(0) is found on inspection to coincide (after adjusting to the present notations)

with the PMCHWT-type integral problem for the EC model established in [14]. Besides, since G
(1)
0

is a constant (see (17)), we have A(1)
J [JL] = 0 (for any div Γ-free JL) and Φ

(1)
0 [J inc] = 0 (because

divJ inc = 0 in D and J inc ·n = 0 on ∂D). Therefore Y (1)−Z(1)X(0) = 0, implying that X(1) = 0.

3.2. Resulting solution expansion and its justification. The foregoing formal derivation yields
the following expansion of the surface current densities:

JL

JT

ML

MT

 =


J

(0)
L

γ2J
(0)
T

M
(0)
L

M
(0)
T

+


O(γ2)

O(γ4)

O(γ2)

O(γ2)

 (24)

where the leading terms solve the eddy current integral problem (23). To make more precise and justify
the approximation order claimed in (24), we define the expansion error Eγ on the rescaled surface
current solution by

Eγ := X̂γ − (X(0) +γX(1)).

Then, setting X̂γ = Eγ+X(0)+γX(1) in (20), the expansion error is found to solve the integral problem

find Eγ ∈V such that:
〈
X̃ , ẐγEγ

〉
× =

〈
X̃ , Dγ

〉
× for all X̃ ∈V

with Dγ := Y γ − Ẑγ

(
X(0) + γX(1)

)
. (25)

Using these definitions, we state our main result in the following theorem, whose proof is given in Sec. 4:

Theorem 1. The rescaled surface currents X̂γ introduced in (20) admit the expansion

X̂γ = X(0) + Eγ ,

where X(0) solves the eddy current integral problem (23) and the expansion error Eγ verifies

‖Eγ‖V ≤ Cγ2

for some constant C > 0. As a result, the expansions (24) of the surface currents JL,JT,ML,MT hold
in the sense of the ‖ · ‖V norm.



EDDY CURRENT AS LOW-FREQUENCY, HIGH-CONDUCTIVITY LIMIT OF MAXWELL 9

3.3. Expansion of related quantities. Upon using the Helmholtz–Hodge decomposition of J in
the Stratton–Chu integral representation formulas (11), recalling the definitions (9) of the Maxwell
potentials and invoking Theorem 1, the following expansions are found for Eγ in Ω0 and Ω1:

E0,γ = i
γξ

L

√
µ0

ε0

(
−Ψ

(0)
0 [J

(0)
L ]− L2

ξ2
∇Ψ

(0)
0 [divSJ

(0)
T ]− rot Ψ

(0)
0 [M (0)] + Φ

(0)
0 [J inc] +O(γ2)

)
,(26a)

E1,γ = i
γξ

L

√
µ0

ε0

(
µrΨ

(0)
1 [J

(0)
L ] + rot Ψ

(0)
1 [M (0)] +O(γ2)

)
. (26b)

Since iγξ
√
µ0/ε0/L = iωµ0 and γ2 =ωε0/σ, the above expansions, which hold pointwise, are consistent

with the estimates ‖EEC‖2 = O(ω), ‖Eω−EEC‖2 = O(ω2) given in [23] (which focus on the frequency
dependence). Likewise, the magnetic field H0 in Ω0 is readily found to verify the expansion

H0,γ = rot
(
−Ψ

(0)
0 [J

(0)
L ]− rot Ψ

(0)
0 [M (0)] + Φ

(0)
0 [J inc]

)
+O(γ2). (26c)

Eddy current nondestructive testing exploits measurements of the impedance variation

∆Zγ :=
1

I2

∫
Γ

(
Mγ · rotEinc + Jγ ·Einc

)
dS, (27)

(where I is the current intensity in the excitating coil) which reflects the electromagnetic field
perturbation (relative to Einc,H inc) induced by the conducting body Ω1. The asymptotic expansion
of ∆Zγ is readily found, using (7) and expansions (24), to be

∆Zγ = ∆ZEC +O(γ3)

with ∆ZEC =
iξγ

I2L

√
µ0

ε0

∫
Γ

(
M

(0)
T · rot Φ

(0)
0 [J inc] + J

(0)
L ·Φ(0)

0 [J inc]
)

dS, (28)

having used that Φ
(1)
0 [J inc] = 0.

Remark 2. Although it contributes only at order O(γ2) to J , the component JT participates to the
leading-order approximation of E0 (but does not to those of E1, H and ∆Z).

4. Proof of Theorem 1. The proof needs some estimates for expansions of the operators associated
to the potentials Φγ

` and Ψγ
` defined by (6) and (8), respectively, with κ` = κ`(γ). In particular, it

exploits the fact that the single-layer potentials (8) can be expressed using the volume potentials (6)
and the dual Dirichlet trace mapping, so that all γ-dependent estimates occur in operator norm bounds
for volume potential expansions. The latter are particular instances of pseudo-differential operators
(PDOs), see e.g. [15, Chaps. 6,7] or [12]. As such their continuity properties between Sobolev spaces
are known (e.g. [12, Thm. 11 of Chap. 2]), but those results do not provide information on how
continuity constants depend on parameters (such as γ here). Lemma 3 gives γ-dependent estimates for
relevant differences of volume potentials; its proof rests on ideas from PDO theory but presented in more
elementary, self-contained and explicit terms that allow to investigate the required dependencies in γ.
We first state Lemma 3, then give the resulting needed estimates in Lemmas 4 and 5 before returning
to the proof of Theorem 1. The proofs of the lemmas are finally provided in separate subsections.

Lemma 3. The volume potential differences D(0)Φγ
0 := Φγ

0 −Φ
(0)
0 , D(1)Φγ

0 := Φγ
0 −Φ

(0)
0 −γΦ

(1)
0 and

D(0)Φγ
1 := Φγ

1 −Φ
(0)
1 , where Φγ

` is the volume potential defined by (6) with κ` = κ`(γ), are continuous

H−1
comp(R3)→H3

loc(R3) linear operators. Moreover, the corresponding operator norms satisfy for some
C > 0 the estimates

(a) ‖D(0)Φγ
0‖ ≤ Cγ, (b) ‖D(1)Φγ

0‖ ≤ Cγ2, (c) ‖D(0)Φγ
1‖ ≤ Cγ2.

In addition, ∇D(0)Φγ
` and rotD(0)Φγ

` are continuous H−1
comp(R3)→H2

loc(R3) linear operators whose
norms satisfy for some C > 0 the estimates

(d) ‖∇D(0)Φγ
` ‖ ≤ Cγ

2, (e) ‖rotD(0)Φγ
` ‖ ≤ Cγ

2.
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Lemma 4. For ` = 0, 1, let DΨγ
` := Ψγ

` −Ψ0
` , where Ψγ

` is the Helmholtz surface potential defined
by (8) with κ` = κ`(γ). DΨγ

` defines continuous V →H loc(rot ,R3\Γ) and V →H loc(rot rot ,R3\Γ)
operators. Moreover, in both cases, there exists a constant C such that for all γ small enough

(a)
∥∥γ×D(0)Ψγ

0

∥∥ ≤ Cγ, (b)
∥∥γ×D(1)Ψγ

0

∥∥ ≤ Cγ2, (c)
∥∥γ×D(0)Ψγ

1

∥∥ ≤ Cγ2

and
(d)

∥∥γ×∇D(0)Ψγ
`

∥∥ ≤ Cγ2, (e)
∥∥γND(0)Ψγ

`

∥∥ ≤ Cγ2.

Lemma 5. (i) The right-hand side Y γ of problem (14) verifies (with the second equality stemming
from Lemma 2)

‖Y γ − Y (0) − γY (1)‖V = ‖Y γ − Y (0)‖V = O(γ2).

(ii) The first-order expansion (21) of the operator matrix X̂γ and the corresponding zeroth-order
expansion hold, with expansion error estimates given in terms of the L(V) operator norm by

(a) ‖Ẑγ −Z(0)‖ = O(γ), (b) ‖Ẑγ −Z(0) − γZ(1)‖ = O(γ2).

Proof of Theorem 1. Recalling that the expansion error solves problem (25), the claimed estimate of

‖Eγ‖ can be proved by showing that there exists γ0 > 0 such that (i) Ẑγ is boundedly invertible, the
bound being uniform for γ ∈ [0, γ0[ and (ii) ‖Dγ‖V ≤ Cγ2 for all γ ∈ [0, γ0[.

Regarding item (i), we first observe that Z(0) : V → V is elliptic (up to notational adjustments, this
is Theorem 12 of [14]) and hence boundedly invertible. We can therefore write

Ẑγ = Z(0)
[
I + Kγ

]
with Kγ := (Z(0))−1

(
Ẑγ−Z(0)

)
.

By the second part of Lemma 5, we have ‖Kγ‖V→V ≤ Cγ for some C > 0 and any small enough γ.
Therefore there exists γ0 > 0 and CK < 1 such that ‖Kγ‖V→V ≤ CK for any γ < γ0. Using a standard
Neumann series argument, I +Kγ is therefore invertible with ‖(I +Kγ)−1‖V→V ≤ (1−CK)−1 for any

γ < γ0. Concluding, Ẑγ is boundedly invertible, uniformly for γ ∈ [0, γ0[.

To address item (ii), recasting Dγ as

Dγ = Y γ −
(
Ẑγ−Z(0)−γZ(1)

)
X(0) −

(
Z(0) +γZ(1)

)
X(0)

=
(
Y γ−Y (0)−γY (1)

)
−
(
Ẑγ−Z(0)−γZ(1)

)
X(0)

(having used that X(1) = 0) and invoking Lemma 5, we directly obtain that ‖Dγ‖V ≤ Cγ2 for all

γ ∈ [0, γ0[ (with C =C(γ0)) since X(0) ∈V . The proof of Theorem 1 is complete. �

4.1. Proof of Lemma 3. We first consider the easier-to-address case of estimate (c). The fundamental
solution G(z;κ1(γ)) is in L1(R3) for any γ (since it is only weakly singular at the origin, and its
exponential decay for large |z| is ensured by =

(
κ1(γ)

)
> 0, see (16)). Its Fourier transform is easily

found (e.g. by transforming the governing equation −
[
∆+κ1(γ)2

]
G(·;κ1(γ)) = δ) to be given by

F
[
G(·;κ1(γ))

]
(ζ) =

1

κ1(γ)2−|ζ|2
, (29)

where ζ ∈ R3 is the Fourier conjugate variable of z. By the classical form of the Fourier convolution
theorem, we then have F

(
Φγ

1 [u]
)

= F
(
G(z;κ1(γ))F(u) for any (scalar- or vector-valued) C∞0 (R3)

density u. For some negative integer m and real s, we can therefore write

(1+ |ζ|2)s−m
∣∣F(D(0)Φγ

1 [u]
)∣∣2 = K(ζ)× (1+ |ζ|2)s

∣∣F(u)
∣∣2 (30)

with (recalling (29))

K(ζ) := (1+ |ζ|2)−m
∣∣F(G(·;κ1(γ))

)
−F

(
G(·;κ1(0))

)∣∣2(ζ) =
(1+ |ζ|2)−m

∣∣κ1(0)−κ1(γ)
∣∣2∣∣κ1(γ)2−|ζ|2

∣∣2 ∣∣κ1(0)2−|ζ|2
∣∣2
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Let γ0 > 0. Recalling (16) and noting that the function γ 7→ κ1(γ) is differentiable for γ ∈ [0, γ0], we
have

K(ζ) ≤ Cγ4

for some constant C = C(m)> 0 and any m≥−4. Using this for m=−4 in (30) and integrating the
resulting inequality over ζ ∈R3, we obtain∥∥D(0)Φγ

1 [u]
∥∥
s+4
≤ Cγ2‖u‖s

(‖ · ‖s being the Hs norm), from which estimate (c) follows from the density of C∞0 (R3) in Hs
comp(R3)

and by choosing s=−1.

Estimates (a), (b). We now address estimates (a), (b), where κ0(γ) = γξL−1 ∈ R and κ0(0) = 0.
Setting for notational convenience κ := κ0(γ), we define the integral operators Hk

κ (k = 0, 1) as

H
(k)
κ = κ−k−1D(k)Φγ

0 . Since κ0(γ) =O(γ), proving the H−1
comp(R3)→H3

loc(R3) estimates (a), (b) then

amounts to showing that, for some κ̄ > 0, H
(k)
κ and for each compact subset K of R3 and φ∈C∞0 (R3),

we have
‖H(k)

κ [φu]‖3 ≤ C‖u‖−1 for all u, supp(u)⊂K (k= 0, 1), (31)

uniformly in κ for κ ∈ [0, κ̄[. Again it is sufficient to assume that u ∈ C∞0 (R3;R3).

The (convolution) operators H
(k)
κ (k= 0, 1) have kernel functions h

(k)
κ (z) given by

h(k)
κ (z) = |z|khk(κ|z|) with h0(t) =

1

4πt

(
eit−1

)
, h1(t) =

1

4πt2
(
eit−1− it

)
. (32)

Both functions hk are C∞(]0,+∞[); moreover |hk(t)| → 0 as t→ +∞ while h0(t)→ i and h1(t)→ − 1
2

as t → 0+. Consequently, both functions [0,∞[⊃ t 7→ |hk(t)| are bounded, and this bound of course
does not depend on κ, an observation that will play an important role.

The wavenumber κ being real, the kernel functions are not in L1(R3) due to insufficient decay at
infinity. Letting ψ be a fixed C∞0 cut-off function such that ψ(z) = 1 in a neighborhood of z = 0 and

ψ(z) = 0 for |z|> 1, we decompose the operators H
(k)
κ in the form

H(k)
κ [u](x) = N (k)

κ [u] +R(k)
κ [u]

=

∫
R3

h(k)
κ (x−x′)ψ(|x−x′|)u(x′) dx′ +

∫
R3

h(k)
κ (x−x′)

[
1− ψ(|x−x′|)

]
u(x′) dx′

and examine separately the relevant boundedness of each resulting operator.

We begin with operators N
(k)
κ . Their convolution kernels are in L1(R3), so that the classical form

of the Fourier convolution theorem again applies. Setting v(k) := H
(k)
κ [u], we thus have

F
(
v(k)

)
= a(k)

κ F(u), a(k)
κ (ζ) := F

[
h(k)
κ ψ(| · |)

]
(ζ) =

∫
R3

e−iζ·zh(k)
κ (z)ψ(|z|) dz. (33)

Due to the previously-mentioned boundedness of functions hk(t), both symbols ζ 7→ a
(k)
κ (ζ) are readily

found to be bounded uniformly in κ; moreover, we have (see details at end of proof)

|a(0)
κ (ζ)| = κ

(κ2 − |ζ|2)|ζ|2
+ o(|ζ|−4), |a(1)

κ (ζ)| = 1

(κ2 − |ζ|2)|ζ|2
+ o(|ζ|−4) |ζ| → ∞. (34)

Consequently, there exists C > 0 such that |a(k)
κ (ζ)| ≤ C(1+ |ζ|2)−2 for all κ. To show that operators

N
(k)
κ verify an estimate of the form (31), we note (following the proof of [12, Thm. 11 of Chap. 2] and

since F(φv) = (2π)−3F(φ) ? F(v)) that

(1+ |η|2)3/2F
(
φv(k)

)
(η) =

∫
R3

K(η, ζ)(1+ |ζ|2)−1/2F(u)(ζ) dζ

with
K(η, ζ) = (2π)−3(1+ |η|2)3/2(1+ |ζ|2)1/2a(k)

κ (ζ)F [φ](η−ζ)
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and the sought estimate amounts to showing that the kernel K(η, ζ) defines a (uniformly in κ)

bounded L2(R3) → L2(R3) operator. Due to the estimates |a(k)
κ (ζ)| ≤ C(1 + |ζ|2)−2 (see above)

and
∣∣F [φ](ξ)

∣∣ ≤ C(1 + |ξ|2)−N for any N (by virtue of φ ∈ C∞0 (R3)), we have∣∣K(η, ζ)
∣∣ ≤ C(1 + |η−ζ|2)−N (1+ |η|2)3/2(1+ |ζ|2)−3/2.

Applying Peetre’s inequality 1+ |η|2 ≤ 2(1 + |η−ζ|2)(1+ |ζ|2), we deduce∣∣K(η, ζ)
∣∣ ≤ C(1 + |η−ζ|2)−N+3/2

so that, picking any N > 3, we have∫
R3

∣∣K(η, ζ)
∣∣ dη ≤ CN , ∫

R3

∣∣K(η, ζ)
∣∣dζ ≤ CN with CN := C

∫
R3

(1 + |ξ|2)−N+3/2 dξ.

The above inequalities constitute the verification of the Schur test (see e.g. [12, Lemma 10 of Chap.
2]), implying that the kernel K defines a bounded L2(R3) → L2(R3) operator and that moreover its
operator norm is not larger than CN , i.e. is bounded uniformly in κ.

We now turn to the operators R
(k)
κ , whose convolution kernels k

(k)
κ := h

(k)
κ

[
1 − ψ(·)

]
are C∞(R3)

functions. We will this time estimate Sobolev norms ‖ · ‖s without using the Fourier transform. First,
let ϕK be a C∞c (R3) cut-off function such that ϕK = 1 in a neighborhood of the compact set K; then
for any u such that supp(u)⊂K we have u = ϕKu and

φ(x)R(k)
κ [u](x) =

∫
R3

Kk(x,x′)u(x′) dx′, Kk(x,x′) := φ(x)k(k)
κ (x−x′)ϕK(x′).

Using again the boundedness of functions hk(t) over R+, we have
∥∥Kk(x,x′)

∥∥ ≤ ∥∥ |x−x′|kφ(x)ϕK(x′)
∥∥,

and therefore ∫
R3

∥∥Kk(x,x′)
∥∥ dx ≤ Ck1 ,

∫
R3

∥∥Kk(x,x′)
∥∥dx′ ≤ Ck2 ,

with the constants Ck1 , C
k
2 given by (recalling that φ ∈ C∞c (R3))

Ck1 = Bk
∫
R3

φ(x) dx′, Ck2 = Bk
∫
R3

ϕK(x′) dx′, B := sup
x∈supp(φ),x′∈supp(ϕK)

|x−x′|.

The Schur test therefore shows that kernels Kk define bounded L2(R3) → L2(R3) operators, and

that in fact
∥∥φR(k)

κ [u]
∥∥

0
≤ Bk

√
Ck1C

k
2 ‖u‖0 (so the operator norm bound is again uniform in

κ). Since k
(k)
κ (x− x′) is a C∞(R3) kernel, we can proceed similarly for estimating the seminorms∥∥∇m

(
φR

(k)
κ [u]

)∥∥
0

for any differentiation order m. For example, with m= 1, we have

∇
(
φR(k)

κ [u]
)
(x) =

∫
R3

k(k)
κ (x−x′)

[
(ϕKu)(x′)∇φ(x) + φ(x)∇(ϕKu)(x′)

]
dx′,

(after integration by parts) and ∇m
(
φR

(k)
κ [u]

)
is easily seen to be given by a similar, lengthier, formula

involving k
(k)
κ (x−x′) and derivatives up to order m in its cofactor. Applying the Schur test to each

additive component of ∇m
(
φR

(k)
κ [u]

)
then shows the existence of a κ-independent constant Am such

that ∥∥∇m
(
φR(k)

κ [u]
)∥∥

0
≤ Am‖u‖m,

which implies in turn the existence of κ-independent constants C ′m, Cm such that∥∥φR(k)
κ [u]

∥∥
m
≤ C ′m‖u‖m ≤ Cm‖u‖−1,

the last equality resulting from the well-known continuous injection of Hm(R3) into H−1(R3). The

desired estimate (31) for R
(k)
κ follows, and this completes the proof of estimates (a), (b).

Finally, estimates (d), (e) are direct consequences of estimates (a), (b) since ‖∇u‖2 ≤‖u‖3 for any
u∈H3

loc(R3). This completes the proof of the Lemma.
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Proof of symbol decay (34). The symbols a
(k)
κ introduced in (33), being Fourier transform of radial

functions (see e.g. [24, Thm. 3.3]), can be expressed as

a(k)
κ (ζ) =

4π

ζ

∫ ∞
0

sin(ζz)zk+1hk(κz)ψ(z) dz (35)

(with z := |z| and ζ := |ζ|), which decay as ζ → +∞. Moreover, using definitions (32) of functions hk

and elementary calculus, we find the primitives∫
sin(ζz)zh0(κz) dz = f (0)

κ (z) =
1

2κ

[ eiz(κ−ζ)

κ−ζ
− eiz(κ+ζ)

κ+ζ
+

2 cos(ζz)

ζ2

]
,∫

sin(ζz)z2h1(κz) dz = f (1)
κ (z) =

1

κ
f (0)
κ (z) +

i

κ

[ z cos(ζz)

ζ2
− sin(ζz)

ζ3

]
.

Integrating by parts the representations (35) and since ψ(0) = 1, ψ(∞) = 0, the symbols a
(k)
κ become

a(k)
κ (ζ) = −f (k)

κ (0)−
∫ ∞

0

f (k)
κ (z)ψ′(z) dz. (36)

The above integral term can then be further subjected to arbitrarily many iterated integration by parts
(IBPs), each IBP increasing the decay rate in ζ of the resulting integrand while all subsequently arising
non-integral terms vanish since ψ(m)(0) =ψ(m)(∞) = 0 (m≥ 1). The integral term of (36) is therefore
found to decay faster than any negative power of ζ. On the other hand, we easily find

f (0)
κ (0) = κf (1)

κ (0) =
κ

ζ2(κ2−ζ2)

which, used in (36), completes the proof of the leading large-|ζ| behavior (34) of the symbols a
(k)
κ . We

note in passing that, as Fourier transforms of compactly-supported functions, the symbols a
(k)
κ are C∞

functions; in particular they are well defined if |ζ|= κ, formulas (34) notwithstanding.

4.2. Proof of Lemma 4. The single-layer potential Ψγ
` has (see [22, Def. 3.1.5]) the representation

Ψγ
` = Φγ

` γ
′
0, where Φγ

` is the volume potential (6) with κ` = κ`(γ) and γ′0 is the dual of the Dirichlet
trace mapping γ0. The claimed mapping properties and estimates (a)–(e) then result directly from

combining (i) the known continuity of γ′0 : H−1/2(Γ) → H−1
comp(R3) and the mapping properties of

γ±× recalled in Lemma 1, and (ii) the mapping properties and estimates for relevant volume potential

differences established in Lemma 3 (recalling that γ±N = γ±× ◦ rot ).

4.3. Proof of Lemma 5. Part (i): since Y γ − Y (0) − γY (1) uses D(1)Φγ
0 [J inc] (see (22)), part (i)

follows from estimates (b), (e) of Lemma 3 and the continuity properties of traces recalled in Lemma 1.

Part (ii). We first note that the operator matrix Ẑγ−Z(0)−γZ(1) involves the operator differences

(a) AM −A(0)
M = {γ×}

(
κ2

0Ψ
γ
0 + µ−1

r κ2
1D

(0)Ψγ
1

)
(b) ZM −Z(0)

M = AM −A(0)
M + {γ×}

[(
∇D(0)Ψγ

0 +µ−1
r ∇D(0)Ψγ

1

)
◦ divS

]
(c) B − B(0) = {γN}

(
D(0)Ψγ

0 +D(0)Ψγ
1

)
(37)

(d) AJ −A(0)
J − γA

(1)
J = {γ×}

(
D(1)Ψγ

0 + µrD
(0)Ψγ

1

)
(e) γ2ZJ −Z(0)

J = γ2A(0)
J + ξ−2L2{γ×}∇D(0)Ψγ

0 ◦ divS + γ2κ−2
1 µr{γ×}∇Ψ

(0)
1 ◦ divS ,

and the operators γ2B, γ2AJ ; see (20) and (21). Lemma 4 implies that the operator differences (37)
all define continuous V → V operators whose norm is O(γ2) for γ small enough (recalling for (37a)

that in addition κ2
0 = ξ2γ2). Moreover, we have B = (B − B(0)) + B(0) with B(0) = {γN}(Ψ

(0)
0 +Ψ

(0)
1 ).

The potentials Ψ
(0)
` define continuous V → H loc(rot rot ,Ω0) and V → H(rot rot ,Ω1) operators.

Together with Lemma 1, this implies that B(0) : V → V is bounded, and therefore that
∥∥γ2B

∥∥ =

γ2
∥∥(B − B(0)

)
+ B(0)

∥∥ ≤ Cγ2 for any small enough γ. A similar argument allows to show that∥∥γ2AJ
∥∥ ≤ Cγ2. This completes the proof of estimate (b).
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Then, since A(1)
J is the only nonzero operator appearing in Z(1) (see (21)), the proof of estimate

(a) is nearly identical. The operator matrix Ẑγ −Z(0) involves the same quantities as before, except

for (37d) which reduces to AJ−A(0)
J = −{γ×}

(
D(0)Ψγ

0+µrD
(0)Ψγ

1

)
. Estimates (a) and (c) of Lemma 4

imply that ‖AJ −A(0)
J ‖ = O(γ), with all other constituents of Ẑγ −Z(0) having O(γ2) norms, from

which estimate (a) follows.

5. Numerical experiments.

5.1. BE discretization. We summarize the salient points of our BE implementation for solving EC or
Maxwell versions of the PMCHWT integral problem. More comprehensive descriptions of BE methods
for electromagnetic transmission problems can be found in e.g. [13, 26, 28]. Let Φ :=

{
φ1, . . . ,φN

}
denote the set of usual H-div conforming basis functions (see e.g. [28]) for a boundary element (BE)
mesh made of E flat triangular elements; N is the number of edges, with 2N = 3E for the mesh of
a simply-connected surface. The Hodge decomposition is achieved at the discrete level by defining
the sub-family ΦL of (divergence-free) loop functions and the (supplementary) sub-family ΦT of tree
functions as linear combinations of the original basis functions: with suitable coefficient matrices L
and T , we then have ΦL = LΦ and ΦT = TΦ. The approximation Jh of the current density J is then
sought in the form

Jh = Xt
JΦ, with XJ = LtXJ,L + T tXJ,T

where XJ ∈ CN is the column vector of degrees of freedom (DOFs) for Jh and XJ,L, XJ,T are the
column vectors of corresponding loop and tree DOFs for Jh,L and Jh,T (with similar definitions for the
corresponding quantities XM,L, XM,T associated with M). Moreover, the Hodge decomposition is also
applied to the test functions. Then, the DOF subvectors XJ,L, XJ,T, XM,L, XM,T for the EC integral
problem solve the uncoupled systemsLA

(0)
J Lt LB

(0)
? Lt LB(0)T t

LB
(0)
? Lt LA

(0)
M Lt LA

(0)
M T t

TB(0)Lt TA
(0)
M Lt TZ

(0)
M T t



XJ,L

XM,L

XM,T

 =


LY

(0)
J

LY
(0)
M

TY
(0)
M

 (38a)

and [
TZ

(0)
J T t

]
XJ,T = γ2T

(
Y

(0)
J −

[
A

(0)
J Lt

]
XJ,L −

[
B(0)Lt

]
XM,L −

[
B(0)T t

]
XM,T

)
.

In the above block systems, we define the matrices K associated with integral operators K by their

entries Kij :=
〈
φi , Kφj

〉
× (with K = A(0)

J , A(0)
M , Z(0)

J , Z(0)
M , B(0), B(0)

? ). With the exception of B(0)
? ,

to be defined shortly thereafter, the foregoing operators are as introduced in (19), so that the various
entries Kij can be expressed (with details left to the reader) as linear combinations of〈

φi , {γ×}Ψ`[φj ]
〉
× =

∫
Γ

φi(x) ·
∫

Γ

G(x−x′;κ`)φj(x′) dS(x′) dS(x),〈
φi , {γ×}∇Ψ`[divSφj ]

〉
× = −

∫
Γ

divSφi(x)

∫
Γ

G(x−x′;κ`)divSφj(x
′) dS(x′) dS(x),〈

φi , {γ×}rot Ψ`[φj ]
〉
× =

∫
Γ

φi(x) ·
∫

Γ

∇G(x−x′;κ`)×φj(x′) dS(x′) dS(x).

Likewise, the vectors Y
(0)
J , Y

(0)
M appearing in the right-hand sides of (38a,b) are defined by their entries(

Y
(0)
J

)
j

=
〈
φi , γ

+
×Φ

(0)
0 [J inc]

〉
× =

∫
Γ

φi(x) ·Φ(0)
0 [J inc](x) dS(x),(

Y
(0)
M

)
j

=
〈
φi , γ

+
NΦ

(0)
0 [J inc]

〉
× =

∫
Γ

φi(x) · rot Φ
(0)
0 [J inc](x) dS(x).

The impedance variation ∆ZEC predicted by the EC model is then evaluated by using the solution
of (38a,b) in the discretized version of (28), to obtain

∆ZEC =
iξγ

I2L

√
µ0

ε0

([
LtXM,L +T tXM,T

]t
Y

(0)
M +

[
LtXJ,L

]t
Y

(0)
J

)
.
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The approximation method outlined above is also applied, in similar fashion, to the BE discretization
of the Maxwell integral problem (14); we omit the details for brevity. The impedance variation ∆Zγ
predicted by the Maxwell model is then evaluated using (27) in discretized form, using the DOFs
XJ , XM associated with the BE solution of (14).

If Γ (or a connected component of Γ) is simply connected, each loop function φL is in fact equal on
each element to the surface curl of a continuous and piecewise-linear function ϕ:

φL =
(
∇Sϕ

)
×n = rot (ϕ̃n)

∣∣
Γ
,

with ϕ̃ denoting the extension of ϕ by a constant along the normal direction in a tubular neighbor-
hood of Γ. Moreover, since rot rot Ψ`[u] = κ2

`Ψ`[u] + ∇Ψ`[divSu], an integration by parts yields〈
φL
i , {γ×}rot Ψ

(0)
0 [φL

j ]
〉
× = 0 for any (i, j) (since κ

(0)
0 = 0 and, by construction, divSφ

L = 0). Since

this theoretically vanishing contribution may in practice pollute the discrete solution process, it is sub-
tracted from each medium’s contribution to the double-layer operator B (restricted to the loop trial
and test spaces), i.e. we introduce the modified double-layer operators

B? = {γN}
(
Ψ

(0)
1 −Ψ

(0)
0

)
(EC case)

B? = {γN}
(

(Ψ1−Ψ
(0)
0 ) + (Ψ0−Ψ

(0)
0 )
)

(Maxwell case)

for the EC and Maxwell cases, respectively. Observe that (i) B? = B for the loop–loop interaction
terms and (ii) B? only involves nonsingular integrals (due to ∇G(r;κ`)−∇G(r; 0) being bounded at
r= 0).

If (a connected component of) Γ is not simply connected, “local” loop basis functions must be
supplemented by “global” loop basis functions [10], so that

LB?Lt =

[
LlocB?Lt

loc LlocB?Lt
glob

LglobB?Lt
loc LglobBLt

glob

]
,

with the matrices Lloc and Lglob defining the linear combinations of basis functions that yield the
local and global loop functions. Finally, an integration-by-parts argument similar to that made above

shows that
〈
φL
i , γ

+
NΦ

(0)
0 [J inc]

〉
× = 0. As a consequence, we have LlocY

(0)
M = 0 (for the EC case) and

LlocYM =Lloc

(
YM −Y (0)

M

)
(for the Maxwell case).

5.2. Numerical results. We now demonstrate on a test configuration the main results of the
foregoing asymptotic analysis. The conducting body Ω1 occupies an ellipsoidal domain with semiaxes
(1, 0.8, 0.6) m, centered at the coordinate origin O = (0, 0, 0) and inclined (relative to the fixed frame
Oxyz) by means of a 30o rotation about Oy. The boundary element mesh is created by deforming the
mesh of a unit sphere made of 4608 triangles. The source field is emitted by an annular coil (centered
at O, with an internal radius of 4m and a square section of size 0.05 m) made of a single spire carrying a
1 A current, so that the current density J inc is of magnitude 400 Am−2. Resulting electric and magnetic
fields will be evaluated on the spheres S0 ⊂ Ω0 (center O, radius 1.2 m) and S1 ⊂ Ω1 (center O, radius
0.4 m), see Fig. 2.

Values for the frequency f = γξ/2πL
√
ε0µ0 and the conductivity σ = ξ

√
ε0/Lγ

√
µ0 are selected

so that 10−5 ≤ γ ≤ 10 and ξ = 1 (we set L = 1m). Maxwell solutions are compared to their
asymptotic approximations. The absolute and relative differences (in discrete L∞(Γ) norm) between
the surface currents J ,M for the Maxwell solutions and their asymptotic approximation, shown in
Fig. 3, corroborates the expansion (24). Corresponding comparisons for the evaluation of H (Fig. 4)
and E (Fig. 5) on the outer and inner evaluation surfaces reproduce the asymptotic behavior predicted
by (26a), (26b) and (26c); in addition, Fig. 5a also shows (unconnected symbols) the unacceptable
relative approximation error committed onE0 by (mistakenly) omitting the contribution of JT toE0,EC

due to this component being of higher order in γ on Γ. Finally, the absolute and relative differences
between ∆Zγ and ∆ZEC, plotted in Fig. 6, validate the expansion (28) of ∆Zγ . We conclude with an
illustrative plot of the surface current magnitude (in terms of |=(M)|) for γ = 10−3 (Fig. 7).
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Figure 2. Sketch of the example configuration showing the coil (top panel only), the ellipsoidal
conducting part, and the two spherical evaluation surfaces.
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(a) Current density J on Γ
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(b) Current density M on Γ

Figure 3. Absolute and relative differences (in discrete L∞(Γ) norm) between Maxwell solutions
on Γ and their asymptotic approximation

6. Concluding remarks. In this article, we have sought and established the limiting form of the
(PMCHWT) integral formulation for the Maxwell transmission problem involving a spatially-bounded

conductor in air or vacuum as γ :=
√
ωε0/σ → 0 while ξ :=L

√
ωσµ0 remains bounded. These conditions

pertain to situations simultaneously involving low frequencies and high conductivity (γ small) while
the skin depth d remains fixed (ξ set to a nonzero value), and are distinct from a low-frequency
approximation. The derivation and mathematical justification of the asymptotic results, where in
particular the leading approximations of the surface currents are found to solve the EC PMCHWT
integral problem of [14], constitutes the main theoretical contribution of this work.

In addition to bringing insight into the mathematical relationship between the EC and Maxwell
models for the transmission problem, this study allows to quantify the quality of the EC model
as an approximation of the Maxwell model (the relative residuals on electromagnetic fields being
O(γ2) =O(ω/σ)) and paves the way for the derivation of higher-order approximations (e.g. by setting

up the governing problem forX(2)). Moreover, the revealed disparities in how the various sub-operators
scale with γ pinpoint a suitable rescaling of the Maxwell PMCHWT, such that all diagonal sub-operators
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(a) Outer evaluation surface S0
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(b) Inner evaluation surface S1

Figure 4. Absolute and relative differences (in discrete L∞(S) norm) between H evaluated using
the exact Stratton–Chu representation and its asymptotic approximation
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(b) Inner evaluation surface S1

Figure 5. Absolute and relative differences (in discrete L∞(S) norm) between E evaluated using
the exact Stratton–Chu representation and its asymptotic approximation. In the left
panel, the unconnected symbols correspond to the relative error committed by omitting
the contribution of JT (of higher order on Γ) to E0,EC

are O(1) in γ; this feature is exploited (without mathematical analysis) in the form of a simple block-
SOR algorithm in [27].

Future work includes extending this asymptotic methodology, and finding the correct limiting
problem, for configurations additionally involving a nearby weakly conducting but permeable object
(e.g. a ferrite core in the EC probe).
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